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1 Introduction

Hotelling's work on two �rms competing in a linear market with consumers

distributed uniformly along the line (also known as the ice{cream vendor prob-

lem) set the foundations of what is today the burgeoning �eld of competitive

location. Competitive location is not only important from a practical point

of view. It is also intriguing because, as Eiselt and Laporte (1989) point out,

by modifying the original assumptions of the model the results obtained may

di�er signi�cantly from Hotelling's conclusions: \relatively small changes in

the model assumptions result in dramatic changes in the outcome" (p.237).

During the late thirties and early forties, several papers using the same

spatial representation as Hotelling but modifying some of the economic as-

sumptions appeared in the economic literature (Hoover (1936), Lerner and

Singer (1937), and Smithies (1941)). There followed several decades of stag-

nation in the contribution of new insights in the �eld of competitive location

in linear markets. Since the late seventies however, a myriad of di�erent

models have appeared in the literature of spatial economics and industrial or-

ganization. Useful reviews can be found in Ponsard (1983), Graitson (1987),

Gabszewicz and Thisse (1991), and Eiselt and Laporte(1989).

Much of the e�ort in the new evolving literature has aimed at developing

insights concerning the equilibrium pattern of competitive location and pric-

ing. Nevertheless, \although these models (linear models) are rich in their
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theoretical insights about spatial competition and have greatly enhanced our

understanding of locational interdependence, they provide very little guid-

ance for developing practical approaches to facility location in competitive

environments." (Ghosh and Craig (1984)).

Parallel to the development of this body of literature, a new �eld on lo-

cation modeling was growing in the late sixties and seventies at a fast rate,

namely facility location analysis. This �eld of research, coming basically from

the �elds of operations research, regional science and geography, dealt with

the problem of locating new facilities in a spatial market in order to opti-

mize one or several geographical and/or economic criteria. These criteria

included overall distance minimization and transport and manufacturing cost

minimization. The literature in facility location analysis is extensive: good

sources of references can be found in Domschke and Drexl (1985), who iden-

ti�ed over 1500 references on the subject, Love et al. (1988), and Chhajed

et al. (1993). Although most of these models used more realistic spatial rep-

resentations than the line, such as networks and planes, most of them dealt

exclusively with non-competitive situations, and little attention was paid to

the characterization of market equilibria.

From the late seventies, considerations on the interaction between compet-

ing facilities in discrete space have been developed following several di�erent

approaches. An extensive bibliographic survey with over 100 citations on

competitive location can be found in Eiselt et al. (1993).
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One of the �rst of the questions that is addressed by several authors is

whether or not a set of locations in the vertices of a network exist that will

ensure a Nash equilibrium, that is, a position where neither �rms have incen-

tives to move. Wendell and McKelvey (1981) considered the location of two

competitive �rms with one server each and tried to �nd a situation where a

�rm would capture at least 50% of the market regardless of the location of

its competitor. Results showed that there was not a general strategy for the

�rm that would ensure this capture if locations were restricted to vertices of

the network. They did not develop a generic algorithm for �nding solutions,

but they looked at the possible locational strategies. They also examined the

problem in a tree. Hakimi (1986) also analyzed extensively the problem of

competitive location on vertices and proved that, under certain mathematical

conditions such as concave transportation costs functions, that there exists a

set of optimal locations on the vertices of the network.

A similar problem was studied by Lederer and Thisse (1990). Their prob-

lem not only looked at the speci�cation of a site but also at the setting of

a delivered price. They formulated the problem as a two-stage game, where

in the �rst stage both �rms choose locations and in the second stage they

simultaneously set delivery prices schedules, and the result is that there is

sub-game perfect Nash equilibrium. As Hakimi did, they also proved that if

�rm's transport costs are strictly concave, then the set of locational choices

of the �rm is reduced to the vertices of the network. As a consequence, the
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location problem can be reduced to a 2-median problem if social costs are

minimized.

A similar result was obtained by Labbe and Hakimi (1991). They devel-

oped a two-stage game in which two �rms with one server each �rst select

their location and then the quantities they will o�er to each market. They

proved that a sub-game perfect Nash equilibrium exists and that the locations

occur on the vertices if transport costs are concave.

The problem of two �rms competing in a spatial market has also been

studied in the case where the market is represented by a tree. Eiselt (1992)

proved that in such a case there is not a sub-game perfect Nash equilibrium

if both prices and locations are to be determined. Eiselt and Laporte (1993)

extended the problem to the location of 3 facilities in a tree. They found that

the existence of equilibria depended on the distribution of weights. In both

models, �rms were allowed to locate on the edges of the network.

The game-theoretical models presented so far restrict themselves to the

location of �rms with one facility each that compete against each other. Tobin

and Friesz (1986) examined the case of a pro�t-maximizing �rm that entered

a market with several plants. They considered price and production e�ects on

the market, since the increase in the overall production level from the opening

of new plants in a spatial market stimulates reactions in the competitors.

These reactions might a�ect not only production levels, but also prices and

locations.
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Tobin and Friesz developed two models: (1) a spatial price equilibrium

model which determines equilibria in prices and production levels for a given

number of �rms, and (2) a Cournot-Nash oligopolistic model in which a few

pro�t maximizing �rms compete in spatially separated markets. They used

both models to analyze the case of an entering �rm that is going to open

several new plants in spatially separated markets, and knows that its policy

will have impact on market prices. Since pro�ts depend on location and price-

levels and these depend on the reaction of the competitors, it is not possible

to use a standard plant location model. To tackle the problem, they used

sensitivity analysis on variational inequalities to relate changes in production

to changes in price to obtain optimal locations. The model was solved using

a heuristic procedure where in the �rst step a spatial competitive equilibrium

model was obtained and, in the second step, a sensitivity analysis of pro�t

to production changes was done using an integer non-linear program to select

locations and production levels likely to maximize total pro�ts. This model

was generalized by Friesz et al. (1989) to allow the entering �rm to determine

not only production levels and the sites of its plants, but also its shipping

patterns, and to examine di�erent market strategies that can occur in the

market (Miller et al. (1991)). Due to the mathematical complexity of these

models, Miller et al. (1992) developed several heuristic methods to tackle

the problem using the approach of variational inequalities (see, among others,

Harker (1984) and Nagurney (1993)).
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Price-location modeling has been studied in a non-competitive model by

Hanjoul et al. (1990). They develop three uncapacitated plant location mod-

els where di�erent alternative spatial price policies are considered (uniform

mill and delivered pricing, spatial discriminatory pricing). The models were

solved using a heuristic procedure that combined price and location settings.

Another body of literature on competitive location deals with the siting of

retail convenience stores. This type of store is characterized by (1) a limited

and very similar product o�ering across outlets, (2) similar store image across

�rms, and (3) similar prices. Therefore, location is a major determinant of

success.

Ghosh and Craig (1984) considered the location of several retail facilities

by two servers. The problem is to locate retail facilities in a competitive

market knowing that a competing �rm will also enter this market. They used

a minimax approach, where the entering �rm maximizes its pro�t given the

best location of the competitor. Potential locations were restricted to the

vertices of the network. The �rm's objective is to maximize the net present

value of its investment over a long-term planning horizon. The model did not

allow location at the same site for both �rms and did not examine the issue

of ties. Ghosh and Craig used a heuristic algorithm to obtain solutions. The

algorithm is as follows: for each possible set of locations of �rm A, the best

siting strategy is found for �rm B. The �nal result is the set of locations where

Firm A's objective is maximum given the best reactive location strategy of its
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competitor. A Teitz and Bart hill-climbing heuristic was used to determine

the sites for both �rms. The model is adapted to examine other strategies

such as preemption, i.e., the identi�cation of locations that are robust against

competitive action. Other modi�cations included the relaxation of the number

of stores that could be opened by each �rm, and collusion by both servers.

In a similar model, Dobson and Karmarkar (1987) introduced the notion

of stability in the location of retail outlets by two pro�t maximizing �rms in a

competitive market. Several integer programming models were developed to

identify stable locations such that no competitors can enter the market and

have pro�ts given some rules on the competitive strategies. The models were

solved using enumeration algorithms.

Most competitive location models assume that consumers patronize the

closest shop. Karkazis (1989) considered two criteria that customers may use

to decide which shop to patronize: a level criterion based on the preferences

of a customer on the size of the facility and a distance criterion based on

closeness to the store. He developed a model that would determine the lo-

cation and number of servers to enter the market when there are other �rms

already operating in the market by maximizing the pro�t subject to a budget

constraint. The problem was solved in a dynamic fashion since there is a

trade-o� between both criteria.

Another model that examines competition among retail stores in a spatial

market was developed by ReVelle (1986). The Maximum Capture Problem
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(MAXCAP) has formed the foundation of a series of models. These models

include issues such as the strategies that competing �rms may adopt or the

uncertainty that characterizes some situations. The MAXCAP model, based

on the classical Maximal Location Covering Problem of Church and ReVelle

(1974), consists of the location of servers by an entering �rm so as to max-

imize its market share capture in a market in which competitor servers are

already in position. Its integer linear formulation together with the maxi-

mum client capture objective has been the starting point for several location

problems. Eiselt and Laporte (1989) modi�ed the MAXCAP formulation to

include attraction parameters based on gravity models and Voronoi diagrams.

ReVelle and Serra (1991) extended the formulation to allow relocation of ex-

isting servers as well as the location of new servers. The MAXCAP model

has also been adapted to consider facilities that are hierarchical in nature and

where there is competition at each level of the hierarchy (Serra et al. (1992)).

Another extension of the MAXCAP problem deals with the issue of a loca-

tion and allocation game for two competitor �rms, A and B, that each seek to

locate p facilities in a network: Firm A wants to locate its p facilities so that

B, which enters also with p facilities after Firm A has located its facilities,

will capture the minimum market value possible. That is, Firm A wishes to

pre-empt Firm B in its bid to capture market share to the maximum extent

possible (Serra and ReVelle (1994)). This preemptive model also has been

adapted to the situation where Firm A does not even know how many new
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servers Firm B will locate (Serra and ReVelle (1995)). Another modi�cation

of the MAXCAP problem considered scenarios with di�erent demands and/or

competitor locations (Serra and ReVelle (1996)).

In this paper a new competitive model addresses the issue of location of

several retail outlets by a �rm and the �xing of a price in order to maximize

pro�ts, given the presence of a competitor �rm. First, in section 2 the formu-

lation model will be presented. In section 3 a heuristic method to solve it will

be proposed. Computational experience and an example will be developed.

Finally, some remarks and conclusions will be o�ered.

2 The MaximumCapture Problem with Prices

The original Maximum Capture Problem (MAXCAP) sought the location of

a �xed number of outlets belonging to a �rm in a spatial market with outlets

from other �rms already competing for clients. Competition was exclusively

based on distance: a market was \captured" by a given server if there was

no other server closer to it. If two servers from competing �rms had a local

market at the same distance, then they divided in equal part the capture of

that market, as in a Hotelling's game. The objective of the entering �rm was

to maximize its market capture. This objective, given the assumptions on

the characteristics of the retail stores, was almost equivalent to maximizing

pro�ts (Hansen et al. (1987)). A very similar problem was stated by Hakimi

(1986). The main di�erence in the assumptions is that Hakimi did not allow
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half capture. In case of equal distances to the outlets from a node, the demand

was fully allocated to the existing �rm. In this paper we will use Hakimi's

assumptions.

Now consider a spatial market where there is an existing �rm (from now on,

Firm B) operating with q outlets. A new �rm (Firm A) wishes to enter with

p servers and compete with �rm B on the basis of price and locations. Both

�rms are pro�t maximizing. The product sold in this industry is homogeneous,

in the sense that it is di�cult to di�erentiate it among stores belonging to

di�erent �rms. The space is discrete and is de�ned by a connected graph.

On each vertex of the graph there is a local market with a given number of

consumers that generates a demand for the product. Each consumer buys

only one unit of the good in the \cheapest" outlet, where cheapest is de�ned

momentarily.

Let i and I be the subindex and the set of local markets that are located

on the vertices of the graph. Outlets are allowed to locate only on the vertices

of the graph. De�ne j and J as the subindex and set of potential locations

for Firm A's outlets, and J
B the set of actual locations of the outlets of

Firm B. Both �rms follow a uniform mill pricing policy, so customers bear

transportation costs. Therefore, the consumer's decision on patronizing a

store is based on transportation costs and price. Consumers always go the

outlet with the lowest total price, regardless of its ownership.

Let dij be the network distance between local market i and an outlet in
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j, and t the unit transport cost. Both �rms charge a mill price p
A and p

B

to its customers irrespective of their location. We assume that prices do not

change across outlets. Therefore, the price �i faced by consumers in each local

market i can be written as �i = p + tdibi , where bi is the closest outlet to i.

The demand of local market i is a function of the market's characteristics and

the price it faces and is denoted as Di(�i). Let Di(p + tdibi) be the demand

for the local market i, shopping at its closest outlet. Therefore, the demand

function for each local market i for Firm A is de�ned as follows: if bAi is the

closest Firm A's server to i and b
B
i the closest Firm B's server, then:

D
A
i

�
�
A
; �

B
�
=

8<
:

Di(�
A) if p

A + tdibA
i

< p
B + tdibB

i

0 if p
A + tdibA

i

� p
B + tdibB

i

(1)

that is, Firm A will capture the demand of local market i if the total price �A
i

(mill price plus transport costs to the closest A outlet) faced by consumers is

lower than the total price �
B
i re
ecting the price set by the competitor �rm

and transport cost.

Assume that production entails for each outlet a �xed set-up cost that

varies with location, fj, and a constant marginal cost, �, so that for each

outlet costs are given by fj + �q, where q is the amount of production at the

site. If JA is the set of actual outlet locations (JA � J), then pro�ts for �rm

A can be written as follows:

�A = (pA � �)
X
i2I

D
A
i (�

A
; �

B)�
X
j2JA

fj (2)
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The problem for �rm A consists of determining the sites out of locations

set J
A and the price p

A that maximizes pro�ts. These pro�ts also depend

on other model parameters such as the location and prices of the competitor

�rm and the demand function of consumers among others.

If the demand function of the local markets is totally inelastic with respect

to prices, it can be written as Di = ai, where ai is the total quantity that

market i will purchase, then the PMAXCAP problem can be stated as follows:

Max� = (pA � �)(
X
i2I

aiyi)�
X
j2J

fjxj (3)

subject to:

y
A
i �

X

j2Ni(bBi )

x
A
j 8i 2 I (4)

nX
j=1

x
A
j = n

A (5)

y
A
i ; x

A
j = (0; 1) 8i 2 I;8j 2 J

where additional notation is:

Ni(b
B
i ) = f8j 2 J; p

A + tdij < p
B + tdibB

i

g

n
A = number of Firm A outlet servers.

and variables are de�ned as follows:

y
A
i =

8<
:

1, if Firm A captures demand node i

0, otherwise

x
A
j =

8<
:

1, if �rm A locates a server at node j

0, otherwise
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where PMAXCAP is the problem which maximizes pro�t capture as opposed

to population captured.

The �rst set of constraints (4) depends on the set Ni(b
B
i ), which is known

a priori. Each one of the demand nodes i has an associated set Ni(b
B
i ) which

contains all the potential nodes at which Firm A can locate a server and

capture the demand of local market i. Therefore, if one of the variables xAj

belonging to the corresponding constraint is equal to 1 (i.e., a facility is located

within the capture area of node i), then capture variable yAi is allowed to be

1, which indicates that node i has been captured by Firm A. Finally, the

second constraint sets the number of servers that Firm A is going to locate.

The objective de�nes the total pro�ts that Firm A can achieve with the

siting of its n
A servers. For each local market, there is demand ai to be

captured. If yAi = 1, then (pA � v)ai is added to the revenues. Fixed costs

are multiplied by xj, so if an outlet opens in j, its associated �xed cost is

substracted from the objective.

Observe that the last constraint (that limits the number of outlets to be

located by Firm A) can be eliminated if �xed or opening costs are considered

(fj > 0). If pro�ts are maximized, two forces act in opposite directions:

increasing revenues by opening more outlets closer to the demand, but that

in turn increases costs.

The basic di�erence between the MAXCAP problem and the PMAXCAP

problem formulation presented relies (a) on the sets Ni in restriction (1) re-
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spectively, (b) in the objective function, and (c) in the lack of any consid-

eration of potential ties in capture (i.e., equal delivered prices). Eliminating

a consideration of ties is reasonable because the likehood of ties in price +

transport cots is very small.

The Ni set contains all candidate nodes where consumers in local market

i would purchase from �rm A, since the �nal price �A faced by them is lower

than the �nal price of the closest competitor outlet bBi . While in the MAXCAP

problem these sets were known a priori, in the PMAXCAP model this is not

so since p
A is not known, and therefore constraints (1) cannot be written

extensively. On the other hand, the objective function is nonlinear, since

variables p and yi are unkown.

If the demand function is not completely inelastic, then the PMAXCAP

problem has to reformulated using a P-median-like approach (PMAXMED):

max� =
�
p
A � v

�X
i2I

X
j2J

D
A
i

�
�
A
; �

B
�
xij �

X
j2J

fjzj (6)

subject to:

X
j2J

xij = 1 8i 2 I (7)

xij � zj 8i 2 I;8j 2 J (8)

X
j2J

zj = n
A (9)

xij; zj = (0; 1) 8i 2 I;8j 2 J
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where xij is 1 if demand area i is assigned to an outlet belonging to Firm A

and zj indicates that there is a facility at node j when its value is equal to 1;

otherwise, its value is set to 0. Constraint (7) assigns each demand area i to

only one outlet. For the assignment to be possible, j needs to have an outlet.

Constraint (8) controls this feature: i cannot assign to j unless there is an

outlet at j. The last constraint (9) limits the number of servers that �rm A

will locate.

Again, this formulation of the PMAXCAP problem cannot be solved us-

ing standard linear programming relaxation and branch and bound when

needed since (1) the objective is non linear, and (2) local demand functions

D
A
i (�

A
; �

B) depend on the price pA, which is unknown a priori.

In the following section a solution method for both formulations is pro-

posed.

3 A Bi-Level Heuristic Procedure to solve the

PMAXCAP Problem

Both problems can be solved using a two stage procedure where �rst locations

are found using the original MAXCAP problem and then optimal prices are

computed. Nevertheless, as Hanjoul et al. (1990) note, this is not acceptable

since outlets locations \must be chosen conditionally upon clients' demand

which, in turn, depends on prices. Conversely, it is readily apparent that the

�rm's optimal price relies heavily on its location choices. Hence, separating
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location and price decisions leads to sub-optimality."

The bilevel heuristic proposed in this paper combines a one opt procedure

to obtain locations with a search method to �nd prices. Basically, in each

possible exchange of the location of an outlet the price that gives maximum

pro�ts for Firm A is computed.

The Price Search Heuristic

This heuristic searches the price that maximizes pro�ts for a �rm that has

several �xed outlets given the locations and price of the competitor �rm.

Observe that, given the price and locations of the competitor �rm, and given

the locations of the entering �rm's servers, pro�ts as a function of its price

may present local optima. Suppose that pB is the price set by the competitor

�rm and the entering �rm �xes a price pA, where pro�ts are �A = �A(pA; pB).

If the entering �rm now increases its price by a small amount �, pA
0

= p
A + �,

two opposite e�ects may act on pro�ts. For a given node i, where pA+tdibA
i

<

p
B + tdibB

i

(i.e., i is captured by Firm A):

� if pA
0

+tdibA
i

< p
B+tdibB

i

,node i is still captured by the closest server bAi .

Therefore, local pro�ts at node i will increase if (pA � �)Di(�
A
; �

B) <

(pA
0

� �)Di(�
A0

; �
B) or, in other terms if the demand is inelastic. On

the contrary, if (pA � �)Di(�
A
; �

B) > (pA
0

� �)Di(�
A0

; �
B) or, if the

demand is elastic, pro�ts obtained from node i will be reduced.

� On the other hand, if pA
0

+ tdibA
i

> p
B + tdibB

i

,node i is lost to the
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competitor with the corresponding decrease in Firm A's pro�ts relative

to demand node i.

Therefore, two e�ects act on Firm A's pro�ts as prices pA is increased. On

the one hand, pro�ts may experience a reduction since (1) some nodes may be

lost to the competitor because the price �i paid by consumers at the closest

competitor facility becomes lower than the one paid at Firm A's; and (2) even

if the node remains captured by the entering �rm after the increase in prices,

pro�ts may be reduced since the increase in price does not compensate for the

decrease in quantity demanded. On the other hand, local pro�ts in a given

demand node may increase since the increase in prices more than compensates

for the reduction in quantity demanded at other nodes.

As the price p
A increases, it may happen that some local optimum may

appear. Therefore, the pro�t function may not be unimodal. In the computa-

tional experience this characteristic of the pro�t function dependent on price

will be shown.

The heuristic to determine the price that maximizes pro�ts for Firm A

given sets JA (the location of A's outlets) and J
B (the location of B's outlets),

and given B's price pB proceeds as follows:

First, lower and upper bounds pl and pu for the price for Firm A are found.

Then, a price pc within the range is chosen and pro�ts are computed. Then

pc is decreased by a small value � and the new pro�t is computed. If it is

better that the previous one, it is stored as the best current solution. If not,
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it is discarded. The procedure is done until the lower bound pl is reached

or until the pro�ts found are lower that a percentage tolerance level � of the

best pro�ts found so far. Now it is necessary to do the same for the range

[pc,pu]. The procedure starts again from the price found at the beginning and

in each step the current price pc is increased by �, pro�ts are computed and

compared to the best solution found so far. The procedure stops when pu is

reached or if the pro�ts found are lower than � times the best pro�ts found.

The upper bound is found by computing the highest price that Firm A

can set before having 0 revenues. This is computed as follows: for each local

market i, �nd the consumer price to the closest Firm B outlet (pB + tdibB
i

)

and the transportation costs to the closest Firm A outlet (tdibA
i

). If pA =

p
B + tdibB

i

� tdibA
i

both �rms divide the local market revenues. If pA is larger,

all local revenues in i will be lost to the competitor. Therefore:

pu = max(pB + tdibB
i

� tdibA
i

; i 2 I)

i.e., the level at which no one patronizes Firm A.

The lower bound is found by setting pl = v.

A more formal description of the heuristic follows:

Initial stage:

Given a set of locations for Firm A and Firm B and p
B Set p

A
l  v. set

pu  max(pB + tdibB
i

� tdibA
i

; i 2 I) Choose an initial price p
A
0
within the

18



interval [pl; pu] and compute initial pro�ts �0 for Firm A.

Iterative stage:

Phase 1: Set t 1. Set pAt  p
A
t�1 + � and compute �t. If �t > �t�1 then

set �̂ �t and p̂ p
A
t as the current best solution. Set t t+1 repeatedly

until �rst stopping rule applies. Then start Phase 2.

Phase 2: Reset t  1. Set pAt  p
A
t�1 � � and compute �t. If �t > �t�1

then set �̂ �t and p̂  p
A
t as the current best solution. Set t t+1 until

second stopping rule applies.

First stopping rule: �t < � �̂ or pAt = p
A
l .

Second stopping rule: �t < � �̂ or pAt = p
A
u .

So far, we have shown how to �nd the best value of pA given the pre-

speci�ed locations of A and B, and B's prices. Now we are ready to start the

procedure to �nd optimal prices and locations.

The Location Heuristic

The PMAXCAP heuristic procedure is iterative, and the �rst iteration

has two phases. In the �rst phase, Firm A locates p servers using a greedy

adding procedure, where in each iteration the vertex with the best pro�t level

is added to the set of locations, until nA is reached.

In the second phase, Firm A will try to �nd a better solution by relocating

one or more of the nA outlets using a vertex-substitution procedure. At each

iteration, FirmAwill relocate one of its servers and then use the price heuristic
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to obtain the optimal price and pro�ts. If the relocation has provided a set

of positions and prices that is better than before the one-opt trade, i.e., Firm

A's pro�ts are higher, it will keep the new set of locations as the best so far.

Otherwise, Firm A will ignore the relocation and will restore the previous

solution. The one-opt trade will be done for all nodes and Firm A servers and

repeated until no cycle results in an improvement.

Since the second phase only considers vertices that improve the objective,

the heuristic may end in a local optimum.

In order to avoid being trapped in a local optimum, a tabu search proce-

dure is developed, similar to the one presented by Benati and Laporte (1994).

In essence, this tabu search explores a part of the solution space by repeat-

edly examining all neighbors of the current solution, and moving to the best

neighbor even if this causes the objective function to deteriorate. To avoid

cycling, recently examined solutions are inserted in a constantly updated tabu

list. The heuristic proceeds as follows:

Price-Location Heuristic

Phase 1

1. Set JA
0
 ;, pA

0
 p

B and i 1.

2. Set JA
k  J

A
k�1 [ vk, where vk represents index of the vertex with the

largest increase in capture:
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max
vk2V

h
�(JA

k�1 [ vk; p
A)��(JA

k�1; p
A)
i

3. Set k  k + 1 and repeat step 2 until k = n
A.

Phase 2

1. Set JA� J
A
nA
, �̂ �(JA

nA
; p

A) and p
A�  p

A.

2. Set t 0 and �0 �̂

3. Set JA
t  J

A
t�1 � vk + vl, where vk 2 J

A
p and vl 2 (J � J

A
t�1).

4. If �(JA
t ; p

A
t ) > �̂; J

A�  J
A
t , �̂  �(JA

t ; p
A) and p

A�  p
A
t . Repeat

step 3 until all vertices and outlets have been exchanged.

5. If �̂ > �(JA
0
; p

A
0
), set �0 �̂, pA

0
 p

A� and goto step 3. If not, go to

phase 3.

Phase 3

1. Reset t 0.

2. Set �0 �̂ and p
A
0
 p

A�. No vertex is tabu.

3. Consider all solutions JA;i
t of JA

t given by adjacent nodes, obtained ex-

changing an outlet from v
0

i 2 J
A
t to v

00

i 2 J � J
A
t . Relabel all JA;i

t

solutions in decreasing order of �(J
A;i
t ; p

A;i
t ). Relabel all vertices ac-

cordingly. Set i i+ 1.
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4. If �(JA;i
t ; p

A;i
t ) > �̂ or if v

00

i is not tabu, set JA
t+1  J

A;i
t , �̂  �(JA;i

t ),

declare v0i tabu until t+ �, where � is a pre-�xed value, and go to step

5. Otherwise, set i i + 1. If i is larger than the number of adjacent

solutions, set i equal to the index of the vertex v
00

i with the lowest tabu

tag t+ � and lift the tabu status of v
00

i . Repeat step 3.

5. Set t  t+ 1. If t is less than a pre-�xed upper bound T , go to step 2

in phase 3. Otherwise, stop

The main di�erence between this heuristic and the one developed by Be-

nati and Laporte is that their starting solution is obtained by a greedy adding

procedure. In ours, the initial solution is obtained by a vertex substitution

procedure, and therefore the initial solution will be near-optimal or even op-

timal (see, for example, Rosing and ReVelle 1997). After �nishing the proce-

dure, Benati and Laporte re-start it by using a diversi�cation step: a broader

exploration of the solution space is obtained by starting from the least visited

vertices. In our heuristic, as it will be shown in the computational experience,

this seems unnecessary.

So far it has been assumed that Firm B will not react to Firm A's entry

and to the price that A chooses. This is unlikely to occur. Suppose that Firm

A now knows that its competitor will react to its entry by changing prices so

as to maximize pro�ts given the locations of Firm A's outlets and its price.

Now Firm A's objective is to �nd the optimal location and prices that will
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optimize A's pro�ts given the reaction in prices by its competitor. In this

sense, it is a leader-follower game where Firm A is the leader.

This problem can be solved as follows: given a set of locations for both

�rms, price reaction functions can be computed for each one of them. By

reaction function it is meant what the best price is (the price that maximizes

pro�ts) given the price of the competitor. The reaction function of Firm A

is such that p
A = f

A(pB), where for each p
B there is a p

A that maximizes

�A. Similarly, there is a reaction function f
B(pA) for Firm B given p

A. Since

reactions functions are known for both �rms, �rm A can use Firm B's reac-

tion function to �nd the price that will maximize its pro�ts given �rm B's

reaction. Firm A can use the price heuristic to determine its best policy.

In each step of the iterative stage where p
A
t is determined, Firm A can use

the price heuristic for �rm B to obtain the price that Firm B will set given

p
A
t . Once p̂

B
t is determined, Firm A can compute pro�ts �A

t . A will choose

the p̂At that will maximize its pro�ts. More formally, the heuristic is as follows:

Price Competitive heuristic

Initial stage: Given a set of locations for both Firms and p
B, set pAl  v.

set p
A
u  max(pB + tdibB

i

� tdibA
i

; i 2 I). Choose an initial price p
A
0
within

the interval [pAl ; p
A
u ]. Compute the best price p̂

B
0
for Firm B using the price

heuristic given p
A
t . Obtain �A

t (p
A
0
; p̂

B
0
)
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Iterative stage:

Phase 1: Set t  1. Set p
A
t  p

A
t�1 + �. Compute the best price p̂

B
t

for Firm B using the price heuristic given p
A
t , and then �A

t (p
A
t ; p̂

B
t ). If

�A
t (p

A
t ; p̂

B
t ) > �A

t (p
A
t�1; p̂

B
t�1) then set �̂A  �A

t and p̂
A  p

A
t as the cur-

rent best solution. Set t t+ 1 until �rst stopping rule applies. Then start

Phase 2.

Phase2: Reset t 1. Set pAt  p
A
t�1��. Compute the best price p̂Bt for Firm

B using the price heuristic given p
A
t , and then �A

t (p
A
t ; p̂

B
t ). If �A

t (p
A
t ; p̂

B
t ) >

�A
t (p

A
t�1; p̂

B
t�1) then set �̂A  �A

t and p̂A p
A
t as the current best solution.

Set t t+ 1 until second stopping rule applies.

First stopping rule: �A
t < � �̂A or pAt = p

A
u .

Second stopping rule: �A
t < � �̂A or pAt = p

A
l .

Now the price heuristic used within the one-opt procedure can be replaced

by the price-competitive heuristic in steps 2 and 4. Firm A will evaluate each

one-opt trade based on the best pro�ts it can get given the price reaction of

B. Firm A will choose the set of locations and the price that will maximize

its pro�ts given Firm B's price reaction.

By using the Competitive Price Location Heuristic (CPLH) Firm A can

achieve a situation that will maximize its pro�ts given the reaction of its

competitor. Since for each p
A the optimal Firm B's price pB is computed, at
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the end of the procedure prices pA; p̂B and pro�ts �
A
; �̂B are known. Observe

that �B is the best pro�t that �rm B can achieve given its locations and the

price and locations of Firm A.

4 Computational Experience

Computer programs have been written in FORTRAN 77 in order to solve the

competitive price location problem described above. The program was run on

4 test problems generated in the following way. 15, 30, 50 and 70 points were

randomly chosen in a 100 by 100 square for each test problem. Each point is

at the same time the location of a local market and the potential site for an

outlet. Transportation costs between points are equal to Euclidean distances.

All weights associated to each vertex have been set equal to 100. A linear

demand function has been selected, and the slope � has been chosen between

0.5 and 3.0, depending on the number of vertices. The �xed and variable

production costs were set to 0. The tolerance level � has been chosen equal

to 0.8 and the price parameter � was set to 0.5.

For all generated networks, the locations of Firm B were obtained by

using the price heuristic together with a vertex substitution (Teitz and Bart)

heuristic, as if there were no competitors in the market. Each one-opt trade

was valued using the price heuristic. In this sense the locations and price found

for �rm B correspond to the optimal or near-optimal monopolistic solution:

Firm B maximizes pro�ts by �xing prices and locations without competition.
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Therefore, in each scenario Firm B starts with a good positioning of its servers.

Once the initial locations for Firm B were obtained, the price-location

heuristic was used to obtain the �nal solutions for Firm A, using the price-

competitive heuristic to compute the objective value. That is, in all runs Firm

A considered that Firm B would react in prices.

First, in order to test the e�ciency of the heuristic algorithm, 100 15-node

networks were generated for � = 0.5, 1 and 1.5 respectively. For each network,

optimal solutions were obtained by enumerating all locations for the entering

�rm and, for each set of locations, computing the competitive-price heuristic

to obtain optimal prices. Results are presented in Table 1. Computing times

are presented in Table 2.

The price-location heuristic achieved in most cases the optimal solution.

The vertex substitution procedure (phase II) obtained at least in 75% of the

runs the optimal solution. When phase II did not obtain the optimum, phase

III achieved in at least 50% of the runs the optimal solution. In general,

the price-location heuristic performed better in terms of optimal solutions

found as the slope of the demand function increased. This is also the case for

computing times.

5 An Example

In this section the PMAXCAP model is applied to a 55-node network (Swain

1974, see Table 4 and Figure 1). Four di�erent scenarios are examined with
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regard to the number of outlets to be located and the slope of the demand

function. Firm B is operating as a monopoly in the market with several

outlets. The demand function in each local market is linear and the same,

except for the intercept, that is equal to the weight of the vertices. These

intercepts are shown in table 2 of the appendix.

The locations and the price for Firm B have been obtained using the

method described in the last section for the monopoly situation. That is , as a

monopolist, Firm B has a good positioning in the market. Unit transportation

costs are linear with distance and equal to 1. Fixed and variable costs are set

to 0.

Firm A knows that Firm B will react in prices, so it will use the price-

competitive heuristic in phase II and III to obtain what price it has to set to

maximize pro�ts given Firm B's reaction. Results are presented in Table III.

In the �rst column the number of outlets for Firm A and Firm B and the

slope of the demand function are presented. In the second column the initial

scenario Firm B as a pro�t maximizer monopolist is presented. Then, results

found in the di�erent phases of the algorithm are shown. In none of the four

runs phase III of the algorithm improved the solution found in phase II.

As mentioned before, given p
B, JA and J

B, pro�ts as a function of prices,

given the price of the competitor may present some local optima. These can

be seen in Figure 2, where the pro�t function corresponds to Firm B's �nal

solution where nA = 3, nB = 3 and � = 0:3, and where pA = 65:0.
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6 Conclusions

In this study, market entry by a �rm with several outlets has been studied

within a competitive locational framework. In a system where two �rms that

o�er the same good or service seek to enter a market, the location of their

servers together with the setting of prices play a dominant role in the �nal

pro�ts that can be achieved.

A duopoly model that seeks to locate servers and set mill prices to maxi-

mize the market capture by a �rm has been presented. The model, based on

the MAXCAP problem, is quite e�cient in obtaining solutions, even though

no exact algorithm has been found to obtain optimal locations and prices.

A feature of the heuristics presented is that there is no need to make

assumptions on the demand functions, production and transportation cost

functions. The CPLH method can be used with any non-linear speci�cation

of these functions, and regardless of convexity or concavity properties.

The models proposed specify the number of servers p that �rm A is going

to locate. This assumption can be relaxed by applying the heuristic for p =

1; 2; : : : ; n and choosing p as the one that gives higher pro�ts.

As seen in the computational experience, the price heuristic can be used

to �nd the locations and price of a �rm that enters with several outlets in a

spatial market without competition. This is an alternative method to the one

proposed by Hanjoul et al. (1990) if p is not speci�ed.
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The CPLH heuristic can be applied to di�erent competitive situations.

For example, suppose that Firm B is operating in the market and knows that

Firm A will enter to compete. Firm B might want to �nd what its best price

is given the Firm A's entry. Therefore, Firm B can use the CPLH and the

PLH heuristics as follows: In the iterative stage of the PLH heuristic, Firm

B would use the CPLH heuristic to �nd, given its price, where Firm B will

locate and what price it will set. Firm B will choose the price that maximizes

its pro�t given the locations and price of Firm A. In this sense, Firm B will

�nd a price that will try to pre-empt Firm A in its bid to capture market

share to the maximum extent possible.

The problem that remains to be solved relies on the competitive behavior

of both �rms. Recall that, once the optimal solution is found, while Firm B

has no incentive to change its price since it is the best one given the entrance

of Firm A in the market, this one can improve its pro�t levels by using the

price heuristic. This situation leads to a sequential price war, where in each

stage �rms alternatively �nd the price that maximizes pro�ts given the price

�xation of the competitor in the previous stage.

It may be the case that by entering a price war, both �rms will never �nd

a better pro�t level than the one achieved at the end of the price-location

heuristic. If both �rms know this fact (by applying the price-competitive

heuristic), they may cooperate by not entering a price war. In this sense, it

can be de�ned as a sort of cooperative equilibrium.
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On the other hand, since reaction functions are known for a given set

of locations for both �rms, non-cooperative equilibria may also be identi�ed

applying the standard approach used in Industrial Organization Theory. This

can been seen in Figure 3. In this graphic the reaction functions in prices for

both �rms are depicted, corresponding to the �nal solution obtained in the

last section with n
A = 3, nB = 3 and � = 0:3. The intersections of both

functions may imply non-cooperative equilibria, even though these may not

be stable and some cycling could occur. Further research can be developed to

try to examine cooperative and non-cooperative equilibria in networks using

the modelling approach presented here.

Finally, in this paper, a uniform mill pricing policy has been considered.

The model can be adapted to other forms of pricing, such as uniform delivered

pricing and spatial discriminatory pricing.
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Figure 1: 55-node network
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Table 1

(nA
; n

B) � % of optimal solutions found non-opt.

Phase I Phase II Phase III solutions

(2,2) 0.5 0 90% 7% 3%

1.0 0 95% 3% 2%

1.5 0 96% 2% 2%

(3,3) 0.5 0 75% 15% 10%

1.0 0 81% 15% 4%

1.5 0 92% 4% 4%

Table 2

(nA
; n

B) � Average Computer time (seconds)

Phase I Phase II Phase III

(2,2) 0.5 0.27 20.35 139.98

1.0 0.24 8.89 54.22

1.5 0.11 5.64 35.12

(3,3) 0.5 0.34 44.27 218.14

1.0 0.11 20.21 93.76

1.5 0.24 9.56 63.02
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Table 3: Results, 55-node network

Firm B's Firm A's results

Monopoly Phase 1 Phase 2 Phase 3

� = 0:3 �A 41,113 53,460 53,460

(3,3) �B 107,414 40,720 55,661 55,661

p
A 40.0 65.0 65.0

p
B 119.5 60.0 86.5 86.5

J
A 2,9,16 5,17,41 5,17,41

J
B 4,22,31 4,22,31 4,22,31 4,22,31

� = 1:0 �A 8,673 9,974 9,974

(3,3) �B 17,948 12,324 11,633 11,633

p
A 29,5 30.5 30.5

p
B 40.5 40,5 40,5 40,5

J
A 1,6,30 1,6,7 1,6,7

J
B 3,5,9 3,5,9 3,5,9 3,5,9

� = 0:3 �A 48,351 68,881 68,881

(5,5) �B 122,577 35,606 58,583 58,583

p
A 35.0 64.5 64.5

p
B 114.8 52.5 93.0 93.0

J
A 4,13,17,18,34 4,16,17,30,41 4,16,17,30,41

J
B 5,20,22,24,31 5,20,22,24,31 5,20,22,24,31 5,20,22,24,31

� = 1:0 �A 10,734 13,760 13,760

(5,5) �B 22,282 13,740 14,260 14,260

p
A 21.0 43.0 43.0

p
B 43.0 43.0 43.0 43.0

J
A 4,13,15,21,30 1,2,3,6,11 1,2,3,6,11

J
B 5,7,8,9,10 5,7,8,9,10 5,7,8,9,10 5,7,8,9,10
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Table 4: 55-node Network demand intercepts and coordinates

node coord node coord node coord

x y x y x y

1 32 31 20 25 14 39 46 51

2 29 32 21 29 12 40 50 40

3 27 36 22 24 48 41 23 22

4 29 29 23 17 42 42 27 30

5 32 29 24 6 26 43 38 39

6 26 25 25 19 21 44 36 32

7 24 33 26 10 32 45 32 41

8 30 35 27 34 56 46 42 36

9 29 27 28 12 47 47 36 26

10 29 21 29 19 38 48 15 19

11 33 28 30 27 41 49 19 14

12 17 53 31 21 35 50 45 19

13 34 30 32 32 45 51 27 5

14 25 60 33 27 45 52 52 24

15 21 28 34 32 38 53 40 22

16 30 51 35 8 22 54 40 52

17 19 47 36 15 25 55 42 42

18 17 33 37 35 16

19 22 40 38 36 47
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