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Abstract

The well-known Minkowski's ?(x) function is presented as the asymp-
totic distribution function of an enumeration of the rationals in (0; 1]

based on their continued fraction representation. Besides, the singularity

of ?(x) is clearly proved in two ways: by exhibiting a set of measure one
in which ?0(x) = 0; and again by actually �nding a set of measure one

which is mapped onto a set of measure zero and viceversa. These sets

are described by means of metrical properties of di�erent systems for real
number representation.
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1 Introduction

Minkowski's ?(x) function was introduced by Minkowski (see [7]) for the purpose

of establishing a new criterium for quadratic irrationals based on a one-to-one

correspondence between some rational numbers and the quadratic irrationals of

[0; 1]:Minkowski's original construction is very simple: on the x axis he `draws'

the rationals by means of the mediants in the Farey fractions and to each of

these mediants he assigns on the y axis the corresponding dyadic division point.

The function is extended to all x 2 [0; 1] by continuity. Denjoy in [2] studied

the function and proved it to be a strictly increasing singular function.

For the sake of completeness we present the de�nition of ?(x) as it is given

by Salem in [15]. First we de�ne:

?(0) =?(0=1) = 0; ?(1) =?(1=1) = 1:

Then we take the mediant 1=2 = (0+1)=(1+1) between the two Farey fractions

0=1 and 1=1 and we de�ne

?(1=2) =
?(0)+?(1)

2
=

1

2
;

we continue in the same way,

?

�
p + p

0

q + q0

�
=

?(p=q)+?(p0=q0)

2
:

The de�nition for irrational x follows by continuity.

Salem, in the same article, �nds a new presentation for ?(x). If x 2 (0; 1] is

developed as a regular continued fraction:

x = [0; a1; a2; : : : ; an; : : :];

then

?(x) =
1

2a1�1
� 1

2a1+a2�1
+

1

2a1+a2+a3�1
� � � � (1)

From this de�nition, Salem draws all the important properties of ?(x) :

1. x is a quadratic irrational i� ?(x) is a rational with a non-terminating

expansion.

2. ?(x) is strictly increasing.

3. ?(x) is a singular function, that is, its derivative is 0 almost everywhere

(in the sense of the measure of Lebesgue).

The set found by Salem, on which the derivative of ?(x) is zero is the

intersection of

N = fx = [0; a1; a2; : : :] : lim supan =1g;

with the set of the points in (0; 1] on which ?(x) has a �nite derivative. Both

sets are of measure one. This presentation of Salem had been inadvertently

introduced by Ryde in 1926 (see [14] for the details) without the connexion

with Minkowski's function.
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In section 2 of this paper, we present a new way of looking at ?(x); by

obtaining it as the asymptotic distribution funtion (a.d.f.) of a sequence. A

function F (x) is called the a.d.f. of the sequence fq(n)g; 0 � q(n) � 1 if:

lim
n!1

#fq(i) � x ; i = 1; 2; : : : ; ng
n

= F (x) for 0 � x � 1:

More information about distribution functions of sequences can be found in the

excellent treatise by Kuipers and Niederreiter, [5, pp. 53 and �.].

It is known (see [5, pp. 137 and �.]) that given any non-decreasing function,

f , on [0; 1] with f(0) = 0 and f(1) = 1; there exists a sequence in [0; 1] having f

as its a.d.f. It can be even proved that any everywhere dense sequence in [0; 1]

can be rearranged so as to yield a sequence having f as its a.d.f. (The proofs of

these results are purely existential and not constructive.) Consequently, there

exists a rearrangement of the sequence rn of all rationals in (0; 1) with ?(x)

as its a.d.f. We show one of these rearrangements to be the enumeration of

the positive rationals obtained through their continued fraction development as

we presented in [9]. In [10] we used a di�erent enumeration of the rationals,

based on Pierce expansions (see [16]), to present them as the a.d.f. of another

interesting singular function.

In section 3 we prove the singularity of ?(x) by �nding a new set on which

the derivative is zero. This set is a di�erent set from the set found by Salem,

cited above.

Finally, in section 4, through the comparison of the `normality' of numbers

in (0; 1] as represented by continued fractions or by alternated dyadic fractions,

we will speci�cally describe a set of measure one transformed by ?(x) into a

set of measure zero and whose inverse image by ?(x) is also of measure zero.

On the points of this set in which ?(x) has a derivative (a set of measure one)

this derivative has to be, necessarily, 0, which proves again the singularity of

Minkowski's function. A similar approach was used in [12] to the same end.

2 The enumeration of the rationals in (0,1)

We de�ne a one{to{one correspondence, q between the set of positive integers,

f1; 2; 3; : : :g, and the set of all rational numbers in (0; 1) in the following way. If

n = 2a1 + 2a2 + � � �+ 2ak with 0 � a1 < a2 < � � � < ak;

q(n) = [0; a1 + 1; a2 � a1; a3 � a2; : : : ; ak � ak�1 + 1]: (2)

This enumeration is a restriction to (0; 1) of a more general enumeration of all

positive rationals (see [9]).

From now on, as we will only consider numbers in (0; 1) we will drop the 0

in the regular continued fraction representation of a number in (0; 1): Thus (2)

will be written

q(n) = [a1 + 1; a2 � a1; : : : ; ak � ak�1 + 1]:

A few terms of this enumeration are:

q(1)=[2]=1=2 q(5)=[1;3]=3=4 q(9)=[1;4]=4=5 q(13)=[1;2;2]=5=7

q(2)=[3]=1=3 q(6)=[2;2]=2=5 q(10)=[2;3]=3=7 q(14)=[2;1;2]=3=8

q(3)=[1;2]=2=3 q(7)=[1;1;2]=3=5 q(11)=[1;1;3]=4=7 q(15)=[1;1;1;2]=5=8

q(4)=[4]=1=4 q(8)=[5]=1=5 q(12)=[3;2]=2=7 q(16)=[6]=1=6
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A careful observation of the enumeration provides the following facts about it,

which are easily proved:

1. q(2n) =
1

n+ 2
:

2. After r=s; r=s < 1=2 we have (s � r)=s; which amounts to say,

r

s
= [a1; a2; : : :] with a1 > 1 is followed by

s � r

s
= [1; a1� 1; a2; : : :]:

3. The 2n�2 rationals, r=s; between places 2n�2 (included) and 2n�1 (exclu-

ded) are such that:

r=s = [a1; a2; : : : ; ak]; (ak > 1) and

kX
j=1

aj = n: (3)

There are precisely 2n�1 possible partitions of a positive integer n in

smaller positive integers if we consider di�erent two partitions in which

the order of the sumands is di�erent (see problem 21 in P�olya and Szeg�o,

[11]). If we ban those partitions in which the last sumand is 1, we get a a

total of 2n�1� 2n�2 = 2n�2 partitions coinciding with our 2n�2 rationals

q(2n�2); q(2n�2 + 1); : : : ; q(2n�1 � 1):

It is immediate to see the following:

Lemma 2.1 If we denote by �(x) the successor of x in the enumeration fq(n)g
then:

1. �(1=2) = 1=3.

2. If x = [a1; a2; : : : ; ak]; (ak > 1);

�(x) =

8>><
>>:

[1; a1 � 1; a2; : : : ; ak] if a1 > 1;

[h; ah � 1; ah+1; : : : ; ak] if a1 = : : : = ah�1 = 1; (h � k);

[h+ 3] if x = [1; 1; : : :; 1| {z }
h

; 2]:

This operator, �; can be extended following the same formation rules to all real

numbers in (0; 1) to de�ne a partial order in all (0; 1):

2.1 An analytical expression for �(x)

In the continued fraction expansion of the number � = (1=2)(
p
5� 1):

� = [1; 1; 1; : : : ; 1; 1; : : :]

let us consider its convergents:

R0 = 0; Ri = [1; 1; : : :; 1| {z }
i

] = [1; 1; : : : ; 1| {z }
i�2

; 2]:

We have the following in�nite chain of inequalities:

0 = R0 < R2 < R4 < � � � < � < � � � < R5 < R3 < R1 = 1:
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We can now consider the following family of half{open intervals, mutually

disjoint, taken at left and right of �: on the left, [R2k; R2k+2) and on the right,

(R2k+1; R2k�1], such that, being mutually disjoint we have:

1[
k=0

[R2k; R2k+2) = [0;�);

1[
k=1

(R2k+1; R2k�1] = (�; 1]:

The function �(x) has the following piece{wise analytical expression:

�(x) =

8>>><
>>>:

[k+ 1] =
1

k + 1
if x = Rk

Fk+1x� Fk

(kFk+1 � Fk)x+ Fk�1 � kFk
if x is between Rk�1 and Rk+1

where Fn is the Fibonacci sequence:

F0 = 0; F1 = 1; F2 = 1; F3 = 2; : : : ;Fn = Fn�1 + Fn�2:

The only point in (0; 1) that lacks an image by � is �. The graph of � is shown

in �gure 1.

0 1/2 � 2/3 1

1/3

1/2

1

Figure 1: The graph of �(x)

2.2 The distribution function of fq(n)g

We are going to prove that the a.d.f. of fq(n)g is precisely ?(x): The proof we

are going to give is a direct one, that is to say, we intend to see that given

x 2 [0; 1] :

lim
N!1

#fq(i) � x; i = 1; 2; : : :; Ng
N

=?(x) (4)

by calculating directly the limit in (4). We shall use the notation:

A(x;N ) = #fq(i) � x; i = 1; 2; : : :; Ng:

The proof will be reached by di�erent stages, �rst considering x = 1=a = [a];

and later by considering x = [a1; a2; : : :].
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Lemma 2.2

A([a]; 2M � 1) =

�
0 if a �M + 2;

2M�(a�1) otherwise.

Proof. It is seen at once that

[b1; b2; : : : ; bk] � [a] i� b1 � a:

By the remark in (3) the rationals q(1); q(2); : : : ; q(2M � 1) have continued

fraction developments [b1; : : : ; bk] verifying

kX
j=1

bj �M + 1:

As a consequence, if a � M + 2; then there is no [b1; : : : ; bk] such that
P

bj �
M + 1 and b1 � a:

Now, if a < M + 2; we are going to count A([a]; 2M � 1) by blocks of 2`

elements. the rationals between q(2`) (included) and q(2`+1) (excluded) have

expansions equal to [b1; : : : ; bk] with bk > 1 and
P

bj = `+ 2: Among these we

must select those such that b1 � a; that is to say those of the forms:

[a; b2; : : : ; bk]; (bk > 1);
P

k

j=2 bj = `+ 2� a : by (3), a total of 2`�a

[a+ 1; b2; : : : ; bk]; (bk > 1);
Pk

j=2 bj = ` + 1� a : by (3), a total of 2`�a�1

[a+ 2; b2; : : : ; bk]; (bk > 1);
Pk

j=2 bj = ` � a : by (3), a total of 2`�a�2

: : :

[`; 2] which amounts only to 1,

[`+ 1; 1] which is not admissible,

[`+ 2] which amounts only to 1,

All in all:

1 + (1 + 2 + 22 + � � �+ 2`+2�a) = 2`+1�a:

The block of rationals between q(2a�2) and q(2a�1 � 1) for which
P

bj = a

contribute with 1 element to the total count. For the rest of blocks we have a

total of:
M�1X
`=a�1

2`+1�a = 2M�a+1 � 1:

Finally, we have a total of:

A([a]; 2M � 1) = 1 + (2M�a+1 � 1) = 2M�(a�1)
: 2

Now, a careful observation of the enumeration leads us to a new result which

is very signi�cative. Within a block q(2`); : : : ; q(2`+1 � 1) in which

q(i) = [b1; : : : ; bk]; (bk > 1);
X

bj = `+ 2;

the 2` q(i)'s distribute themselves following again the same pattern as the 2`+1

from q(1) to q(2`+1� 1): To see that, you only have to drop the last bk and add
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1 to bk�1 :

First one: sum 2
�
q(2` + 1) = [1; `+ 1] �! [2]

From 21 to 22 � 1 : sum 3

�
q(2` + 2) = [2; `] �! [3]

q(2` + 3) = [1; 1; `] �! [1; 2]

From 22 to 23 � 1 : sum 4

8>><
>>:

q(2` + 4) = [3; `� 1] �! [4]

q(2` + 5) = [1; 2; `� 1] �! [1; 3]

q(2` + 6) = [2; 1; `� 1] �! [2; 2]

q(2` + 7) = [1; 1; 1; `� 1] �! [1; 1; 2]

From 23 to 24 � 1 : sum 5

8<
:

q(2` + 8) = [4; `� 2] �! [5]

: : : : : : : : :

q(2` + 15) = [1; 1; 1; 1; `� 2] �! [1; 1; 1; 2]

: : : : : :

(5)

This pattern is repeated at deeper levels as we get from right to left in the

continued fraction expansion of the q(i)'s: each block of 2` q(i)'s break in smaller

blocks of 2j elements sharing their last coe�cient.

With this last observation, it is easily (but tediously) proved the next lemma:

Lemma 2.3 If N = 2B0 + 2B1 + � � �+ 2Bt with 0 � B0 < B1 < : : : < Bt is the

dyadic expression of N; then

A([a];N ) =

(
0 if a > Bk + 2;

1 +
jPt

j=0 2
Bj�(a�1)

k
otherwise.

(6)

(The symbols b c denote the integer part.)
In point of fact, some of the sumands within the sum in (6) are of the form

2�n if a < Bj + 1 but as their contribution to the total sum will never equal or

exceed 1, it is easier to use the above formula than making exceptions.

With the help of this last lemma it is easy to see the following:

Theorem 2.4

lim
N!1

A([a];N )

N
=?(1=a):

Proof. By lemma 2.3:

lim
N!1

A([a];N )

N
=

= lim
N!1

1 +
P

Bj>a+1
2Bj�(a�1)P

j=0 2
Bj

=

= lim
N!1

1 +
P

t

j=0 2
Bj�(a�1) �P

Bj�a+1
2Bj�(a�1)P

j=0 2
Bj

=

= lim
N!1

 
1 + 2�(a�1)N

N
� 2�(a�1) �

P
Bj�a+1

2Bj

N

!
=

1

2a�1
: 2

Now we generalize the above result to an x = [a1; a2; : : : ; ah]: To start with,

let us consider x = [a1; a2]:Now, [b1; b2; : : :] < [a1; a2] either if b1 > a1 or b1 = a1

and b2 < a2: With this observation, it is easy to see that

A([a1; a2]; 2
M � 1) = A([a1]; 2

M � 1)�A([a1 + a2]; 2
M � 1) + "; (7)
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where " is 0 or 1,

This is because from all the q(i) = [b1; : : : ; bk] which verify b1 � a1 we must

exclude those which verify b1 = a1 and b2 � a2 with the only exception of the

very [a1; a2]: Now, those rationals between q(1) and q(2M � 1), which verify

b1 = a1 and b2 � a2 can be counted by blocks in the same way we did above

in the proof of lemma 2.2. We are going to count the rationals between q(2`)

(included) and q(2`+1) (excluded) with expansions equal to [a1; b2; b3; : : : ; bk]

with bk > 1 and b2 � a2. For these, a1 +
P

bj = ` + 2: Among these we must

select those of the forms:

[a1; a2; b3; : : : ; bk]; (bk > 1);
P

k

j=3 bj = ` + 2� (a1 + a2) :

by (3), a total of 2`�(a1+a2)

[a1; a2 + 1; b3; : : : ; bk]; (bk > 1);
P

k

j=3 bj = `+ 1� (a1 + a2) :

by (3), a total of 2`�(a1+a2)�1

etc. as before.

All in all, it is the same count we would do in order to �nd out those rationals

between q(2`) and q(2`+1 � 1) whose �rst term, b1 � a1 + a2, that is to say,

A([a1 + a2]; 2
M � 1): The value of ", 0 or 1, can be precised through a more

detailed analysis of the problem but it is irrelevant for our purpose. 2

Equation (7) can be easily generalized to

A([a1; a2];N ) = A([a1];N )�A([a1 + a2];N ) + "; (" = 0; 1);

again through observing the pattern described in (5).

This analysis can be carried further and provides us with the result:

Lemma 2.5 If N = 2B0 + 2B1 + � � �+ 2Bt with 0 � B0 < B1 < : : : < Bt is the

dyadic expression of N; we have:

A([a1; a2; : : : ; ah];N ) =

= A([a1];N )� A([a1 + a2];N ) + A([a1 + a2 + a3];N )� � � � =

=

hX
j=1

(�1)j�1A([a1 + a2 + � � �+ aj ];N ) + "; (" = �1; 0; 1): (8)

Finally, by this former lemma, it is seen at once:

Theorem 2.6

lim
N!1

A([a1; a2; : : : ; ah];N )

N
=

=
1

2a1�1
� 1

2a1+a2�1
+ � � �+ (�1)h+1

2a1+a2+���+ah�1
=

=?([a1; : : : ; ah]):

And, by continuity, the �nal theorem we were seeking,

Theorem 2.7

lim
N!1

A([a1; a2; : : :];N )

N
=

1

2a1�1
� 1

2a1+a2�1
+ � � � =?([a1; a2; : : :]):
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3 The singularity of ?(x)

We are going to exhibit a set of measure one on which ?(x) has a zero derivative.

This set is going to be quite di�erent from the one presented by Salem in [15].

Salem starts with the set of all numbers in [0; 1] whose regular continued fraction

expansion had unbounded partial quotients and shows that at the points of this

set, ?0(x) is either 0 or 1. Limiting himself to the points in which ?0(x) = 0 he

gets the set of measure one he seeks.

Our starting set will also be described using some speci�c metrical properties

of the regular continued fraction expansion of a real number, but the main

di�erence with Salem's set will be that at the points of our set, ?0(x) = 0

whenever it exists in a broad sense (?0(x) �1).

3.1 The continued fraction system of representation

In the regular continued fractions system of representation, limited to numbers

in (0; 1], the residue function can be de�ned as:

R(x) =
1

x
�
�
1

x

�
:

In a certain sense, Kuzmin proved in [6] that for almost all x in (0; 1], the a.d.f.

of the sequence fx;R(x); R2(x); R3(x); : : :g is log2(1 + x). This result is the

consequence of an unproved conjecture of Gauss and, since Kuzmin's proof, it

has been known as the Gauss{Kuzmin theorem (see [13, Chap. V] for more

details).

It can be seen that the residue function R(x) preserves Gauss's measure,

whose density is precisely:

�(x) = log2(1 + x):

A number x 2 (0; 1] whose orbit fx;R(x); R2(x); R3(x); : : :g has log2(1 + x) as

its a.d.f. will be called a Gauss{Kuzmin number.

It is well{known that the set of x 2 (0; 1] for which the mean value of their

partial quotients, (a1+ � � �+an)=n tends to1 is a set of measure one (see [3, 13]

for more details). In the next theorem we are a bit more precise, and we prove

that the set of Gauss{Kuzmin numbers is a susbset of this one.

Theorem 3.1 If x = [a1; a2; a3; : : :] is a Gauss{Kuzmin number then

lim
n!1

a1 + a2 + � � �+ an

n
=1:

Proof. If x = [a1; a2; a3; : : :] is a Gauss{Kuzmin number it is seen at once

that the frequency of repetitions of the number i among the partial quotients,

or, for short, the density of i, is

lim
n!1

#faj = i; j = 1; 2; : : : ; ng
n

= log2

�
(i + 1)2

i(i + 2)

�
= p(i):

That means that given a positive integer i and given " > 0; there exists a ni

such that for all n � ni we have:����#faj = i; j = 1; 2; : : : ; ng
n

� p(i)

���� < ": (9)
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Now, let k be given and let n0 = max(n1; n2; : : : ; nk�1). We de�ne �x = [b1; b2;

: : : ; bn; : : :] as follows: �
bi = ai if ai � k;

bi = k if ai > k:

Obviously, for all n we have:

a1 + a2 + � � �+ an

n
� b1 + b2 + � � �+ bn

n
:

The sequence fbng takes values only in the set f1; 2; : : : ; kg and if x was a Gauss{
Kuzmin number then the density of number i; 1 � i � k� 1 is p(i) whereas the

density of number k is

�p(k) =

1X
i=k

log2

�
(i + 1)2

i(i + 2)

�
= log2

k + 1

k
:

Thus, given " > 0, there exists a nk such that for all n � nk we have:����#fbj = k; j = 1; 2; : : : ; ng
n

� �p(k)

���� < ": (10)

If n � �m = max(n0; nk), both (9) and (10) hold, and we have:

b1 + b2 + � � �+ bn

n
�

�
k�1X
i=1

i (p(i) � ") + k (�p(k) � ") =

=

k�1X
i=1

i log2

�
(i+ 1)2

i(i + 2)

�
+ k � log2

k + 1

k
�

kX
i=1

i" =

= log2

k�1Y
i=1

�
i+ 1

i
� i+ 1

i+ 2

�i�
k + 1

k

�k
� "

k(k + 1)

2
=

= log2

��
2

1
� 2
3

��
3

2
� 3
2
� 3
4
� 3
4

��
4

3
� 4
3
� 4
3
� 4
5
� 4
5
� 4
5

�
� � �
�
� "

k(k + 1)

2
=

= log2(k + 1)� "
k(k + 1)

2
:

Therefore, if given k a positive integer, we take " = 2
k(k+1)

, there exists �m(k)

such that for all n � �m(k) we have:

a1 + � � �+ an

n
� b1 + � � �+ bn

n
� log2(k + 1)� 1; (11)

which implies

lim
n!1

a1 + � � �+ an

n
=1: 2

Let D denote the set of x 2 [0; 1] for which ?0(x) � 1. And let G denote the

set of x 2 (0; 1) of Gauss{Kuzmin numbers. Besides, we will consider the set

K of x 2 (0; 1) whose continued fraction expansion verify the Khintchine{L�evy

11



constant (see [13, Chap. V]), that is, such that if x = [a1; a2; : : : ; an; : : :] and

pn=qn is the sequence of its convergents then

lim
n!1

n
p
qn = e

�2

12 log 2 :

or, what amounts to the same,

lim
n!1

log qn

n
=

�
2

12 log2
:

We will call these numbers Khintchine{L�evy numbers. These three subsets of

[0; 1]: D;G and K are of measure one.

Theorem 3.2 If x 2 D \G \K then ?0(x) = 0:

Proof. Let x = [a1; a2; : : : ; an; : : :] and Rn = pn=qn be the sequence of its

convergents. We know that, if n is even, Rn < x < Rn�1; then, as

?(x) =
1

2a1�1
� 1

2a1+a2�1
+

1

2a1+a2+a3�1
� � � � ;

if x 2 D,

?0(x) = lim
n!1

?(Rn�1)�?(Rn)

Rn�1 �Rn

=

= lim
n!1

1
2a1+a2+���+an�1

1
qnqn�1

= lim
n!1

qnqn�1

2a1+a2+���+an�1
: (12)

We must see that if, besides, x 2 G \K then this last limit is 0.

Taking logarithms in the sequence of the limit (12) we seek,

log qn + log qn�1 � (a1 + � � �+ an � 1) log2 =

= n �
�
log qn + log qn�1

n
� (a1 + � � �+ an � 1)

n
� log 2

�
!�1 (13)

as
log qn + log qn�1

n
! 2

�
2

12 log2
;

and, by theorem 3.1,

a1 + a2 + � � �+ an � 1

n
!1:

The limit in (13) proves that ?0(x) = 0: 2

A closer look at the proof we have just seen, shows that the condition of

x 2 K can be lightened. It is enough for our purposes that the expression

within brackets in (13) tends to �1 so that, in the end, the whole limit in (13)

tends to �1. This requirement can be ful�lled just by the condition of x being

a Gauss{Kuzmin number, as our next theorem proves:

Theorem 3.3 If x 2 D \G then ?0(x) = 0:

12



Proof. We get, as before, that if x 2 G \D,

?0(x) = lim
n!1

qnqn�1

2a1+a2+���+an�1
;

and, taking logarithms in this last limit:

log ?0(x) =

= lim
n!1

(log qn + log qn�1 � (a1 + � � �an � 1) � log 2) =

= lim
n!1

n �
�
log qn + log qn�1

n
� log 2 � a1 + � � �an � 1

n

�
: (14)

Now, as pn=qn are the convergents of the continued fraction [a1; a2; : : : ; an; : : :],

the qn satisfy the recurrence,

qn = anqn�1 + qn�2; q0 = 1; q1 = a1;

and, trivially,

qn < (an + 1)(an�1 + 1) � � � (a1 + 1):

Going back to the expression in (14),

log qn + log qn�1

n
� log 2 � a1 + � � �+ an � 1

n
<

< 2 � log qn
n

� log 2 � a1 + � � �+ an � 1

n
<

< 2 �
Pn

j=1 log(aj + 1)

n
� log 2 � a1 + � � �+ an � 1

n
:

As we did before in the proof of theorem 3.1, given a positive integer k let us

replace an by bn where �
bi = ai if ai � k;

bi = k if ai > k;

We will need two lemmas to go on:

Lemma 3.4 The function

f(x) = log
(x+ 1)2

2x

is strictly decreasing for x � 2.

Lemma 3.5 The series

1X
r=1

log(r + 1) � log (r + 1)2

r(r + 2)

converges to a positive value, �.

Both are proved trivially.

Now, if k is large enough for lemma 3.4 to be valid,

2 �
Pn

j=1 log(aj + 1)

n
� log 2 � a1 + � � �+ an � 1

n
<

< 2 �
P

n

j=1 log(bj + 1)

n
� log 2 � b1 + � � �+ bn � 1

n
(15)

13



Besides, using the results we obtained in the proof of theorem 3.1:

b1 + b2 + � � �+ bn � 1

n
� log(k + 1)� 1 (16)

and, given " = 2
k(k+1)

, for n large enough, both (9) and (10) were valid.

Consequently, the inequality obtained in (15) can be continued. For n large

enough:

2 �
P

n

j=1 log(bj + 1)

n
� log 2 � b1 + � � �+ bn � 1

n
�

� 2

k�1X
i=1

log(i+ 1)

�
log2

(i + 1)2

i(i + 2)
+ "

�
+

+2 log(k + 1) � (log2
k + 1

k
+ ")� log 2 � (log(k + 1)� 1) =

= 2

k�1X
i=1

log(i+ 1)

�
log2

(i + 1)2

i(i + 2)

�
+ 2"

kX
i=1

log(i+ 1) +

+2 log(k + 1) � log2
k + 1

k
� log 2 � (log(k + 1)� 1)

Now, remembering that " = 2
k(k+1)

,

2"

kX
i=1

log(i + 1) �

� 4

k(k + 1)
�
Z k+1

1

log(x + 1)dx �

� 4

k(k + 1)
� (k + 2) � log(k + 2);

which tends to 0 as k!1.

On the other hand, by lemma 3.5

2

k�1X
i=1

log(i + 1)

�
log2

(i+ 1)2

i(i + 2)

�
� 2

1X
i=1

log(i + 1)

�
log2

(i + 1)2

i(i + 2)

�
= 2�:

All in all, we have:

2

k�1X
i=1

log(i + 1)

�
log2

(i+ 1)2

i(i + 2)

�
+ 2"

kX
i=1

log(i + 1)+

+2 log(k + 1) � log2
k + 1

k
� log 2 � (log(k + 1) � 1) �

� 2� +
4

k(k + 1)
� (k + 2) log(k + 2) + 2 log(k + 1) � log2

k + 1

k
�

� log 2 � (log(k + 1)� 1) =

= 2� +
4

k(k + 1)
� (k + 2) log(k + 2) +

+ log(k + 1) �
�
2 log2

k + 1

k
� log 2� 1

log(k + 1)

�
:

14



This last expression, clearly tends to �1 when k !1:

Summing up,�
log qn + log qn�1

n
� log 2 � a1 + � � �+ an

n

�
� n!�1: 2

4 A `vanishing' set under ?(x)

In this section we are going to prove the singularity of ?(x) by �nding what we

call a vanishing set, that is, a set of measure one whose image under ?(x) is of

measure zero and whose inverse image is also of measure zero. On the points of

this set for which ?0(x) exists, we must have ?0(x) = 0.

4.1 The alternated dyadic system

The expansions in Salem's expression (1) of ?(x) constitute an instance of a

peculiar system of representation of real numbers, the alternated dyadic system.

As we are going to use it in this section and it is not very well-known, it is worth

our while to examine its most important features.

Theorem 4.1 Any real number in [0; 1] can be represented in an unique way

(except for the duplicity of terminating expansions) as:

x =
1

2d1
� 1

2d2
+ � � �+ (�1)n+1

2dn
+ � � � (17)

where fdig are a strictly increasing sequence of non{negative integers, 0 � d1 <

d2 < � � � < dn < � � � :

We sketch the proof of this theorem. The sequence f1=2ng induces a partition

of (0; 1]:

(0; 1] =

1[
n=0

�
1

2n+1
;
1

2n

�
: (18)

Given x, there exists a positive integer, n such that:

1

2n+1
< x � 1

2n
;

from where we �nd

n =

�
log2

1

x

�
: (19)

Thus, x can be written as:

x =
1

2n
� �

�
1

2n
� 1

2n+1

�
=

1

2n
� �

1

2n+1
=

1

2n

�
1� �

2

�
; with � 2 [0; 1):

(20)

From this last equality we get 2n+1x = 2� � and thus � = 2(1� 2nx):

Now, we de�ne the residue function as

F (x) = 2(1� 2nx); where n =

�
log2

1

x

�
;
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and with its help we obtain the recurrence that provides the di�erent terms of

the expansion:

�
!1 = x

d1 =
�
log2

1
x

� ;

(
!n = F (!n�1)

dn = 1+
j
log2

1
!n

k
+ dn�1

for n > 1: (21)

Lemma 4.2 The residue function F (x) preserves the Lebesgue measure, �.

Proof. Let y 2 [0; 1] and let us consider the set A(y) = fx : F (x) � yg. For
each interval in the dyadic partition (18) we will have y = 2(1� 2nx); that is to

say, x = 1
2n
� y

2n+1
: Consequently, the numbers x such that F (x) � y de�ne for

each n a subinterval
�

1
2n
� y

2n+1
;

1
2n

�
. Therefore (see �gure 2):

�(A(y)) =

1X
n=0

y

2n+1
= y: 2

0 1
4

1
2

1

1
8

1
4

1
2

y

Figure 2: The residue function

4.2 Normal numbers to the alternated dyadic system

De�nition 1 We will say that a number x is normal to the alternated dya-

dic system given by (17) when its orbit under F , fx; F (x); F 2(x); F 3(x); : : :g is
uniformly distributed in (0; 1].

The de�nition is analogous to the one given by Wall in [17], (see also [8, Chap.

8] or [5, Chap. 1, Sect. 8]) for the usual integer{based systems of representation,

which is equivalent to the classic one by Borel.

Now, F (x) preserves Lebesgue's measure, as we proved in lemma 4.2 and it

can be proved by means of Knopp's theorem (see [4]) to be an ergodic function.

Consequently, the orbits fx; F (x); F 2(x); F 3(x); : : :g are uniformly distributed

for almost all x in (0; 1] (for a discussion of these topics from the ergodic point

of view, see [1]), and thus the set of normal numbers to the alternated dyadic

system is a set of measure one.
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Theorem 4.3 If x is a normal number to the alternated dyadic system, we

have:

lim
n!1

dn(x)

n
= 2:

Proof. By the recurrence (21) we have:

dn(x) = d1(x) +

nX
j=2

(dj � dj�1) = n� 1 +

nX
j=1

�
log2

1

!i

�
:

If x is normal, the sequence f!ig is uniformly distributed and thus the relative

frequency of visits of !i in the interval
�

1
2k+1

;
1
2k

�
tends to be equal to 1

2k+1
. For

these !i;
j
log2

1
!i

k
= k. This means that, for n large

nX
j=1

�
log2

1

!i

�
�

1X
k=0

k � n

2k+1
= n �

1X
k=0

k

2k+1
= n:

Therefore,

lim
n!1

dn(x)

n
= lim

n!1

0
@n� 1

n
+

1

n
�

nX
j=1

�
log2

1

!j

�1A = 2: 2

It is easily seen that the converse of theorem 4.3 is not true.

4.3 A vanishing set

Let us now consider the two sets, G of Gauss{Kuzmin numbers, and N of

normal numbers to the alternated dyadic system. Both have measure one, so

their intersection, G \N , has also measure one.

Theorem 4.4 �(?(G \N )) = 0 and �(?�1(G \N )) = 0

Proof. Minkowski's ?(x) function maps [0; 1] one to one onto itself and

?([a1; a2; : : :]) is written with the digits dn = a1 + � � � + an in the alternated

dyadic system. Now, if x 2 G, by theorem 3.1

lim
n!1

a1 + a2 + � � �+ an

n
= lim

n!1

dn

n
=1:

Therefore, according to theorem 4.3, ?(x) is not a normal number to the alter-

nated dyadic system, which implies:

(A) the set ?(G) is a set of measure zero.

Besides, if ?(x) 2 N , then

lim
n!1

dn

n
= lim

n!1

a1 + a2 + � � �+ an

n
= 2;

and thus, by theorem 3.1, x cannot be a Gauss{Kuzmin number and we have:

(B) the set ?�1(N ) is a set of measure zero.

(A) and (B) prove that G\N is a set of measure one such that both ?(G\N )

and ?�1(G \N ) are sets of measure zero. 2
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5 Conclusions

Salem's presentation of ?(x) is shown to be the asymptotic distribution function

of an enumeration of the rationals in (0; 1] based on their expansion as regular

continued fractions. Besides, Salem's expression links two systems for real

number representation: regular continued fractions and the alternated dyadic

system. This link permits to establish the singularity of Minkowski's function by

studying the transformation of sets de�ned in (0,1) through metrical properties

of the two systems of representation.
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