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Abstract

I study monotonicity and uniqueness of the equilibrium strategies in

a two-person �rst price auction with a�liated signals. I show that when

the game is symmetric there is a unique Nash equilibrium that satis�es a

regularity condition requiring that the equilibrium strategies be piecewise

monotone. Moreover, when the signals are discrete-valued, the equilibrium

is unique. The central part of the proof consists of showing that at any

regular equilibrium the bidders' strategies must be monotone increasing

within the support of winning bids. The monotonicity result derived in

this paper provides the missing link for the analysis of uniqueness in two-

person �rst price auctions. Importantly, this result extends to asymmetric

auctions.

1 Introduction

Much of the literature on auctions focuses on symmetric equilibria in which the

buyers' bids increase monotonically in the signals they observe. For symmetric

�rst price auctions there is only one symmetric equilibrium in monotone strate-

gies, but it is not yet fully understood whether there may be other equilibria

that do not satisfy symmetry and monotonicity. There are a few authors who

address the question of uniqueness but only in very speci�c environments. For

instance, Griesmer, Levitan and Shubik [2] provide a complete characterization of

the equilibrium set of a two-person �rst price auction in which the bidders' private

valuations are independently and uniformly distributed. More recently, Maskin

and Riley [9] establish uniqueness for the independent private values model with

symmetric bidders and provide partial extensions for asymmetric versions of that

model. However, a general treatment of environments that involve common val-

ues and correlated signals is still missing. Maskin and Riley [7] constitutes a �rst

�This paper is part of the second chapter of my Ph.D thesis.
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step in tackling this problem. For the case of a two-person symmetric auction

with a�liated signals, that paper shows that the symmetric equilibrium is the

only equilibrium in monotone strategies.

Ruling out the possibility that there are other equilibria in non-monotone

strategies remains as the main hurdle to solving the problem of uniqueness in

the two-person case. I do this here. Speci�cally, I examine this problem in the

context of a sealed bid �rst price auction with a�liated signals. Aside from

the restriction to two players, the environment that I consider is rather general,

encompassing the general symmetric model of Milgrom and Weber [12] as well as

the model of Maskin and Riley [7] as particular cases.

The main �ndings are the following. I show that at any Nash equilibrium that

satis�es a regularity condition, both bidders' strategies must actually be mono-

tone increasing within the support of bids that can win with positive probability

(winning bids). The regularity condition requires that the equilibrium strategies

employed by the bidders be piecewise monotone. Using this result, it then follows

that there is a unique equilibrium when the game is symmetric. Moreover, when

signals are discrete-valued every equilibrium is regular so there must be a unique

equilibrium in this case as well.

Most of the paper is devoted to show that the equilibrium strategies must

be monotone increasing. Importantly, this result extends to asymmetric auc-

tions. The argument is rather elaborate and relies heavily on the assumption of

a�liation. I brie
y sketch the main issues involved.

To examine the problem of bidder 1, �x bidder 2's strategy and two bids

b0 and b1, with b0 < b1: Let �1(b; s1) denote his expected payo� if he bids b

and his signal is s1: Moreover, let �1(s1; s2) denote the increase in his expected

payo� due to an increase in his bid from b0 to b1; given that the signals are s1
and s2. Also de�ne a function: h1(x; y) = E (�1(x; s2) j s1 = y) and notice that

�1 (b1; s1)� �1 (b0; s1) = h1(s1; s1):

To study the best reply of bidder 1 to the strategy �2 of bidder 2, we need

to gain insight about the way �1 (b1; s1) � �1 (b0; s1) varies with s1. The two

arguments of h1 re
ect two di�erent aspects of the information revealed by the

signal s1. The �rst argument re
ects direct information about the expected value

of the object. Given the monotonic structure introduced in the problem by the

assumption of a�liation, this expected value increases with s1: Thus, �1 is non-

decreasing in s1 and, therefore, h1 is non-decreasing in its �rst argument. The

second argument of h1 re
ects information about both the expected value of the

object and player 2's bidding behavior, which is revealed by s1 indirectly through

its statistical linkage with s2.

To understand this second e�ect I rely on the following property of a�liated

random variables. I say that the map ' : < ! < is quasi sign-monotone (QSM )

if '(y) � 0 ) '(y0) � 0 for almost every y0 > y: The map ' is weakly QSM

if '(y) > 0 ) '(y0) � 0 for almost every y0 > y. Suppose that x and y are

a�liated random variables. Then, if ' is weakly QSM, E('(y) j x = x) is QSM.
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Let b denote the upper lower bound of the support of winning bids. A key

property is that �1 is QSM in its second argument as long as the restriction of

the inverse bidding strategy to [b; b] is monotone increasing. Combining these

observations we are able to conclude that h1 is QSM in its second argument.

Taking into account both arguments of h1; we reach the conclusion that if the

restriction of the inverse bidding strategy to (b; b0] is monotone increasing, then

�1 (b1; s
0
1)� �1 (b0; s

0
1) � 0) �1 (b1; s1)� �1 (b0; s1) > 0 for s1 > s01:

This property plays a central role in the monotonicity argument. As an exam-

ple, suppose that both buyers' inverse bidding strategies are monotone increasing

on [b; b]; but bidder 1's strategy is not monotone outside this interval: he bids

b0 > b when his signal is s01 < s1 and bids b when his signal is s1: The optimal-

ity b0 for s01 implies that �1 (b
0; s01) � �1 (b; s

0
1) � 0: Consequently, the preceding

property implies that �1 (b
0; s1)� �1 (b; s1) > 0; which contradicts the optimality

of b for s1: In fact, this kind of reasoning allows us to rule out all non-monotonic

behavior as long as the bidders use piecewice monotone strategies in equilibrium.

The paper is organized as follows. In section 2 I lay out the model and

introduce the basic notation. In section 3 I derive some basic results about

the support of the equilibrium distribution of bids. In section 4 I derive the

key consequences of the assumption that the signals are a�liated. Section 4

contains the main monotonicity result and section 5 applies this result to establish

uniqueness in the symmetric case. Section 6 is devoted to concluding remarks.

Most of the proofs are contained in the appendix.

2 The Model

2.1 Description and Basic Assumptions

In this section I lay out the model of a sealed bid �rst price auction. There are

two bidders who submit their bids simultaneously and a single object is awarded

to the highest bidder as long as his bid is at least as large as a reserve price r:

In case of a tie, the winner is selected randomly. Moreover, the price paid by the

winner equals his own bid.

The problem is modeled as a two-person Bayesian game. Throughout the

paper I refer to the players as bidder i or bidder j; making the convention that

i; j = 1; 2 and that i 6= j. Each player selects his bid after privately observing the

value of a signal. Let si denote the signal observed by bidder i (where I adopt

the convention of using bold case letters for random variables). This signal takes

values in a set Si � <; which I suppose to be either a closed interval or a �nite

set. Let F : S1 � S2 ! [0; 1] denote the joint distribution of the players' signals.

I suppose that F has a density function f with support S1 � S2 (in the discrete

case, f denotes the density with respect to the counting measure): Moreover, I

assume that the signals are a�liated. In general, the components of a random
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vector are a�liated if any two non-decreasing functions of the random vector are

positively correlated conditional on every sublattice of the support of the joint

distribution. In particular, random variables whose distribution has a density

are a�liated if and only if the probability density function is Monotone Totally

Positive of Order 2 (MTP2)(Karlin and Rinott [5], Milgrom and Weber [12]). In

the present case, this means that the distribution of signals satis�es the following

assumption:

(A1) f (s) f (s0) � f (s _ s0) f (s ^ s0) for every s; s0 2 S1 � S2; where s _ s
0

and s ^ s0 respectively denote the componentwise maximum and minimum

of s and s0.

The bidders' preferences are represented by a von Neumann-Morgenstern util-

ity function. For each (s1; s2) 2 S1�S2, let ui (b; si; sj) denote bidder i's utility if
he makes a bid b 2 <+ and obtains the object. The utility function is normalized

so that the utility of a bidder that does not obtain the object is zero. I also

assume that ui satis�es the following conditions:

(A2) The function ui is twice continuously di�erentiable, strictly decreasing in

b; strictly increasing in si and non-decreasing in sj:

(A2) For b1 > b0; the di�erence ui(b1; si; sj)� ui(b0; si; sj) is non-decreasing in

si.

2.2 Additional Notation

Here I de�ne the players' strategies and several concepts of monotonicity and

local monotonicity that will be useful in the analysis. Moreover, I introduce

additional notation that will be used throughout the paper.

Let B denote the Borel �-algebra associated to <+ and let P(B) denote the set
of probability measures on B . A behavior strategy for bidder i is a mapping �i :

Si ! P(B) such that, for each B 2 B, the application <�i; B> is a measurable

function from Si to the interval [0; 1] : The mapping ~�i : Si ! < is a selection

from �i if ~�i (si) 2 supp �i (si) for every si 2 Si. I also denote ��1i (b) = fsi 2
Si : b 2 supp �i (si)g. The strategy �i and the marginal distribution of bidder

i's signal induce a probability distribution over buyer i's bids. The in�mum

and the supremum of the support of this distribution will be denoted bi and bi;

respectively. Given a strategy pro�le � = (�1; �2), I will denote b = maxfb1; b2; rg
and b = maxfb1; b2g.

The following concepts of monotonicity and sign-monotonicity of a function

provide a convenient way of stating the results of this paper. Let Y denote

a measurable subset of < and consider a mapping ' : Y ! <. I say that ' is

monotone non-decreasing (increasing) if '(y) � (<) '(y0) when y < y0: I say that

' is quasi sign-monotone (QSM ) if '(y) � 0) '(y0) � 0 for almost every y0 > y:
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The map ' is weakly QSM if '(y) > 0) '(y0) � 0 for almost every y0 > y. The

map ' is sign-monotone (SM) if it is QSM and '(y) > 0) '(y0) > 0 for almost

every y0 > y. Finally, ' is strictly sign-monotone (SSM) if '(y) � 0) '(y0) > 0

for almost every y0 > y.

Applying the preceding de�nitions to our strategy space, I de�ne the following

concepts. I say that the strategy �i is monotone non-decreasing (increasing) if

the set of the selections ~�i from �i such that ~�i is not monotone non-decreasing

(increasing) is a set of probability measure zero (according to the probability mea-

sure induced by �i). Moreover, I say that �i is monotone at b (quasi-monotone

at b) if the set of selections ~�i from �i such that ~�i � b is not SM (QSM) at b is

a set of probability measure zero.

The following notation will be used throughout the paper. Suppose that

bidder j employs the strategy �j. Given �j, let Qi(b; sj) denote the probabil-

ity that bidder i obtains the object provided that he bids b and that bidder j's

signal is sj. Also let �i (b; si) denote bidder i's expected payo� when he bids b

and his signal is si. More explicitly, �i (b; si) = E (ui(b; si; sj)Qi(b; sj) j si = x) :

SinceQi(b; sj) is monotone non-decreasing in its �rst argument, the corresponding

right and left limits exist everywhere. I denote Qi(b
+; sj) = limt#bQi(t; sj)and

Qi(b
�; sj) = limt"bQi(t; sj): Similarly, I denote �i (b

+; si) = limt#b �i (t; si) and

�i (b
�; si) = limt"b �i (t; si) : The following result follows directly from the de�ni-

tions.

Lemma 1 Suppose that �j is monotone at b: Then there is a parameter ŝj such

that Qi(b
+; sj) = 1 for almost every sj < ŝj and Qi(b

+; sj) = 0 for almost every

sj > ŝj:

3 Preliminary Results about the Equilibrium

Bidding Distributions

This section reviews some properties of the support of the equilibrium bidding

distributions that do not directly depend on the assumption that the signals are

a�liated. In essence, I rule out the possibility of gaps and, in some sense, mass

points in the interior of the support of winning bids. Since most of the arguments

are already standard, I will only discuss the results brie
y. Nonetheless, detailed

proofs are supplied in the appendix for completeness.

The �rst observation is that none of the bidders ever selects a winning bid

at which his expected payo� exhibits a jump discontinuity. Since this kind of

discontinuity can only occur because the other bidder's strategy has a mass point,

the tie-breaker makes the expected payo� of the player in question an average of

the right and left limits of his expected payo� at the point of discontinuity. But

then he can improve by either bidding a little more or a little less. Thus, we can

state the following:
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Lemma 2 Suppose that the bid b̂ > b is optimal for bidder i when he observes

the signal x. Then �i (b; x) is continuous at b̂:

To rule out gaps in the support the intuition is simple: If a bidder's support

presents a gap (b� "; b], the other bidder never bids an amount close to b, since

he can reduce his bid, and expected payment, without a�ecting his chance of

winning. This line of thought leads to contradiction, establishing the following

result.

Lemma 3 The support of the distribution of bids of each bidder contains the

interval [b; b]. Moreover, b1 = b2 = b.

Finally, note that when a bidder's strategy is quasi-monotone and presents a

mass point at a bid b, the "types" of this player that bid b are larger than the ones

that bid less than b. Since the other bidder can increase his payo� by increasing

slightly his bid to "capture" these higher types, his payo� jumps discontinuously

at b. Thus, he never bids in some interval (b � "; b]; contradicting Lemma 3. In

fact, one can show the following.

Lemma 4 Suppose that �j is quasi-monotone at b 2 (b; b]. Then �j is atomless

and, consequently, monotone at b.

4 Consequences of A�liation

Given the strategy of the other bidder, the e�ect on a bidder's expected payo� of

a change in his bid only depends on the value of his signal. Clearly, the nature of

this dependence is critical in the analysis of the shape of the equilibrium strategies

that we undertake in the next section. Here I investigate how that dependence

is a�ected by the assumption that the signals are a�liated.

For the remainder of this section I �x the strategy �j of bidder j in order to

examine the best response by bidder i. I also �x two bids b0 and b1, where b0 < b1:

To examine the dependence of the di�erence �i (b1; si) � �i (b0; si) on the signal

si, I introduce the following concepts which will help articulate the analysis. I

de�ne a mapping �i : Si�Sj ! < such that �i(si; sj) = ui(b1; si; sj)Qi(b1; sj) �
ui(b

+
0 ; si; sj)Qi(b

+
0 ; sj). In words, �i(si; sj) represents the increase in bidder i's

expected payo� due to an increase in his bid from a bid just above b0 to b1,

given that the bidders' signals take the values si and sj: I also de�ne a mapping

hi : Si�Sj ! < such that hi(x; y) = E (�i(x; sj) j si = y) : Notice that �i (b1; si)�

�i
�
b+0 ; si

�
= hi(si; si): Thus, the �rst argument of hi re
ects the dependence of

�i (b1; si) � �i
�
b+0 ; si

�
on si through the direct dependence of �i on si and the

second argument re
ects the indirect dependence on si through the conditional

distribution of sj.
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Naturally, a �rst step to understand hi relies on the analysis of �i. Consider

�rst the dependence of �i on si: Note that

�i(s
0
i; sj)� �i(si; sj) =

= Qi(b1; sj) [ui(b1; s
0
i; sj)� ui(b1; si; sj)]�Qi(b

+
0 ; sj) [ui(b0; s

0
i; sj)� ui(b0; si; sj)]

�
h
Qi(b1; sj)�Qi(b

+
0 ; sj)

i
[ui(b0; s

0
i; sj)� ui(b0; si; sj)]

(1)

where the inequality is a consequence of assumption A3. Thus, assumption A2

and the fact that Qi(b1; sj)�Qi(b0; sj) � 0 imply that �i is non-decreasing in its

�rst argument, and that it is strictly increasing when the preceding inequality

is strict. Thus, if bidder i's probability of obtaining the object is strictly larger

when he bids b1 than when he bids b0; as it will be in the relevant cases, hi will

be strictly increasing in the �rst argument.

Examination of the dependence of �i on s2 is somewhat more intricate. Sup-

pose that the restriction of bidder j's inverse bidding strategy to the interval

[bj; b0) is monotone increasing. Since this implies that �j is monotone at b0,

Lemma 4 implies that it is also atomless at b0: Clearly, there must exist a signal

ŝj such that if bidder i bids b0, he wins if and only if sj < ŝj. Although bid-

der i also wins with b1; he prefers to win with a lower bid. Then, �i(si; sj) =

ui(b1; si; sj) � ui(b0; si; sj) < 0 when sj < ŝj: On the other hand, when sj > ŝj;

bidder i loses when he bids b0. Thus, in this case �i(si; sj) = Qi(b1; sj)ui(b1; si; sj);

which can only be positive if ui(b1; si; sj) is positive. Since ui is non-decreasing

in sj by assumption, then �i(si; sj) > 0 implies that �i(si; s
0
j) � 0 for s0j > sj:

We must conclude that �i is weakly QSM in sj: In fact, a somewhat more gen-

eral result is supplied by the following lemma, which summarizes the preceding

discussion.

Lemma 5 The following properties are true for almost every sj in Sj:

(i) �i is non-decreasing in si. Moreover, Qi(b1; sj) > Qi(b0; sj) implies that

�i(si; sj) < �i(s
0
i; sj) for si < s0i.

(ii) Suppose that �j is monotone at b0. Then �i is weakly QSM in sj.

The consequence of Lemma 5(i) is straightforward: hi is non-decreasing in

its �rst argument, and it is strictly increasing whenever bidder i's probability of

obtaining the object is strictly larger when he bids b1 than when he bids b0: In

fact, it can be shown that hi is SSM in its �rst argument.

When the signals are independent hi is constant in its second argument. How-

ever, statistical dependence between signals establishes a probabilistic linkage be-

tween the signal observed by a bidder and the bids selected by the other bidder,

which also a�ects the �rst bidder's expected payo�. In fact, the analysis of the

dependence of hi on its second argument constitutes a more subtle problem whose

structure depends crucially on the assumption that the signals are a�liated. To
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study this e�ect I rely on the following property of MTP2 transformations (re-

lated results appear in Karlin [[4]]).

Lemma 6 Consider two mappings ' : Sj ! < and  : Si ! < such that

 (x) = E ('(sj) j si = x) : Suppose that the joint distribution of si and sj satis�es

assumption A1 and that ' is weakly QSM. Then  is a QSM mapping.

We conclude directly from Lemma 5(ii) and Lemma 6 that hi is QSM in

its second argument. Combining this with the fact that hi is SSM in its �rst

argument, we establish the following.

Lemma 7 Let b1 denote a winning bid for bidder i and suppose that �j is mono-

tone at b0. Then �i (b1; si)� �i (b0; si) is SSM in si.

Proof. De�ne hi(x; y) = E (�i(x; sj) j si = y) and note that hi (x; x) = �i (b1; x)�

�i
�
b+0 ; x

�
: Suppose that hi (x; x) � 0. Since �j is monotone at b0, Lemma 5(ii)

implies that �i is weakly QSM in sj. Then Lemma 6 implies hi is QSM in its

second argument. We conclude that hi (x; x
0) � 0 for x0 > x.

I claim that Qi(b1; sj) � Qi(b
+
0 ; sj) > 0 with positive probability with re-

spect to the distribution of sj conditional on si = x0. Arguing by contradic-

tion, suppose Qi(b1; sj) � Qi(b
+
0 ; sj) = 0 with probability 1. This means that

�i(x; sj) = [ui(b1; x; sj)� ui(b0; x; sj)]Qi(b1; sj) � 0 with probability 1. But since

Qi(b1; sj) > 0 with positive probability because b1 is a winning bid for i, we

conclude that �i(x; sj) < 0 with positive probability. Thus, hi (x; x
0) < 0, a

contradiction that establishes the claim.

Lemma 5(i) and the preceding claim imply that �i(x; sj) � �i(x
0; sj) with

probability 1 and that the inequality is strict with positive probability. Thus,

hi (x
0; x0) � hi (x; x

0) = E (�i(x
0; sj)� �i(x; sj) j si = x) > 0. We conclude that

hi (x
0; x0) > 0, as desired. 2

The following result is a corollary of Lemma 7.

Lemma 8 Suppose that b is a winning bid for bidder i. Then �i (b; si) is SSM

in si.

Proof: Just select b0 < b and apply Lemma 7. 2

5 Monotonicity of the Equilibrium Strategies

In this section I show that the equilibrium strategies are monotone increasing

within the support of winning bids as long as the equilibrium satis�es the follow-

ing regularity condition.
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De�nition 1 Consider a mapping ' : Y ! <; where Y � <. For each � 2 <;
de�ne the mapping '� : Y ! < such that '�(y) = '(y) � �: I say that '

is piecewise monotone if, for each � 2 < and each compact set K � Y , the

restriction of '� to K changes sign �nitely many times.

For example, if ' : [a; b] ! < is a di�erentiable function, it is piecewise

monotone if and only if the sign of the derivative changes �nitely many times.

On the other hand, the di�erentiable function '(y) = y2 sin(1=y) de�ned on [-1,1]

is not piecewise monotone. Finally note that when Y is a discrete set, ' is always

piecewise monotone.

De�nition 2 I say that the strategy �i is regular if almost every selection ~�i from

�i is a piecewise monotone function. A regular equilibrium is a Nash equilibrium

in which both bidders employ regular strategies.

The following lemma shows that if a bidder's strategy is monotone at each

point of the interval (b; b0), a regular best response strategy by the other bidder

must be monotone at each point of a larger interval (b; b0 + "): The argument

heavily relies on the a�liation related properties derived in the preceding section.

The following illustration contains the essence of the argument. Suppose that

both bidders' strategies are monotone at each bid lower than b0, where b0 > b:

Also suppose that there are two signals x0 and x1, with x0 > x1, and a bid b1 > b0
such that b0 is optimal for bidder i when his signal is x0 and b1 is optimal when

his signal is x1. Thus, in this scenario bidder i's strategy is not monotone at

b0. However, since b1 is optimal for i when his signal is x1; we must have that

�i (b1; x1) � �i (b0; x1) ; and then Lemma 7 implies that �i (b1; x0) > �i (b0; x0),

contradicting the optimality of b0 when i's signal is x0.

A detailed proof of the following result is included in the appendix.

Lemma 9 Let � denote a regular equilibrium. Suppose that �j is monotone at

b0: Then there is some " > 0 such that both �i and �j are monotone at each bid

b0 2 (b0; b0 + ") : Moreover, if b0 > b, �i also is monotone at b0.

Proof. We argue by contradiction. Suppose that for every " > 0; there is some

b 2 (b0; b0 + ") such that �i is not monotone at b. Since �i is a regular strategy,

this can only happen if there is a sequence (bn; xn)n=1;::;1 such that xn 2 ��1i (bn)

and limn!1 (bn; xn) = (b0; x0), where x0 > x1 2 ��1i (b1) and b0 < b1:

Note that x1 2 �
�1

i (b1) implies that �i (b1; x1) � �i
�
b+0 ; x1

�
. Since �j is mono-

tone at b0 and x0 > x1 ; Lemma 7 implies that �i (b1; x0) > �i
�
b+0 ; x0

�
: Thus,

�i (b1; x
n) > �i (b

n; xn) for n su�ciently large: We conclude that xn =2 ��1i (bn).

This contradiction proves that �i is monotone at each bid b0 2 (b0; b0 + ") ; for

some " > 0. An identical argument implies that also �j is monotone at each bid

b0 2 (b0; b0 + "). To see that �i also is monotone at b0 when b0 > b , just notice
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that this strategy is atomless at b0 in this case. 2

Remark. Suppose that both bidders' strategies are monotone at b0 but, for every

" > 0; there is some b 2 (b0; b0 + ") such that �i is not monotone at b. If �i is not

a regular strategy, still there may not exist any pair (b1; x1) and any sequence

(bn; xn)n=1;::;1, both in the graph of supp�i; such that limn!1 bn = b0 < b1 and

limn!1 xn > x1 2 ��1i (b1). An example is the case of a strategy �i that is

monotone at b0 with �
�1

i (b0) = fx0g and oscillates in�nitely many times between

the bounds b0+
(si�x0) and b0+2
(si�x0) in the interval (x0; x0+") in Si, for

every " > 0. Clearly, in this case the argument employed in the proof of Lemma

9 does not go through.

A variation of the preceding argument allows us to restrict equilibrium be-

havior close to the in�mum of the support of winning bids.

Lemma 10 Either �1 or �2 is monotone at b.

Combining Lemma 9 and Lemma 10, we reach the conclusion that regular

equilibrium strategies are monotone increasing over the whole interior of the

support of winning bids. Our main result follows.

Proposition 1 Let � denote a regular equilibrium and also denote S0
i = fsi 2

Si : si > sup ��1i (b)g. Then, for i = 1; 2; we have that �i(si) � b with probability

1 when si =2 S
0
i ; and also that the restriction of �i to S

0
i is monotone increasing:

In other words, at every regular equilibrium, the strategy employed by each bidder

is monotone at each winning bid.

Proof. Denote m = inf fb > b : either �1 or �2 is not monotone at bg : First, I
rule out the possibility that m = b: In fact, Lemma 10 shows that the strategy of

at least one of the bidders, say j, is monotone at b: Then Lemma 9 implies that

both bidders' strategies are monotone at each bid b 2 (b; b + "); for some " > 0.

This implies that m > b: Now suppose that b < m � b: By de�nition of m both

�1 and �2 are monotone at each b 2 (b;m). Since m > b, Lemma 4 implies that

both �1 and �2 are monotone at m. Again, Lemma 9 implies that both �1 and

�2 are monotone at each b 2 (b;m + "); for some " > 0. Since this contradicts

the de�nition of m, we must conclude that m =1; as desired. 2

Since every strategy is regular when the signals are discrete valued, the fol-

lowing corollary follows.

Corollary 1 Suppose that S1 and S2 are �nite sets. At any equilibrium �;

�i(si) � b with probability 1 when si =2 S0
i and the restriction of �i to S0

i is

monotone increasing, for i = 1; 2:

10



6 Uniqueness of the Equilibrium

In this section I investigate the uniqueness of the equilibrium in the symmetric

case. Maskin and Riley [[7]] establish uniqueness when the bidders use monotone

strategies and the set of signals is a closed interval. Their analysis requires the

following additional assumptions.

(A4) (i) S1 = S2 = S, (ii) ui(b; si; sj) = uj(b; si; sj) = u(b; si; sj);(iii) F is a

symmetric distribution, and (iv) si > sj ) u(b; si; sj) � u(b; sj; si):

(A5) (i) @
@b
u(b; si; sj) is a non-increasing function, and (ii) @2

@b@si
u(b; si; sj) �

@2

@b@sj
u(b; si; sj).

(A6) f(si j sj)=F (si j sj) is strictly decreasing in si.

The following lemma shows that symmetry implies additional restrictions at

the upper lower bound of the support of winning bids.

Lemma 11 Suppose that r = 0 and that assumption A4 is satis�ed. Then,

at every regular equilibrium, b1 = b2 = b: Moreover, (i) when S = [s; s], no

bidder has a mass point at b, and (ii) when S = fs; ::; sg, we have that ��1i (b) =

��1j (b) = fsg and that the type s of at least one player bids b with probability 1,

where u(b; s; s) = 0.

Maskin and Riley's argument relies on the idea that if the type of buyer i

that bids b is larger than the type of buyer j that bids b; then the type of buyer

i must be larger for every bid higher than b: This contradicts the requirement

that ��1i (b) = ��1j (b) = fsg and shows that the unique equilibrium in monotone

strategies must be the symmetric one. I also provide an extension of this result

to the case of discrete-valued signals. Combining these results with Proposition

1, I obtain the following.

Proposition 2 (i) Suppose that assumptions A1-A6 are satis�ed and that S =

[s; s]: Then there is a unique regular equilibrium. (ii) Suppose that assumptions

A1-A4 are satis�ed and that S = fs; s+ 1; ::; sg: Then the equilibrium is unique.

Proof.

(i) It follows directly from Proposition 1 and Theorem 3 in Maskin and Riley

[[7]].

(ii) Since every strategy is regular when S is �nite, Corollary 1 and Lemma 11

imply that the equilibrium strategies are monotone over the set S. Now, I claim

that the equilibrium is symmetric. I argue by contradiction. Suppose that there

is a bid b� and a type s� such that Qj(b�; s�) > Qi(b�; s�): Since in equilibrium

Qj(b; s) = Qi(b; s) = 1; by Lemma 3, and the strategies are monotone, there

11



must exist some bids b0 and b1, with b0 < b1, and some type x 2 S such that

��1i (b) = ��1j (b) = fxg for every b 2 [b0; b1] and

Qj(b0; x) > Qi(b0; x)

Qj(b1; x) � Qi(b1; x)
(2)

Note that �i(b; x) = u(b; x; x)Qi(b; x)f(x j x) +
Px�1

s=s u(b; x; s)f(s j x); where
f is a probability mass function. Thus,

[�i(b1; x)� �i(b0; x)]� [�j(b1; x)� �j(b0; x)] =

= fu(b1; x; x)[Qi(b1; x)�Qj(b1; x)]� u(b0; x; x)[Qi(b0; x)�Qj(b0; x)g f(x j x)
(3)

Note that �i(b1; x) � 0 implies that u(b1; x; x) � 0 and that u(b0; x; x) > 0: Thus,

(2) implies that the expression (3) is strictly positive. Then either �i(b1; x) �
�i(b0; x) > 0 or �j(b1; x) � �j(b0; x) > 0, contradicting the de�nition of x. This

establishes the claim.

Finally, Lemma 11(ii) shows that at a symmetric equilibrium both players bid

b with probability 1 when their type is s; where b is determined by the condition

u(b; s; s) = 0. Thus, monotonicity and the requirement that Qj(b; s) = Qi(b; s)

uniquely determine the equilibrium strategies. 2

7 Final Remarks

The monotonicity result derived in this paper provides the missing link for the

analysis of uniqueness in two-person �rst price auctions. At least in the two-

person case the assumption of a�liation provides su�cient structure to ensure

a very general monotonicity result, which is independent of any symmetry con-

siderations and of the bidders' attitudes toward risk. Combining this result with

earlier work by Maskin and Riley, I also establish a uniqueness result for the

two-person symmetric case.

The two main limitations of the results reported here are related to our focus

on regular equilibria of two-person auctions. The restriction to regular equilibria

is of a technical nature but may not be such a demanding requirement from the

economic point of view. Moreover, it is not restrictive at all when the signals are

discrete valued. The second quali�cation is of a more fundamental nature and, in

fact, our results can be considered only a preliminary step in the analysis of the

n-person case. However, the extension of the methods used here to the general

case does not seem to be straightforward. In particular, Lemma 6 does not

generalize to the n-dimensional case. The following counterexample establishes

this point. Consider a probability measure p de�ned on the set � of the 3-

tuples (i; j; k) such that i; j; k 2 f0; 1g. Let pijk denote the probability of the

element (i; j; k) and let pij(k) denote the conditional probability that the �rst

two elements take values i and j given the fact that the third one takes the value

12



k. Suppose that p00(0) = p01(0) = 1=3; p10(0) = p11(0) = 1=6; p00(1) = 4=15,

p01(1) = 4=10; p10(1) = 2=15 and p11(1) = 2=10. De�ne a function ' on �

such that '(i; j; k) = 'ij. It can be easily veri�ed that p is MTP2 and that '

is a weakly QSM mapping. Finally, notice that E(' j k = 0) = 0 and that

E(' j k = 1) = �0:06: Thus, E(' j k) is not QSM:

Appendix

Proof of Lemma 2. Using the continuity of ui, we can write

�i(b̂; x)� �i(b̂
�; x) = E

�
ui(b̂; si; sj)[Qi(b̂; sj)�Qi(b̂

�; sj)] j si = x
�

�i(b̂
+; x)� �i(b̂; x) = E

�
ui(b̂; si; sj)[Qi(b̂

+; sj)�Qi(b̂; sj)] j si = x
�

Note that Qi(b̂; sj) � Qi(b̂
�; sj) = Qi(b̂

+; sj) � Qi(b̂; sj) because the tie-breaker

is symmetric. Thus, �i(b̂; x)��i(b̂
�; x) = �i(b̂

+; x)��i(b̂; x): On the other hand,

�i(b̂; x)� �i(b̂
�; x) � 0 and �i(b̂

+; x)� �i(b̂; x) � 0 because of the optimality of b̂

for the bidder i with signal x. We conclude that �i(b̂; x) = �i(b̂
�; x) = �i(b̂

+; x);

as desired. 2

Proof of Lemma 3. I argue by contradiction. Suppose that the bid b̂ 2 (b; b]

is optimal for bidder i with signal x and that bidder j bids with probability zero

in some interval [b̂ � "; b̂). Since �i (b; x) is continuous in b̂ by Lemma 2, an ar-

bitrarily small reduction in bidder i's bid has an arbitrarily small e�ect on his

expected payo�. However, an additional reduction in his bid to b̂ � " means a

de�nite reduction in what he expects to pay if he wins and does not a�ect his

chance of winning. Thus, �i(b̂; x) < �i(b̂ � "; x), contradicting the optimality of

b̂. 2

Proof of Lemma 4. Suppose that �j has a mass point and is quasi-monotone

at b. Consider a sequence (bn; xn)n!1
such that bn " b and xn 2 ��1i (bn) (ex-

istence of such sequence follows from Lemma 3). Denote x = limn!1 xn and

~sj = supfsj 2 Sj : Qi(b
�; sj) > 0g. The fact that �j is quasi-monotone at b

implies that Qi(b
�; sj) = 0 for sj > ~sj: Thus, limn!1 �j (b

n; xn) = � (b�; x) =

E (ui(b; si; sj)Qi(b
�; sj) j si = x; sj � ~sj)P (sj � ~sj j si = x) : Note that � (b�; x) �

0 as a consequence of the fact that �j (b
n; xn) � 0 for every n. Also note that

P (sj � ~sj j si = x) > 0 due to the fact that b > b: Hence, we conclude that

ui(b; x; ~sj) � 0.

If ui(b; x; ~sj) = 0, then �i (b
�; x) = 0 and �i (b� "; x) > 0 for some small

" > 0: Thus, for n su�ciently large, �i (b� "; xn) > �i (b
n; xn) �= 0, which implies

that xn =2 ��1i (bn) ; a contradiction.

If ui(b; x; ~sj) > 0, then ui(b; x; sj) > 0 for every sj > ~sj. Thus,

E (ui(b; si; sj)Qi(b; sj) j si = x; sj > ~sj) > 0 (4)
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Note that Qi(b
�; sj) = 0 for sj > ~sj and Qi(b; sj) = Qi(b

�; sj) for sj < ~sj as a

consequence of the fact that �j is quasi-monotone at b. Using also the continuity

of ui in b we can write

�i (b; x)� �i (b
�; x) = E (ui (b; si; sj) [Qi(b; sj)�Qi(b

�; sj)] j si = x)

= E (ui (b; si; sj) [Qi(b; sj)�Qi(b
�; sj)] j si = x; sj > ~sj)P (sj > ~sj j si = x)

= E (ui (b; si; sj)Qi(b; sj) j si = x; sj > ~sj)P (sj > ~sj j si = x) > 0

where the last inequality follows from (4) and the fact that P (sj > ~sj j si = x) >

0 because of the mass point at b. Since �i (b; x
n) � �i (b

n; xn) ! �i (b; x) �
�i (b

�; x) > 0 as n ! 1, we conclude that xn =2 ��1i (bn) also in this case. This

contradiction establishes the lemma. 2

Proof of Lemma 5.

(i) Follows directly from equation (1).

(ii) First, I claim that �i (s) > 0 implies that (a) Qi(b
+
0 ; sj) < 1 and (b) ui (b1; s) >

0. To see this, note that Qi(b
+
0 ; sj) = 1 implies that Qi(b1; sj) = 1 and there-

fore that �i (s) = ui (b1; s) � ui (b0; s) < 0, so (a) follows. Now suppose that

ui (b; s) � 0. Since jui (b1; s)j > jui (b0; s)j when ui (b0; s) � 0, we have that

�i (s) = � jui (b1; s)jQi(b1; sj)�ui (b0; s)Qi(b
+
0 ; sj) � 0: This establishes the claim.

Now suppose that �i (s) > 0 and consider a signal s0j > sj. Since �j is mono-

tone at b0, Lemma 1 and the preceding claim imply that Qi(b
+
0 ; s

0
j) = 0. Thus, we

have that �i(si; s
0
j) = Qi(b1; s

0
j)ui(b1; si; s

0
j) � 0, where the inequality follows from

the preceding claim and the fact that ui(b1; si; s
0
j) � ui(b1; si; sj) by assumption

A2. We conclude that �i(si; sj) > 0 implies that �i(si; s
0
j) � 0, as desired. 2

Proof of Lemma 6. Since ' is weakly QSM, there must be a parameter value

s0j 2 Sj such that '(sj)(sj�s
0
j) � 0 for almost every sj 2 Sj. Given x; x

0 2 Si such

that x < x0, denote � (s) = fj(sj j x
0)=fj(s

0
j j x

0)� fj(sj j x)=fj(s
0
j j x); where fj

denotes the density of the conditional distribution of sj with respect to si. I claim

that '(sj)�(sj) � 0 for almost every sj 2 Sj: Note that when sj < s0j we have

that �(sj) � 0 because f isMTP2 and that '(sj) � 0 because ' is weakly QSM.

Similarly, �(sj) � 0 and '(sj) � 0 when sj > s0j . The claim follows. Finally,

note that  (x0)=fj(s
0
j j x

0)�  (x) =fj(s
0
j j x) =

R
Sj
' (�)� (�) d� � 0: Thus,  is

QSM. 2

Proof of Lemma 10. For concreteness, suppose that bj � bi. First, I claim

that �j is quasi-monotone at b: This is trivially true when bj = b. On the other

hand, when bj < b, b is a winning bid for bidder j. If this bid is optimal for j

when his signal is sj; we must have that �j(b; sj) � 0. Thus, Lemma 8 implies

that �j(b; s
0
j) > 0 for s0j > sj. Since bids lower than b yield zero expected pro�ts,

we conclude that when bidder j's signal is larger than sj; he bids at least b: The

claim follows.
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Since �j is quasi-monotone at b, the lemma follows trivially if �j is atomless

at b. Consider the case in which �j has a mass point at b: Since in this case b is

a winning bid for i and �j is quasi-monotone at b, Lemma 8 and the argument

employed in the preceding paragraph imply that �i also is quasi-monotone at b.

To show that �i is actually monotone at b; we only need to show that ��1i (b)

is a singleton. We argue by contradiction. Suppose that ��1i (b) contains two

signals si and s0i such that s0i > si. Since �i (b; si) � 0, Lemma 8 implies that

�i(b; s
0
i) > 0. Moreover, since �j is quasi-monotone at b; the types of bidder j that

bid b are larger than the ones that bid less than b: Using these observations and

the fact that ui is non-decreasing in sj, an argument similar to the one used in

the proof of Lemma 4 implies that E
�
ui(b; si; sj)Qi(b; sj) j si = s0j; sj > ~sj

�
> 0,

where ~sj = supfsj 2 Sj : Qi(b
�; sj) > 0g. Thus,

�i(b
+; s0j)� �i(b; s

0
j) = E

�
ui(b; si; sj)[Qi(b

+; sj)�Qi(b; sj)] j si = s0j

�

= E
�
ui(b; si; sj)[Qi(b

+; sj)�Qi(b; sj)] j si = s0j; sj > ~sj
�
P (sj > ~sj j si = s0j)

= E
�
ui(b; si; sj)[Qi(b; sj)�Qi(b

�; sj)] j si = s0j; sj > ~sj
�
P (sj > ~sj j si = s0j)

= E
�
ui(b; si; sj)Qi(b; sj) j si = s0j; sj > ~sj

�
P (sj > ~sj j si = s0j) > 0

(5)

where we used the facts that Qi(b̂; sj) � Qi(b̂
�; sj) = Qi(b̂

+; sj) � Qi(b̂; sj) be-

cause the tie-breaker is symmetric, and that Qi(b
�; sj) = 0 for sj > ~sj and

Qi(b; sj) = Qi(b
+; sj) for sj < ~sj as a consequence of the fact that �j is quasi-

monotone at b. But (5) implies that s0j =2 ��1i (b). This contradiction completes

the proof. 2

Proof of Lemma 11. I argue by contradiction. Let bi < bj = b and denote

s0i = sup ��1i (b): First I claim that u(b; s0i ; s) � 0. To establish the claim suppose

that u(b; s0i ; s) > 0: Then �i(b + "; s0i ) > �i(b; s
0
i ) for a su�ciently small " > 0,

which contradicts the optimality of b for i when his signal is s0i : The claim follows.

Take bi < b < b: Then

�j(b; s)� �j(b; s) =

= E (u(b; s; si)[Qj(b; si)�Qj(b; si)] +Qj(b; si)[u(b; s; si)� u(b; s; si)] j si � s0i )

(6)

The preceding claim and assumption A4 imply that u(b; s; s
0
i ) � 0: By assump-

tion A3, we have that u(b; s; si)�u(b; s; si) < 0: Moreover, Qj(b; si) > 0 with pos-

itive probability since bi < b. Thus, equation 6 implies that �j(b; s)��j(b; s) < 0;

so s =2 ��1j (b): This contradicts Proposition 1 and establishes the �rst assertion.

To establish the part (i) of the last assertion, suppose that S = [s; s]: Also

suppose that �j has a mass point at b: Since b is a winning bid for bidder i, we

have that �i(b
+; s) � 0: This implies that u(b; s; ŝj) > 0 for some ŝj 2 ��1j (b):

Thus, assumption A4 implies that u(b; ŝj; s) > 0. But then �j(b+"; ŝj) > �j(b; ŝj)

for a su�ciently small " > 0; a contradiction that establishes (i).
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Finally, consider part (ii). Suppose that S = fs; ::; sg: First I claim that both

bidders' strategies have a mass point at b: To show this, I argue by contradiction.

Suppose �j is atomless at b: Since the strategies are monotone, there must exist

a type s and some " > 0 such that ��1i (b) = fsg and ��1j (b) = fsg for every b 2
(b; b+ "): Since �i(b

+; s) = 0, we have that �i(b; s) = u(b; s; s)Qi(b; s)f(s j s) = 0

for every b 2 (b; b+"): Thus, u(b; s; s) = 0 for every b 2 (b; b+"); a contradiction

that establishes the claim.

Since both bidders' strategies are monotone at b; the preceding claim and the

proof of Lemma 10 imply that ��1i (b) = ��1j (b) = fsg and that u(b; s; s) = 0.

Thus, if the type s of bidder j bids with positive probability in some interval

(b; b + "); we have that �i(b; s) = u(b; s; s)Qi(b; s)f(s j s) < 0 for b 2 (b; b + ").

We conclude that the type s of bidder i bids b with probability 1. Part (ii) follows.
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