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Abstract

This paper studies sequential auctions of licences to operate in a market

where those �rms that obtain at least one licence then engage in a sym-

metric market game. I employ a new re�nement of Nash equilibrium, the

concept of Markovian recursively undominated equilibrium. The unique so-

lution satis�es the following properties: (i) when several �rms own licences

before the auction (incumbents), new entrants buy licences in each stage,

and (ii) when there is no more than one incumbent, either the single �rm

preempts entry altogether or entry occurs in every stage, depending on the

parameter con�guration.

1 Introduction

This paper studies auctions of licences to operate in a market. Since the outcome

of an auction partly determines the market structure that will emerge after the

auction, this setting seems appropriate to address interesting questions about en-

try preemption and the persistence of certain market structures in the face of en-

try. The relationship between auction procedures and resulting market structure

was seriously addressed in practice by regulators and auction designers during

the recent FCC auctions of radio spectrum bands. More generally, any auction of

licences or productive capacity raises similar issues and can be addressed within

the present analysis.

Entry preemption and the persistence of monopoly have received considerable

attention in the Industrial Organization literature (Gilbert and Newberry, 1982;

Dasgupta et al., 1983) . It has been argued that a monopoly will persist even

when new capacity becomes available. Because in a non-cooperative environment

aggregate industry pro�ts decrease with entry, the total cost of entry to the

incumbents is larger than the bene�t to the entrant. If a single incumbent has

to bear this entire cost, it will be willing to pay more to avoid entry than the
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potential entrants are willing to pay to accomplish it. Therefore, a monopolist is

expected to engage in preemptive investment to avoid entry.

However, Krishna (1993) shows that this argument, initially formulated in a

static framework, does not necessarily extend to the dynamic case. She studies

the persistence of monopoly in the context of a sequential auction of capacity. For

a large class of demand speci�cations, she singles out an equilibrium outcome in

which entry occurs in every stage except the last. Her analysis, however, relies on

a fundamentally asymmetric formulation: in the market that emerges after the

auction, except for a price setting monopolist, all the remaining �rms behave as

price takers. It is apparent that this may not be consistent with Nash equilibrium

in the post-auction market game unless the capacity units auctioned are small

relative to the size of the market.

In this paper, I study sequential auctions of licences in the case in which a

symmetric market structure emerges after the auction. I suppose that each �rm

that ends the auction with at least one licence will engage in a symmetric market

game. For example, symmetric scenarios in which the post-auction market game

is either a Cournot or a Bertrand game are consistent with our formulation. Note

that the symmetry assumption implies that licences are unrestricted: a �rm that

has a single licence is entitled to sell as much output as it wishes; or equivalently,

in an auction of capacity units this implies that the units auctioned are large:

a �rm that owns a single capacity unit can serve the whole market. Although

in this model �rms that own units do not need additional units to expand their

production, they may still wish to obtain more units simply to preempt entry by

other �rms.

The analysis had to cope with two main obstacles: the enormous multiplicity

of equilibria characteristic of many dynamic games and the presence of exter-

nalities. Rodr��guez (1994) shows that the indeterminacy that arises in many se-

quential auctions cannot be e�ectively reduced by standard re�nements of Nash

equilibrium. The concept of Markovian recursively undominated (MRU) equilib-

rium developed in that paper is appropriate for the present application. Brie
y,

an MRU equilibrium is a Markovian equilibrium in which the players do not use

locally dominated choices. I say that a choice prescribed by a strategy pro�le to

a given player at a given stage and history is locally dominated at that stage and

history if it is weakly dominated in the game obtained by substituting the sub-

games starting at the next stage by the corresponding payo� vectors under the

pro�le in question. By requiring that the players do not employ locally dominated

choices, this concept imposes a strong strategic stability requirement locally at

each stage and conditional on each history. However, this requirement is con-

sistent with recursive construction of a solution, which results in considerable

simpli�cation of the analysis.

Externalities are present here since a �rm's payo� depends not only on whether

this �rm obtains a licence to enter the market, but also on the total number of

�rms that manage to enter. Although these externalities may result in non-
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uniqueness, I identify conditions on the rate at which pro�ts decrease with entry

that eliminate the indeterminacy and are satis�ed in an interesting class of eco-

nomic environments.

A brief summary of the main results follows. The MRU allocation is unique

and independent of whether the auction is a �rst or a second price sequential

auction. When there is more than one incumbent �rm before the auction, new

entrants will buy licences in every stage. On the other hand, when there is at

most one initial incumbent, either a single �rm preempts entry completely or

entry occurs in each stage. Which case will prevail depends on the sign of a

parameter that will, in equilibrium, be equal to the net bene�t to a monopolist

of complete preemption.

These results rely on the assumption that in the market that emerges after

the auction pro�ts decrease with entry, but the rate at which they decrease is not

too large. In particular, this assumption is satis�ed when �rms have a constant

returns technology, the market demand is concave and the post-auction market

game is a symmetric Cournot game. In fact, even sharper results are available

in this particular case. I show that when the number of units auctioned is large

enough, entry will necessarily occur in every stage, a result that contrasts with

the persistence of monopoly that prevails in the static case. It suggests that a

government can always approximate a competitive solution by auctioning a su�-

ciently large number of licences. However, I also show that a revenue maximizing

seller will in many cases prefer to o�er only the largest number of units that is

consistent with complete preemtion by a monopolist.

Another scenario amenable to treatment by these methods is the case of �rms

with a constant returns technology that engage in a symmetric Bertrand game

after the auction. In this case, however, the net bene�t of complete pre-emption

is always positive so that the completely preemptive outcome prevails, as in the

static case.

The paper is organized as follows. In section 2 I lay out the model and

introduce the solution concept. In section 3 I analyze a Cournot game that is

consistent with the basic assumptions of the model about the market that emerges

after the auction. Section 4 derives the main results about the auction. Most

proofs are included in the appendix.

2 The Model

In this section I lay out the model of sequential auctions of licences and introduce

the solution concept that will be used.

Suppose that t licences to operate in a market are auctioned sequentially

among n �rms. Two alternative auction procedures will be considered: sequential

�rst price auctions and sequential second price auctions. Firms that own licences

before the auction are called incumbents. Although �rms that already have
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a licence do not need more licences to increase their operation, they may still

want to buy additional licences to prevent other �rms from entering the market.

Any �rm that owns at least one licence after the auction ends has the right to

operate without restrictions in the market that emerges. Note that not only the

market game that is expected to be played among incumbents and new entrants

determines the bidders' valuations, but also the outcome of the auction itself

partly determines the ensuing market structure.

2.1 Notation and Basic Assumptions

I model the auction as a multistage game of complete information and observable

histories. Let N = f1; ::; ng be the set of players (�rms) and T = f1; ::; tg be

the set of units auctioned sequentially, where n > t. I assume that the bidding

space B is a set of nonnegative multiples of a small money unit u.1 Let bir 2 B

denote player i's bid in the rth stage, r 2 T . At each stage, all the players

bid simultaneously and the corresponding unit is allocated to one of the highest

bidders; a random tie-breaker selects the winner in case of a tie. Let ar 2 N

denote the winner of the rth unit and pr the price he pays. In the case of a

Sequential First Price Auction (SFPA), pr equals the largest bid for the rth

unit; in the case of a Sequential Second Price Auction (SSPA), it equals the

second largest bid.

Denote br = (bi1; ::; bi;r�1) and ar = (ai1; ::; ai;r�1). Thus, the history up to

the rth stage is hr = (br; ar). Let Hr denote the set of all the histories up to r

and de�ne H = \�2TH� . I assume that histories are publicly observable. Each

history hr 2 Hr determines an allocation of units ar and a set Ir = Ir (a
r) of

players that own at least one unit at the beginning of stage r. In particular, I1
is the set of incumbent �rms prior to the auction and It+1 is the composition of

the industry after the auction. I assume without loss of generality that there is

at least one �rm in the market before the auction starts, i.e.:jI1j � 1.

Let wir denote the amount paid by player i in the rth stage. Also denote

wr
i = (wi1; ::; wi;r�1) and w

r = (wr
i )i2N . For a given allocation (at+1; wt+1), player

i's payo� is represented by the quasi-linear function ui(a
t+1; wt+1

i ) = �i(a
t+1) �P

�2T wi� , where the revenue �i(a
t+1) is induced by the outcome of the market

game that follows the auction.

I assume that players who own at least one unit engage in the symmetric

Nash equilibrium of a symmetricmarket game. This presupposes that licences are

unrestricted: a �rm that has a single licence is entitled to sell as much output as it

wishes. On the other hand, players that do not own any licence after the auction

ends will not be able to enter the industry. Consequently, the equilibrium pro�ts

of each �rm in the industry can be written as a function � (jIt+1j) of the total

1Except for a quali�cation made in footnote 2 for the case of �rst price auctions, all the

results in this paper extend to the case in which B = <+.
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number jIt+1j of �rms in the industry , so we have that �i (a
t+1) = � (jIt+1 (a

t+1)j)
when i 2 It+1 (a

t+1), and �i (a
t+1) = 0 otherwise. We assume that the function �

satis�es the following conditions:

(A1) m�(m) > (m+ 1)�(m+ 1) m = 1; 2; :::

(A2) 2�(m+ 1) > �(m) m = 2; 3; :::

Note that assumption (A1) requires that total industry pro�ts do not increase

with entry, and that (A2) puts an upper bound on the rate at which individual

�rms' pro�ts decrease with entry. In section 2 we will see that these assumptions

are actually satis�ed by an important class of economic environments.

2.2 Solution Concept

In this subsection I de�ne the solution concept used for the analysis of the se-

quential auction. A more complete discussion of this topic is found in Rodriguez

[7]. It is shown in there that the standard re�nements of Nash equilibrium fail

to select a plausible and determinate solution for �nite multistage auctions even

in simple cases. The concept of MRU equilibrium is developed there to provide

a tractable analytical tool and preserve the predictive power of the model. Using

the logic of backwards induction, this concept provides a rather simple exten-

sion to a dynamic setting of the concept of Nash equilibrium in undominated

strategies which is often applied to static auctions.

Before I provide a precise de�nition of the solution concept, I introduce some

related concepts. A behavior strategy for player i is a map �i : H ! �(B);

where � (B) denotes the set of probability distributions on the bidding space B.

Let uir (hr; �) denote player i's expected payo� gross of payments prior to stage

r and conditional on the history hr; provided that the players use the pro�le

� = (�i)i2N in the subgame determined by hr. More explicitly, uir (hr; �) =

E�

h
ui(a

t+1;wt+1
i ) j hr

i
+
Pr�1

�=1wi� ; where E� is the expectation operator with

respect to the distribution induced by �. In particular, if the players select bids

br = (bir)i2N at the history hr and bid according to the pro�le � after the stage

r, their expected payo�s (gross of payments prior to r) are ui;r+1 (hr; br; �)�wir,

for each i 2 N . Given � and hr, these payo�s de�ne a static game where the

bidders' strategies are their bids at r. I refer to this game as the local auction of

the rth unit at hr given �. I say that a bid for the rth unit is locally dominated

at hr given � if it is weakly dominated in the local auction of the rth unit at

hr given �: I also say that a subgame perfect Nash equilibrium � is recursively

undominated if none of the choices prescribed (with positive probability) by � to

any player is locally dominated at its corresponding stage and history given �.

By ruling out locally dominated strategies, this restriction imposes a strong

local strategic stability requirement at each history. Moreover, since a local auc-

tion at hr given � depends on � only through the local strategies prescribed for
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subsequent stages, this concept is recursive in nature, which simpli�es the anal-

ysis considerably. Existence of a subgame perfect equilibrium that is recursively

undominated for the games considered in this paper is a direct consequence of

the existence of a Nash equilibrium in undominated strategies for �nite games

since each local auction is a �nite game (Van Damme, 1991).

Moreover, I will restrict my attention to equilibria that are Markovian, a con-

dition often used in the literature and that seems rather natural in the present

context. I should say that although this condition simpli�es somewhat the treat-

ment, it is actually not restrictive in the present case.

The payo� relevant partition of the set of histories H is the partition of H into

sets that contain all the histories that de�ne strategically equivalent subgames. A

behavior strategy is Markovian if it is measurable with respect to the payo� rel-

evant partition (i.e.: �i(h) = �i(h
0) whenever h and h0 de�ne strategically equiv-

alent subgames). A Markovian equilibrium is a Nash equilibrium in which all

the players employ Markovian strategies. In our case, the Markovian assumption

implies that histories that project the same allocation of units determine strate-

gically equivalent subgames. To see this, consider two histories ĥr and ~hr that

project the same allocation of units, i.e.: âr = ~ar. Note that for every allocation

(ar; ::; at;wir; ::; wit)i2N we have that ui(â
r; ar; ::; at; ŵ

r
i ; wir; ::; wit) +

Pr�1
�=1 ŵi� =

ui(~a
r; ar; ::; at; ~w

r
i ; wir; ::; wit) +

Pr�1
�=1 ~wi� . In other words, for every i 2 N , ui

induces the same preference ordering among allocations for the subgames deter-

mined by ĥr and ~hr. Thus, both subgames are strategically equivalent and all the

players will behave identically in each of them at every Markovian equilibrium.

The Markovian assumption allows us to de�ne an array of recursive valua-

tions associated to a strategy pro�le. Given the pro�le �, I de�ne player i's

recursive valuations for the rth unit at hr as vij (hr; �) = ui;r+1(hr; ar=i; �) �
ui;r+1(hr; ar=j; �): This can be interpreted as the amount that player i has to

pay for the rth unit at hr in order to be indi�erent between obtaining the unit

and allowing player j to obtain it instead, provided that all the players use the

pro�le � after period r. In section 4 we will see that recursive valuations provide

a convenient characterization of local auctions and locally dominated choices.

Now, I can de�ne the solution concept that will be employed in the analysis

of the sequential auction. A subgame perfect Nash equilibrium of the sequen-

tial auction that is both Markovian and recursively undominated will be called

an MRU equilibrium, which is short for Markovian recursively undominated

equilibrium. An allocation determined by an MRU equilibrium will be called an

MRU allocation. Existence of an MRU equilibrium for multistage games with

observed actions is a trivial consequence of the existence of a subgame perfect

equilibrium that is recursively undominated.
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3 The Post-Auction Market Game

In the preceding section I have characterized the market that emerges after the

auction in terms of a pro�t function � that satis�es conditions A1 and A2. Here

I address the question of whether such a pro�t function is consistent with the

equilibrium correspondence of any reasonable market game. More speci�cally, I

investigate conditions under which the Nash equilibria of a symmetric Cournot

game satisfy A1 and A2.

Consider an industry in whichm �rms produce a homogeneous good using the

same constant returns to scale technology. Their cost of production is represented

by the function c(q) = cq; for some constant c � 0: Suppose that they can

sell their total output Q at a price consistent with the inverse demand function

p(Q). I assume that this function is bounded, non-increasing and continuously

di�erentiable in (0;1): Moreover, p(0) > 0 and p( �Q) = 0 for some �Q > 0: It also

satis�es either one of the following assumptions:

(M1) p0(Q) +Qp00(Q) < 0 for Q 2 (0; �Q):

(M2) the restriction of p to [0; �Q] is a concave function.

I suppose that �rms engage in a Cournot game. It is well known that there is

a unique Cournot equilibrium for the preceding problem (Friedman, 1982). Let

qm denote the equilibrium output of an individual �rm, indexed by the number

m of �rms in the industry. Denote Qm = mqm and � (m) = (p(Qm)� c) qm: The

following result describes some basic properties of the unique Cournot equilib-

rium.

Lemma 1 Suppose that the inverse demand function satis�es condition M1:

Then the unique Cournot equilibrium must satisfy the following properties:

(i) Qm < Qm+1 m = 1; 2; ::

(ii) � satisfies condition A1:

(iii) 2�(m+ 1) > �(m) m = 3; 4; :::

We conclude that the concavity of total revenues required by condition M1

not only ensures that assumption A1 holds, but also ensures that the conditions

required by assumption A2 are satis�ed for m > 2. To guarantee that these

conditions are also satis�ed for m = 2 we may need a stronger assumption. The

following example shows that conditions A1 and A2 are satis�ed when the demand

function is linear.
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Example 1 (Linear Demand) Suppose that p(Q) = a � bQ. In this case,

equation (2) can be easily solved to obtain qm = a�c
b(1+m)

and �(m) = (1=b) a�c
1+m

2
:

Moreover, m�(m) � (m + 1)�(m + 1) = b2K(m)2 [m(m + 1)� 1] > 0 for m �
1 and �(m) � 2�(m + 1) = bA(m)(2 � m2) < 0 for m > 1 since K(m) =�

a�c

b(m+1)(m+2)

�
> 0: Thus, conditions A1 and A2 hold in this case.

In fact, it can be shown that all concave demand functions satisfy both A1 and

A2. Since M2 implies M1, that A1 is satis�ed follows from the preceding lemma.

Consider the case of A2. Suppose that p is strictly concave. Let pl denote the

tangent to p at the quantity Qm. Clearly, pl is a linear demand function and

the corresponding Cournot equilibrium satis�es Ql = Qm and �l (m) = � (m) :

Moreover, since total output increases with entry by Lemma 1, we know that both

Qm+1 and Ql are larger than Qm. The strict concavity of p implies both that pl

is more elastic than p at each quantity Q > Qm and also that the elasticity of p

decreases as the output increases. We must conclude that �rms produce less at

the Cournot equilibrium corresponding to the demand function that is less elastic

at the relevant range. Thus, Qm+1 < Ql: But since total pro�ts decrease in Q at

outputs larger than the monopoly level Q1, we must also conclude that �(m+1)

> �l(m+1). Consequently, �(m)�2�(m+1) < �l(m)�2�l(m+1) < 0 form > 1,

where the second inequality follows from example 1. This argument establishes

somewhat informally the �rst statement of the following lemma (A more detailed

proof is included in the appendix).

Lemma 2 Suppose that the inverse demand function satis�es condition M2.

Then, at the unique Cournot equilibrium, �(m) satis�es both A1 and A2. More-

over, �(1) <
�
1+m

2

�2
�(m), for m = 2; 3; ::.

4 The Auction

In this section I examine in detail the auction of licences. Subsection 4.1 focuses

on the role of externalities in the context of a single-unit auction. Section 4.2

includes the main results of the paper. Proposition 1 provides a characterization

of the MRU allocation for sequential auctions that satisfy assumptions A1 and

A2. Moreover, sharper implications are drawn for the case in which the post-

auction market game is a Cournot game. Extension to the case of a Bertrand

game is provided in a �nal remark.

4.1 Preliminary Remark: Externalities

A particularity of the auctions that we study here is that some �rms' payo�s may

exhibit externalities. The bidders' payo�s in the auction are induced by their

expected pro�ts in the ensuing market game and, typically, these pro�ts depend
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on the total number of �rms in the market. Therefore, each bidder's payo�

depends not only on whether he obtains a licence to operate in the market, but

also on the total number of �rms that own licences. For instance, if at some point

during the auction several �rms own licences, each one of these incumbent �rms

would rather have other incumbents buy the remaining licences than allowing a

reduction of pro�ts due to new entry. As a result of these externalities, some

of the incumbents' valuations may not be uniquely de�ned: they may depend

on whether they expect another incumbent or a new entrant to be the highest

bidder for the unit in question. An example illustrates this matter.

Example 2 (Static Second Price Auction) A single licence is sold using a

second price auction. jI1j incumbent �rms and n�jI1j potential new entrants par-

ticipate in the auction. Firms that own at least one licence are expected to engage

in a Cournot game after the auction. If a new entrant obtains the licence the post

auction market will be shared by jI1j + 1 �rms, each one making � (jI1j+ 1) in

pro�ts. Since potential entrants obtain zero pro�ts if they fail to enter the mar-

ket, their valuation for the licence is unambiguously de�ned as vi = � (jI1j+ 1),

where i =2 I1: The case of incumbents is somewhat di�erent. No matter which

incumbent obtains the licence, the total number of �rms in the market remains

the same, so each one of them makes � (jI1j) in pro�ts. Thus, if the incumbent

�rm i believes that the new entrant j will be the highest bidder, he will attach to

the licence a value of vij = � (jI1j) � � (jI1j+ 1) > 0; according to the expected

loss of pro�ts due to entry. However, if i believes that the highest bidder will

be another incumbent k, he will value the licence in vik = � (jI1j) � � (jI1j) = 0.

Consequently, when jI1j > 1, unlike the new entrants' valuations, the incumbents'

valuations are not uniquely de�ned.

I introduce the following concepts and observations to facilitate the analysis

of the role of externalities in our problem.

A single-unit auction with externalities is de�ned by a valuations-matrix (vij)i2N; j2Nnfig:

Also denote vi = min
j2Nnfig

vij and �vi = max
j2Nnfig

vij. The following lemma provides an

immediate characterization of the sets of undominated strategies for each bidder,

both in the case of a �rst price auction (FPA) and of a second price auction

(SPA).

Lemma 3 Consider a static auction with valuations-matrix (vij)i2N; j2Nnfig. Then

(i) in the case of a FPA, bids b � �vi are weakly dominated for player i; and (ii)

in the case of a SPA, bids b < vi and bids b > �vi are weakly dominated for player

i.

Since bidders' valuations may not be uniquely de�ned due to the presence of

externalities, Lemma 1 implies that undominated outcomes may be non-unique.

However, one can single out a case in which externalities do not preclude unique-

ness of the undominated Nash equilibrium allocation.
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Given a valuations-matrix (vij)i2N; j2Nnfig, relabel the players so that �v1 �
�v2 � ::: � �vn . I say that the valuations-matrix displays Determinate High

Values if, for every i 2 N , �vi � �v2 implies that vi = �vi. In this case, we can

write v1 = v1j and v2 = v2j. For simplicity, I assume that v1; v2 2 B: The

following result is an immediate consequence of Lemma 3.

Lemma 4 Consider a single-unit auction whose valuations-matrix displays De-

terminate High Values. Denote V1 = fi 2 N : �vi = �v1g. Then, independently of

whether the auction is a FPA or a SPA, at every undominated Nash equilibrium,

each i 2 V1 participates in the tie-breaker and the winner pays a price p �= v2, an

approximation that becomes exact as the money unit u tends to 0.2

In Example 2 the unique undominated choice for a new entrant i consists

in bidding vi = � (jI1j+ 1). When jI1j = 1, the only incumbent, say bidder j,

knows that his failure to obtain the licence would necessarily result in entry, so his

valuation also is uniquely de�ned by vj = � (jI1j)�� (jI1j+ 1) : Since in this case

all the valuations are uniquely de�ned and vj � vi = � (jI1j) � 2� (jI1j+ 1) > 0

by assumption A1; we conclude that the initial monopolist buys the licence at a

price p1 = � (jI1j+ 1).

The strategic problem of the incumbents is somewhat di�erent when jI1j > 0.

Since incumbent's valuations are not uniquely de�ned in this case, Lemma 3 im-

plies that all the bids between 0 and � (jI1j) � � (jI1j+ 1) are undominated for

each incumbent. Note that due to the presence of externalities the undominated

Nash equilibrium allocation may be non-unique. For instance, when I1 = f1; 2g
and � (2) > 2� (3) ; the new entrants' valuations are between the two possible

valuations of each incumbent. A public good problem between the incumbents

arises: an incumbent will buy the licence and preempt entry if and only if the

other incumbent abstains from doing it himself. Consequently, there are two un-

dominated Nash equilibrium allocations, a di�erent incumbent buying the unit

at a price equal to � (3) in each one of them. However, condition A2 rules out the

possibility of non-uniqueness by ensuring that the uniquely de�ned valuation of

the potential new entrants is larger than both possible valuations of the incum-

bents, so the valuations exhibit Determinate High Values in this case. According

to Lemma 4 all the undominated Nash equilibria result in the same allocation: a

tie-breaker decides which entrant gets the licence and the winner pays an amount

equal to � (3) :

4.2 The Sequential Auction: Main Results

In this subsection I examine in detail the sequential auctions of licences emphasiz-

ing the connection between the outcome of the auction and the resulting market

2When B = <+, the equilibrium price is exactly equal to v2 in the case of a SPA. In the

case of a FPA, undominated Nash equilibria may not exist. However, at every undominated

�-equilibrium , the allocation is identical to the one of the corresponding SPA.
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structure.

The preceding discussion of Example 2 provides a simple illustration of some

fundamental insights. The entry preemption paradigm claims that a monopolist

always has incentive to preempt entry by buying either licences or capacity. It

argues that since total pro�ts decrease with entry because of the appearance of

competition in the market, the decrease in the monopolist's pro�ts due to entry

is larger than the increase in the pro�ts of the new entrants. Consequently,

the monopolist will outbid potential entrants in any static, once-and-for-all sale.

However, the persistence of monopoly does not generally extend to the case of

markets where other forms of imperfect competition prevail. As we have seen in

the context of Example 2, a Cournot oligopoly may allow entry in the auction

of a single licence. Although entry reduces the aggregate pro�ts of the oligopoly,

unlike the monopoly case these pro�ts are not appropriated by a single oligopolist;

therefore, none of them receives the full blow of the reduction. In fact, if pro�ts

do not decrease too fast, the decrease in pro�ts expected by each incumbent �rm

if entry occurs may be smaller than the increase expected by new entrants, so

entry will occur in this case.

Since the concept of MRU equilibrium reduces the analysis of the sequential

auction to the one of a recursively de�ned sequence of single-unit auctions, the

preceding observations about single unit auctions are directly relevant to the

analysis of the more general case. The following remarks highlight the relationship

between static and dynamic cases.

First, note that the instability of an oligopoly facing entry extends to the

dynamic case: the last stage of a sequential auction is in fact a single-unit auction

involving an oligopoly, and according to Example 2, entry will occur as long as

condition A2 is satis�ed. In fact, a simple recursive argument shows that entry

occurs in every stage. We conclude that if some competition is present, it will

expand.

The question of persistence or stability of a monopoly that faces entry in a dy-

namic setting is somewhat more involved. However, an immediate insight follows

directly from the preceding paragraph: if entry ever occurs we will be dealing

with an auction that involves an oligopoly thereafter, so entry will continue to

occur thereafter. Potential entrants know that were they to succeed in obtaining

a licence in stage s, entry would continue to occur and t� s+ 2 �rms would end

up in the market after the auction. Thus, they are willing to o�er the amount

� (t� s + 2) for the sth unit. Consequently, if a monopolist that has already

preempted entry up to the rth stage wishes to preempt entry completely, he has

to pay an amount equal to
Pt

s=r � (t� s+ 2) =
Pt�r+2

�=2 � (�) for the remaining

licences. Moreover, since a monopolist that preempts entry completely will make

an amount � (1) in gross pro�ts, we conclude that the bene�t of complete pre-

emption is � (1) �
Pt�r+2

�=2 � (�) : On the other hand, if the monopolist allows

entry in the rth stage, entry will continue thereafter and he will end up mak-

ing � (t� r + 2) in pro�ts. Restricting our attention to the alternative between
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buying the remaining units or allowing entry immediately, we can talk unam-

biguously of the net bene�t to a monopolist that has already preempted r units

of preempting the remaining units, which we de�ne as the di�erence between the

bene�ts associated to the preceding alternative, say

�t (r) = � (1)� � (t� r + 2)�
t�r+2X
�=2

� (�)

Indeed, that alternative re
ects the choices available to a single incumbent

in equilibrium. The following result shows that, generically, the outcome of the

sequential auction will be a monopoly if and only if both jI1j = 1 and the net

bene�t of complete preemption �t (1) is positive. Otherwise, entry in each stage

should be expected.

Proposition 1 Consider the auction games described in section 2. Both for

a SFPA and for the corresponding SSPA, the MRU allocation is unique and

satis�es the following properties:

(i) Suppose that both jI1j = 1 and �t (1) > 0. Then jIt+1j = 1 and p� �=
� (t� � + 2) for all � 2 T .

(ii) Suppose that either jI1j > 1 or �t (1) < 0. Then jIt+1j = jI1j + t and p� �=
� (jI1j+ t), for all � 2 T:

(iii) Suppose that jI1j = 1 and �t (1) = 0: Then there is a tie-breaker for the

�rst unit. If i 2 I1 is selected we are in case (i). Otherwise, we are in case

(ii).

The following example illustrates the last result.

Example 3 (Two-Stage Second Price Auction) We consider the same en-

vironment as in Example 2 except that now two licences are auctioned sequen-

tially. Suppose that I1 = f1g. To �nd the MRU allocation we proceed recursively.

Since the last stage is a static auction, we know from Example 2 that if �rm 1

obtains the �rst licence, it will also obtain the second one at a price p2 = � (2) :

Thus, �rm 1's expected payo� gross of the �rst period's payment is � (1)�� (2) if

it buys the �rst licence. We also know that if entry occurs in the �rst stage, entry

will occur again in the second one as a consequence of assumption A2. Thus, if a

new entrant i buys the �rst licence, both i and 1 have an expected payo� gross of

�rst period payments equal to � (3) : These observations imply that the recursive

valuation of the �rst unit to �rm 1 is v1 (h1) = � (1)�� (2)�� (3). Now consider

the case of a potential entrant i. If he obtains the �rst unit, entry will occur again

in the second stage, so i's payo� gross of the �rst period's payment is � (3) : If

i fails to obtain the �rst unit two scenarios are possible: either �rm 1 gets it or
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some other entrant gets it. In the �rst case, �rm 1 will preempt entry completely

so �rm i ends up with no licence at all and zero pro�ts. Finally, if some other

entrant j gets the �rst unit, �rm i has a positive probability of getting the second

unit at a price p2 = � (3). However, since entry occurs twice in this case, �rm i's

expect payo� gross of the �rst period's payment will be � (3)� � (3) = 0 anyway.

We conclude that the recursive valuation of the �rst unit to a potential entrant i

is vi (h1) = � (3). Since all the recursive valuations are uniquely de�ned, they are

the only locally undominated bids for each bidder in the �rst stage according to

Lemma 4 . Moreover, note that v1 (h1)�vi (h1) = � (1)�� (2)�2� (3) = �2 (1).

Generically, either one of two cases may arise. When �2 (1) > 0 �rm 1 is the high

value player so it obtains both units at prices p1 = � (3) and p2 = � (2). When

�2 (1) < 0 all the potential entrants are high value players so the tie breaker

decides which one obtains the �rst licence at price p1 = � (3) : According with

Example 2, in the second stage, another new entrant obtains the second unit at

the same price.

Proposition 1 extends and quali�es the entry preemption insights derived

from a static formulation. It con�rms the idea that oligopolies would allow entry

but severely quali�es the presumption that a monopolist would always have an

incentive to avoid entry. It should be stressed that the limits of the analysis

are clearly associated to the validity of assumptions A1 and, particularly, A2:

However, as we have seen in section 2, the assumptions are satis�ed by some

interesting market games.

In fact, in the particular case in which the post-auction market game is the

symmetric Cournot game described in that section, somewhat sharper predictions

can be obtained. Consider an environment in which a single monopolist faces a

large number of potential entrants. We know that if a single unit is auctioned,

the monopolist always preempts entry. The question is whether the monopolist

would ever abandon his preemptive behavior to allow entry if a su�ciently large

number of units is o�ered. The following corollary of Proposition 1 shows that

if a su�ciently large number of licences is auctioned, new entry occurs in every

stage. Let N denote the set of the natural numbers, and also denote t0 = supft 2
N : �t(1) > 0g.

Corollary 1 Consider the case in which N = N and jI1j = 1: Suppose that the

post-auction market game is the Cournot game described in section 2 and that

the market demand satis�es assumption M2. Then

(i) If t � t0; then jIt+1j = 1. Otherwise, jIt+1j = jI1j+ t.

(ii) Suppose also that p satis�es assumption M2. Then t0 <1.
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Proof. (i) Just notice that �t+1 (1)��t (1) = � (t + 1)� 2� (t+ 2) < 0 by A2,

and then apply Proposition 1.

(ii) Lemma 2 implies that � (1) <
�
1+r
2

�2
� (r) for r = 2; 3; ::. Thus, using the fact

that
P

1

�=1

�
1
�

�2 �= 1:6 , we have that
P

1

�=2 � (�) > 4� (1)
P

1

�=2

�
1

1+�

�2 �= 1:6 � (1) :

But then
P

1

�=2 � (�) > � (1), so we conclude that �t (1) < 0 for t large enough. 2

This result contrasts sharply with the static case. It suggests that by auction-

ing sequentially a su�ciently large number of licences, a government can ensure

the competitiveness of the resulting market. But will the government or, more

generally, a seller actually do that? Suppose that the seller aims at maximizing

his own revenue. Let Rt denote the seller's revenue associated to the MRU allo-

cation of the sequential auction of t units and let t̂ denote the number of units

that maximizes that revenue. The following characterization of this revenue is

an immediate consequence of Proposition 1 and Corollary 1:

Rt =
Pt+1

�=2 � (�) when t � t0

Rt = t� (t+ 1) when t > t0
(1)

Examination of the expression (6) leads to the following result:

Corollary 2 Consider the case in which N = N and jI1j = 1. Suppose that the

post-auction market game is the Cournot game described in section 2 and that

the market demand satis�es assumption M2. Then

(i) In general, t̂ � maxf2; t0g: Moreover, t0 > 2 implies that t̂ = t0:

(ii) Suppose that � (3) > (t=2)� (t + 1) for t = 3; 4; :::. Then t̂ = maxf2; t0g:

(iii) In the linear demand case, t̂ = t0 = 2.

Proof.

(i) First note that Rt �Rt+1 = �� (t + 2) < 0 for t < t0: Thus, t̂ � t0. Also note

that R1 � R2 = � (2) � 2� (3) < 0 when t0 = 1. Thus, t̂ � 2. Finally, suppose

that t0 > 2. Then, for t > t0, we have that

Rt0 � Rt =
Pt0+1

�=2 � (�)� t� (t+ 1)

�
�
t0+1
2

�
� (t0 + 1) +

Pt0+1
�=3 � (�)� t� (t+ 1)

> (t0 + 1)� (t0 + 1)� t� (t + 1) > 0

where the inequalities follow by A1. We conclude that t̂ = t0.

(ii) In view of part (i) we only need to consider the case of t0 � 2 � t. Note that

by assumption R2 � Rt = 2� (3) � t� (t+ 1) > 0 when t0 = 1, and R2 � Rt =
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� (2) + � (3) � t� (t+ 1) � 2� (3) � t� (t + 1) > 0 when t0 = 2. The conclusion

follows.

(iii) It follows directly from Example 1 and part (ii). 2

In other words, this result identi�es cases in which a revenue maximizing

seller prefers to sell less than the number of licences or capacity units that would

be consistent with new entry. In particular, this will be the case whenever the

largest number of units consistent with the monopoly solution, i.e.: t0, is larger

than two. In fact, even when that number is equal to two, the seller may choose

not to encourage competition, an example of which is the linear demand case.

Thus, although it is always possible to encourage competition by auctioning a

su�ciently large number of units, the possibility that complete preemption occurs

should not be neglected.

4.3 Remark: The Bertrand Case

Let us brie
y consider the case in which the post-auction market game is a sym-

metric Bertrand game with constant returns to scale technology. In particular,

if a single incumbent preempts entry completely, it will set prices so as to obtain

the monopoly level of pro�ts � (1) > 0: On the other hand, if entry occurs, price

competition will drive total industry pro�ts to zero, i.e.: � (m) = 0 for m > 1.

Although this case does not exactly satisfy assumptions A1 and A2, it is a

limiting case of the class of problems that satisfy these assumptions. Nonethe-

less, the characterization of the MRU allocation of the corresponding sequential

auction is almost immediate in the present case. First note that if there is more

than one incumbent at the beginning of stage r, i.e.: jIrj > 1, both incumbents

and potential entrants expect to make zero pro�ts in whatsoever market emerges

from the auctions. Consequently, everybody's recursive valuation must be zero,

so the tie breaker decides who obtains the licence at a price equal to zero. Sup-

pose now that Ir = f1g: Arguing recursively, suppose that if �rm 1 buys the rth

unit it will also buy the remaining units at a price approximately equal to zero;

obtaining expected pro�ts equal to � (1). Since �rm 1's expected pro�ts are zero

if an entrant obtains the rth unit, we must conclude that its recursive valuation

for the rth unit is � (1). But then �rm 1 will also obtain the rth unit at a price

approximately equal to zero. The following result follows.

Proposition 2 Consider the case jI1j = 1: Suppose that the post-auction market

game is a symmetric Bertrand game with constant returns to scale technology.

Then a single �rm preempts entry completely.
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5 Conclusion

Many of the insights about entry preemption and persistence of monopoly that

had initially been formulated in a static framework were reexamined here in

a dynamic setting through an analysis of sequential auctions of licences. The

�ndings extend and partly contrast with those initial insights. When the post-

auction market game is a symmetric Cournot game, entry will occur repeatedly

as long as a su�ciently large number of units is auctioned. However, a monopoly

could still persist if for some reason the seller does not o�er a number of units

large enough. One possible reason is that in some cases to sell a large number

of units is not revenue maximizing. The persistence of monopoly also extends to

the dynamic case when the post-auction market game is a Bertrand game, which

is only a limiting case of the class of problems studied here. These �ndings also

qualify and extend the results of Krishna [4] to the case in which the post-auction

market game is symmetric.

I use a new solution concept that makes the analysis remarkably simple and

provides a solution that is both independent of whether the selling procedure is

a �rst or a second price sequential auction and completely determinate as long

as externalities play a limited role. Although the assumption that externalities

are small appears compelling in the class of economic environments studied here,

future research should extend the analysis of sequential auctions to environments

involving externalities, non-separability and incomplete information.

Appendix

Proof of Lemma 1.

(i) Optimality of the �rms' decisions and symmetry require that the following

�rst order condition be satis�ed by the equilibrium output:

p0(Qm)Qm +m[p(Qm)� c] = 0 for m = 1; 2; :: (2)

This implies that [p0(Qm+1)Qm+1 + mp(Qm+1)] � [p0(Qm)Qm + mp(Qm)] = c �
p(Qm+1) < 0. By conditionM1; p

0(Q)Q+mp(Q) is decreasing in Q. We conclude

that Qm < Qm+1:

(ii) Denote �(Q) = [p(Q)� c]Q and note that �(Qm) = m�(m), for m = 1; 2; ::.

Equation (2) implies that �0(Q1) = p0(Q1)Q1 + p(Q1) � c = 0. Moreover, (M1)

implies that �00(Q) = p00(Q)Q+2p0(Q) < 0. Thus, part (ii) follows from part (i).

(iii) Equation (2) implies that �(m) = (p(Qm)� c) qm = �p0(Qm)q
2
m. Thus, we

can write

�(m)� 2�(m + 1) = 2p0(Qm+1)q
2
m+1 � p0(Qm)q

2
m

= 2(1 +m)�2p0(Qm+1)Q
2
m+1 �m�2p0(Qm)Q

2
m

(3)
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Note that M1 implies that

(d=dQ)
h
p0(Q)Q2

i
= [p00(Q)Q+ 2p0(Q)] Q < 0 (4)

Since Qm < Qm+1 and 2(1+m)�2 > m�2 for m > 2, we conclude from (3) and

(4) that �(m)� 2�(m+ 1) < 0 for m > 2, as desired. 2

Proof of Lemma 2. SinceM2 is stronger thanM1, �(m) satis�es A1 by Lemma

1(ii). Moreover, Lemma 1(iii) implies that the inequality in A2 is satis�ed for

m > 2. It only remains to show that this inequality also is veri�ed for m = 2.

First note that

� (2)� 2� (3) = (p(Q2)� p(Q3)) q2 + (p(Q3)� c) (q2 � 2q3) (5)

Concavity of p implies that p(Q2) � p(Q3) � p0(Q3)(Q2 � Q3). Combining

with equation (2), we obtain that p(Q2) � p(Q3) � q�13 (c� p(Q3)) (2q2 � 3q3).

Substituting this inequality into (5), we conclude that

� (2)� 2� (3) � � (2=q3) (p(Q3)� c) (q2 � q3)
2 < 0

as desired.

To establish the last statement, note that

4� (1)� (1 +m)
2
� (m) = 4q1 (p(Q1)� p(Qm))+(p(Qm)� c)

�
4q1 � (1 +m)2qm

�

(6)

As above, p(Q1) � p(Qm) � q�1m (c� p(Qm)) (q1 � mqm) by concavity of p and

equation (2). Substituting this into (6), we conclude that

4�(1)� (1 +m)2�(m) � � (1=qm) (p(Qm)� c) (2q1 � (1 +m)qm)
2
< 0

as desired. 2

Proof of Lemma 3. (i) Consider bids b � �vi and b̂ < �vi. If the choices by the

remaining players and the outcome of the tie-breaker are such that either i wins

with b̂ or loses with b, then i weakly prefers b̂ to b. On the other hand, suppose

that i wins with b but loses with b̂: Since i makes zero expected pro�ts with b̂ and

negative expected pro�ts with b, he strictly prefers b̂ to b. Part (i) follows. (ii)

Suppose that b > �vi. Player i is indi�erent between bidding �vi or b conditional on

the fact that either both bids win or both lose. On the other hand, if the choices

of the remaining players and the tie-breaker are such that b wins and �vi loses,

i pays a price larger than �vi and thus, he makes negative pro�ts, as opposed to

the zero pro�ts made (conditionally) by a bid of �vi. When b < vi the argument

is analogous. 2
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Proof of Lemma 4. (i) Lemma 3(i) implies that bi < �vi with probability 1,

for every i 2 N . Let b1 denote the lowest bid that 1 uses with positive probabil-

ity. If b1 < �v2 with positive probability, then player 2 will rather outbid b1 with

probability 1. But then b1 makes 0 pro�ts and is not an optimal choice for player

1. The contradiction shows that b1 = �v2: (ii) follows directly from Lemma 3(ii). 2

Proof of Proposition 1. Equivalently, we show that both for a SFPA and

for the corresponding SSPA, the MRU allocation is unique and satis�es the

following properties at each hs 2 Hs and for every s 2 T :

(a) Suppose that both jIsj = 1 and �t (s) > 0. Then jIt+1j = 1 and p� �=
� (t� � + 2) ; for all � � s.

(b) Suppose that either jIsj > 1 or �t (s) < 0. Then jIt+1j = jIsj+ t� s+1 and

p� �= � (jIsj+ t� s+ 1), for all � � s:

(To simplify the notation I have omitted the non-generic case in which �t (1) = 0;

although the extension is immediate. I have also omitted reference to the strategy

� in uir(hr; �) and vij(hr; �)). The proof of this result is recursive. The main

steps are contained in the following two lemmas.

Lemma 5 Suppose that the conditions (a)-(b) are satis�ed after the rth stage.

Then the recursive valuations at stage r satisfy the following conditions:

(i) Suppose that both jIrj = 1 and �t (r + 1) > 0. Then

vij (hr) = � (1)�
Pt�r+2

�=2 � (�) when i 2 Ir
vij (hr) = � (t� r + 2) when i =2 Ir

(ii) Suppose that either jIrj > 1 or �t (r + 1) < 0. Then

vij (hr) = 0 when i 2 Ir and j 2 Ir
vij (hr) = � (jIrj+ t� r)� � (jIrj+ t� r + 1) when i 2 Ir and j =2 Ir
vij (hr) = � (jIrj+ t� r + 1) when i =2 Ir

Proof. First suppose that both jIrj = 1 and �t (r + 1) > 0: If ar 2 Ir
then Ir+1 = Ir. Thus, as a consequence of the hypothesis jIt+1j = 1 and p� �=
� (t� � + 2) for all � � r: Similarly, if ar =2 Ir; then jIt+1j = jIrj+ t� r + 1 and

a� 2 Ir and p� �= � (jIrj+ t� r + 1) for all � � r. Thus,

ui;r+1 (hr+1) = � (1)�
Pt�r+1

�=2 � (�) if both i 2 Ir and ar 2 Ir
ui;r+1 (hr+1) = � (t� r + 2) if either ar = i =2 Ir or both i 2 Ir and ar =2 Ir
ui;r+1 (hr+1) = 0 if both ar 6= i and i =2 Ir
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Part (i) follows by substituting in the de�nition of the recursive values at r.

Suppose now that either jIrj > 1 or �t (r + 1) < 0. The hypothesis implies

that ui;r+1 (hr+1) = � (jIr+1j+ t� r). Again, part (ii) follows by substituting in

the de�nition. 2

Lemma 6 Suppose that the recursive values at r associated to an MRU allocation

satisfy conditions (i) and (ii) of Lemma 5. Then the MRU allocation must satisfy

conditions (a) and (b) at every hr 2 Hr.

Proof. Suppose that both jIrj = 1 and �t (r) > 0: Since �t (r)��t(r + 1) =

� (t� r + 1) � 2� (t� r + 2) < 0 for r < t by A2, we have that �t (r + 1) > 0:

Thus, by condition (i) of Lemma 5 the recursive values at r display Determinate

High Values and also vi (hr) � vj(hr) = �t (r) > 0 when i 2 Ir and j =2 Ir.

Using Lemma 4 to analyze the local auction at r, we conclude that ar 2 Ir and

pr �= � (t� r + 2). This establishes part (i).

Suppose now that either jIrj > 1 or �t (r) < 0. Note that r < t since

�t(t) = � (1)� 2� (2) > 0 by A1: Since �t (�) is increasing in � we only need to

consider the following cases. When both jIrj = 1 and �t (r + 1) > 0 > �t (r) ;

condition (i) of Lemma 5 implies that the recursive values at r display Deter-

minate High Values and that vi (hr) � vj(hr) = �t (r) < 0 if i 2 Ir and j =2 Ir:

Thus, in this case Lemma 4 implies that ar =2 Ir and pr �= � (jIrj+ t� r + 1),

as desired. Finally, when either jIrj > 1 or �t (r + 1) < 0, condition (ii) of

Lemma 5 and assumption A2 imply that, for i 2 Ir and j =2 Ir; we have that

�vi (hr) � vj (hr) = � (jIrj+ t� r) � 2� (jIrj+ t� r + 1) < 0: Since by assump-

tion n > t, we conclude that the recursive values at r display Determinate High

Values. Thus, Lemma 4 implies that ar =2 Ir and pr �= � (jIrj+ t� r + 1), as

desired. 2

To complete the proof of Proposition 1, note that Lemma 5 shows that if the

conditions (a)-(b) are satis�ed after the rth stage then the recursive valuations

at r associated with the MRU allocation must satisfy the conditions (i) and (ii)

of Lemma 5. But then Lemma 6 implies that the conditions (a)-(b) are satis�ed

also at r, as desired. 2
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