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Abstract

The optimal location of services is one of the most important factors that af-

fects service quality in terms of consumer access. On the other hand, services

in general need to have a minimum catchment area so as to be e�cient. In

this paper a model is presented that locates the maximumnumber of services

that can coexist in a given region without having losses, taking into account

that they need a minimum catchment area to exist. The objective is to mini-

mize average distance to the population. The formulation presented belongs

to the class of discrete P-median-like models. A tabu heuristic method is

presented to solve the problem. Finally, the model is applied to the location

of pharmacies in a rural region of Spain.
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1 Introduction

Location theory and modeling have been a burgeoning topic in the last

decades in both public and private sectors. A myriad of models have been

formulated to address di�erent issues related to the spatial organization of

activities. These models can be broadly classi�ed in two groups: (1) decision

models, where the main focus is to �nd a given set of locations so as to op-

timize one or several objectives; and (2), normative models, where the main

purpose is to examine the strategic behavior of �rms in a competitive envi-

ronment. Most of the formulations presented in the �rst group are related

to public-sector decision making, and the objectives in general are related to

the optimization of some measure of service quality in terms of access (e.g.,

maximizing service coverage, minimizing average distance to the service). An

exception is plant location models, where the main objective is to �nd the

optimal location of plants and/or warehouses that minimizes costs or maxi-

mizes pro�ts. In general the spatial representation of these models has been

a two-dimensional plane or a network.

The second group, closer to the private sector, is more related to nor-

mative models that examine location and price equilibria given a set of as-

sumptions on the strategic behavior of competing �rms. In general, their

spatial representation is quite simple (a line or a circle), since it easily yields
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mathematical results related to price setting, production levels and locational

strategies.

Recently, several models have appeared to try to link behavioral models

with decision models ([14][25][15][17][22]). That is, to use more realistic

spatial representations in order to analyze the spatial behavior of �rms.

In this paper a decision model is presented to address the problem of

locating the maximum number of services in a region to achieve the best

possible service given a threshold level below which a given service will not

be operational. For example, when locating emergency services we would

like to maximize the access to the population given a minimum service level.

Another area of application is related to the provision of services that are

considered merit goods, but that are serviced by the private sector. This is

specially relevant for merit services that have been publicly owned or con-

trolled in several countries and are being transfered to the private sector, such

as postal services, gas stations, �re departments and pharmacies. While the

planner wants to maintain a good service quality by keeping a balanced spa-

tial distribution of services, these need to have a minimum service threshold

level that will allow them to survive. Other �elds of applications can be

found in the private sector, especially in franchising. The franchiser may

want as many franchisees as possible, but needs to ensure that they are able

to obtain a minimum level of pro�ts.
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The spatial representation is a discrete network, where both demand and

potential sites are on the network nodes. The number of services to be located

is endogenous and the price is exogenous and the same for all consumers

across services.

The paper is organized as follows. In section 2 the decision model is

presented. In section 3 a meta-heuristic based on tabu search is developed.

Section 4 presents some computational experience in di�erent sized networks.

In section 5 the model is applied to the spatial organization of pharmacies in

a rural region of Spain within the context of de-regulation. Finally section 6

concludes the paper.

2 The Model

As mentioned before, space is represented by a discrete network, where con-

sumers are located at speci�c points, such as vertices of the network. Poten-

tial locations for the services are also pre-speci�ed.

Suppose that ai is a measure of demand located on node i. We assume

that demand is totally inelastic, that is, that consumers decide to buy a given

amount of the good q. The good sold is homogeneous and consumers will

purchase it at the closest facility.

Price is set exogenously, and consumers bear transportation costs. The

servers have a unit variable cost c related to the amount of service, and a
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�xed cost f . We will assume that the cost does not depend on the location of

the service, even though the model can be easily modi�ed to take this aspect

into account.

Let V be the service volume and I the revenues in a given period. The

break-even point to determine pro�tability is given by f + cV = I. If the

average expense per consumer is known, the minimum number of consumers

that will make the service pro�table can be easily determined.

The formulation of the model is as follows:

minZ =
X

i2I

X

j2J

aidijxij

Subject to:

X

j2J

xij = 1 i 2 I (1)

xij � wj i 2 I; j 2 J (2)

X

i2I

aixij � Cwj j 2 J (3)

xij 2 f0; 1g; wj 2 N i 2 I; j 2 J

where:

i; I = index and set of demand areas

j; J = index and set of potential locations

ai = Demand at node i

dij = distance between node i and node j

C = Minimum amount of customers required to survive

xij = 1, if node i is served by a facility at node j; 0, otherwise

wj = number of facilities located at node j

Variable xij assigns customers to facilities. Since customers purchase in

their closest facility, this variable is binary. Therefore, consumers are assigned
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to only one facility. Constraint group (1) forces this to happen. Since each

demand node i is assigned to only one facility, the sum of xij with respect to

j has to be equal to 1. But to allow xij to be one, at least one facility has

to be open at node j. The second group of constraints may allow xij to be

one only if wj � 1. If wj = 0 assignment will be forbidden. Finally, the last

group of constraints determines the possibility (or not) of opening at least

one facility at node j. This will be allowed if the total demand assigned to

node j is at least equal to the threshold level C.

The objective is to minimize the population weighted average distance.

In this sense it is a P-median objective. As more facilities are opened in

di�erent nodes, the lower the objective value will be.

This model is similar to the P-median problem, formulated by [19]. This

model seeks where to locate a given number of facilities in a discrete network

so as to minimize the weighted average distance. The di�erence between

both models is that while the P-median model assumes that the number of

servers is known a priori, in the new model this one is endogenous and is

directly related to the minimum threshold level.

The threshold model presented here can be solved using linear program-

ming and branch and bound when necessary (LP+BB) for relatively small

networks. But, as it will be seen in the computational experience, this

method can become burdensome as the network size increases. First, be-
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cause the number of variables and constraints can increase dramatically, even

for medium-size networks. For example, if the number of nodes is equal to

50, the problem will have 2500 binary variables xij and 2600 constraints. If

the number of nodes is 100, the number of binary variables jumps to 10000

variables. There are several methods to reduce the number of variables and

constraints, but the problem may still be intractable (see [21]). Second, the

threshold constraint creates an additional problem in �nding integer solutions

since the speci�ed parameters are not equal to 0 or 1. this implies that most

likely the number of branches can increase dramatically (see [18] on Integer

Friendly Programming). Even if a solution of the problem can be obtained

using LP+BB, the �nal assignment of nodes to facilities may not be correct,

since we have assumed that consumers go to the closest facility, and some

nodes may assign to a facility that is not closest, it is usual in capacitated

problems. If this happens, that is, if in the �nal solution demand node i is

assigned to j (xij = 1 and wj = 1) but there is a facility in l that is closer

to i than j ( wl = 1, wj = 1 and dil < dij), then it is necessary to add the

following constraint to the problem:

xij � wj �
X

k2Nij

wk (4)

where Nij is the set of potential locations that are closer to i than j, and

re-solve the model. This constraint works as follows:
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if there is no other facility closer to i than j, then
P

k2Nij
wk = 0 and

therefore xij = 1. If this is not so, the constraint does not a�ect the problem

([20] [27]). Nevertheless, by adding this constraint we do not guarantee that

an incorrect assignment will not happen again. It may be necessary to add

this constraint several times in order to �nd a �nal correct assignment.

In the next section we propose a meta-heuristic to solve this combinatorial

problem.

3 A Tabu Heuristic to Solve the Model

Several heuristics have been proposed to tackle the P-median problem. These

can be grouped in two classes ([13]): construction algorithms and improve-

ment algorithms. In the �rst ones a solution is obtained from 0. For example,

a greedy adding heuristic would belong to the �rst class. The second class

algorithms use a known starting solution and try to improve it. Most al-

gorithms modify the original problem by relaxing some constraints and/or

modifying the objective function. Lagrangian relaxation is one of the most

widely used methods (see, for example, [5][7]). Other improvement algo-

rithms include exchange heuristics.

Heuristic methods for speci�c capacitated problems have also been stud-

ied by [16][2] (capacitated covering models) and by [3][1] (capacitated plant

location problems) among others.
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In this paper a meta-heuristic is presented, based on the well-known Teitz

and Bart [24] one-opt heuristic, improved by [4]. The 
ow process has three

phases. In the �rst phase, an initial solution is obtained using a greedy adding

heuristic where at each iteration a facility is located in the node than gives the

best marginal improvement in the objective without violating the threshold

constraint. Phase one is over when no facility can be added without violating

the threshold constraint. This determines the initial number of facilities and

their locations. Then, in the second phase, a Teitz and Bart heuristic is

used. At each iteration a facility is moved from its current position to another

potential facility that does not violate the threshold constraint for any facility

already located. The objective is computed and kept as the current solution

if it has improved. If this is not so, the solution before the one-opt trade

is restored. If at the end of all trades the objective has not improved, the

heuristic is over. Otherwise, the process is restarted. The problem with

this heuristic is that the solution may not be optimal. In the third phase a

tabu process is used, having its initial solution the one found in the second

phase. Essentially, the tabu heuristic explores a piece of the solution space

through a repeated examination of all solution neighbors, and moving to a

neighbor even if the objective value obtained with this value is deteriorated

([9][10][11]). This approach avoids being trapped in a local optimum. In

order to avoid cycling solutions that have recently been examined these are
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inserted in a tabu list that is constantly updated. The exchange is allowed

even if the threshold constraint is violated. The objective is increased in

proportion to the extent of the violation.

This method has been successfully applied to a wide variety of optimiza-

tion problems (see, for example, [23][6][12]).

Once the �nal solution is obtained with the initial number of facilities,

the �rst phase is used to add a new facility in the node that gives the lowest

violation of the threshold constraint.

Second and third phases of the algorithm are then executed. If at the

end of the third phase there is no feasible solution, the algorithm stops.

Otherwise, a new facility is added and the procedure starts again.

As mentioned above, In the third phase of the procedure, violations of

the threshold constraint are allowed.

A more detailed description of the algorithm follows. Let Wt be the set

of locations wj; wj > 0.

Phase 1

1. Set W0 := ; and p := 1.

2. Set Wp := Wp�1 [ vk, where vk represents the index of the node that

gives the largest decrease in the average distance without violating the

capacity constraint:
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min
vk2V

[z(Wp�1 [ vk)� z(Wp�1)]

IFWp�1[vk is not feasible, go to the second phase; otherwise, p := p+1

a repeat step 2.

Phase 2

1. Set W � :=Wp and z
�

W := z(Wp)

2. Set t := 0, z0W = z
�

W .

3. Set Wt := Wt�1 � vk + vl, where vk 2 Wp and vl 2 (V �Wt�1).

4. If z(Wt) < z
�

W ; W
� := Wt and z

�

W := z(Wt), repeat step 2 until all

nodes and facilities have been exchanged.

5. If z�W < z(W0), set z
0
W := z

�

W and repeat step 2. Otherwise, go to phase

3.

Phase 3

1. Set again t := 0.

2. Set z0W := z
�

W . No node is tabu.

3. Consider all solutions of adjacent nodesW i
t ofWt, obtained by exchang-

ing a facility from node v0i 2 Wt to node v
00

i 62 Wt. Relabel the solutions
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W
i
t in decreasing order of z(W i

t ). Relabel all vertices accordingly. Set

i := i+ 1.

4. If z(Y i
t ) < z

�

W or if v
00

i is not tabu, set Wt+1 = Wt, z
�

W := z(Wt),

declare v0i tabu until t+ �, where � is a pre-�xed value, and go to step

5. Otherwise, set i := i+ 1. If i is larger than the number of adjacent

solutions, set i equal to the index of the vertex v
00

i with the lowest tabu

tag t+ � and lift the tabu status of v
00

i . Repeat step 3.

5. Set t := t+ 1. If t is less than a pre-�xed upper bound T , go to step 2

of phase 3. Otherwise, set p := p+ 1 and go to step 2 of phase 1 if the

solution found is feasible. If in the last iteration no feasible solution is

found, stop.

Some observations on the heuristics:

� In step 2 of phase 3, the tabu status can be canceled if this implies

an improvement in the objective. This rule is known as aspiration

criterion.

� In phase 2, only the nodes that satisfy the threshold constraint are

visited.

� In phase 3, nodes that violate the threshold constraint are visited, and

the corresponding objective is penalized in proportion to the extent of
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the violation. This is to avoid being trapped in local optima. This pro-

cedure is also performed in other types of heuristics such as simulated

annealing (see [26]).

In the following section some computational experience is presented.

4 Computational Experience

The algorithm has been applied to several randomly generated networks.

First, for each network, n 2 [0; 50]2 nodes were generated following a uniform

distribution. The connecting arcs were also generated randomly to ensure

the full connectivity of the network, with a minimum of 3 arcs and a maxi-

mum of 8 arcs per node. Observe that this �gure determines the number of

adjacent neighbors in phase 3. Once the arcs were computed, the Euclidean

distance between directly connected nodes is computed. Finally, a shortest

path algorithm is used to obtain the distance matrix. The demand in each

node was generated randomly within the interval [0; 1000] following again a

uniform distribution. For each network, several threshold levels were set as

a function of (
P

i2I ai=n)�, were � is a parameter that is modi�ed to see the

e�ects of the threshold on results: the higher � is, the higher the threshold

level required to ensure survival. For each n 200 networks were generated

and for low values of n heuristic solutions were compared to optimal ones.

Optimal solutions were obtained by enumeration. In phase 3 of the algorithm
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T was equal to 20 and � was within [5; 10], following the suggestion by [12].

The algorithm was coded in FORTRAN77 and executed with a Pentium PC

75 with 24mb of RAM. Results are shown in Tables 1 and 2

In column 3 of Table 1 the percentage of times that the optimal solution

has been found for each value of �. For example, for � = 4, 91.9% of the

solutions found with the heuristic were optimal. In the fourth column the

percentage of times that optimal solutions were found after Phase 2 of the

algorithm, making it unnecessary to execute Phase 3. Again, for � = 4, the

percentage of times that Phase 2 found the optimal solution was equal to

40.9%. Finally, the last column indicates the percentage of times that Phase

3 found an optimal solution out of the 200 runs. This one was equal to 5.6%

when � = 4. As Table 1 shows, the proposed heuristic achieved good results

in �nding solutions, except for � = 2. As � increases more optimal solutions

are found with phase 3, showing that phase 1 and 2 (and specially phase 1)

were not very e�cient in �nding solutions.

Other results from the heuristic are presented in Table 2. In the third

and fourth columns the average initial and average �nal number of facilities

respectively are presented for several values of �. In the �fth and sixth

columns the percentage of times that Phase 2 improved the initial solution

found in phase 1 is shown (column 5), and the solutions that were improved

when using Phase 3 after Phase 2 was terminated. All percentages refer to
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the 200 runs. As can be seen in this table, Phase 2 achieved good results

in improvements, while Phase 3 seems to improve as the threshold level

increases. Nevertheless, it may be possible that several solutions obtained in

phases 1 and 2 were optional and therefore phase 3 was not able to improve

them. Finally, the last column indicates the average execution time.

5 An Example: The Spatial Distribution of

Pharmacies in Catalonia, Spain

The pharmaceutical sector at the retail level is regulated by the Catalan

and Spanish Governments (Law 31/1991, December 1991, Government of

Catalonia). For each product sold there is a �xed margin that the pharmacy

can charge (28.3% over the drug cost). The spatial distribution of pharmacies

is also regulated. The health map of Catalonia divides the region into health

areas that are classi�ed rural, semi-urban and urban. These areas may have

one or more municipalities. For each area there is a maximum permissable

number of pharmacies determined in relation to the population served. This

number is currently set at one pharmacy per 3000 inhabitants. So if the

region has 30000 inhabitants, a maximum of 10 pharmacies are allowed to

co-exist. Additionally, no pharmacy may be closer than 250 meters from

another pharmacy, and 225 meters from a Primary Health Center. Other

regulatory measures include the requirement that the owner hold a Degree
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in Pharmacy from an approved university and that the pharmacy be manned

by such a graduate. Opening hours are also �xed.

The debate in Spain (as in most western countries) is whether or not to

spatially de-regulate this sector. The Spanish Antitrust Commission argues

that both spatial and price regulations imply that the pharmacy becomes

a local monopoly with the consequent loss of e�ciency. The Commission

argues that de-regulation would increase consumers' welfare.

The basic question is that price regulation has an important e�ect on

accessibility to the service. The dilemma is basically the following: The

setting of a lower (higher) price implies higher (lower) consumer welfare.

On the other hand, it implies a lower (higher) accessibility to the service,

since the number of pharmacies will be lower (higher), and the consumer

welfare will be decreased (increased). In this section we examine this issue

by assuming that regulation is price-based but does not determine spatial

distribution. That is, pharmacies can open anywhere but have to follow a

price margin. We assume that consumers go to the closest pharmacy, since

the product sold is homogeneous.

The region studied is located in the Pyrenees, and consists of 61 towns.

Population �gures for each town are presented in Table 3. The current num-

ber of pharmacies is 70 (column Ph91 of Table 3). As mentioned above, we

consider that the market is regulated in price terms but not spatially. The

16



threshold level is set as follows. In Spain, the per capita expenditure on phar-

maceutical products is 20,190 ptas per year (around US$144, 1991 �gures),

of which 5,694 correspond to the pharmacy's pro�t margin. That is, mar-

gin is around 39.28% over the cost that pharmacies pay for their products,

or 28,2% over �nal price. Pharmacies cost structure was obtained from [8].

Variable costs represent only 1.79% over total revenues, and they correspond

basically to �nancial costs. Average �xed costs per year across pharmacies

is equal to 7,974,532 ptas (around US$ 57,000).

With this information and once the margin is set, it is possible to know

the minimum population threshold so as to at least have 0 pro�ts. Table

3 shows the results obtained given di�erent pro�t margins. If the margin

is set to 28% (close to the actual one) the number of pharmacies that can

co-exist is equal to 106, compared to the current 70 pharmacies. As the

margin increases more pharmacies are located, since we have assumed that

the product is totally inelastic.

6 Conclusions

In this paper a new location model has been presented to study the issue of

minimum threshold requirements to survive in a given spatial setting. The

basic model is very relevant when planning service delivery where there are

merit goods involved, such as, for example, postal o�ces, pharmacies or tax
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o�ces, since it aims to increase social welfare by making the service as close

as possible. On the other hand, the threshold constraint can be considered

as a search for e�ciency, in the sense that each facility needs to have a given

thershold area below which it is not viable. A tabu search algorithm has been

developed to solve the problem. Finally, it has been applied to the location

of pharmacies in a rural region of Spain.
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Table 1: Comparisons between the Heuristic and Enumeration

algorithms

n � % of % of % of % Average

Optimal Optm. sol Optm. sol Deviation

Solutions T&B Tabu from Optm.

15 1 93.0% 35.0% 2.0% 8.0%

2 76.8% 39.4% 5.1% 7.4%

4 91.9% 40.9% 23.9% 5.6%

6 99.3% 54.4% 19.4% 4.7%

Table 2: Results from Heuristic Solutions

n � Average number % of improvements Average

Beginning End T&B Tabu Time

15 1 8.6 8.7 47.0% 3.0% 1.29s

2 4.7 4.9 67.8% 15.4% 0.54s

4 2.6 2.9 69.2% 28.7% 0.26s

6 1.9 2.0 61.5% 19.7% 0.19s

25 2 7.5 7.6 68.0& 6.0% 1.73s

4 4.1 4.4 63.0% 24.0% 0.65s

6 2.9 3.2 54.0% 25.0% 0.38s

50 2 12.8 12.9 70.0% 0.0% 12.3s

4 7.2 7.4 67.0% 3.0% 7.4s

6 5.2 5.5 83.0% 9.0% 6.1s
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