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Abstract: We present a model of price discrimination where a monopolist faces a consumer
who is privately informed about the distribution of his valuation for an indivisible unit of
good but has yet to learn privately the actual valuation. The monopolist sequentially
screens the consumer with a menu of contracts: the consumer self-selects once by choosing
a contract and then self-selects again when he learns the actual valuation. A deterministic
sequential mechanism is a menu of refund contracts, each consisting of an advance payment
and a refund amount in case of no consumption, but sequential mechanisms may involve
randomization. We characterize the optimal sequential mechanism when some consumer
types are more eager in the sense of �rst-order stochastic dominance, and when some types
face greater valuation uncertainty in the sense of mean-preserving-spread. We show that
it can be optimal to subsidize consumer types with smaller valuation uncertainty (through
low refund, as in airplane ticket pricing) in order to reduce the rent to those with greater

uncertainty. The size of distortion depends both on the type distribution and on how
informative the consumer's initial private knowledge is about his valuation, but not on
how much he initially knows about the valuation per se.
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Sherwin Rosen, Lars Stole, Wing Suen, the Associate Editor and the referees for help-
ful comments. The Associate Editor and the referees also suggested that we investigate

situations where �rst-order stochastic dominance does not hold.
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1. Introduction

The mechanism design literature has shed light on many commonly used price discrimina-

tion schemes.1 However, most models developed in this literature are static in that they

assume that consumers know their demand when they select a contract. This restriction

on consumer demand excludes situations where consumers have only partial information

at the time of contracting due to unforeseen contingencies and learn more about their

demands as these contingencies are resolved. Consider the demand for plane tickets. Trav-

elers typically do not know their valuations for tickets until just before departure, but they

know their likelihood to have high and low valuations. A monopolist can wait until the

travelers learn their valuations and charge the monopoly price, but more consumer surplus

can be extracted by requiring them to reveal their private information sequentially. An

illustration of such monopoly practice is a menu of refund contracts, each consisting of an

advance payment and a refund amount in case the traveler decides not to use the ticket.

By selecting a refund contract from the menu, travelers reveal their private information

about their distribution of valuations, and by deciding later whether they want the ticket

or the speci�ed refund, they reveal what they have learned about their actual valuation.

The following example of airplane ticket pricing illustrates sequential price discrim-

ination. Suppose that half of all potential buyers of the ticket are leisure travelers who

value it at $600 for sure, and the other half are business travelers who have valuation

$1000 when they make the trip but are equally likely to have zero valuation. The cost of


ying an additional traveler is small but not zero. If the seller waits until travelers have

privately learned their valuations, she gets a pro�t of almost $600 per traveler by charging

the monopoly price $600. Now suppose she o�ers two contracts before the travelers learn

their valuations, one with an advance payment of $600 and no refund and the other with an

advance payment of $1000 and full refund. Business travelers strictly prefer the contract

with refund, and leisure travelers are indi�erent between the two contracts so we assume

that they choose the contract with no refund. The monopolist separates the two types

1 One of the earliest contributions to this literature is Mussa and Rosen [1978]. Wilson [1993] gives an
excellent account of applications to real-life pricing problems.
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and earns an average pro�t of almost $800 per traveler, representing a one-third increase

compared with charging the monopoly price after travelers have learned their valuations.2

This menu of refund contracts remains optimal if there is a small probability that leisure

travelers have zero valuation, showing that it can be optimal to subsidize travel by the

leisure type.

This paper considers a class of monopolist sequential screening problems where con-

sumers sequentially learn their demand and contracts are signed when consumers only have

partial private information. Such pricing problems are not unique to airplane ticket pric-

ing and refund contracts. Sequential mechanisms take di�erent forms in hotel reservations

(cancellation fees), car rentals (free mileage vs. �xed allowance), telephone pricing (calling

plans), public transportation (day pass), and utility pricing (optional tari�s). Sequential

price discrimination can also play a role in contracting problems such as taxation and

procurement where incomplete private information is important.

Surprisingly, sequential screening has not received much direct attention in the screen-

ing literature.3 It is true that sequential mechanisms share the characteristic with two-part

tari�s that consumption decisions are made sequentially, and there is an abundant liter-

ature on the latter (see, e.g., Wilson [1993]). But the empirical importance of sequential

mechanisms suggests that two-part tari�s are more than a simple way of implementing

concave nonlinear tari�s, as suggested by the literature. Moreover, sequential mechanisms

have a learning feature that the typical textbook example of two-part tari� does not have:

when consumers choose a two part-tari� they do not know the quantity they wish to con-

sume or the valuation they place on the good. An implication of this learning feature is

that consumers typically su�er from \regret" at the time of consumption: a businessman

could have bought the same ticket at a lower advance price had he known that he would


y for sure, or a traveler could have avoided the cancellation fee charged by the hotel had

he known her itinerary when he reserved the room.

2 A similar example is presented in Courty [1996].

3 An exception is Miravete [1996]. Miravete [1997] tests empirical implications of his model. We thank
Hugo Hopenhayn and an anonymous referee for drawing our attention to his works.
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The primary goal of this paper is to show that sequential mechanisms help producers

to price discriminate when consumers learn private information about their demand over

time. Although sequential mechanisms can take di�erent forms, we will consider only

situations where consumers have unit demands such as the airplane ticket pricing problem.

In these situations, optimal ex post pricing scheme (after consumers have complete private

information about their demand) degenerates to the standard monopolist pricing. This

allows us to focus on the e�ects of consumer learning on sequential price discrimination.

When consumers have unit demand, the monopolist price-discriminates only by choos-

ing the probability that he delivers the good. Although refund contracts constrain the

delivery probabilities to zero or one, a general sequential mechanism is a menu of contracts

consisting of pairs of delivery probability and payment to the monopolist. E�ciency is

achieved by delivering the good if and only if the consumer's valuation exceeds the produc-

tion cost, but the optimal sequential mechanism can generate either downward or upward

distortions. Downward distortions in sequential mechanisms (that the monopolist does

not deliver the good for some valuations greater than the cost) are similar to the standard

result in nonlinear pricing models (see, e.g., Mussa and Rosen [1978], or Maskin and Riley

[1984]) that under-provision of quality or quantity is used to extract more surplus from

more eager consumers. More surprisingly, it may be optimal to subsidize consumption by

some consumers. Ine�cient over-production never occurs in the single-product monopoly

models but it does in multi-product price discrimination problems (see, e.g., Adam and

Yellen [1976], or Rochet [1995]) when better separation is achieved by subsidizing some

goods. Although there is only one product in our problem, ine�cient over-production

can be used e�ectively as a price discrimination instrument when the production cost is

relatively low and consumers di�er su�ciently in the degree of valuation uncertainty they

face.

In section 2, we consider the problem of designing the optimal menu of refund con-

tracts for the case of two ex ante types of potential buyers. To continue with the air-

plane ticket pricing example, the business traveler type is either a more eager consumer

more likely to draw greater valuations, in the sense of �rst-order stochastic dominance, or

faces greater valuation uncertainty, in the sense of mean-preserving-spread (Rothschild and
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Stiglitz [1970]).4 In either case (and a combination of the two cases), we show that there is

no consumption distortion for the business type in the optimal menu of refund contracts.

In the case of �rst-order stochastic dominance, rationing the leisure type is the optimal

way of reducing the rent to the business type. In the case of mean-preserving-spread,

subsidy as well as rationing can be optimal. Su�cient conditions are provided such that

when the production cost is relatively low, subsidizing the leisure type with a refund lower

than the cost of the ticket is cost-e�ective in reducing the rent to the business type. For

airplane ticket pricing, the marginal cost is low when capacity constraint is not binding, so

our result that the business type purchases a contract with a higher refund explains why

it can be optimal for airlines to o�er business travelers more \
exible" contracts.

Section 3 examines the general problem of sequential price discrimination with con-

tinuous types, allowing for random delivery rules. This generalization enables us to discuss

how type distribution and consumer learning a�ect the design of sequential mechanisms.

Sequential mechanism design is similar to a static multi-product price discrimination prob-

lem. The monopolist can be thought of as selling multiple products, corresponding to the

same product delivered for di�erent valuations. We characterize the optimal sequential

mechanism for a case where consumers face the same valuation uncertainty but di�er in

expected valuation, and a case where consumers have the same expected valuation but

di�er in valuation uncertainty. In both cases, the delivery rule does not involve random-

ization, and can therefore be interpreted as a menu of refund contracts, or a two-part tari�.

The size of distortion depends both on the type distribution and on how informative con-

sumers' initial private knowledge is about their valuations, but not on how much consumers

initially know about their valuations per se. Distortions are small if consumers' initial pri-

vate knowledge is not informative about their valuations in that conditional distributions

of valuations do not vary much across di�erent types of consumers. In the �rst case, where

consumers di�er in their expected valuation, consumers with greater expected valuations

are less likely to be rationed and choose the refund contract with lower advance payment

4 After �nishing an earlier version of the paper, we received some notes from Mark Armstrong, who
had earlier considered the two-type case under �rst-order stochastic dominance. We are grateful for his
comments.
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and lower refund. This is similar to the quantity discount result in single-product nonlinear

pricing models. In the second case, where consumers di�er in valuation uncertainty they

face, types facing smaller valuation uncertainty have larger consumption distortions. As

in section 2, distortions can be either rationing or subsidy, and the latter is optimal when

production cost is low.

Section 4 comments on the general problem of sequential screening. Neither �rst-

order dominance nor mean-preserving-spread are su�cient in reducing the dimension of

the design problem. Stronger conditions are necessary; we provide one condition under

which the optimal sequential mechanism can be characterized. This condition imposes a

linear structure on the type space and enables us to use a variation of the standard local

approach in nonlinear pricing problems. An example in the appendix with three types and

three valuations shows how \bunching" occurs across types and across valuations at the

same time and results in a random delivery rule, although the extent of randomization is

shown to be rather limited under the linear structure of the type space. Section 5 concludes

with some discussion on related works and remarks on the monopolist's ability to commit

to a sequential mechanism.

2. Optimal Menu of refund contracts: Two-Type Case

Consider a monopoly seller of airplane tickets facing two types of travelers, type H and L.

Throughout this section, we will think of type H as the \business type," which values the

ticket more or faces greater valuation uncertainty; type L is a \leisure" traveler. The pro-

portion of the business and leisure types is fH and fL respectively. There are two periods.

In the beginning of period one, a traveler privately learns his type which determines the

probability distribution of his valuation for the ticket. The seller and the traveler contract

at the end of period one. In the beginning of period two, the traveler privately learns his

actual valuation v for the ticket, and then travelling may take place. Each ticket costs the

seller c. The seller and the traveler are risk-neutral, and do not discount.

Greater mean valuation of the business type is captured by �rst-order stochastic dom-

inance (FSD). The valuation distribution GH of the business type H �rst-order stochas-

tically dominates GL of the leisure type L if GH(v) � GL(v) for all v in the range of
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valuations [v; v]. Greater valuation uncertainty of the business type is represented by

mean-preserving-spread (MPS, Rothschild and Stiglitz [1970]). The valuation distribution

GH dominates GL by MPS if they have the same mean and
R v
v
(GH(u) � GL(u))du � 0

for v 2 [v; v].

A refund contract consists of an advance payment a at the end of period one and a

refund k that can be claimed at the end of period two after the traveler learns his valuation.

Clearly, regardless of the payment a, the consumer travels only if he values the ticket more

than k. The seller o�ers two refund contracts faH ; kH ; aL; kLg. The pro�t maximization

problem can be written as:

max
kL;kH ;aL;aH

X
t=L;H

ft(at �Gt(kt)kt � (1�Gt(kt))c)

subject to

(IRt) 8t = L;H; �at + ktGt(kt) +

Z v

kt

vdGt(v) � 0;

(ICt;t0) 8t 6= t0; �at + ktGt(kt) +

Z v

kt

vdGt(v) � �at0 + kt0Gt(kt0) +

Z v

k
t0

vdGt(v):

The �rst set of constraint (IR) is the individual rationality constraints in period one. The

second set (IC) is the incentive compatibility constraints in period one.

Lemma 2.1. Under either FSD or MPS, IRL and ICH;L imply IRH .

Proof. The two individual rationality constraints can be rewritten as:

8t = L;H; �at +

Z v

v

maxfkt; vgdGt(v) � 0:

Then, ICH;L implies

�aH +

Z v

v

maxfkH; vgdGH(v) � �aL +

Z v

v

maxfkL; vgdGH(v):

Since maxfkL; vg is an increasing function of v, if GH dominates GL by �rst-order,

Z v

v

maxfkL; vgdGH(v) �

Z v

v

maxfkL; vgdGL(v):
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Since maxfkL; vg is a convex function of v, the above condition holds also if GH(v) domi-

nates GL(v) by MPS. The lemma then follows from IRL. Q.E.D.

Thus, the business type gets more utility than the leisure type from any refund con-

tract, whether it is de�ned by greater valuation or by greater uncertainty. Indeed, we can

de�ne the business type by combining FSD and MPS. For example, take a distribution

GH that dominates GL by MPS. Shifting the whole distribution GH to the right gives a

new distribution that has both greater valuation and greater uncertainty. It is easy to see

that the above lemma continues to hold for this combination of FSD and MPS.5

The maximization problem can now be simpli�ed. Lemma 2.1 implies that IRL binds

(holds with equality) in the optimal menu of refund contracts, otherwise increasing both

aL and aH by the same amount would increase pro�ts. Also, ICH;L binds in the optimal

menu of refund contracts, otherwise pro�ts could be increased by increasing aH.

Lemma 2.2. In the optimal menu of refund contracts, ICL;H is satis�ed if and only if

Z kL

kH

(GH(v)�GL(v))dv � 0:

Proof. Since IRH;L binds in the optimal menu of refund contracts,

aL � aH =

Z kL

kH

GH(v)dv:

We have

� aL + kLGL(kL) +

Z v

kL

vdGL(v)

=� aH + kHGL(kH) +

Z v

kH

vdGL(v)�

Z kL

kH

(GH(v)�GL(v))dv:

The lemma then follows from ICL;H . Q.E.D.

5 Note that Lemma 2.1 does not hold under general second-order stochastic dominance (i.e., greater
dispersion without the restriction of the same mean). This can be seen from the proof of the lemma.
Under general second-order stochastic dominance the integration of the function maxfk; vg over [v; v] can
be either greater or smaller for a dominant distribution.
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Under FSD, the condition in Lemma 2.2 is equivalent to kH � kL, a monotonicity

condition (also called second-order condition) found in standard screening problems. In

the case of MPS, however, there is no such implication of monotonicity. This is because

the business type with greater uncertainty is not necessarily more eager to consume at the

margin, even though by Lemma 2.1 the business type values any given contract more than

the leisure type.

By Lemma 2.1 and Lemma 2.2, the pro�t maximization problem can be simpli�ed as:

max
kL;kH

Z v

kL

(fL(v � c)gL(v)� fH(GH(v)�GL(v)))dv +

Z v

kH

(fH(v � c)gH(v))dv

subject to the second-order condition in Lemma 2.2. Let S(kL) =
R v

kL
(v � c)gL(v)dv be

the surplus from the leisure type, and R(kL) =
R v

kL
(GL(v) � GH(v))dv be the rent to

the business type, both as function of the refund to the leisure type. Note that the rent

function R(kL) behaves di�erently under FSD than under MPS: in the �rst case, R(kL) is

decreasing for any kL; in the second case, R(kL) is zero at both v and v, and tends to be

greater in the middle of the support. The di�erent behavior of the rent function is what

distinguishes the two cases.

Consider the relaxed problem by dropping the second-order condition in the simpli�ed

problem. The solution to the relaxed problem has kH = c. The next lemma shows that the

second-order condition in the above simpli�ed problem never binds in the optimal menu

of refund contracts.

Lemma 2.3. Suppose that fkH ; kLg solves the relaxed problem. Under either FSD or

MPS, there exist aL and aH such that faH ; kH ; aL; kLg is the optimal menu of refund

contracts.

Proof. Suppose that GH �rst-order dominates GL. Both the surplus S(kL) from type

L and the rent R(kL) to type H are negative for any kL < c. Thus, the solution to the

relaxed problem has kL � c. Since kH = c, the solution to the relaxed problem satis�es

the second-order condition, and therefore solves the simpli�ed problem. The existence of

aH and aL follows from IRL and ICH;L.
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Suppose that GH dominates GL by MPS. If the solution also has kL = c, the lemma

follows immediately. Suppose that the solution has kL 6= c, and that the second-order

condition is violated: Z kL

c

(GH(v)�GL(v))dv > 0:

Consider an alternative menu where kL = kH = c. The surplus S(kL) from type L is

greater in the alternative menu. The rent to type H is smaller in the alternative, because

R(c) =

Z v

kL

(GL(v)�GH(v))dv +

Z kL

c

(GL(v)�GH(v))dv <

Z v

kL

(GL(v)�GH(v))dv:

This contradicts the assumption that fkL; kHg solves the relaxed problem. Thus, the solu-

tion to the relaxed problem satis�es the second-order condition, and solves the simpli�ed

problem. The existence of aH and aL follows. Q.E.D.

The following characterization of the optimal menu of refund contracts follows imme-

diately.

Proposition 2.4. Under either FSD or MPS, in the optimal menu of refund contracts,

kH = c and kL = argmaxkfLS(k) � fHR(k).

Thus, there is no consumption distortion for the business type, either when it's de�ned

by FSD or MPS, or a combination of the two as described previously. This result is

somewhat unintuitive in the case of MPS. One would think that the seller should ration

the business type to extract more pro�ts, because the valuation distribution of the business

travelers is more dispersed and it is pro�table for the seller to serve them only at the right

tail of the distribution. The proof of Lemma 2.3 shows that this intuition is 
awed.

Rationing the business type is not incentive-compatible, because the leisure type would

�nd it optimal to choose the refund contract with a higher refund (i.e., the second-order

condition would be violated).

Under FSD, we have the standard result that there is rationing for the leisure type

to lower the rent given away to the business type. Under MPS, this reasoning is invalid

because the rent R(kL) is not a monotonically decreasing function of the refund kL to the

leisure type. Subsidy as well as rationing can be used to reduce the rent to the business
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type. In order to obtain more insights about the nature of consumption distortion for the

leisure type, we need to impose additional restrictions on top of dominance by MPS.

Suppose that the rent function R(�) is single-peaked at some z 2 (v; v). This is

satis�ed if for example GH and GL di�er by a single mean-preserving-spread (Rothschild

and Stiglitz [1970]). For simplicity, let's assume that there is no \plateau" at z so that

GH(v) > GL(v) for all v < z and GH(v) < GL(v) for all v > z. An example of this is

normal distributions with the same mean z and greater variance for type H.6

Lemma 2.5. Suppose R(�) is single-peaked at z 6= c. Then, kL 62 [minfc; zg;maxfc; zg].

Proof. Suppose that c < z and kL 2 [c; z]. By decreasing kL toward c, one can increase

the surplus S(kL) and decrease the rent R(kL). Note that setting kL = c cannot be

optimal, since by decreasing kL slightly below c, surplus from type L is not a�ected at the

margin (because S0(c) = 0) but the rent to type H decreases. A similar argument holds

when c > z. Q.E.D.

Under the assumption of single peak, the rent to the business type is the greatest

when the refund for the leisure type equals the peak of the distributions, and it falls

monotonically on either side of the peak. Whether it is optimal to subsidize (set kL < c)

or ration (kL > c) the leisure type depends on how the loss of surplus due to distortions

compares with rent reduction. Lemma 2.5 suggests that it is optimal to subsidize (ration)

consumption when the cost is low (high). The intuition is that when the cost is below the

peak of the rent function, rationing is too costly because it prevents many pro�table trades,

while when the cost is above the peak, subsidy means too many ine�cient trades. The

following two results give su�cient conditions under which such patterns of distortions are

optimal. The �rst one assumes symmetry of the density functions; the second one assumes

that the proportion of business travelers is su�ciently small and/or the cost is su�ciently

di�erent from the peak of the rent function.

6 If U is a random variable with log-concave density function, and V has zero mean and is independent
of U , then the distribution functions of U + V and U have the above desired properties. See Shaked and
Shanthikumar [1994]. We thank Wing Suen for mentioning this result.
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Proposition 2.6. It is optimal to subsidize (ration) the low type when c < z (c > z) if at

least one of the following two conditions is satis�ed: (i) gH and gL are symmetric around

z; (ii) fHR(c) � fL(S(c)� S(z)).

Proof. (i) Suppose that c < z < kL. Since gH and gL are symmetric around z, the

rent function R(�) is also symmetric around z. If z < kL < 2z � c, an alternative menu

with ~kL = 2z � kL yields a greater surplus because c < ~kL < kL, and the same rent by

symmetry, a contradiction. Suppose kL > 2z � c. Comparing the slope of S(�) at any

kL > 2z � c and its mirror image ~kL = 2z � kL, we have

�S0(kL) = (kL � c)gL(kL) = (kL � c)gL(~kL) > (~kL � c)gL(~kL) = S0(~kL):

It follows that S(~kL) > S(kL). Since R(~kL) = R(kL), the alternative menu yields a greater

pro�t, a contradiction. The argument is similar when c > z > kL. The proposition then

follows from Lemma 2.5.

(ii) Suppose that c < z. By Lemma 2.5, either kL < c or kL > z. The pro�t of setting

kL < c optimally is at least as great as fLS(c)� fHR(c), since choosing kL slightly below

c always reduces the rent without changing the surplus at the margin. On the other hand,

the pro�t of setting kL > z is at best as great as fLS(z), with maximum surplus and zero

rent. If fHR(c) � fL(S(c)�S(z)), setting kL > z cannot be optimal. A similar argument

holds when c > z. Q.E.D.

Thus, according to Proposition 2.6, the pattern of consumption distortion is deter-

mined by the comparison between the cost of the ticket and the peak of the distributions.

Note that regardless of whether the cost is low or high, the type that generates more surplus

on average ends up consuming more on average. Because they have a tighter distribution,

when the cost is low leisure travelers generate more surplus on average and are optimally

subsidized with a lower refund, and when the cost is high they generate less surplus on

average are optimally rationed with a higher refund.

When neither condition in Proposition 2.6 holds, the pattern of consumption distor-

tions for the leisure type can be di�erent from the predictions of Propositions 2.6. For

example, if c < z, rationing instead of subsidy for the leisure type can be an optimal way
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of reducing rent to the business type. This is more likely, if subsidy is not e�ective in

reducing rent for kL slightly below the cost because the two distributions di�er mostly at

the low end of the range. Numerical examples are available from the authors.

3. Sequential Mechanism Design: Continuous Type Case

The analysis in the last section illustrates some general characteristics of sequential price

discrimination. In this section, we show that these characteristics carry through in the

absence of the restriction to two-type ex ante distributions and the restriction to menus of

refund contracts. Moreover, we will discuss the issue of how type distribution and consumer

learning a�ect the design of sequential mechanisms, which cannot be done satisfactorily

under the two-type assumption. Finally, by solving for optimal sequential mechanisms for

a number of simple and intuitive parameterizations, we take a �rst step toward testing

implications of the sequential screening model. Readers mostly interested in applications

to price discrimination issues may skip the technical treatment of the continuous type case

and move directly to after the proof of Lemma 3.4 below.

In this section, we assume that types are continuously distributed over T = [t; t],

with a density function f (t) and cumulative function F (t). Each type t is represented by

a distribution of valuations over [v; v], with a di�erentiable density function g(vjt) and

cumulative function G(vjt). Type information is known only to the consumer. Note that

we have assumed that the type space T is one-dimensional for simplicity, but this does not

reduce the complexity of the type space, because each type is a probability distribution

and can vary in arbitrary ways. In the applications later in this section, private type

information will be about expected valuation or the degree of valuation uncertainty.

As in the standard mechanism problem, the revelation principle (see, e.g., Myerson

[1979], Harris and Townsend [1981]) allows us to take a �rst step toward simplifying the

problem of sequential mechanism design. We assume that the conditional distributions

g(vjt) have the same support for all t 2 T . This assumption makes it simpler to write

down the incentive compatibility constraints in the optimization problem.7

7 The optimization problem does not get more complicated without the assumption of common support

{ 12 {



For each pair of reports t and v, let y(t; v) be the probability of delivery and x(t; v) be

the payment to the monopolist. The monopolist solves the following sequential mechanism

design problem:

max
x(t;v);y(t;v)

Z t

t

Z v

v

f (t)(x(t; v)� cy(t; v))g(vjt)dvdt

subject to constraints:

(IC2) 8t;8v; v0; vy(t; v)� x(t; v) � vy(t; v0) � x(t; v0);

(IC1) 8t; t0;

Z v

v

(vy(t; v)� x(t; v))g(vjt)dv �

Z v

v

(vy(t0; v)� x(t0; v))g(vjt)dv;

(IR) 8t;

Z v

v

(vy(t; v)� x(t; v))g(vjt)dv � 0;

(R) 8t;8v; 0 � y(t; v) � 1:

The �rst set of constraint (IC2) is the incentive compatibility constraints in period two.

The second set (IC1) is the incentive compatibility constraints in period one. The third

set (IR) is the individual rationality constraints in period one. The last set of constraint

(R) requires the delivery rule to be feasible.8

Following the standard treatment of incentive compatibility constraints (see, e.g.,

Mirrlees [1971]), we can eliminate most of the period-two incentive constraints. De�ne

as long as supports of di�erent types overlap su�ciently. More precisely, the condition is: for any type t

and any two valuations v and v0, there is a type t0 (possibly t itself) such that v and v0 are in the support
of type t0. If this condition holds, the optimization problem has incentive compatibility constraints for
each type involving all valuations in the union of the all supports.

8 Note that there is no period-two individual rationality constraint vy(t; v)�x(t; v) � 0 for all t and v.
This corresponds to situations where up-front deposits are not fully refundable or there are cancellation
fees at the consumption date. The absence of this constraint is important for our results. Within the class
of deterministic sequential mechanisms (menus of refund contracts), the ex post participation constraint
implies that in each refund contract the advance payment does not exceed the refund. One can show that
the monopolist cannot use the combination of advance payment and refund to price discriminate, and
therefore all types have the same contract. Clearly, the menu of refund contract then coincides with the ex

post monopolist pricing. This conclusion does not hold if the monopolist is not restricted to deterministic
mechanisms, but the presence of the ex post participation constraint clearly reduces the monopolist's
discriminatory power.
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u(t; v) = vy(t; v)�x(t; v) to be the consumer's ex post surplus after he truthfully reports t

and then v. The following lemma shows that when the consumer draws a greater valuation,

he receives the good with a greater probability and has a greater consumer surplus. The

proof is standard and therefore skipped (see, e.g., Stole [1996]).9

Lemma 3.1. The period-two incentive compatibility constraints are satis�ed if and only

if (i)
@u(t;v)
@v

= y(t; v), and (ii) y(t; v) is non-decreasing in v for each t.

Lemma 3.1 amounts to a \localization" of IC2 constraints. In searching for the optimal

sequential mechanisms, we need only impose local constraints on the sequential mechanisms

to ensure that all IC2 constraints are satis�ed.

Our sequential mechanism design problem is related to static multi-dimensional price

discrimination models (e.g., Palfrey [1983]). In these problems, the consumer is screened

only once but he generally has more than one piece of private information (e.g., willingness

to pay for two di�erent goods), and the monopolist generally has more than one instru-

ment of price discrimination (e.g., quantities of the two goods sold to the consumer). In

our sequential mechanism design problem, the consumer is screened twice, but since the

contract is signed in the �rst period, we can think of the sequential design problem as

a static problem in the �rst period, where the consumer chooses a contingent package of

delivery probabilities and transfer payments. This static problem is multi-dimensional in a

sense because, although the consumer has one piece of private information, the monopolist

has many discrimination instruments in contingent packages of delivery probabilities and

transfer payments. One di�erence between our problem and the static multi-dimensional

problems is that in our problem the second-period screening imposes IC2 constraints on

the instruments that the monopolist can use, as stated in Lemma 3.1, whereas in the static

multi-dimensional problems, there is no such a priori constraint.

With the interpretation of our sequential mechanism design problem as a static screen-

ing problem, it becomes natural to \localize" period-one incentive compatibility constraints

9
We consider only sequential mechanisms with piece-wise di�erentiable delivery rule y(t; v).
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as in Lemma 3.1. De�ne U(t) =
R v
v
u(t; v)g(vjt)dv as the expected surplus of consumer of

type t and Y (t; v) =
R v
v
y(t; u)du as the cumulative delivery probability.10

Lemma 3.2. The period-one incentive compatibility constraints are satis�ed only if (i)

dU(t)
dt

= �
R v
v
y(t; v)

@G(vjt)
@t

dv; and (ii)
R v
v

@Y (t;v)
@t

@g(vjt)
@t

dv � 0.

Proof. By the period-one incentive compatibility constraint,

U(t0) � U (t) +

Z v

v

(g(vjt0)� g(vjt))(vy(t; v)� x(t; v))dv:

Exchanging the roles of t and t0, we have

U(t0)� U(t) �

Z v

v

(g(vjt0)� g(vjt))(vy(t0; v)� x(t0; v))dv:

To obtain (i), we combine the above two inequalities, divide them by t0 � t (assuming

t0 > t), and let t0 converge to t. Then,

dU (t)

dt
=

Z v

v

@g(vjt)

@t
u(t; v)dv = �

Z v

v

@G(vjt)

@t
y(t; v)dv;

where the last equality uses Lemma 3.1 and integration by parts. Condition (ii) can be

obtained similarly by combining the two inequalities, dividing them by (t� t0)2 and letting

t0 converge to t. Q.E.D.

Lemma 3.2 parallels Lemma 3.1. The �rst condition is a local period-one �rst-order

condition (FOC1), counterpart to the local period-two �rst-order condition (FOC2) in

Lemma 3.1 that
@u(t;v)

@v
= y(t; v); the second condition is a local period-one second-order

condition (SOC1), counterpart to the local period-two second-order condition (SOC2) in

Lemma 3.1 that y(t; v) is non-decreasing in v. However, the two lemmas di�er on an

important point: the two local conditions in Lemma 3.2 are necessary but not su�cient

for IC1, whereas the two conditions in Lemma 3.1 are both necessary and su�cient for

10 The reason to use the cumulative delivery probability is that optimal sequential mechanisms often
have piece-wise constant delivery rules, in which case �rst-period second-order condition written in deriva-
tives of the delivery probability does not capture the restrictions imposed by the incentive compatibility
constraints. We thank an anonymous referee for pointing out this to us.
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IC2. The su�ciency of the two conditions in Lemma 3.2 requires additional assumptions

on T ; this will be the subject of section 4.

It is well-known that multi-product price discrimination problems are complex when

consumers' private information is multi-dimensional (see Rochet [1995] and Armstrong

[1996]). In our model, the consumer's private information is a probability distribution and

in general can vary quite arbitrarily. Little can be said about the properties of optimal

mechanism without making further assumptions. Since each type is a probability distri-

bution on [v; v], one natural way of imposing a structure on T is through FSD. In this

case, we say that type t is \higher" than t0 if G(vjt) � G(vjt0) for all v, and that T is

ordered by FSD if t > t0 implies that t is higher than t0 for any t; t0 2 T . Another way to

impose a structure on T is through a particular kind of mean-preserving spread where all

distributions G(vjt) cross at a single point z. In this case, we say that type t is \higher"

than t0 if G(vjt) � G(vjt0) for all v < z and G(vjt) � G(vjt0) for all v > z, and that T is

ordered by MPS if t > t0 implies that t is higher than t0 for any t; t0 2 T . As in the two

type case, the analyses of these two cases will be similar.

Under either FSD or MPS described above, the sequential design problem can be

further simpli�ed. In particular, in the case of FSD, since a consumer of a higher type has

a greater probability of drawing greater valuations, and since by Lemma 3.1 the ex post

surplus is greater when a consumer draws a greater valuation, a higher type has a greater

expected surplus in any incentive compatible sequential mechanism. It can be seen from

Lemma 3.2 that under the assumption that T is ordered by FSD, we can ignore the IR

constraints for all types except for the lowest type t. An implication is that in any optimal

sequential mechanism, the lowest type earns zero expected surplus. By the argument in

Lemma 2.1, the same implication holds for the case of MPS as well.

Following the standard practice of mechanism design, we obtain a \relaxed" problem

by imposing the two local �rst-order conditions in Lemma 3.1 and Lemma 3.2 while ignor-

ing the second order conditions (and all but the lowest type IR constraint). By Lemma

3.2, we have

Z t

t

f (t)U(t)dt = U (t) �

Z t

t

Z v

v

(1� F (t))y(t; v)
@G(vjt)

@t
dvdt:
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De�ne

�(t; v) = v � c+
(1� F (t))

f (t)

@G(vjt)=@t

g(vjt)
:

The relaxed problem can be then written as maxy(t;v)
R t
t

R v
v
�(t; v)y(t; v)g(vjt)f (t)dvdt sub-

ject to 0 � y(t; v) � 1. The solution to the relaxed problem is given by y(t; v) = 1 for t

and v such that �(t; v) > 0 and 0 otherwise. There is no randomization.

If transfer payments x(t; v) can be found so that the solution y(t; v) to the relaxed

problem given above satis�es all IC1 and IC2 constraints, then the sequential mechanism

fy(t; v); x(t; v)g is optimal. But since we have ignored the local second-order conditions

in Lemma 3.1 and Lemma 3.2, and since the two conditions in Lemma 3.2 are generally

insu�cient for IC1, we need to impose some condition on y(t; v). The next result states

that in the case of FSD, if the solution y(t; v) to the relaxed problem is monotonic in both

t and v, then transfer payments x(t; v) can be found such that the sequential mechanism

fy(t; v); x(t; v)g solves the original problem.11

Lemma 3.3. Suppose that T is ordered by FSD. If a delivery rule y(t; v) solves the relaxed

problem, and if y(t; v) is non-decreasing in t for all v and in v for all t, then there exist

transfer payments x(t; v) such that the sequential mechanism fy(t; v); x(t; v)g is optimal.

Proof. Since it solves the relaxed problem, y(t; v) is either 1 or 0 for any t and v. By

assumption, y(t; v) is non-decreasing in v for each t, so SOC2 implies that there exists

k(t) for each t such that y(t; v) = 0 if v � k(t) and y(t; v) = 1 if v > k(t). By FOC2, the

transfer payments can be written as x(t; v) = x0(t) if

v � k(t) and x(t; v) = x1(t) if v > k(t), with k(t) = x1(t) � x0(t). By Lemma 3.1, all

IC2 constraints are satis�ed.

The expected surplus of a type t consumer is

U(t) = �x0(t) +

Z v

k(t)

(1�G(vjt))dv:

Taking derivatives and using FOC1, we obtain

�
dx0(t)

dt
�

dk(t)

dt
(1�G(k(t)jt)) = 0:

11 Matthews and Moore [1987] make the same observation in a multi-dimensional screening problem,
and call such mechanisms \attribute-ordered."
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The above condition gives a di�erential equation that can be used to �nd the function

x0(t), with the boundary condition that x0(t) satis�es

U (t) = �x0(t) +

Z v

k(t)

(1�G(vjt))dv = 0:

It remains to show that the sequential mechanism fk(t); x0(t); x1(t)g de�ned above

satis�es all IC1 constraints. The partial derivative of the expected utility U (t0; t) of type

t0 when he claims to be type t is given by

@U(t0; t)

@t
= �

dx0(t)

dt
�

dk(t)

dt
(1�G(k(t)jt0)):

Since by assumption y(t; v) is non-decreasing in t for all v,
dk(t)
dt

� 0. Suppose t0 < t.

Then,
@U(t0; t)

@t
� �

dx0(t)

dt
�

dk(t)

dt
(1�G(k(t)jt)) = 0:

By integration we have U (t0; t) � U(t0). The same reasoning applies if t < t0. This shows

that the sequential mechanism fk(t); x0(t); x1(t)g satis�es all IC1 constraints. Q.E.D.

In the other case, when T is ordered by MPS with all distribution functions passing

through a single point z, the second term of �(t; v) is positive for v < z and negative for

v > z. Depending on whether the cost c is low or high relative to z, the proof of Lemma

3.3 needs to be adapted. The statement of Lemma 3.3 holds for the case of MPS with an

additional restriction on the solution to the relaxed problem, namely no under-production

if c < z and no over-production if c > z.

Lemma 3.4. Suppose that T is ordered by MPS with all distributions passing through

a single point z. If c < z (resp. c > z) and y(t; v) solves the relaxed problem with no

under-production (over-production), and if y(t; v) is non-increasing (non-increasing) in t

for all v and non-decreasing in v for all t, then there exists x(t; v) such that fy(t; v); x(t; v)g

is optimal.

Proof. De�ne a sequential mechanism fk(t); x0(t); x1(t)g as in the proof of Lemma 3.3.

It su�ces to show that all IC1 constraints are satis�ed. Suppose c < z; the case of c > z

is symmetric. We have

@U(t0; t)

@t
= �

dx0(t)

dt
�

dk(t)

dt
(1�G(k(t)jt0)):
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By assumption y(t; v) is non-increasing in t for all v, so
dk(t)
dt

� 0. Moreover, since there is

no under-production, k(t) � c for all t. Then, if t0 < t, MPS implies G(k(t)jt0) � G(k(t)jt),

and
@U(t0; t)

@t
� �

dx0(t)

dt
�

dk(t)

dt
(1�G(k(t)jt)) = 0:

By integration we have U(t0; t) � U (t0). The same reasoning applies if t < t0. Q.E.D.

Before we present a few parameterizations where optimal sequential mechanisms can

be found by using Lemma 3.3 and Lemma 3.4, it is helpful to compare our model with the

standard one-dimensional nonlinear pricing problem. The coe�cient �(t; v) is analogous to

\virtual surplus" de�ned by Myerson [1981] in one-dimensional nonlinear pricing problems.

As in nonlinear pricing problems, the �rst part of �(t; v) corresponds to social surplus of

type t with valuation v, and the second part represents the distortion. The di�erence is

that in a nonlinear pricing problem, the second part contains only the \hazard rate"
1�F (t)
f(t)

,

but in our sequential screening problem, it also contains an additional term
@G(vjt)=@t

g(vjt)
.12

The hazard rate measures the distortion due to eliciting truthful type information from t,

for any valuation v. Distortions are larger with a greater hazard rate, because whatever

surplus conceded to type t must also be given to all higher types. The term
@G(vjt)=@t

g(vjt)

has a straightforward interpretation of \informativeness measure" (Baron and Besanko

[1984]), as it represents how informative the consumer's private type knowledge is about

his valuation. It is zero if type and valuation are independently distributed, and is large

if marginally di�erent types have very di�erent conditional distributions. Alternatively,

holding G(vjt) constant, we can think of v as a function of t, and the informativeness

measure is equal to �@v
@t
. The measure then represents how marginally di�erently types

hit a �xed percentile G(vjt) at di�erent valuations. Distortions are larger with a greater

informativeness measure, because more rent must be conceded in order for marginally

di�erent types not to claim to be type t with valuation v.

12
Whenever Lemma 3.3 and Lemma 3.4 apply, the sequential mechanism design problem is reduced

to choosing refund (cuto� valuation) as a function of type. Virtual surplus can be instead de�ned as the
expected total surplus for a given type and a given refund. This alternative de�nition of virtual surplus
looks the same as in a standard one-dimensional nonlinear pricing problem. We choose to de�ne virtual
surplus for a pair of valuation and type, because it applies even when the conditions of Lemma 3.3 and
Lemma 3.4 do not hold.
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In a nonlinear pricing problem, the usual second-order condition (analogous to Lemma

3.1) implies downward distortion|consumers of every type except for the highest one are

rationed. Here, the direction of distortion is not necessarily downward because the ratio

@G(vjt)=@t
g(vjt)

can be either positive or negative. We will discuss the case of FSD and the case

of MPS separately.

For the case of FSD, let's �rst consider the following \additive" structure of conditional

distributions:

v = �t+ (1� �)�t;

where t is distributed over a positive range, � 2 (0; 1), and �t is i.i.d. on the whole real line

(this guarantees that the conditional distributions have the same support) with density

h(�) and distribution H(�).13 The distribution of v conditional on t is given by

G(vjt) = H

�
v � �t

1� �

�
:

Note that G(vjt) satis�es FSD.

The additive speci�cation has some nice properties that make it an interesting bench-

mark case of �rst-order stochastic dominance. Consumers face the same uncertainty re-

garding valuation but have private information about their expected valuation for the

good. In this linear case, the informativeness measure becomes a global one|it equals �

for all types and valuations. The greater � is, the more informative the consumer's private

type knowledge is about valuation in that conditional distributions of valuations vary more

with type.

With the above additive speci�cation, we have

�(t; v) = v � c�
�(1� F (t))

f (t)
:

Under the standard monotone hazard rate assumption (see, e.g., Fudenberg and Tirole

[1991]), the hazard rate
1�F (t)
f(t)

is non-increasing in t, we have that �(t; v) � 0 implies

13 This formulation allows negative realized valuation. An example of negative valuation is a ticket-
holder who is sick and must be paid to travel. Since the monopolist cannot force consumption (free
disposal), in the pro�t maximization problem a distribution with a range of negative valuations is equivalent
to one that has an atom at zero valuation with all the probability weights of the negative valuations. This
does not change the results below.
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�(t0; v0) � 0 for any t0 � t and v0 � v. The solution to the relaxed problem is monotonic

in v and t separately. By Lemma 3.3, it solves the original problem. The optimal delivery

rule is therefore given by:

y(t; v) =

(
1 if v > c+

�(1�F (t))

f(t)

0 otherwise.

It is deterministic with a cuto� level for each type. Higher types have lower cuto�s. There

is no production distortion for the highest type. We summarize the �ndings in the following

proposition.

Proposition 3.5. Suppose that the conditional distribution functions have an additive

structure. Then, under the monotone hazard rate assumption, the optimal sequential

mechanism is deterministic with larger under-production distortions for lower types and

no under-production for the highest type.

Under-production distortion is larger when the consumer's private knowledge is more

informative, because the monopolist prefers rationing the good to giving higher types a

large informational rent. In the polar case where � = 0, type is completely uninformative of

valuation, and the monopolist achieves perfect discrimination with a sequential mechanism.

The monopolist sells the product in period one at the expected valuation, which is the same

for all types, and allows the consumer to return the good for a refund equal to c. This

refund policy guarantees social e�ciency. In the other polar case where � = 1, the under-

production distortion is the largest. Clearly, the optimal sequential mechanism coincides

with usual monopoly pricing after the consumer learns his valuation.

A characteristic of the optimal menu of refund contract is that it is independent of

the speci�cation H(�) of the valuation shock �t. For �xed �, a greater variance of �t means

that the consumer faces greater valuation uncertainty, yet there is no e�ect on the optimal

menu of refund contracts. What matters is not how much the consumer knows about his

valuation when he signs the contract, but how informative his private type knowledge is

about his valuation. The shock �t is common to all consumer types and may be interpreted

as demand shocks. Proposition 3.5 implies that additive demand shocks do not a�ect the
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optimal sequential mechanism.14

It is instructive at this point to compare the optimal sequential mechanism with ex

post monopoly pricing. Whereas the sequential mechanism is deterministic with lower

cuto� levels of valuations for higher types, ex post monopoly pricing can be thought of

as a deterministic sequential mechanism with full refund and all types having the same

cuto� level. In general, the optimal sequential mechanism yields greater pro�ts than ex

post optimal monopoly pricing; the gains from sequential screening tend to be greater

when � is close to 0. If sequential mechanisms involve greater implementation costs than

ex post monopolist pricing, perhaps due to the cost of registering consumers in advance,

then one is less likely to observe sequential screening in environments where conditional

distributions of valuations vary substantially with type. Welfare comparison between se-

quential pricing and monopolist ex post pricing is ambiguous. In the monopolist pricing,

expected downward distortions are smaller for higher types because they are more likely to

reach above the same cuto� level. In the optimal menu of refund contracts, higher types

have lower cuto� levels so their expected downward distortions are even smaller compared

to lower types. However, since the optimal ex post monopoly price depends on both the

distribution of types and the conditional distributions of valuations, aggregate downward

distortion under ex post monopolist pricing can be either higher or lower than that under

the optimal sequential mechanism.

The additive speci�cation can provide a tractable way of testing our model. One

property already mentioned is that the optimal menu of refund contract does not depend

on the speci�cation H(�) of the valuation shock �t. This allows some freedom in specifying

the conditional distributions. Also, we can relax the assumption that consumers di�er

linearly in their expected valuation. Suppose that valuation is linked to type through

v = �n(t) + (1 � �)�t where n(t) is a nonlinear function. Assume that n(t) is increasing

so that �rst-order stochastic dominance is satis�ed. In this generalized additive case,

informativeness measure of type about valuation equals �n0(t) and varies across types. It

14 The log-linear speci�cation and the multiplicative MPS speci�cation discussed below show that under
some mild assumptions on the type distribution, multiplicative demand shocks have no e�ects on the
optimal sequential mechanism either. In general, demand shocks have no e�ects as long as conditions on
the type distribution can be found to satisfy the assumptions in Lemma 3.3 and Lemma 3.4.
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is straightforward to verify that a similar result to Proposition 3.5 holds if n(t) is not too

convex, or expected valuation does not increase too fast with type.

We can also extend Proposition 3.5 to a multiplicative speci�cation.15 Suppose that

v = t��1��
t where t is distributed over a positive range, � 2 (0; 1), and �t is i.i.d. on the

whole positive real line (this guarantees that the conditional distributions have the same

support) with density h(�) and distribution H(�). This speci�cation is log-linear and can

be useful in constructing empirically testable implications. We have,

�(t; v) = v � c�
v�(1� F (t))

tf (t)
:

As in the additive speci�cation, the greater � is, the more informative the type is as a signal

of valuation, but informativeness measure is not uniform across types. De�ne �(t) = 1�F (t)

tf(t)

and suppose that �(t) < 1 for all t. This is satis�ed as long as the range of t is su�ciently

above zero, regardless of the value of �. The solution to the relaxed problem is then

y(t; v) =

�
1 if v > c

1���(t)

0 otherwise.

If �(t) is non-increasing in t (monotone hazard rate is su�cient for this but clearly not

necessary), the above solution has the monotonic property required by Lemma 3.3 and

therefore solves the original problem.

For the case of MPS, perhaps the most natural class of distributions is given by the

same mean plus a multiplicative shock. More precisely, suppose

v = z + t�t;

where �t is i.i.d. on the whole real line (this guarantees that the conditional distributions

have the same support) with zero mean, density h(�) and distributionH(�). Without loss of

generality assume that t > 0, so that greater t means greater dispersion. The distribution

of v conditional on t is given by

G(vjt) = H

�
v � z

t

�
:

15 A speci�cation with a special distribution that works out similarly is G(vjt) = 1 � exp (�v=t). We
thank an anonymous referee for the suggestion.
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It is easy to see that the distributions G(vjt) satisfy MPS and pass through the same point

z, which is also the mean of the distributions. Consumers face the same expected valuation

but have private information about the degree of valuation uncertainty. Consumers of

higher types face greater valuation uncertainty. The informativeness measure is given by

(v � z)=t. The private type knowledge of higher types is relatively uninformative about

their valuation.

With the above speci�cation, we have

�(t; v) = v � c� (v � z)�(t);

where �(t) was de�ned in the previous example. Under the standard monotone hazard

rate assumption (su�cient but not necessary), �(t) is non-increasing in t. Suppose that

�(t) � 1. This is satis�ed if the range of t is su�ciently above zero, regardless of the

distribution F (t). Then, the solution to the relaxed problem is given by:

y(t; v) =

(
1 if v >

c��(t)z

1��(t)

0 otherwise.

The assumption of �(t) � 1 guarantees that y(t; v) is non-decreasing in v for any t. It is

straightforward to show that the cuto� rule y(t; v) de�ned above has the properties required

by Lemma 3.4: if c < z, then y(t; v) has no under-production and is non-increasing in t

for all v; if c > z, then y(t; v) has no over-production and is non-decreasing in t for all v.

The following proposition follows.

Proposition 3.6. Suppose that the valuation distributions are given by the same mean

z plus a multiplicative shock and
1�F (t)

tf(t)
is non-increasing in t and less than 1. Then, if

c < z (resp. c > z), the optimal sequential mechanism is deterministic with greater over-

production (under-production) distortions for types with smaller valuation uncertainty and

no distortion for the highest type.

Proposition 3.6 is a generalization of Proposition 2.6. When consumers have the

same expected valuation but di�er in the valuation uncertainty they face, the pattern

of consumption distortion is determined by the comparison between the production cost

and the expected valuation. In airplane ticket pricing, the cost of 
ying an additional
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passenger is typically small compared to the average willingness to pay when plane capacity

is not binding. In this case, all travelers except for those with the greatest valuation

uncertainty are subsidized and purchase advance tickets with refund lower than the cost

of the ticket. Travelers with greater uncertainty about their plans pay more in advance for

greater 
exibility in terms of higher refund.

Note that as in Proposition 3.5 the optimal menu of refund contract does not depend

on the speci�cationH(�) of the valuation shock �t. The variance of �t can be great or small,

but it has no e�ect on the optimal menu of refund contract as long as it is common to all

types. Also, the multiplicative speci�cation can be generalized by relaxing the assumption

that consumer type enters linearly with �t. Finally, as in Proposition 3.5, consumption

distortions (either downward or upward) are larger when the consumer's private type

knowledge is more informative about his valuation at the time of contracting. To see this,

note that when valuation is a known mean plus a multiplicative shock, more informative

type knowledge can be represented by a leftward shift of the distribution of types F (t).

Since �(t) is decreasing in t, this amounts to increasing the function �(t). The cuto� levels

in the solution to the relaxed problem decrease if c < z and increase if c > z. In either

case, the consumption distortions are smaller.

4. Further Comments on Sequential Screening

The optimal sequential mechanisms characterized in previous sections are all deterministic.

Deterministic sequential mechanisms are important because they are easy to implement

in practice. These include refund contracts, option contracts, and cancellation fees. De-

terministic sequential mechanisms are also related to two-part tari�s in nonlinear pricing

models, as formally discussed in the mechanism design language by La�ont and Tirole

[1986]. A typical optimal mechanism in the literature is a direct mechanism rarely seen

in practice; instead, two-part tari�s are often used. Although any concave nonlinear tari�

can be implemented through a two-part tari�, the sequential feature of the consumer's de-

cision in two-part tari�s is purely arti�cial. One explanation for the popularity of two-part

tari�s, given by La�ont and Tirole, is that they are robust against shocks. Our model
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of sequential screening, where the consumer self-selects twice, provides another explana-

tion for the use of two-part tari�s. The shock mentioned by La�ont and Tirole can be

viewed as the uncertainty faced by the consumer about his actual valuation at the time of

contracting, which later becomes his additional private information.

Under either FSD or MPS, optimal deterministic mechanisms can be characterized

with a local approach, because the design problem is reduced to a single-dimensional one

of choosing refund as a function of type. Unfortunately, neither FSD nor MPS is su�-

cient to imply that optimal sequential mechanisms are deterministic. Without restricting

sequential mechanisms to menus of refund contracts, the local period-one constraints are

generally insu�cient to imply the global constraints. This insu�ciency results from the

multi-dimensional nature of the sequential mechanism design problem. To see this, note

that from Lemma 3.3, a su�cient condition for the IC1 constraints is that y(t; v) is non-

decreasing in t for all v, but SOC1 states only that the delivery rule y(t; v) is non-decreasing

in t \on average," with the weights determined by local changes in the conditional distri-

butions of valuations with respect to type. Without further restrictions on type space T

besides stochastic dominance, the weights can change with type arbitrarily, and there is

little hope that what holds locally extends globally.

Localization of incentive compatibility constraint is important. With rare excep-

tions,16 the works in the price discrimination literature take a local approach. Localiza-

tion is guaranteed in the standard one-dimensional price discrimination literature under

the familiar \single crossing" condition that marginal rate of substitution is ordered by

type (see, e.g., Cooper [1984]). This single crossing condition is satis�ed for the period-two

incentive compatibility constraints because a consumer with a greater valuation is willing

to pay more for an increase in delivery probability. It enables us to replace IC2 constraints

by two local conditions in Lemma 3.1. In the multi-dimensional price discrimination lit-

erature, McAfee and McMillan [1988] have found a condition that guarantees that local

incentive compatibility constraints imply global constraints (they call it \generalized single

crossing" condition). But their condition requires that the dimension of consumer's pri-

vate information exceed the number of monopolist' price discrimination instruments. This

16 Matthews and Moore [1987] is one of them.
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dimensionality condition is not satis�ed in our model: at the time of contracting, the con-

sumer's private information is one-dimensional, but the monopolist has many instruments

in contingent packages of delivery rule and payments.

A special case of FSD called \alignment" imposes a linear structure on the type

space and guarantees that the two local conditions in Lemma 3.2 are su�cient for IC1

constraints.17 The meaning of alignment is best seen in the discrete formulation (the

discrete notation is self-explanatory, for example, Gi;j corresponds to
Pj�1

k=1 gi;k). We say

that three types ti, ti0 and ti00 are aligned if they are ordered by FSD and

Gi;j �Gi0;j

Gi;j0 �Gi0;j0

=
Gi0;j �Gi00;j

Gi0;j0 �Gi00;j0

for all valuations vj and vj0 such that the above is de�ned. We say that the type space T

is aligned if any three types are aligned. Alignment has a geometric interpretation. Each

type can be identi�ed as a point in a J � 1 dimensional vector space, with coordinates

(Gi;2; Gi;3; : : : ; Gi;J ), where J is the number of possible valuations. Three types are aligned

if the corresponding points form a line. Alignment in the continuous case can be de�ned

in a similar way.

The following result shows how the assumption of alignment ensures that the two local

conditions in Lemma 3.2 are su�cient for IC2 constraints. The proof is in the appendix.

The key is that under alignment the weights in the local period-one second order condition

do not change with type. Thus, local IC2 constraints extend globally.

Lemma 4.1. Suppose that the type space is aligned. Then a sequential mechanism sat-

is�es period-one incentive compatibility constraints if and only if it satis�es the two local

conditions in Lemma 3.2.

The assumption of alignment is certainly restrictive, but it enables us to use a variation

of the standard local approach and provides some insights about the optimal mechanism's

properties. Moreover, one can show that in some sense alignment is the only case where

the local approach applies: if T is not aligned, then there is a sequential mechanism

17 Alignment for MPS (with the same restrictions as in Proposition 3.6) can be similarly de�ned.
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which satis�es all the local period-one incentive constraints (and individual rationality

and period-two constraints) but fails at least some global period-one constraints.

The next result states that under alignment over-production never occurs in an optimal

sequential mechanism.18 The proof relies on the observation that both over-production and

under-production can be used for the purpose of price discrimination. Under alignment

there is never any need to use over-production as an instrument of price discrimination

because it is more costly to the monopolist than under-production. The assumption of

alignment is crucial for the proof; without it, over-production can occur under stochastic

dominance. The proof is in the appendix.

Lemma 4.2. Assume T is aligned. Then in any optimal sequential mechanism, there is

no over-production for any type.

Although the assumption of alignment allows a local approach, one cannot conclude

that the delivery rule is monotone as in Lemma 3.3. That is, \bunching" may occur both

across valuations and across types.19 This makes it di�cult to characterize the optimal

mechanism. However, the assumption of alignment limits the extent of bunching.

Proposition 4.3. Assume that T is aligned. Then in any optimal mechanism, the con-

tract for each type can be described by at most three di�erent probabilities, 0, 1 and some

number in between.

An example in the appendix with three types and three valuations shows how bunching

occurs across types and across valuations at the same time and results in a random delivery

rule. Random delivery rules allow �ne tuning by the monopolist. When the optimal

mechanism involves randomization, the delivery rule may not be increasing in type for

each valuation. Only the weighted average of the delivery probabilities increases with

type. That the delivery rule need not be monotonic in types is similar to the conclusion

18
The counterpart of this result for the case of MPS is that under alignment over-production does not

occur when production cost is high and under-production does not occur when the cost is low.

19
See, e.g., the appendix of Chapter 7 in Fudenberg and Tirole [1991] for an explanation of bunching

techniques in standard nonlinear pricing problems.
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in the multi-product price discrimination literature that quantity or quality of each good

need not be monotonic when consumer demand characteristics are one-dimensional but the

number of instruments of price discrimination is greater than one. For example, Matthews

and Moore [1987] show that if the monopolist in the model of Mussa and Rosen [1978]

o�ers di�erent levels of warranty as well as quality, more eager consumers need not buy

higher quality or receive higher warranty.

5. Concluding Remarks

The closest work to the present study is by Miravete [1996], who also considers the mo-

nopolist's pricing problem when consumers face demand uncertainty. In contrast with this

paper, he assumes continuous demand functions. This allows him to compare ex ante

two-part tari�s (where consumers choose a tari� based on their expected demand) and ex

post two-part tari�s. He shows that expected pro�ts are higher under an ex post tari� if

the variance of the ex ante type distribution is large enough. The generality of his results

is compromised by the restriction to two-part tari�s. While the restriction to ex post

two-part tari�s can be shown to be without loss of generality, in general ex ante two-part

tari�s are not optimal. In the present paper where unit demand is assumed, the optimal

ex post tari� degenerates to standard monopolist pricing, and can be thought of as a uni-

form sequential contract with full refund for all ex ante types. As a result, in our model

ex post mechanisms are dominated by sequential mechanisms. Furthermore, our results

(Proposition 3.5 and Proposition 3.6) indicate that pro�t gains from using a sequential

mechanism depend not only on the type distribution, but on how informative consumers'

initial private knowledge is about their valuations: if di�erent types of consumers have

very di�erent conditional distributions of valuations, then sequential mechanisms do not

yield much greater expected pro�ts than ex post monopolist pricing.

Our sequential mechanism design problem is related to the problems of dynamic price

discrimination (e.g., Baron and Besanko [1984], La�ont and Tirole [1988, 1990]). An

example of these problems is a monopolist facing a consumer making repeated purchases.

Typically, consumers have only one piece of private information and it does not change over

{ 29 {



time. These problems focus on the implications of the monopolist's ability to commit. With

no change in consumers' private information over time, the optimal dynamic mechanism

under commitment is static: it simply replicates the optimal static screening contract

in every period. In contrast, our sequential screening problem is driven by the demand

uncertainty.

Throughout the paper we assume that the monopolist can commit to a sequential

mechanism and examine how a sequential mechanism can be used by the monopolist to

extract maximal surplus. If the monopolist cannot commit to a sequential mechanism,

time-inconsistency problems as mentioned by Coase [1972] arise. In our problem of se-

quential screening, the monopolist may be tempted to renege both before and after con-

sumer learn their valuation. Lack of ability to commit to a sequential mechanism reduces

the monopolist's power to discriminate, which may explain why sometimes these types of

mechanisms are not observed in practice.

Although menus of refund contracts arise naturally from price discrimination under

consumer learning, they can be o�ered by producers for other reasons. One reason worth

mentioning is that a menu of refund contract may allow a producer to learn about �nal

consumer demand early on. This information can be valuable for production planning

purposes. Consider the airplane ticket pricing example in the introduction. The fraction of

business travelers may be unknown to the ticket seller, but it is revealed by travelers' choices

of refund contracts. This information is valuable to the seller if a production capacity

decision must be made before the �nal demand is realized. Although this paper has not

explored the issue of capacity constraint in the presence of sequential price discrimination,

it seems a promising line of research.
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Appendix

This appendix uses the discrete formulation to prove Lemma 4.1, Lemma 4.2, Proposition

4.3, and to present an example of randomization under alignment. Similar arguments

apply to the continuous setting. Let T = ft1; : : : ; tIg be the set of possible types, where

fi is the probability of ti 2 T , and V = fv1; : : : ; vJg be the set of possible valuations

(ordered from the smallest valuation to the greatest), where gi;j is the (strictly positive)

probability of type ti drawing valuation vj (with Gi;j =
P

j�1

k=1
gi;k). Denote xi;j as the

payment to the monopolist when the consumer reports type ti and then valuation vj ,
and yi;j as the corresponding delivery probability. Let ui;j = vjyi;j � xi;j . A typical

second-period incentive compatibility constraint ICi

j;j0
is vjyi;j � xi;j � vjyi;j0 � xi;j0 . Let

j = maxfjjvj < cg. To make the discrete exposition in this appendix self-contained, we
�rst provide the proof of the discrete version of Lemma 3.1.

Lemma 3.1 In any optimal mechanism ICi

j+1;j holds with equality for each i and each

j � j + 1, and ICi

j�1;j holds with equality for each i and j � j. All ICi

j;j0
conditions are

satis�ed if and only if yi;j+1 � yi;j for each j 6= j, and ICi

j+1;j
and ICi

j;j+1
hold.

Proof. Summing up ICi

j;j0 and ICi

j0;j
and rearranging terms, we �nd that 8i and j > j0,

yi;j � yi;j0 , xi;j � xi;j0 , and ui;j � ui;j0 . Next, for any i and j > j0 > j00, summing
up ICi

j;j0 and ICi

j0;j00
and noting yi;j0 � yi;j00 , we have ICi

j;j0 and ICi

j0;j00
imply ICi

j;j00
.

Similarly, ICi

j00;j0 and ICi

j0;j
imply ICi

j00;j
. It follows that if j � J�1, then in any optimal

sequential mechanism, yi;J = 1 for all i, and if j � 1, then in any optimal sequential
mechanism, yi;1 = 0 for all i.

Now we can show that ICi

j�1;j holds with equality for each i and j � j. First, since
yi;1 = 0, if yi;j = 0, then for all j0 � j, we have yi;j0 = 0 and xi;j0 = xi;1, and therefore
ICi

j;j�1 holds with equality. Assume that yi;j > 0. By way of contradiction, suppose that

ICi

j;j�1 holds with strict inequality. Consider an alternative mechanism that coincides

with the original mechanism except ~yi;j = yi;j � � and ~xi;j = xi;j � vj�, where � > 0 is
to be determined below. Note that it is possible to decrease yi;j because by assumption
yi;j > 0. Then ICi

j�1;j becomes

vj�1yi;j�1 � xi;j�1 � vj�1~yi;j � ~xi;j = vj�1yi;j � xi;j + (vj � vj�1)�:

Since by assumption ICi

j�1;j holds with strict inequality, we can choose � appropriately so

that ICi

j�1;j holds with equality under the alternative mechanism. Since by construction

~ui;j = ui;j , IC
i

j;j+1 and ICi

j;j�1 still hold, while IC
i

j+1;j becomes

vj+1yi;j+1 � xi;j+1 � vj+1~yi;j � ~xi;j = vj+1yi;j � xi;j + (vj � vj+1)�;

which is also satis�ed under the alternative mechanism. Thus, all period-two incentive con-

straints are satis�ed. Since by construction ~ui;j = ui;j , all period-one incentive constraints
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and participation constraints still hold. However, the expected pro�ts of the monopo-

list under the alternative mechanism are greater than under the original mechanism by
figi;j(c� vj)�, a contradiction. A similar argument shows that in any optimal mechanism

ICi

j+1;j holds with equality for each i and each j � j + 1.

For the second statement of the lemma, it su�ces to show that if ICi

j+1;j holds with

equality, then ICi

j;j+1 holds if and only if yi;j+1 � yi;j . Since IC
i

j+1;j holds with equality,

vjyi;j � xi;j = vjyi;j+1 � xi;j+1 + (vj+1 � vj)(yi;j+1 � yi;j):

Therefore, ICi

j;j+1 is satis�ed if and only if yi;j+1 � yi;j . Q.E.D.

A.1. Proof of Lemma 4.1

Let Ui;i0 =
P

J

j=1
gi;jui0;j . To simplify notation, for all i and j de�ne

Si;j =

�
(vj+1 � vj)

P
J

k=j+1
gi;k if J � 1 � j � j + 1

�(vj � vj�1)Gi;j if 2 � j � j,

and wi = u
i;j+1

� u
i;j
.

Lemma 4.1 Assume T is aligned. Then in optimal sequential mechanism, ICi;i�1 holds

with equality for each i � 2. Moreover, all ICi;i0 constraints are satis�ed if and only if

(Mi;i�1) �(G
i;j+1

�G
i0;j+1

)(wi �wi0) +

J�1X
j=2

(Si;j � Si0;j)(yi;j � yi0;j) � 0:

Proof. By applying Lemma 3.1, we can write

Ui;i0 = u
i0;j+1

�G
i;j+1

wi0 +

J�1X
j=2

Si;jyi0;j :

Then the pro�t maximization problem can be written as:

max
yi;j ;ui;j+1

;wi

IX
i=1

fi

0
@ JX

j=1

(vj � c)gi;jyi;j � Ui;i

1
A

subject to constraints wi � (v
j+1

� v
j
)y

i;j
for all i (ICi

j+1;j
), wi � (v

j+1
� v

j
)y

i;j+1
for all

i (ICi

j;j+1
), yi;j+1 � yi;j for all i and j 6= j (M i

j+1;j), Ui;i � Ui;i0 for all i and i0 (ICi;i0),

Ui;i � 0 for all i (IRi), and 0 � yi;j � 1 for all i and j (Ri;j).
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First we show that if ti, ti0, and ti00 are aligned and i > i0 > i00, then ICi;i0 , ICi0;i00 ,

and ICi00;i0 imply ICi;i00 .

Ui;i � Ui;i00

=u
i;j+1

� u
i0;j+1

+ u
i0;j+1

� u
i00;j+1

�G
i;j+1

(wi � wi00) +

J�1X
j=2

Si;j(yi;j � yi00;j)

�� (G
i;j+1

�G
i0;j+1

)(wi0 � wi00) +

J�1X
j=2

(Si;j � Si0;j)(yi0;j � yi00;j)

=
Gi0;2 �Gi;2

Gi00;2 �Gi0;2

0
@�(G

i0;j+1
�G

i00;j+1
)(wi0 � wi00) +

J�1X
j=2

(Si0;j � Si00;j)(yi0;j � yi00;j)

1
A ;

where the last line uses the assumption that i, i0 and i00 are aligned, and the second-to-
last uses ICi;i0 and ICi0;i00 . Adding up ICi0;i00 and ICi00;i0 then implies that Ui;i � Ui;i00 .
Similarly, ICi00;i0 , ICi0;i, and ICi;i0 imply ICi00;i. The two statements of the lemma then
follow similar arguments as in Lemma 3.1. Q.E.D.

A.2. Proof of Lemma 4.2

Lemma 4.2. Assume that T is aligned. Then in any optimal sequential mechanism,

yi;j = 0 for all i and j � j, and wi = 0 for all i.

Proof. Let �i;j = fi(vj � c)gi;j � (Si+1;j � Si;j)
P

I

k=i+1
fk. By Lemma 4.1, the pro�t

maximization problem can be written as

max
yi;j;wi

IX
i=1

J�1X
j=2

�i;jyi;j +

I�1X
i=1

(G
i+1;j+1

�G
i;j+1

)wi

IX
k=i+1

fk

subject to constraints ICi

j+1;j
, ICi

j;j+1
, Mi;i�1, M

i

j+1;j , and Ri;j .

The proof is by induction. First, y1;j = 0 for all j � j. Moreover, we can show by

contradiction w1 = 0. Suppose not and consider decreasing it by �. This would only a�ect

constraints M2;1, IC
1

j+1;j
, and IC1

j;j+1
, but since y

1;j
= 0, all three constraints remain

satis�ed. However, the monopolist would obtain greater expected pro�ts. Thus, w1 = 0

in any optimal mechanism.
Next, we assume that yi;j = 0 for all i � k � 1 and j � j, and wi = 0 for all

i � k � 1. We want to show that yk;j = 0 for all j � j, and wk = 0. Suppose yk;j0 > 0

for some j0 � j. Without loss of generality, we can assume that vj0 is the smallest such

valuation. Since j0 � j, we have �k;j0 < 0. If Mk;k�1 does not hold with equality, the
monopolist could decrease yk;j0 by � so that Mk;k�1 is still satis�ed. This would only a�ect

constraints Mk+1;k and Mk

j0;j0
�1

, and possibly ICk

j+1;j
, but it is straightforward to check
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that all three constraints remain satis�ed. However, the monopolist would obtain greater

expected pro�ts. Thus, Mk;k�1 holds with equality.
Since yk�1;j = 0 for all j � j and wk�1 = 0 by the induction assumption, there exists

j00 � j + 1 such that yk;j00 < 1. Without loss of generality, we can assume that vj00 is the

largest such valuation. Consider decreasing yk;j0 by �0 and increasing yk;j00 by �00 such that

yk;j0 � �0 > 0, yk;j00 + �00 < 1, and

�0(vj0 � vj0�1)(Gk�1;j0 �Gk;j0) = �00(vj00+1 � vj00)(Gk�1;j00+1 �Gk;j00+1):

We can check that Mk;k�1 and Mk+1;k are una�ected by these changes. Moreover, since

j0 � j and j00 � j + 1, constraints ICk

j+1;j
and ICk

j;j+1
remain satis�ed. The expected

pro�ts are changed by

� �k;j0�
0 + �k;j00�00

=fk(�
0(c� vj0)gk;j0 + �00(vj00 � c)gk;j00)

+ (�0(vj0 � vj0
�1)(Gk;j0 �Gk+1;j0)� �00(vj00+1 � vj00)(Gk;j00+1 �Qk+1;j00+1))

IX

k0=k+1

fk0 :

Using the de�nition of alignment, we can show that the above expression is equal to
fk(�

0(c�vj0)gk;j0+�00(vj00�c)gk;j00), which is positive. This contradicts assumed optimality.
Therefore, yk;j = 0 for all j � j. A similar argument shows that wk = 0. Q.E.D.

A.3. Proof of Proposition 4.3

Proposition 4.3. Assume that T is aligned. Then in any optimal mechanism, there is

no i such that yi;j 6= yi;j0 2 (0; 1) for some j and j0.

Proof. Let fyi;jg be an optimal mechanism. For each i such that 2 � i � I � 1, con-

sider the following problem: maxy0

i;j

PJ�1

j=j+1
�i;jy

0

i;j subject to two period-one monotonicity

constraints Mi;i�1 and Mi+1;i, the period-two monotonicity constraints M i
j+1;j , and the

randomization constraints Ri;j . Since fyi;jg is an optimal mechanism, for any i such that
2 � i � I � 1, yi;j is a solution to the above maximization problem. For i = 1, the coun-

terpart of the problem is given by maxy0

1;j

PJ�1

j=j+1
�i;jy

0

1;j subject to a single period-one

monotonicity constraints M2;1, the period-two monotonicity constraints M1
j+1;j , and the

randomization constraints R1;j .
Let z

i;j+1
= y

i;j+1
and de�ne zi;j = y0i;j � y0i;j�1 recursively for each j such that

j + 2 � j � J � 1. Then, y0i;j =
Pj

k=j+1
zi;k for any j such that j + 2 � j � J � 1. For

any i such that 2 � i � I � 1, we can write the above maximization problem as a linear
programing problem with only three constraints: two period-one monotonicity constraints

and one randomization constraint
PJ�1

k=j+1
zi;k � 1. The period-two monotonicity con-

straints become the implicit non-negativity constraint on each zi;j . Note that under the
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assumption of alignment, the two period-one monotonicity constraints are linearly depen-

dent. Therefore, the solution to the linear programming problem has at most two non-zero
variables, implying that at most two increments zi;j are non-zero. This establishes the

proposition for any i such that 2 � i � I � 1. For i = 1, the counterpart of the above

linear programming problem has only two constraints, one corresponding to M2;1 and the

other corresponding to
PJ�1

k=j+1
z1;k � 1. Similar reasoning then establishes the proposi-

tion for i = 1. Q.E.D.

A.4. An example of randomization under alignment

The simplest case of alignment that permits randomization is I = J = 3. Suppose produc-

tion cost is zero. >From the proof of Proposition 4.3, randomization occurs for type ti only
if one of the two local period-one second-order conditions Mi+1;i and Mi;i�1 holds with
equality. Since there is no under-production distortion for type t3, randomization occurs
if and only if M2;1 holds with equality in an optimal sequential mechanism:

y1;1 + sy1;2 = y2;1 + sy2;2;

where for simplicity we denote

s =
(v3 � v2)(G1;3 �G2;3)

(v2 � v1)(G1;2 �G2;2)
:

In any optimal sequential mechanism, randomization cannot occur for type t1 and t2
at the same time. If there is randomization for both t1 and t2, there must be j = 1; 2 such
that randomization occurs for valuation j for both t1 and t2, for otherwise M2;1 cannot
be satis�ed with equality without violating local period-two second-order conditions. But
then it would be possible to increase pro�ts by either increasing or decreasing y1;j and y2;j
appropriately at the same time so as to satisfy M2;1.

Thus, two cases of randomization in optimal sequential mechanism are possible: i)

y1;1 = y1;2 2 (0; 1), y2;1 = 0, and y2;2 = 1; and ii) y2;1 = y2;2 2 (0; 1), y1;1 = 0, and

y1;2 = 1. We discuss the �rst case only; the second case is symmetric. The following
conditions are necessary for randomization to be optimal; otherwise the delivery rule can
be modi�ed to increase pro�ts without violating period-two incentive constraints or M2;1.

1. �1;1 � 0. Otherwise, reduce y1;1.

2. �1;1 + �1;2 � 0. Otherwise, reduce y1;1 and y1;2 by the same amount.
3. s�1;1 � �1;2. Otherwise, increase y1;2 by some small positive number � and decrease

y1;1 by s�1;1.
4. �1;1 + �1;2 + (1 + s)�2;1 � 0. Otherwise, increase y1;1 and y1;2 by the same amount �

and increase y2;1 by (1 + s)�.
5. �1;1 + �1;2 + �2;2(1 + s)=s � 0. Otherwise, decrease y1;1 and y1;2 by the same amount

� and decrease y2;2 by �(1 + s)=s.
6. �2;2 � s�2;1. Otherwise, decrease y2;2 by � and increase y2;1 by s�.
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Note that the last condition is implied by the fourth and �fth. When at least one of

the �rst �ve conditions holds with strict inequality, these conditions are also su�cient for
randomization to occur in optimal sequential mechanism. Numerical examples are available

from the authors showing that parameters can be found to satisfy the �ve conditions. The

optimal sequential mechanisms in these examples have random delivery rules for type t1.
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