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Abstract

When the behaviour of a speci�c hypothesis test statistic is studied

by a Monte Carlo experiment, the usual way to describe its quality

is by giving the empirical level of the test. As an alternative to this

procedure, we use the empirical distribution of the obtained p-values

and exploit its information both graphically and numerically.

Keywords and phrases. Simulation, graphics, goodness of �t, dis-

tances between distribution functions.

1 Introduction

In a hypothesis test problem several statistics can be employed to test the

same null hypothesis. The theoretical distribution of these test statistics is

unfortunately unknown in many cases. As a consequence, it must be properly

approximated and usually there is not a unique way to do it. So each test

statistic and each speci�c approximation to its distribution may lead to a

di�erent p-value for the same test and possibly to a di�erent decision about

H0. To discern between proposals simulation methods are a highly useful

resort. The scope of this paper is to process the output of those Monte Carlo

experiments graphically and numerically beyond the conventional practice of

reporting empirical levels.
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In essence, a Monte Carlo experiment lies in simulating a number of S

samples of size n. From each sample a di�erent value of the test statistic

Tn and its corresponding p-value, computed from the distribution of Tn or

from an approximation, are registered. The empirical signi�cance level of

the test, �̂, is traditionally reported as the only reference to decide if the

test strategy is better than other schemes of inference. This conventional

method focuses attention on a single value of the signi�cance level �. It

does not take into account the behavior of the statistic at other levels of

signi�cance. Consistently, to provide only such a speci�c reference can hide

valuable information about the whole behavior of the statistic.

For that reason, in this work we make use of the information contained in

all the p-values obtained by simulation. The empirical distribution function

of the simulated p-values encloses all the relevant aspects of the Monte Carlo

experiment, and it can be exploited graphically and numerically in terms of

the nearness of that empirical distribution to the distribution of a uniform

random variable in [0; 1].

The paper is organized as follows: section 2 introduces notation and

describes previous related works; de�nitions of several distances between dis-

tribution functions, multivariate analysis of simulated distances and the tab-

ulation of some of them are the scope of section 3; section 4 contains two

practical examples: �rst, the test of the lack of correlation, and second, the

test of the equality of variances for two independent samples. In the sec-

ond example, some considerations about re
ecting the power of tests are

expounded. Finally, in section 5, we draw a few conclusions.

2 Some notation and concepts

Consider the hypothesis test H0 against H1, concerning some aspect of the

distribution of a random variable X. Given a sample X1; : : : ;Xn from X,

the p-value is the smallest value of the signi�cance level � at which the

null hypothesis is rejected. For the clarity of the exposition we assume

that the critical region can be written as R� = f(X1; : : : ;Xn) 2 X n :

Tn(X1; : : : ;Xn) � F�1
Tn
(1 � �)g; where FTn is the distribution of the test

statistic Tn under the null hypothesis. First, we consider this distribution is

known. In that case, the p-value is a random variable that takes the value

p-value = p-value(X1; : : : ;Xn) = 1�FTn(Tn(X1; : : : ;Xn)): This random vari-

able is uniform in the interval [0; 1] under H0. The decision of rejecting or
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not the null hypothesis at a given nominal size � can be expressed in terms

of the p-value: the null hypothesis is rejected if and only if the p-value is

lower than the signi�cance level �.

Sometimes the exact distribution FTn
of Tn is unknown. Then, to make

inference, it is necessary to approximate FTn
in some way. If an asymptotic

approximation to FTn
is available, it is usually used to de�ne the p-value

of the test. There exist situations where the asymptotic distribution of Tn

is also unknown. In some of these cases, bootstrap techniques are used to

approximate the distribution of Tn. This happens when a limit distribution

exists for the statistic Tn and a bootstrap version of Tn (e.g., T
�

n
) has the same

limit distribution. The approximation of FTn
is the the empirical distribution

of a sequence of B bootstrap observations of T �

n
(see Efron and Tibshirani

1993 for an introduction to bootstrap techniques).

When some approximation ~FTn (obtained from either asymptotic argu-

ments or bootstrap) is involved in the process, a Monte Carlo experiment is

worthwhile in order to investigate whether it is an acceptable estimate of the

theoretical distribution FTn. If the S simulated samples are according to the

null hypothesis and FTn is known, the S obtained p-values form a sample of a

U([0; 1]) distribution. For a given theoretical signi�cance level �, the empiri-

cal level of the test is �̂ = 1
S

P
S

s=1 I(0;�](ps) = F̂p(�); where ps is the p-value in

the s-th replication of the experiment and F̂p is the empirical distribution of

the sample fps : s = 1; : : : ; Sg. The random variable �̂ follows a distribution

B(S; �)=S. In case that FTn is approximated by some distribution function
~FTn, then the distribution of the p-values and the empirical level �̂ are only

approximately U([0; 1]) and B(S; �)=S distributed, respectively.

A graphic of the empirical function F̂p permits to appreciate if it is near

the unity square diagonal (the distribution function FU of a U([0; 1]) random

variable). In that case, we deduce that ~FTn is near FTn. The use of this

kind of graphics in the literature is not new. Delicado (1995) develops some

goodness of �t tests for the distribution of the coe�cients in the random co-

e�cient regression model, and reports the results of simulation experiments

using graphics of the empirical distributions F̂p. Their usefulness is proved

there when data are generated from both the null and the alternative hy-

potheses. Davidson and MacKinnon (1994) discuss the graphic of F̂p (they

call it p-value plot) and propose a variation, the p-value discrepancy plot,

consisting in plotting the pairs (ps; F̂p(ps)� ps), where s index the simulated

samples. The last graphic is more appropriate when two di�erent tests with
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good behavior under H0 have to be compared. Authors also refer to other

published papers where the empirical distribution function F̂p or its inverse

(the quantile function) have been used as a natural way to summarize the

results of simulation studies. They are particular cases of the well known

P-P and Q-Q plots (see, for instance, Chambers et al. 1983).

The main advantage of using p-value plots instead of reporting only some

empirical values is that plots ensure us that the performance of a test is

adequate at all the signi�cance levels. In particular, when we report a p-

value as the result of a certain hypothesis test, we must be sure that the test

procedure has an empirical level similar to the theoretical one at nominal

sizes near to the p-value we pretend to report, not just for two or three

nominal sizes previously chosen.

Not only graphics can be derived from F̂p. We have already mentioned

that empirical levels can be calculated from F̂p. In addition to them, many

numerical single values that measure the nearness of ~FTn to FTn can be ex-

tracted from F̂p. Distances between distribution functions computed from

F̂p and FU gives us very rich insights to know whether a testing procedure

is correct or not, much better than the empirical signi�cance levels do. The

use of Kolmogorov-Smirnov distance was presented in both Delicado (1995)

and Davidson and MacKinnon (1994).

An important drawback is inherent in p-value plots. Davidson and MacK-

innon (1994) word it as follows: because they use one dimension for nominal

size, p-value plots and p-value discrepancy plots cannot use that dimension

to represent something else, such as the value of some parameter. For exam-

ple, to represent the behavior of a test procedure against some alternative

hypotheses, we need not a single plot, but several plots. Distances between

F̂p and FU solve this problem and continue to exhibit a global view through

the whole range of possible p-values.

3 Distances between distribution functions

The graphic study of nearness between F̂p and FU by means of p-value plots

is strengthened when we compute some distances between these distribution

functions. The ones proposed here are based on the Kolmogorov-Smirnov

distance and on L1 and L2 norms. L1 is known as Mallows distance and it is

related to the Gini's index used in Economics, and L2 is the squared root of

the Cram�er-von Mises distance (see, for instance, Shorack and Wellner 1986,
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d� = j�̂� �j; � 2 (0; 1)

dKS = sup
p2[0;1]

jF̂ S

p
(p)� pj dw

KS
= sup

p2[0;1]

jF̂ S

p
(p) � pjw(p)

dLr =

�Z 1

0
jF̂ S

p
(p)� pjrdp

�1=r

dw
Lr

=

�Z 1

0
jF̂ S

p
(p)� pjrw(p)dp

�1=r

Table I: Some distances between the empirical distribution function of p-values and FU .

chapter 3.8, for these and other de�nitions of distances between distribution

functions). As we are dealing with hypothesis tests, distances should be more

sensitive to deviations of F̂p from the diagonal at low values of the nominal

size �. The inclusion of a weight function w : [0; 1] ! IR
+ in the distance

de�nitions allows us to pay more attention to that rank of values.

The distances we have considered are displayed in Table I. In their de�-

nitions, w(p) is a weight function de�ned in [0; 1] with integral equal to one,

that takes higher values at low p's. These distances are very jointly related

because, in fact, all of them measure discrepancies between two distribution

functions.

Under the null hypothesis, the theoretical distribution of p-values is FU .

Thus, the standardized empirical process �S =
p
S(F̂ S

p
� FU) converges to

the standard brownian bridge as S goes to in�nity, where S is the number of

simulated samples. Moreover, the distances we have de�ned above and many

others, standardized by the factor
p
S, can be expressed as continuous func-

tionals of the empirical process �S . So if we consider k distances d1; : : : ; dk,

the random vector (d1; : : : ; dk)
0 is a k-dimensional continuous functional of �S

and, by the Continuous Mapping Theorem, has a limit joint distribution that

is the same functional applied to the brownian bridge. Theory about that

kind of properties can be found, for instance, in Shorack and Wellner (1986).

The limit distributions of the unweighted distances we have introduced are

explicitly derived in that book, and they are also tabulated.

The distances we propose are continuous functionals of �S and they gen-

erally have complicated unidimensional distributions. Moreover, when some

weight function is introduced, the standard theory cannot be applied directly

and it is not possible to �nd published tables of the resultant distances. At

our knowledge, it does not exist neither any study referred to the joint distri-

bution of several distances. Monte Carlo methods are useful to know about

this joint distribution.
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3.1 Multivariate analysis of simulated distances

We present a simulation study where observations of the joint distribution of

nine distances between F̂ S

p
and FU are generated. Sample sizes n = 30, 50,

100, 500 and 1000 are used and 10000 samples are drawn for each case.

Nine standardized distances are analyzed: di =
p
Sd�i; i = 1; 2; 3, where

�1 = :01, �2 = :05, and �3 = :1, d4 =
p
SdKS, d5 =

p
Sdw

KS
, d6 =

p
SdL1

,

d7 =
p
Sdw

L1
, d8 =

p
SdL2

and d9 =
p
Sdw

L2
. Table I shows de�nitions of these

basic distances. The density function of a random variable with distribution

�(a = 2; b = 8) as w has been chosen here. Thus,

w(p) =
�(a+ b)

�(a)�(b)
pa�1(1 � p)b�1 = 72 p(1 � p)7; 0 � p � 1:

Our objective is to discover the relationships between the distances d1; : : : ; d9

and to see if they are reporting similar or di�erent information about the

nearness between F̂p and FU .

We carry out a multivariate analysis of the data matrix D10000�9 that

contains in each row the observed distances (d1; : : : ; d9) between FU and

the empirical distribution functions of simulated samples from U([0; 1]). We

present results only for n = 1000. For other sample sizes, conclusions are

similar but less clean.

A quick look at the values of single columns of D shows that di's are very

asymmetric. So we decide to transform D by taking logs on di. Let ~D be the

transformed data matrix. The computed sample correlation matrix of data
~D is 2

6666666666666664

:12

:04 :29

:01 :09 :19

:03 :27 :56 :44

:03 :14 :26 :90 :52

:06 :29 :52 :62 :88 :73

:02 :11 :24 :94 :50 :99 :71

:04 :25 :47 :68 :85 :77 :99 :75

3
7777777777777775

A Principal Component Analysis is done on the correlation matrix of ~D.

The percentages of variance explained by the �rst components are shown in

Table II.

Figure 1 shows the distances ~di placed on the plane of the �rst two com-

ponents. The �rst component is a weighted mean of distances, in which
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Percentage Cumulative

Comp. of variance Percentage

1 56.18 56.18

2 15.83 72.01

3 11.19 83.20

4 8.55 91.75

5 5.65 97.40
...

...
...

Table II: Percentage of variance explained by the �rst principal component of ~D.

distances based on empirical sizes have lower weight than the rest. This �rst

component can be interpreted as an index of discrepancy between each sim-

ulated sample and the uniform distribution. Global distances have the most

important role on de�ning this index.

In Figure 1 we also can see the relative position of each ~di with respect

to the others. They are placed on an imaginary half circle, and if we go

through it, we �rst �nd distances based on empirical values ( ~d1, ~d2 and
~d3, in that order), then we arrive to weighted distances ( ~d5 followed by ~d7

and ~d9) and �nally to unweighted distances (quite near one another). This

relative position con�rms that the behaviour of the test procedure at small

values of nominal sizes, gives not many clues about its global behaviour. The

information that unweighted distances are o�ering is very di�erent to that

reported by empirical values. Weighted distances are a compromise between

the two other groups.

Third, fourth and �fth components are closely related to ~d1, ~d2 and ~d3,

respectively. Therefore we can deduce that those distances present particu-

larities that do not concern the global goodness of �t of the p-values to the

uniform distribution.

We conclude that a weighted distance is the best choice if we want to use

only one measure of nearness from p-values to FU . The choice of d7 or d9

(the weighted L1 or L2 norms) seems to be the most reasonable.

A similar analysis is possible when the null hypothesis is assumed to be

false. In these cases the empirical distribution function of p-values is not

similar to the obtained from a U([0; 1]) distribution. So in order to evaluate

the performance of di�erent distances di under alternative hypothesis, we
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Figure 1: Principal Component Analysis of ~D. 10000 samples of size n = 1000 are gener-

ated from U ([0; 1]) and nine distances di are calculated between the empirical distributions

and FU .

generate data from distributions near to FU but not exactly uniform. Distri-

butions �(a; b = 1), for a = :95; :90; :85; :75 are chosen to generate p-values,

imitating the ones obtained when we separate gradually from the null hy-

pothesis (remember that U([0; 1]) � �(a = 1; b = 1)). We draw 1000 samples

of size n = 500.

Figure 2 summarizes the results of the experiment concerning the alter-

native hypothesis. Columns of matrix ~D (calculated as before) are plotted in

the plane of its two �rst principal components. There is a di�erent graphic

for each value of a. The graphic corresponding to H0 (i.e., a = 1) is not

showed, but it practically coincides with the one in Figure 1. We can see

that, as data move away from H0, global distances di get closer. Distances

based on empirical sizes follow the other group and the farther from 1 a is,

the lower remarkable the peculiarities of d1, d2 and d3 are. This is especially
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Figure 2: Principal Component Analysis of ~D for nonuniform data. 1000 samples of size

n = 500 are generated from �(a; b = 1) and nine distances di are calculated between the

empirical distributions and FU .

true for d2 and d3. Moreover, the percentage of variance corresponding to

the �rst principal component raises as data move away fromH0. Speci�cally,

the �rst PC explains the 56%, 63%, 68%, 70% and 73% of the total variance

as a equals 1, .95, .90, .85 and .75, respectively. Such result implies that the

discrepancy between data and the null hypothesis (a way of interpreting the

�rst principal component) becomes the most important feature of matrix ~D.

As a conclusion of the analysis, the structure of interdependence between

distances changes slightly when data are generated from hypothesis near H0,

and the main change is that all di's become closer. Therefore, di�erences be-

tween decisions based on di�erent distances are more important when data

are according to H0 than when they are not.

9



3.2 Distribution tables of some distances

In order to make easier the use of weighted distances, we include here tables

of these distances obtained by simulation of 10000 samples of uniform random

variables with di�erent sizes. Tables for unweighted distances d4, d6 and d8

can be found in Shorack and Wellner (1986).

The simulated sample sizes are n = 30, 50, 100, 300, 500 and 1000. The

empirical distribution of di does not change much with n, so we conclude that

the asymptotic distribution of di is a good approximation to the distribution

of di for every sample size n at least greater than 30. Table III shows the

empirical quantile function (the inverse of the empirical distribution function)

of simulated data for n = 1000, calculated at 100 points in [0; 1]. That

function approximates well the asymptotic distribution of di.

4 Some applications

As an illustration of the performance of graphical and numerical techniques

presented in this paper, we apply them to two examples. We study two

hypothesis tests for which several test statistics are available and their un-

known distributions can be approximated in di�erent ways. We use the tools

described above to compare all these test strategies. First, we work on the

test of no correlation and second on the test of the equality of variances for

two samples.

4.1 Testing the lack of correlation of two variables

Consider (X;Y ) two random variables and let � be their correlation coe�-

cient. We want to test H0 : � = 0 against H1 : � 6= 0. Let (x1; y1); :::; (xn; yn)

be a random sample of (X;Y ) and rn the corresponding sample correlation

coe�cient. The exact distribution Frn of the statistic rn is in general un-

known.

Some tests for H0 are based on the transformation of rn (see, for instance,

Arnold 1990, pages 419{423). The estatistic Tn = ((n� 2)1=2rn)=(1 � r2
n
)1=2

has distribution tn�2 when (X;Y ) is a bivariate normal and � = 0. So that

statistic can be used to test H0 in the normal case. Moreover, that test

procedure is asymptotically insensitive to normal assumption under fairly

general assumptions. Also, the Fisher's Z-transformation Zn = :5 log((1 +
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u F�1
d5

(u) F�1
d7

(u) F�1
d9

(u) u F�1
d5

(u) F�1
d7

(u) F�1
d9

(u)

.00 .51288 .05795 .07711 .50 1.63556 .25509 .30636

.01 .73143 .09746 .12433 .51 1.65374 .25842 .31004

.02 .78209 .10651 .13592 .52 1.66712 .26148 .31384

.03 .84024 .11246 .14344 .53 1.67545 .26517 .31776

.04 .87732 .11767 .14958 .54 1.68898 .26864 .32153

.05 .89382 .12229 .15589 .55 1.71436 .27207 .32551

.06 .92815 .12650 .16048 .56 1.73680 .27609 .32966

.07 .95237 .13022 .16446 .57 1.75884 .27994 .33411

.08 .97240 .13360 .16866 .58 1.77447 .28434 .33825

.09 .98931 .13760 .17244 .59 1.78557 .28844 .34284

.10 1.00235 .14061 .17610 .60 1.79072 .29242 .34718

.11 1.01416 .14279 .17960 .61 1.81972 .29599 .35140

.12 1.04341 .14572 .18301 .62 1.84548 .30181 .35604

.13 1.06922 .14868 .18583 .63 1.87214 .30630 .36157

.14 1.08754 .15144 .18949 .64 1.88891 .31007 .36617

.15 1.10059 .15401 .19313 .65 1.89934 .31469 .37066

.16 1.11342 .15662 .19638 .66 1.92379 .31916 .37476

.17 1.11869 .15952 .19955 .67 1.95041 .32448 .37976

.18 1.13733 .16252 .20288 .68 1.97603 .32953 .38509

.19 1.15875 .16566 .20586 .69 1.99771 .33511 .39043

.20 1.18216 .16864 .20926 .70 2.01108 .34013 .39589

.21 1.19518 .17139 .21203 .71 2.03741 .34544 .40180

.22 1.21139 .17432 .21519 .72 2.06633 .35094 .40727

.23 1.22327 .17638 .21828 .73 2.09240 .35752 .41354

.24 1.22922 .17893 .22078 .74 2.11265 .36355 .42113

.25 1.24704 .18181 .22388 .75 2.12319 .36891 .42838

.26 1.26889 .18442 .22785 .76 2.15811 .37625 .43592

.27 1.28688 .18724 .23069 .77 2.19153 .38304 .44376

.28 1.30383 .18973 .23387 .78 2.21679 .39089 .45161

.29 1.32093 .19243 .23713 .79 2.23494 .39941 .45878

.30 1.33189 .19497 .23987 .80 2.27114 .40806 .46620

.31 1.33883 .19813 .24310 .81 2.30537 .41545 .47310

.32 1.34197 .20118 .24647 .82 2.33793 .42311 .48278

.33 1.36173 .20401 .24949 .83 2.35360 .43080 .49217

.34 1.38123 .20711 .25227 .84 2.39637 .44043 .50226

.35 1.39764 .20968 .25560 .85 2.44000 .44884 .51138

.36 1.41446 .21215 .25849 .86 2.46363 .45843 .52019

.37 1.43035 .21508 .26148 .87 2.51816 .46892 .53062

.38 1.44339 .21809 .26508 .88 2.56170 .48115 .54201

.39 1.45103 .22125 .26840 .89 2.60259 .49317 .55245

.40 1.45897 .22430 .27141 .90 2.67017 .50591 .56622

.41 1.48147 .22670 .27487 .91 2.73087 .52018 .58113

.42 1.50081 .22944 .27837 .92 2.79147 .53811 .59848

.43 1.52222 .23268 .28194 .93 2.87564 .55676 .61531

.44 1.53820 .23578 .28552 .94 2.95572 .57491 .63791

.45 1.55442 .23908 .28879 .95 3.03020 .59754 .66381

.46 1.56201 .24229 .29232 .96 3.14818 .62654 .69217

.47 1.57630 .24536 .29562 .97 3.26466 .66696 .72733

.48 1.59483 .24852 .29934 .98 3.46453 .71056 .77727

.49 1.61857 .25223 .30323 .99 3.78121 .79949 .85687

Table III: Asymptotic quantile function of d5, d7 and d9 obtained by simulation. Sample

size n=1000, and number of samples equal to 10000.
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rn)=(1� rn)) (which is asymptotically normally distributed when � = 0) can

be used to test H0. Although both are commonly used solutions, it remains

the doubt about how large must be the sample size n so that the asymptotic

distribution of Tn or Zn approximates them well.

Other test strategies, taking the sample correlation coe�cient as the test

statistic, may be implemented. In this paper, we study one permutation test

and two bootstrap tests. All of them are based on the generation of arti�cial

samples of the empirical correlation coe�cient under H0, that constitute a

reference distribution for the statistic rn.

In the permutation test, data yi are shu�ed and attached to data xi to

form a permuted sample (xi; y
p

i
); i = 1; : : : ; n, according to the null hypothesis

of no correlation. Repeating B times the permutation scheme, we obtain

observations of the permuted correlation coe�cient r�
n
.

The �rst bootstrap test, based on regression, starts from the sample

(xi; yi) and de�nes ei as the residuals (yi � ŷi), corresponding to the linear

regression model. Each bootstrap sample is f(xi; e�i ); i = 1; : : : ; ng, where e�
i

is randomly selected from fe1; : : : ; eng. We draw B bootstrap samples from

which B coe�cients r�
n
are calculated. In Freedman (1981) some properties

of that bootstrap approximation are studied.

Finally, the bootstrap test based on principal components works with the

n � 2 data matrix of values (xi; yi); i = 1; : : : ; n. Its principal components

(PC) are calculated from the covariance matrix. The coordinates of the

original pairs on the plane of PC represent a sample of n uncorrelated pairs

(~xi; ~yi). Those pairs are resampled B times to obtain B bootstrap samples

from which B coe�cients r�
n
are got.

Some general conclusions are derived from simulation experiments. When

data have been generated under the null hypothesis and they are near to the

normality, the �ve mentioned ways of testing H0 behave similarly. Never-

theless, remarkable di�erences appear when the distribution of data is far

from the normality (for instance if they present a heavy tail). In such cases

the last testing procedure (bootstrap based on principal components) di�ers

considerably from the rest.

As an example of the obtained results, we present a simulation case.

Bivariate samples of size n are generated from a mixture of two normal

bivariate distributions: 
x

y

!
� 
1N

" 
0

0

!
; I2

#
+ 
2N

" 
0

0

!
; �2I2

#
;
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Permutation test PC bootstrap test

n �̂ dKS dLw
1

�̂ dKS dLw
1

10 .3333 8.8335 7.5430 .3200 5.3001 4.6274

30 .3133 6.8705 5.7939 .0667 1.3799 .6308

100 .2833 5.8255 5.0662 .0633 .8603 .3579

Critical regions at .05 signi�cance level:

�̂ 62 (:0253; :0747); dKS > 1:36; dLw
1
> :59754

Table IV: Three distances for two procedures of testing H0 : � = 0.

where 
1 = :75, 
2 = :25 and � = 10. For each sample, the �ve above

statistics are calculated and the corresponding p-values are found. When

resampling techniques are used, the number of resamples is B = 300. We

repeat the experiment S = 300 times for sample sizes n = 10, 30 and 100.

As we previously advanced, the performance of the bootstrap test based

on principal components is quite di�erent from the other four, which are very

similar one another. Thus, we only report the results of two test: the later

described bootstrap test and the permutation test. Figure 3 shows the em-

pirical distribution function of the p-values for these tests when sample size

ranges from 10 to 100. Table IV contains the nine distances between those

empirical distribution functions and FU . Graphical and numerical informa-

tion permit to conclude that four of the �ve proposed test techniques show

similar performance and they do not behave properly even when n = 100,

whereas the other one (bootstrap test based on principal components) is

acceptable when n = 30 and it works very well when n = 100.

4.2 Testing the equality of variances

We study now the test of the equality of variances for two samples. Several

test statistics are available and their unknown distributions can be approxi-

mated in di�erent ways. We use the tools described previously to compare

all these test strategies.

Consider two random variables X and Y , with �nite variances �2
X
and

�2
Y
. We want to test H0 : �2

X
= �2

Y
against H1 : �2

X
< �2

Y
. We study

two permutations test, one of them based on the mean and the other on the

median, following the work of Baker (1995). In essence, both tests proceed as

follows. Let x1; : : : ; xn and y1; : : : ; yn be samples fromX and Y , respectively,

13
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Figure 3: Empirical distribution of the p-values for two ways of testing the lack of

correlation and three sample sizes.

and x̂ and ŷ be location estimators for those samples. Mean and median are

our choices for location estimators. We de�ne the test statistic Tn as the

di�erence between the sums of squares
P

i(xi� x̂)2 and
P

i(yi� ŷ)2. In order

to approximate the distribution of Tn, we obtain permuted samples putting

together the deviations dx
i
= (xi�x̂) and dyi = (yi�ŷ) and randomly choosing

from them two samples of size n without replacement. Then we compute the

permuted version of Tn as

T p

n
=
X
i

(xp
i
� x̂p)2 �X

i

(yp
i
� ŷp)2;

being x
p

i and y
p

i the elements of the permuted samples and x̂p and ŷp their

corresponding location estimators. Repeating B times the permutation re-

sampling, we have B observations of T p

n
and their corresponding empirical
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1
= 1:53

Figure 4: p-value plots for tests of the equality of variances. Dashed lines are 95%

acceptance regions based on KS distance; dotted lines indicate the 95% acceptance inter-

vals for each empirical level. Critical regions at .05 signi�cance level: �̂ 62 (:025; :075),

dKS > 1:36, dLw
1
> :598. Critical regions at .01 signi�cance level: �̂ 62 (:018; :082),

dKS > 1:63, dLw
1
> :800.

distribution is used as the approximation of the distribution of Tn.

We report graphics (Figure 4) of the empirical distributions of p-values

obtained in the simulation of S = 300 samples of size n = 10. The number

of permuted samples is B = 300. Each sample contains observations of

two variables with the same double exponential distribution (thus, data are

according to H0). Empirical size for � = 0:05 (d2), Kolmogorov-Smirnov

distance (d4) and weighted L1 norm (d7) are calculated. The critical regions

in the tests of uniformity of p-values based on ^alpha, d4 and d7 are displayed

in the caption of Figure 4. It is important to remark that conclusions about

the uniformity of the p-values (and therefore about the validity of the two

permutation tests) can be di�erent depending on the distance employed. At

.05 signi�cance level, the three distances lead to reject the uniformity of the

p-values distribution, but whereas d4 and d7 indicate that the test based

on the median has worst performance than the test based on the mean, �̂

indicates the opposite. At .01 signi�cance level, distances d4 and d7 indicate

that only the test based on the mean is acceptable. Looking at the graphics,

we visually agree with that decision.

We now pay attention to the cases where data are generated according to

some alternative hypothesis, usually identi�ed by a parameter, e.g., � (in our
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example � is the standard deviation of Y , and a �x value for the variance of

X is used). In such cases, the usual way to report results is by using graphics

of the empirical power (i.e., the proportion of simulated samples for which

the null hypothesis is rejected) at a given nominal size, versus the values of

the parameter �.

Our task is to �nd graphics, or sequences of graphics, analogous to the

power function graphics. A �rst approach is to report a sequence of graphics

that shows the empirical distribution function of the p-values for each value

of �. Figure 5 presents such a sequence of graphics when �X = 1 and �Y goes

from 1 to 1.5. Two empirical distribution functions of p-values are drawn in

each graphic: the one that takes higher values corresponds to the test based

on the mean and the other one corresponds to the test based on the median.

As we have pointed out in the introduction, to show graphically the global

behaviour of a test procedure under some alternatives, requires a sequence of

graphics, and it implies the use of a lot of output space. Besides, the values

of � may not be equispaced. When it occurs, we wish to be able to re
ect

the di�erent size of the parameter increments in the gaps between graphics,

but it does not look a trivial task.

To show the global performance of the two permutation tests when data

are not according to the null hypothesis can also be done by means of dis-

tances di. We could compute distances from the empirical distribution func-

tion of the p-values to FU at each value of �, and then plot these distances as

a function of �. This is a �rst naive approach, because each distance di has

its own range of acceptable values under H0 and therefore the interpretation

of those graphics is not direct. Instead of that, we could compute the proba-

bility of obtaining distances bigger than the observed ones in case that data

came from the null hypothesis (remember that asymptotic distributions of

distances are available; see Section 3.2). In other words, we could calculate

the p-values (we call them meta-p-values) got from the test of uniformity of

the previous p-values, based on distances di.

The representation of the meta-p-values versus � provides a set of graph-

ics with the same range of values for any distance and interpretable in the

same way. The problem is now that distances di are usually too big as the

null hypothesis is left and then meta-p-values are almost zero for alternative

hypothesis not very far from H0. Nevertheless, the calculation of meta-p-

values is very interesting when data come from the null hypothesis. In the

presented example, the meta-p-values of the nine distances under H0 are dis-
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Figure 5: Empirical distribution function of p-values for data generated under some

alternative hypotheses.

played in Table V. Note that the test based on the mean has an acceptable

performance under H0 if we look at global distances, and it is according to

the conclusions obtained from the analysis of Figure 4.

Alternative graphics can be designed in order to achive two objectives:

�rst, they have to be easily interpretable, independently on the involved

distance, and second, graphics must not be trivial, whichever the alternative

hypothesis is. Our proposal is to compute the ratio between each observed

di and the greatest value di can take, which corresponds to a sequence of p-

values identically equal to 1. Those ratios always lie in [0; 1]; they are 0 if di is

0 and 1 under the farthest alternative hypothesis we can suppose. Moreover,

in case that di is d�, this ratio is very similar to the empirical power �̂ for a

nominal size �, because the ratio j�̂ � �j=(1 � �) is approximately �̂ when
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Distances d1 d2 d3 d4 d5 d6 d7 d8 d9

Mean .0741 .0002 .0000 .0181 .0001 .0842 .0352 .0754 .0222

Median .0741 .0081 .0002 .0000 .0000 .0003 .0000 .0001 .0000

Table V: Meta-p-values for the permutation tests based on the mean and on the median

in the test of the equality of variances.

1 1.1 1.2 1.3 1.4 1.5
0

0.2

0.4

0.6

0.8

1

1 1.1 1.2 1.3 1.4 1.5
0

0.2

0.4

0.6

0.8

1
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Figure 6: Ratios of observed distances di over its supremum values in the test of the

equality of variances. Doted line corresponds to d:01, solid line to d:05, dashed line to d:1,

dashdot line to dKS, plus symbols to L1 and star symbols to dLw
1
.

� is small. For dKS , the ratio is again dKS . The supremum of distances

dL1
and dL2

are .5 and
q
1=3, respectively. In case of dw

KS
, the supremum

is supu2[0;1](1 � u)w(u), and it is equal to 3:411 for the function w used in

that paper. The value of supremums for the weighted L1 and L2 norms are,

respectively, (1 � �w) and �2
w
+ (1 � �w)

2, where �w is the expectation of

a random variable with density function w and �2
w
is its variance. For the

weight function w used in this work, these two supremum are 0:8 and :7855.

In Figure 6, we plot ratios of the observed distances di over its supremum

values. As weighted distances show very similar ratio patterns, we only plot

the ratio corresponding to Lw

1 . For the same reason, we plot the L1 ratio

instead of plotting the ones for both L1 and L2. In the test based on the

median, the passing of the empirical function of p-values from the lower

diagonal region into the upper diagonal region is also re
ected in the ratio

graphics of weighted distances: these ratios have a minimum not at �Y = �X

but at �Y = 1:1�X . Finally, we can conclude that the test based on the mean

is better than the test based on the median, because the ratios corresponding
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to the mean are always higher than the ones corresponding to the median.

The implications of this fact are similar to those derived from the observation

of two power functions, if one of them was always over the other one. The

same conclusion is also derived from Figure 5.

5 Conclusions

In this paper, we have presented new graphical and numerical tools that sum-

marize the results of a simulation study concerning hypothesis test. These

tools are mainly based on the computation of distances between distribution

functions. We have tabulated the null distribution of some of these distances.

A joint study of several distances reveals that important aspects of a test can

pass unnoticed if only empirical signi�cance levels are calculated. The pro-

posed tools have been applied in two practical examples, demonstrating their

usefulness in the discrimination between alternative test procedures and also

in the detection of data not according to the null hypothesis.
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