A new light on Minkowski's ?(x) function

Pelegrí Viader ${ }^{1}$
Jaume Paradís ${ }^{1}$ and
Lluís Bibiloni ${ }^{2}$

June 1997

Journal of Economic Literature classification: C00

1991 Mathematics Subject Classification. Primary 11K31; Secondary 26A30.

Keywords and phrases. Asymptotic distribution functions, Minkowski's function, singular functions.

[^0]
Abstract

The well-known Minkowski's ?(x) function is presented as the asymptotic distribution function of an enumeration of the rationals in $(0,1]$ based on their continued fraction representation. Besides, the singularity of ? (x) is clearly proved in two ways: by exhibiting a set of measure one in which $?^{\prime}(x)=0$; and again by actually finding a set of measure one which is mapped onto a set of measure zero and viceversa. These sets are described by means of metrical properties of different systems for real number representation.

1 Introduction

Minkowski's?(x) function was introduced by Minkowski (see [7]) for the purpose of establishing a new criterium for quadratic irrationals based on a one-to-one correspondence between some rational numbers and the quadratic irrationals of $[0,1]$. Minkowski's original construction is very simple: on the x axis he 'draws' the rationals by means of the mediants in the Farey fractions and to each of these mediants he assigns on the y axis the corresponding dyadic division point. The function is extended to all $x \in[0,1]$ by continuity. Denjoy in [2] studied the function and proved it to be a strictly increasing singular function.

For the sake of completeness we present the definition of ?($x)$ as it is given by Salem in [15]. First we define:

$$
?(0)=?(0 / 1)=0, \quad ?(1)=?(1 / 1)=1 .
$$

Then we take the mediant $1 / 2=(0+1) /(1+1)$ between the two Farey fractions $0 / 1$ and $1 / 1$ and we define

$$
?(1 / 2)=\frac{?(0)+?(1)}{2}=\frac{1}{2}
$$

we continue in the same way,

$$
?\left(\frac{p+p^{\prime}}{q+q^{\prime}}\right)=\frac{?(p / q)+?\left(p^{\prime} / q^{\prime}\right)}{2}
$$

The definition for irrational x follows by continuity.
Salem, in the same article, finds a new presentation for $?(x)$. If $x \in(0,1]$ is developed as a regular continued fraction:

$$
x=\left[0 ; a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]
$$

then

$$
\begin{equation*}
?(x)=\frac{1}{2^{a_{1}-1}}-\frac{1}{2^{a_{1}+a_{2}-1}}+\frac{1}{2^{a_{1}+a_{2}+a_{3}-1}}-\cdots \tag{1}
\end{equation*}
$$

From this definition, Salem draws all the important properties of ?(x):

1. x is a quadratic irrational iff ?(x) is a rational with a non-terminating expansion.
2. ?(x) is strictly increasing.
3. ?(x) is a singular function, that is, its derivative is 0 almost everywhere (in the sense of the measure of Lebesgue).
The set found by Salem, on which the derivative of ? (x) is zero is the intersection of

$$
N=\left\{x=\left[0 ; a_{1}, a_{2}, \ldots\right]: \lim \sup a_{n}=\infty\right\},
$$

with the set of the points in $(0,1]$ on which ? (x) has a finite derivative. Both sets are of measure one. This presentation of Salem had been inadvertently introduced by Ryde in 1926 (see [14] for the details) without the connexion with Minkowski's function.

In section 2 of this paper, we present a new way of looking at ?(x), by obtaining it as the asymptotic distribution funtion (a.d.f.) of a sequence. A function $F(x)$ is called the a.d.f. of the sequence $\{q(n)\}, 0 \leq q(n) \leq 1$ if:

$$
\lim _{n \rightarrow \infty} \frac{\#\{q(i) \leq x ; i=1,2, \ldots, n\}}{n}=F(x) \quad \text { for } 0 \leq x \leq 1
$$

More information about distribution functions of sequences can be found in the excellent treatise by Kuipers and Niederreiter, [5, pp. 53 and ff.].

It is known (see [5, pp. 137 and ff.]) that given any non-decreasing function, f, on $[0,1]$ with $f(0)=0$ and $f(1)=1$, there exists a sequence in $[0,1]$ having f as its a.d.f. It can be even proved that any everywhere dense sequence in $[0,1]$ can be rearranged so as to yield a sequence having f as its a.d.f. (The proofs of these results are purely existential and not constructive.) Consequently, there exists a rearrangement of the sequence r_{n} of all rationals in $(0,1)$ with ? (x) as its a.d.f. We show one of these rearrangements to be the enumeration of the positive rationals obtained through their continued fraction development as we presented in [9]. In [10] we used a different enumeration of the rationals, based on Pierce expansions (see [16]), to present them as the a.d.f. of another interesting singular function.

In section 3 we prove the singularity of ?(x) by finding a new set on which the derivative is zero. This set is a different set from the set found by Salem, cited above.

Finally, in section 4, through the comparison of the 'normality' of numbers in $(0,1]$ as represented by continued fractions or by alternated dyadic fractions, we will specifically describe a set of measure one transformed by ?(x) into a set of measure zero and whose inverse image by ? (x) is also of measure zero. On the points of this set in which ? (x) has a derivative (a set of measure one) this derivative has to be, necessarily, 0 , which proves again the singularity of Minkowski's function. A similar approach was used in [12] to the same end.

2 The enumeration of the rationals in $(0,1)$

We define a one-to-one correspondence, q between the set of positive integers, $\{1,2,3, \ldots\}$, and the set of all rational numbers in $(0,1)$ in the following way. If $n=2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{k}}$ with $0 \leq a_{1}<a_{2}<\cdots<a_{k}$,

$$
\begin{equation*}
q(n)=\left[0 ; a_{1}+1, a_{2}-a_{1}, a_{3}-a_{2}, \ldots, a_{k}-a_{k-1}+1\right] . \tag{2}
\end{equation*}
$$

This enumeration is a restriction to $(0,1)$ of a more general enumeration of all positive rationals (see [9]).

From now on, as we will only consider numbers in $(0,1)$ we will drop the 0 in the regular continued fraction representation of a number in $(0,1)$. Thus (2) will be written

$$
q(n)=\left[a_{1}+1, a_{2}-a_{1}, \ldots, a_{k}-a_{k-1}+1\right] .
$$

A few terms of this enumeration are:

$$
\begin{array}{llll}
q(1)=[2]=1 / 2 & q(5)=[1,3]=3 / 4 & q(9)=[1,4]=4 / 5 & q(13)=[1,2,2]=5 / 7 \\
q(2)=[3]=1 / 3 & q(6)=[2,2]=2 / 5 & q(10)=[2,3]=3 / 7 & q(14)=[2,1,2]=3 / 8 \\
q(3)=[1,2]=2 / 3 & q(7)=[1,1,2]=3 / 5 & q(11)=[1,1,3]=4 / 7 & q(15)=[1,1,1,2]=5 / 8 \\
q(4)=[4]=1 / 4 & q(8)=[5]=1 / 5 & q(12)=[3,2]=2 / 7 & q(16)=[6]=1 / 6
\end{array}
$$

A careful observation of the enumeration provides the following facts about it, which are easily proved:

1. $q\left(2^{n}\right)=\frac{1}{n+2}$.
2. After $r / s, r / s<1 / 2$ we have $(s-r) / s$, which amounts to say,

$$
\frac{r}{s}=\left[a_{1}, a_{2}, \ldots\right] \text { with } a_{1}>1 \quad \text { is followed by } \frac{s-r}{s}=\left[1, a_{1}-1, a_{2}, \ldots\right] .
$$

3. The 2^{n-2} rationals, r / s, between places 2^{n-2} (included) and 2^{n-1} (excluded) are such that:

$$
\begin{equation*}
r / s=\left[a_{1}, a_{2}, \ldots, a_{k}\right], \quad\left(a_{k}>1\right) \quad \text { and } \quad \sum_{j=1}^{k} a_{j}=n . \tag{3}
\end{equation*}
$$

There are precisely 2^{n-1} possible partitions of a positive integer n in smaller positive integers if we consider different two partitions in which the order of the sumands is different (see problem 21 in Pólya and Szegö, [11]). If we ban those partitions in which the last sumand is 1 , we get a a total of $2^{n-1}-2^{n-2}=2^{n-2}$ partitions coinciding with our 2^{n-2} rationals $q\left(2^{n-2}\right), q\left(2^{n-2}+1\right), \ldots, q\left(2^{n-1}-1\right)$.

It is immediate to see the following:
Lemma 2.1 If we denote by $\sigma(x)$ the successor of x in the enumeration $\{q(n)\}$ then:

1. $\sigma(1 / 2)=1 / 3$.
2. If $x=\left[a_{1}, a_{2}, \ldots, a_{k}\right],\left(a_{k}>1\right)$,

$$
\sigma(x)= \begin{cases}{\left[1, a_{1}-1, a_{2}, \ldots, a_{k}\right]} & \text { if } a_{1}>1 ; \\ {\left[h, a_{h}-1, a_{h+1}, \ldots, a_{k}\right]} & \text { if } a_{1}=\ldots=a_{h-1}=1,(h \leq k) ; \\ {[h+3]} & \text { if } x=[\underbrace{1,1, \ldots, 1}_{h}, 2] .\end{cases}
$$

This operator, σ, can be extended following the same formation rules to all real numbers in $(0,1)$ to define a partial order in all $(0,1)$.

2.1 An analytical expression for $\sigma(x)$

In the continued fraction expansion of the number $\Phi=(1 / 2)(\sqrt{5}-1)$:

$$
\Phi=[1,1,1, \ldots, 1,1, \ldots]
$$

let us consider its convergents:

$$
R_{0}=0, \quad R_{i}=[\underbrace{1,1, \ldots, 1}_{i}]=[\underbrace{1,1, \ldots, 1}_{i-2}, 2] .
$$

We have the following infinite chain of inequalities:

$$
0=R_{0}<R_{2}<R_{4}<\cdots<\Phi<\cdots<R_{5}<R_{3}<R_{1}=1 .
$$

We can now consider the following family of half-open intervals, mutually disjoint, taken at left and right of $\Phi:$ on the left, $\left[R_{2 k}, R_{2 k+2}\right)$ and on the right, ($R_{2 k+1}, R_{2 k-1}$], such that, being mutually disjoint we have:

$$
\bigcup_{k=0}^{\infty}\left[R_{2 k}, R_{2 k+2}\right)=[0, \Phi)
$$

$$
\bigcup_{k=1}^{\infty}\left(R_{2 k+1}, R_{2 k-1}\right]=(\Phi, 1]
$$

The function $\sigma(x)$ has the following piece-wise analytical expression:

$$
\sigma(x)= \begin{cases}{[k+1]=\frac{1}{k+1}} & \text { if } x=R_{k} \\ \frac{F_{k+1} x-F_{k}}{\left(k F_{k+1}-F_{k}\right) x+F_{k-1}-k F_{k}} & \text { if } x \text { is between } R_{k-1} \text { and } R_{k+1}\end{cases}
$$

where F_{n} is the Fibonacci sequence:

$$
F_{0}=0 ; F_{1}=1 ; F_{2}=1 ; F_{3}=2 ; \ldots ; F_{n}=F_{n-1}+F_{n-2}
$$

The only point in $(0,1)$ that lacks an image by σ is Φ. The graph of σ is shown in figure 1.

Figure 1: The graph of $\sigma(x)$

2.2 The distribution function of $\{q(n)\}$

We are going to prove that the a.d.f. of $\{q(n)\}$ is precisely ? (x). The proof we are going to give is a direct one, that is to say, we intend to see that given $x \in[0,1]$:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\#\{q(i) \leq x ; \quad i=1,2, \ldots, N\}}{N}=?(x) \tag{4}
\end{equation*}
$$

by calculating directly the limit in (4). We shall use the notation:

$$
A(x ; N)=\#\{q(i) \leq x ; \quad i=1,2, \ldots, N\} .
$$

The proof will be reached by different stages, first considering $x=1 / a=[a]$, and later by considering $x=\left[a_{1}, a_{2}, \ldots\right]$.

Lemma 2.2

$$
A\left([a] ; 2^{M}-1\right)= \begin{cases}0 & \text { if } a \geq M+2 \\ 2^{M-(a-1)} & \text { otherwise } .\end{cases}
$$

Proof. It is seen at once that

$$
\left[b_{1}, b_{2}, \ldots, b_{k}\right] \leq[a] \quad \text { iff } \quad b_{1} \geq a
$$

By the remark in (3) the rationals $q(1), q(2), \ldots, q\left(2^{M}-1\right)$ have continued fraction developments $\left[b_{1}, \ldots, b_{k}\right.$] verifying

$$
\sum_{j=1}^{k} b_{j} \leq M+1
$$

As a consequence, if $a \geq M+2$, then there is no $\left[b_{1}, \ldots, b_{k}\right]$ such that $\sum b_{j} \leq$ $M+1$ and $b_{1} \geq a$.

Now, if $a<M+2$, we are going to count $A\left([a] ; 2^{M}-1\right)$ by blocks of 2^{ℓ} elements. the rationals between $q\left(2^{\ell}\right)$ (included) and $q\left(2^{\ell+1}\right)$ (excluded) have expansions equal to $\left[b_{1}, \ldots, b_{k}\right]$ with $b_{k}>1$ and $\sum b_{j}=\ell+2$. Among these we must select those such that $b_{1} \geq a$, that is to say those of the forms:

$$
\begin{aligned}
& {\left[a, b_{2}, \ldots, b_{k}\right], \quad\left(b_{k}>1\right), \quad \sum_{j=2}^{k} b_{j}=\ell+2-a: \text { by }(3), \text { a total of } 2^{\ell-a}} \\
& {\left[a+1, b_{2}, \ldots, b_{k}\right], \quad\left(b_{k}>1\right), \quad \sum_{j=2}^{k} b_{j}=\ell+1-a: \text { by }(3) \text {, a total of } 2^{\ell-a-1}} \\
& {\left[a+2, b_{2}, \ldots, b_{k}\right], \quad\left(b_{k}>1\right), \quad \sum_{j=2}^{k} b_{j}=\ell-a: \text { by }(3), \text { a total of } 2^{\ell-a-2}}
\end{aligned}
$$

[$\ell, 2$] which amounts only to 1 ,
$[\ell+1,1]$ which is not admissible,
$[\ell+2]$ which amounts only to 1 ,
All in all:

$$
1+\left(1+2+2^{2}+\cdots+2^{\ell+2-a}\right)=2^{\ell+1-a}
$$

The block of rationals between $q\left(2^{a-2}\right)$ and $q\left(2^{a-1}-1\right)$ for which $\sum b_{j}=a$ contribute with 1 element to the total count. For the rest of blocks we have a total of:

$$
\sum_{\ell=a-1}^{M-1} 2^{\ell+1-a}=2^{M-a+1}-1
$$

Finally, we have a total of:

$$
A\left([a] ; 2^{M}-1\right)=1+\left(2^{M-a+1}-1\right)=2^{M-(a-1)}
$$

Now, a careful observation of the enumeration leads us to a new result which is very significative. Within a block $q\left(2^{\ell}\right), \ldots, q\left(2^{\ell+1}-1\right)$ in which

$$
q(i)=\left[b_{1}, \ldots, b_{k}\right],\left(b_{k}>1\right), \sum b_{j}=\ell+2
$$

the $2^{\ell} q(i)$'s distribute themselves following again the same pattern as the $2^{\ell+1}$ from $q(1)$ to $q\left(2^{\ell+1}-1\right)$. To see that, you only have to drop the last b_{k} and add

1 to b_{k-1} :

This pattern is repeated at deeper levels as we get from right to left in the continued fraction expansion of the $q(i)$'s: each block of $2^{\ell} q(i)$'s break in smaller blocks of 2^{j} elements sharing their last coefficient.

With this last observation, it is easily (but tediously) proved the next lemma:
Lemma 2.3 If $N=2^{B_{0}}+2^{B_{1}}+\cdots+2^{B_{t}}$ with $0 \leq B_{0}<B_{1}<\ldots<B_{t}$ is the dyadic expression of N, then

$$
A([a] ; N)= \begin{cases}0 & \text { if } a>B_{k}+2 \tag{6}\\ 1+\left\lfloor\sum_{j=0}^{t} 2^{B_{j}-(a-1)}\right\rfloor & \text { otherwise } .\end{cases}
$$

(The symbols \rfloor denote the integer part.)
In point of fact, some of the sumands within the sum in (6) are of the form 2^{-n} if $a<B_{j}+1$ but as their contribution to the total sum will never equal or exceed 1 , it is easier to use the above formula than making exceptions.

With the help of this last lemma it is easy to see the following:
Theorem 2.4

$$
\lim _{N \rightarrow \infty} \frac{A([a] ; N)}{N}=?(1 / a)
$$

Proof. By lemma 2.3:

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{A([a] ; N)}{N}= \\
& \quad \lim _{N \rightarrow \infty} \frac{1+\sum_{B_{j}>a+1} 2^{B_{j}-(a-1)}}{\sum_{j=0} 2^{B_{j}}}= \\
& \quad=\lim _{N \rightarrow \infty} \frac{1+\sum_{j=0}^{t} 2^{B_{j}-(a-1)}-\sum_{B_{j} \leq a+1} 2^{B_{j}-(a-1)}}{\sum_{j=0} 2^{B_{j}}}= \\
& \quad=\lim _{N \rightarrow \infty}\left(\frac{1+2^{-(a-1)} N}{N}-2^{-(a-1)} \cdot \frac{\sum_{B_{j} \leq a+1} 2^{B_{j}}}{N}\right)=\frac{1}{2^{a-1}}
\end{aligned}
$$

Now we generalize the above result to an $x=\left[a_{1}, a_{2}, \ldots, a_{h}\right]$. To start with, let us consider $x=\left[a_{1}, a_{2}\right]$. Now, $\left[b_{1}, b_{2}, \ldots\right]<\left[a_{1}, a_{2}\right]$ either if $b_{1}>a_{1}$ or $b_{1}=a_{1}$ and $b_{2}<a_{2}$. With this observation, it is easy to see that

$$
\begin{equation*}
A\left(\left[a_{1}, a_{2}\right] ; 2^{M}-1\right)=A\left(\left[a_{1}\right] ; 2^{M}-1\right)-A\left(\left[a_{1}+a_{2}\right] ; 2^{M}-1\right)+\varepsilon \tag{7}
\end{equation*}
$$

where ε is 0 or 1 ,
This is because from all the $q(i)=\left[b_{1}, \ldots, b_{k}\right]$ which verify $b_{1} \geq a_{1}$ we must exclude those which verify $b_{1}=a_{1}$ and $b_{2} \geq a_{2}$ with the only exception of the very $\left[a_{1}, a_{2}\right.$]. Now, those rationals between $q(1)$ and $q\left(2^{M}-1\right)$, which verify $b_{1}=a_{1}$ and $b_{2} \geq a_{2}$ can be counted by blocks in the same way we did above in the proof of lemma 2.2. We are going to count the rationals between $q\left(2^{\ell}\right)$ (included) and $q\left(2^{\ell+1}\right)$ (excluded) with expansions equal to $\left[a_{1}, b_{2}, b_{3}, \ldots, b_{k}\right]$ with $b_{k}>1$ and $b_{2} \geq a_{2}$. For these, $a_{1}+\sum b_{j}=\ell+2$. Among these we must select those of the forms:

$$
\begin{aligned}
& {\left[a_{1}, a_{2}, b_{3}, \ldots, b_{k}\right], \quad\left(b_{k}>1\right), \sum_{j=3}^{k} b_{j}=\ell+2-\left(a_{1}+a_{2}\right):} \\
& \quad \text { by }(3), \text { a total of } 2^{\ell-\left(a_{1}+a_{2}\right)} \\
& {\left[a_{1}, a_{2}+1, b_{3}, \ldots, b_{k}\right],\left(b_{k}>1\right), \sum_{j=3}^{k} b_{j}=\ell+1-\left(a_{1}+a_{2}\right):} \\
& \text { by }(3), \text { a total of } 2^{\ell-\left(a_{1}+a_{2}\right)-1}
\end{aligned}
$$

All in all, it is the same count we would do in order to find out those rationals between $q\left(2^{\ell}\right)$ and $q\left(2^{\ell+1}-1\right)$ whose first term, $b_{1} \geq a_{1}+a_{2}$, that is to say, $A\left(\left[a_{1}+a_{2}\right], 2^{M}-1\right)$. The value of $\varepsilon, 0$ or 1 , can be precised through a more detailed analysis of the problem but it is irrelevant for our purpose.

Equation (7) can be easily generalized to

$$
A\left(\left[a_{1}, a_{2}\right] ; N\right)=A\left(\left[a_{1}\right] ; N\right)-A\left(\left[a_{1}+a_{2}\right] ; N\right)+\varepsilon, \quad(\varepsilon=0,1)
$$

again through observing the pattern described in (5).
This analysis can be carried further and provides us with the result:
Lemma 2.5 If $N=2^{B_{0}}+2^{B_{1}}+\cdots+2^{B_{t}}$ with $0 \leq B_{0}<B_{1}<\ldots<B_{t}$ is the dyadic expression of N, we have:

$$
\begin{align*}
& A\left(\left[a_{1}, a_{2}, \ldots, a_{h}\right] ; N\right)= \\
& \quad=A\left(\left[a_{1}\right] ; N\right)-A\left(\left[a_{1}+a_{2}\right] ; N\right)+A\left(\left[a_{1}+a_{2}+a_{3}\right] ; N\right)-\cdots= \\
& \quad=\sum_{j=1}^{h}(-1)^{j-1} A\left(\left[a_{1}+a_{2}+\cdots+a_{j}\right] ; N\right)+\varepsilon, \quad(\varepsilon=-1,0,1) \tag{8}
\end{align*}
$$

Finally, by this former lemma, it is seen at once:
Theorem 2.6

$$
\begin{aligned}
\lim _{N \rightarrow \infty} & \frac{A\left(\left[a_{1}, a_{2}, \ldots, a_{h}\right] ; N\right)}{N}= \\
& =\frac{1}{2^{a_{1}-1}}-\frac{1}{2^{a_{1}+a_{2}-1}}+\cdots+\frac{(-1)^{h+1}}{2^{a_{1}+a_{2}+\cdots+a_{h}-1}}= \\
& =?\left(\left[a_{1}, \ldots, a_{h}\right]\right) .
\end{aligned}
$$

And, by continuity, the final theorem we were seeking,

Theorem 2.7

$$
\lim _{N \rightarrow \infty} \frac{A\left(\left[a_{1}, a_{2}, \ldots\right] ; N\right)}{N}=\frac{1}{2^{a_{1}-1}}-\frac{1}{2^{a_{1}+a_{2}-1}}+\cdots=?\left(\left[a_{1}, a_{2}, \ldots\right]\right) .
$$

3 The singularity of ? (x)

We are going to exhibit a set of measure one on which ? (x) has a zero derivative. This set is going to be quite different from the one presented by Salem in [15]. Salem starts with the set of all numbers in [0, 1] whose regular continued fraction expansion had unbounded partial quotients and shows that at the points of this set, ?' (x) is either 0 or ∞. Limiting himself to the points in which $?^{\prime}(x)=0$ he gets the set of measure one he seeks.

Our starting set will also be described using some specific metrical properties of the regular continued fraction expansion of a real number, but the main difference with Salem's set will be that at the points of our set, ?' $(x)=0$ whenever it exists in a broad sense ($\left.?^{\prime}(x) \leq \infty\right)$.

3.1 The continued fraction system of representation

In the regular continued fractions system of representation, limited to numbers in $(0,1]$, the residue function can be defined as:

$$
R(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor .
$$

In a certain sense, Kuzmin proved in [6] that for almost all x in (0,1], the a.d.f. of the sequence $\left\{x, R(x), R^{2}(x), R^{3}(x), \ldots\right\}$ is $\log _{2}(1+x)$. This result is the consequence of an unproved conjecture of Gauss and, since Kuzmin's proof, it has been known as the Gauss-Kuzmin theorem (see [13, Chap. V] for more details).

It can be seen that the residue function $R(x)$ preserves Gauss's measure, whose density is precisely:

$$
\mu(x)=\log _{2}(1+x)
$$

A number $x \in(0,1]$ whose orbit $\left\{x, R(x), R^{2}(x), R^{3}(x), \ldots\right\}$ has $\log _{2}(1+x)$ as its a.d.f. will be called a Gauss-Kuzmin number.

It is well-known that the set of $x \in(0,1]$ for which the mean value of their partial quotients, $\left(a_{1}+\cdots+a_{n}\right) / n$ tends to ∞ is a set of measure one (see [3, 13] for more details). In the next theorem we are a bit more precise, and we prove that the set of Gauss-Kuzmin numbers is a susbset of this one.

Theorem 3.1 If $x=\left[a_{1}, a_{2}, a_{3}, \ldots\right]$ is a Gauss-Kuzmin number then

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=\infty .
$$

Proof. If $x=\left[a_{1}, a_{2}, a_{3}, \ldots\right]$ is a Gauss-Kuzmin number it is seen at once that the frequency of repetitions of the number i among the partial quotients, or, for short, the density of i, is

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{a_{j}=i ; j=1,2, \ldots, n\right\}}{n}=\log _{2}\left(\frac{(i+1)^{2}}{i(i+2)}\right)=p(i)
$$

That means that given a positive integer i and given $\varepsilon>0$, there exists a n_{i} such that for all $n \geq n_{i}$ we have:

$$
\begin{equation*}
\left|\frac{\#\left\{a_{j}=i ; j=1,2, \ldots, n\right\}}{n}-p(i)\right|<\varepsilon . \tag{9}
\end{equation*}
$$

Now, let k be given and let $n_{0}=\max \left(n_{1}, n_{2}, \ldots, n_{k-1}\right)$. We define $\bar{x}=\left[b_{1}, b_{2}\right.$, $\left.\ldots, b_{n}, \ldots\right]$ as follows:

$$
\left\{\begin{aligned}
b_{i}=a_{i} & \text { if } a_{i} \leq k ; \\
b_{i}=k & \text { if } a_{i}>k .
\end{aligned}\right.
$$

Obviously, for all n we have:

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \frac{b_{1}+b_{2}+\cdots+b_{n}}{n}
$$

The sequence $\left\{b_{n}\right\}$ takes values only in the set $\{1,2, \ldots, k\}$ and if x was a GaussKuzmin number then the density of number $i, 1 \leq i \leq k-1$ is $p(i)$ whereas the density of number k is

$$
\bar{p}(k)=\sum_{i=k}^{\infty} \log _{2}\left(\frac{(i+1)^{2}}{i(i+2)}\right)=\log _{2} \frac{k+1}{k} .
$$

Thus, given $\varepsilon>0$, there exists a n_{k} such that for all $n \geq n_{k}$ we have:

$$
\begin{equation*}
\left|\frac{\#\left\{b_{j}=k ; j=1,2, \ldots, n\right\}}{n}-\bar{p}(k)\right|<\varepsilon . \tag{10}
\end{equation*}
$$

If $n \geq \bar{m}=\max \left(n_{0}, n_{k}\right)$, both (9) and (10) hold, and we have:

$$
\begin{aligned}
& \frac{b_{1}+}{}+b_{2}+\cdots+b_{n} \\
& n \\
& \geq \sum_{i=1}^{k-1} i(p(i)-\varepsilon)+k(\bar{p}(k)-\varepsilon)= \\
&=\sum_{i=1}^{k-1} i \log _{2}\left(\frac{(i+1)^{2}}{i(i+2)}\right)+k \cdot \log _{2} \frac{k+1}{k}-\sum_{i=1}^{k} i \varepsilon= \\
&=\log _{2} \prod_{i=1}^{k-1}\left[\frac{i+1}{i} \cdot \frac{i+1}{i+2}\right]^{i}\left(\frac{k+1}{k}\right)^{k}-\varepsilon \frac{k(k+1)}{2}= \\
&=\log _{2}\left[\left(\frac{2}{1} \cdot \frac{2}{3}\right)\left(\frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{4} \cdot \frac{3}{4}\right)\left(\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5}\right) \cdots\right]-\varepsilon \frac{k(k+1)}{2}= \\
&=\log _{2}(k+1)-\varepsilon \frac{k(k+1)}{2} .
\end{aligned}
$$

Therefore, if given k a positive integer, we take $\varepsilon=\frac{2}{k(k+1)}$, there exists $\bar{m}(k)$ such that for all $n \geq \bar{m}(k)$ we have:

$$
\begin{equation*}
\frac{a_{1}+\cdots+a_{n}}{n} \geq \frac{b_{1}+\cdots+b_{n}}{n} \geq \log _{2}(k+1)-1 \tag{11}
\end{equation*}
$$

which implies

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{n}}{n}=\infty
$$

Let D denote the set of $x \in[0,1]$ for which $?^{\prime}(x) \leq \infty$. And let G denote the set of $x \in(0,1)$ of Gauss-Kuzmin numbers. Besides, we will consider the set K of $x \in(0,1)$ whose continued fraction expansion verify the Khintchine-Lévy
constant (see [13, Chap. V]), that is, such that if $x=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$ and p_{n} / q_{n} is the sequence of its convergents then

$$
\lim _{n \rightarrow \infty} \sqrt[n]{q_{n}}=e^{\frac{\pi^{2}}{1 \log ^{2}}}
$$

or, what amounts to the same,

$$
\lim _{n \rightarrow \infty} \frac{\log q_{n}}{n}=\frac{\pi^{2}}{12 \log 2}
$$

We will call these numbers Khintchine-Lévy numbers. These three subsets of [0,1$]: D, G$ and K are of measure one.

Theorem 3.2 If $x \in D \cap G \cap K$ then $?^{\prime}(x)=0$.
Proof. Let $x=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$ and $R_{n}=p_{n} / q_{n}$ be the sequence of its convergents. We know that, if n is even, $R_{n}<x<R_{n-1}$; then, as

$$
?(x)=\frac{1}{2^{a_{1}-1}}-\frac{1}{2^{a_{1}+a_{2}-1}}+\frac{1}{2^{a_{1}+a_{2}+a_{3}-1}}-\cdots,
$$

if $x \in D$,

$$
\begin{align*}
?^{\prime}(x) & =\lim _{n \rightarrow \infty} \frac{?\left(R_{n-1}\right)-?\left(R_{n}\right)}{R_{n-1}-R_{n}}= \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{2^{a_{1}+a_{2}+\cdots+a_{n}-1}}}{\frac{1}{q_{n} q_{n-1}}}=\lim _{n \rightarrow \infty} \frac{q_{n} q_{n-1}}{2^{a_{1}+a_{2}+\cdots+a_{n}-1}} . \tag{12}
\end{align*}
$$

We must see that if, besides, $x \in G \cap K$ then this last limit is 0 .
Taking logarithms in the sequence of the limit (12) we seek,

$$
\begin{align*}
& \log q_{n}+\log q_{n-1}-\left(a_{1}+\cdots+a_{n}-1\right) \log 2= \\
& \quad=n \cdot\left[\frac{\log q_{n}+\log q_{n-1}}{n}-\frac{\left(a_{1}+\cdots+a_{n}-1\right)}{n} \cdot \log 2\right] \rightarrow-\infty \tag{13}
\end{align*}
$$

as

$$
\frac{\log q_{n}+\log q_{n-1}}{n} \rightarrow 2 \frac{\pi^{2}}{12 \log 2},
$$

and, by theorem 3.1,

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}-1}{n} \rightarrow \infty .
$$

The limit in (13) proves that $?^{\prime}(x)=0$.
A closer look at the proof we have just seen, shows that the condition of $x \in K$ can be lightened. It is enough for our purposes that the expression within brackets in (13) tends to $-\infty$ so that, in the end, the whole limit in (13) tends to $-\infty$. This requirement can be fulfilled just by the condition of x being a Gauss-Kuzmin number, as our next theorem proves:

Theorem 3.3 If $x \in D \cap G$ then $?^{\prime}(x)=0$.

Proof. We get, as before, that if $x \in G \cap D$,

$$
?^{\prime}(x)=\lim _{n \rightarrow \infty} \frac{q_{n} q_{n-1}}{2^{a_{1}+a_{2}+\cdots+a_{n}-1}},
$$

and, taking logarithms in this last limit:

$$
\begin{align*}
& \log ?^{\prime}(x)= \\
& \quad=\lim _{n \rightarrow \infty}\left(\log q_{n}+\log q_{n-1}-\left(a_{1}+\cdots a_{n}-1\right) \cdot \log 2\right)= \\
& \quad=\lim _{n \rightarrow \infty} n \cdot\left[\frac{\log q_{n}+\log q_{n-1}}{n}-\log 2 \cdot \frac{a_{1}+\cdots a_{n}-1}{n}\right] . \tag{14}
\end{align*}
$$

Now, as p_{n} / q_{n} are the convergents of the continued fraction $\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$, the q_{n} satisfy the recurrence,

$$
q_{n}=a_{n} q_{n-1}+q_{n-2} ; \quad q_{0}=1, q_{1}=a_{1}
$$

and, trivially,

$$
q_{n}<\left(a_{n}+1\right)\left(a_{n-1}+1\right) \cdots\left(a_{1}+1\right)
$$

Going back to the expression in (14),

$$
\begin{aligned}
& \frac{\log q_{n}+\log q_{n-1}}{n}-\log 2 \cdot \frac{a_{1}+\cdots+a_{n}-1}{n}< \\
& \quad<2 \cdot \frac{\log q_{n}}{n}-\log 2 \cdot \frac{a_{1}+\cdots+a_{n}-1}{n}< \\
& \quad<2 \cdot \frac{\sum_{j=1}^{n} \log \left(a_{j}+1\right)}{n}-\log 2 \cdot \frac{a_{1}+\cdots+a_{n}-1}{n} .
\end{aligned}
$$

As we did before in the proof of theorem 3.1, given a positive integer k let us replace a_{n} by b_{n} where

$$
\begin{cases}b_{i}=a_{i} & \text { if } a_{i} \leq k \\ b_{i}=k & \text { if } a_{i}>k\end{cases}
$$

We will need two lemmas to go on:
Lemma 3.4 The function

$$
f(x)=\log \frac{(x+1)^{2}}{2^{x}}
$$

is strictly decreasing for $x \geq 2$.
Lemma 3.5 The series

$$
\sum_{r=1}^{\infty} \log (r+1) \cdot \log \frac{(r+1)^{2}}{r(r+2)}
$$

converges to a positive value, η.
Both are proved trivially.
Now, if k is large enough for lemma 3.4 to be valid,

$$
\begin{align*}
& 2 \cdot \frac{\sum_{j=1}^{n} \log \left(a_{j}+1\right)}{n}-\log 2 \cdot \frac{a_{1}+\cdots+a_{n}-1}{n}< \\
& \quad<2 \cdot \frac{\sum_{j=1}^{n} \log \left(b_{j}+1\right)}{n}-\log 2 \cdot \frac{b_{1}+\cdots+b_{n}-1}{n} \tag{15}
\end{align*}
$$

Besides, using the results we obtained in the proof of theorem 3.1:

$$
\begin{equation*}
\frac{b_{1}+b_{2}+\cdots+b_{n}-1}{n} \geq \log (k+1)-1 \tag{16}
\end{equation*}
$$

and, given $\varepsilon=\frac{2}{k(k+1)}$, for n large enough, both (9) and (10) were valid.
Consequently, the inequality obtained in (15) can be continued. For n large enough:

$$
\begin{aligned}
& 2 \cdot \frac{\sum_{j=1}^{n} \log \left(b_{j}+1\right)}{n}-\log 2 \cdot \frac{b_{1}+\cdots+b_{n}-1}{n} \leq \\
& \leq 2 \sum_{i=1}^{k-1} \log (i+1)\left(\log _{2} \frac{(i+1)^{2}}{i(i+2)}+\varepsilon\right)+ \\
& \quad+2 \log (k+1) \cdot\left(\log _{2} \frac{k+1}{k}+\varepsilon\right)-\log 2 \cdot(\log (k+1)-1)= \\
& =2 \sum_{i=1}^{k-1} \log (i+1)\left(\log _{2} \frac{(i+1)^{2}}{i(i+2)}\right)+2 \varepsilon \sum_{i=1}^{k} \log (i+1)+ \\
& \quad+2 \log (k+1) \cdot \log _{2} \frac{k+1}{k}-\log 2 \cdot(\log (k+1)-1)
\end{aligned}
$$

Now, remembering that $\varepsilon=\frac{2}{k(k+1)}$,

$$
\begin{aligned}
& 2 \varepsilon \sum_{i=1}^{k} \log (i+1) \leq \\
& \quad \leq \frac{4}{k(k+1)} \cdot \int_{1}^{k+1} \log (x+1) d x \leq \\
& \quad \leq \frac{4}{k(k+1)} \cdot(k+2) \cdot \log (k+2),
\end{aligned}
$$

which tends to 0 as $k \rightarrow \infty$.
On the other hand, by lemma 3.5

$$
2 \sum_{i=1}^{k-1} \log (i+1)\left(\log _{2} \frac{(i+1)^{2}}{i(i+2)}\right) \leq 2 \sum_{i=1}^{\infty} \log (i+1)\left(\log _{2} \frac{(i+1)^{2}}{i(i+2)}\right)=2 \eta
$$

All in all, we have:

$$
\begin{aligned}
& 2 \sum_{i=1}^{k-1} \log (i+1)\left(\log _{2} \frac{(i+1)^{2}}{i(i+2)}\right)+2 \varepsilon \sum_{i=1}^{k} \log (i+1)+ \\
& \quad+2 \log (k+1) \cdot \log _{2} \frac{k+1}{k}-\log 2 \cdot(\log (k+1)-1) \leq \\
& \leq 2 \eta+\frac{4}{k(k+1)} \cdot(k+2) \log (k+2)+2 \log (k+1) \cdot \log _{2} \frac{k+1}{k}- \\
& \quad-\log 2 \cdot(\log (k+1)-1)= \\
& =2 \eta+\frac{4}{k(k+1)} \cdot(k+2) \log (k+2)+ \\
& \quad+\log (k+1) \cdot\left(2 \log _{2} \frac{k+1}{k}-\log 2-\frac{1}{\log (k+1)}\right)
\end{aligned}
$$

This last expression, clearly tends to $-\infty$ when $k \rightarrow \infty$.
Summing up,

$$
\left[\frac{\log q_{n}+\log q_{n-1}}{n}-\log 2 \cdot \frac{a_{1}+\cdots+a_{n}}{n}\right] \cdot n \rightarrow-\infty
$$

4 A 'vanishing' set under ?(x)

In this section we are going to prove the singularity of ? (x) by finding what we call a vanishing set, that is, a set of measure one whose image under ?($x)$ is of measure zero and whose inverse image is also of measure zero. On the points of this set for which ? $?^{\prime}(x)$ exists, we must have $?^{\prime}(x)=0$.

4.1 The alternated dyadic system

The expansions in Salem's expression (1) of ?(x) constitute an instance of a peculiar system of representation of real numbers, the alternated dyadic system. As we are going to use it in this section and it is not very well-known, it is worth our while to examine its most important features.

Theorem 4.1 Any real number in $[0,1]$ can be represented in an unique way (except for the duplicity of terminating expansions) as:

$$
\begin{equation*}
x=\frac{1}{2^{d_{1}}}-\frac{1}{2^{d_{2}}}+\cdots+\frac{(-1)^{n+1}}{2^{d_{n}}}+\cdots \tag{17}
\end{equation*}
$$

where $\left\{d_{i}\right\}$ are a strictly increasing sequence of non-negative integers, $0 \leq d_{1}<$ $d_{2}<\cdots<d_{n}<\cdots$.

We sketch the proof of this theorem. The sequence $\left\{1 / 2^{n}\right\}$ induces a partition of $(0,1]$:

$$
\begin{equation*}
(0,1]=\bigcup_{n=0}^{\infty}\left(\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right] \tag{18}
\end{equation*}
$$

Given x, there exists a positive integer, n such that:

$$
\frac{1}{2^{n+1}}<x \leq \frac{1}{2^{n}}
$$

from where we find

$$
\begin{equation*}
n=\left\lfloor\log _{2} \frac{1}{x}\right\rfloor \tag{19}
\end{equation*}
$$

Thus, x can be written as:

$$
\begin{equation*}
x=\frac{1}{2^{n}}-\lambda\left(\frac{1}{2^{n}}-\frac{1}{2^{n+1}}\right)=\frac{1}{2^{n}}-\lambda \frac{1}{2^{n+1}}=\frac{1}{2^{n}}\left(1-\frac{\lambda}{2}\right), \quad \text { with } \lambda \in[0,1) \tag{20}
\end{equation*}
$$

From this last equality we get $2^{n+1} x=2-\lambda$ and thus $\lambda=2\left(1-2^{n} x\right)$.
Now, we define the residue function as

$$
F(x)=2\left(1-2^{n} x\right), \quad \text { where } n=\left\lfloor\log _{2} \frac{1}{x}\right\rfloor,
$$

and with its help we obtain the recurrence that provides the different terms of the expansion:

$$
\left\{\begin{array}{l}
\omega_{1}=x \tag{21}\\
d_{1}=\left\lfloor\log _{2} \frac{1}{x}\right\rfloor
\end{array} \quad ; \quad\left\{\begin{array}{l}
\omega_{n}=F\left(\omega_{n-1}\right) \\
d_{n}=1+\left\lfloor\log _{2} \frac{1}{\omega_{n}}\right\rfloor+d_{n-1}
\end{array} \quad \text { for } n>1 .\right.\right.
$$

Lemma 4.2 The residue function $F(x)$ preserves the Lebesgue measure, λ.
Proof. Let $y \in[0,1]$ and let us consider the set $A(y)=\{x: F(x) \leq y\}$. For each interval in the dyadic partition (18) we will have $y=2\left(1-2^{n} x\right)$; that is to say, $x=\frac{1}{2^{n}}-\frac{y}{2^{n+1}}$. Consequently, the numbers x such that $F(x) \leq y$ define for each n a subinterval $\left(\frac{1}{2^{n}}-\frac{y}{2^{n+1}}, \frac{1}{2^{n}}\right]$. Therefore (see figure 2):

$$
\lambda(A(y))=\sum_{n=0}^{\infty} \frac{y}{2^{n+1}}=y .
$$

Figure 2: The residue function

4.2 Normal numbers to the alternated dyadic system

Definition 1 We will say that a number x is normal to the alternated dyadic system given by (17) when its orbit under $F,\left\{x, F(x), F^{2}(x), F^{3}(x), \ldots\right\}$ is uniformly distributed in $(0,1]$.

The definition is analogous to the one given by Wall in [17], (see also [8, Chap. $8]$ or [5, Chap. 1, Sect. 8]) for the usual integer-based systems of representation, which is equivalent to the classic one by Borel.

Now, $F(x)$ preserves Lebesgue's measure, as we proved in lemma 4.2 and it can be proved by means of Knopp's theorem (see [4]) to be an ergodic function. Consequently, the orbits $\left\{x, F(x), F^{2}(x), F^{3}(x), \ldots\right\}$ are uniformly distributed for almost all x in $(0,1]$ (for a discussion of these topics from the ergodic point of view, see [1]), and thus the set of normal numbers to the alternated dyadic system is a set of measure one.

Theorem 4.3 If x is a normal number to the alternated dyadic system, we have:

$$
\lim _{n \rightarrow \infty} \frac{d_{n}(x)}{n}=2
$$

Proof. By the recurrence (21) we have:

$$
d_{n}(x)=d_{1}(x)+\sum_{j=2}^{n}\left(d_{j}-d_{j-1}\right)=n-1+\sum_{j=1}^{n}\left\lfloor\log _{2} \frac{1}{\omega_{i}}\right\rfloor .
$$

If x is normal, the sequence $\left\{\omega_{i}\right\}$ is uniformly distributed and thus the relative frequency of visits of ω_{i} in the interval $\left(\frac{1}{2^{k+1}}, \frac{1}{2^{k}}\right]$ tends to be equal to $\frac{1}{2^{k+1}}$. For these $\omega_{i},\left\lfloor\log _{2} \frac{1}{\omega_{i}}\right\rfloor=k$. This means that, for n large

$$
\sum_{j=1}^{n}\left\lfloor\log _{2} \frac{1}{\omega_{i}}\right\rfloor \approx \sum_{k=0}^{\infty} k \cdot \frac{n}{2^{k+1}}=n \cdot \sum_{k=0}^{\infty} \frac{k}{2^{k+1}}=n
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \frac{d_{n}(x)}{n}=\lim _{n \rightarrow \infty}\left(\frac{n-1}{n}+\frac{1}{n} \cdot \sum_{j=1}^{n}\left\lfloor\log _{2} \frac{1}{\omega_{j}}\right\rfloor\right)=2
$$

It is easily seen that the converse of theorem 4.3 is not true.

4.3 A vanishing set

Let us now consider the two sets, G of Gauss-Kuzmin numbers, and N of normal numbers to the alternated dyadic system. Both have measure one, so their intersection, $G \cap N$, has also measure one.
Theorem $4.4 \lambda(?(G \cap N))=0$ and $\lambda\left(?^{-1}(G \cap N)\right)=0$
Proof. Minkowski's ? (x) function maps [0,1] one to one onto itself and ? $\left(\left[a_{1}, a_{2}, \ldots\right]\right)$ is written with the digits $d_{n}=a_{1}+\cdots+a_{n}$ in the alternated dyadic system. Now, if $x \in G$, by theorem 3.1

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=\lim _{n \rightarrow \infty} \frac{d_{n}}{n}=\infty
$$

Therefore, according to theorem $4.3, ?(x)$ is not a normal number to the alternated dyadic system, which implies:
(A)

$$
\text { the set ? }(G) \text { is a set of measure zero. }
$$

Besides, if ? $(x) \in N$, then

$$
\lim _{n \rightarrow \infty} \frac{d_{n}}{n}=\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=2,
$$

and thus, by theorem 3.1, x cannot be a Gauss-Kuzmin number and we have:
the set $?^{-1}(N)$ is a set of measure zero.
(A) and (B) prove that $G \cap N$ is a set of measure one such that both ? $(G \cap N)$ and $?^{-1}(G \cap N)$ are sets of measure zero.

5 Conclusions

Salem's presentation of ? (x) is shown to be the asymptotic distribution function of an enumeration of the rationals in $(0,1]$ based on their expansion as regular continued fractions. Besides, Salem's expression links two systems for real number representation: regular continued fractions and the alternated dyadic system. This link permits to establish the singularity of Minkowski's function by studying the transformation of sets defined in $(0,1)$ through metrical properties of the two systems of representation.

References

[1] P. Billingsley. Ergodic Theory and Information. John Wiley \& Sons, N.Y., 1965.
[2] A. Denjoy. "Sur une fonction réelle de Minkowski". C.R. Acad. Sci. Paris. 194 (1932), pp. 44-46. Also in J. Math. Pures Appl. 17 (1938), pp. 105-151.
[3] A. Ya. Khintchine. Continued Fractions. Translated by Peter Wynn. Noordhoff Ltd., Groningen, The Netherlands, 1963.
[4] K. Knopp. "Mengentheoretische Behandlung einiger Probleme der diophantischen Approximationen und der transfiniten Wahrscheinlichkeiten". Math. Annalen, 95 (1926), pp. 409-426.
[5] L. Kuipers \& H. Niederreiter. Uniform distribution of sequences. John Wiley \& Sons, N.Y., 1973.
[6] R.O. Kuzmin. "Sur un problème de Gauss". Atti Congr. Intern. Bologne, 6 (1928), pp. 83-89.
[7] H. Minkowski. Gesammelte Abhandlungen vol. 2 (1991), pp. 50-51.
[8] I. Niven. Irrational Numbers, Carus Math. Monographs, 11. Wiley, NY, 1956.
[9] J. Paradís, Ll. Bibiloni, P. Viader. "On Actually Computable Bijections between N and $Q^{+"}$. Order, 13 (1996), pp. 369-377.
[10] J. Paradís, P. Viader, Ll. Bibiloni. "A total order in [0, 1] defined through a 'next' operator". Order, Submitted October 1996.
[11] G. Pólya \& G. Szegö. Problems and Theorems in Analysis, Vol I, Springer-Verlag, 1979.
[12] G. Ramharter. "On Minkowski's Singular Function". American Math. Soc., 99, Number 3, March, (1987), Shorter Notes Section.
[13] A. Rockett \& P. Szüsz. Continued Fractions. World Scientific, Singapore, 1992.
[14] F. Ryde. "On the Relation between Two Minkowski Functions". Journal of Number Theory, $\mathbf{1 7}$ (1983), pp. 47-51.
[15] R. Salem. "On some singular monotonic functions which are strictly increasing". Trans. Amer. Math. Soc. 53 (1943), pp. 427-439.
[16] O.J. Shallit. "Metric Theory of Pierce Expansions". Fibonacci Quarterly 24 (1986), pp. 22-40.
[17] D.D. Wall. Normal Numbers. PhD Tesis. Univ. of California, Berkeley. 1949.

[^0]: ${ }^{1}$ Applied Mathematics, UPF. Ramon Trias Fargas 25-27, 08005 Barcelona, Spain.
 ${ }^{2}$ Facultat de Ciències de l'Educació, UAB. 08193 Bellaterra, Barcelona, Spain.

