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Abstract

We obtain minimax lower bounds on the regret for the classical two-armed ban-
dit problem. We provide a �nite-sample minimax version of the well-known log n
asymptotic lower bound of Lai and Robbins. Also, in contrast to the logn asymp-
totic results on the regret, we show that the minimax regret is achieved by mere
random guessing under fairly mild conditions on the set of allowable con�gurations
of the two arms. That is, we show that for every allocation rule and for every n,
there is a con�guration such that the regret at time n is at least 1 � � times the
regret of random guessing, where � is any small positive constant.

�This work was supported in part by the National Science Foundation under NYI grant IRI-9457645.
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1 Introduction

In the classical two-armed bandit problem (originating from the work in [8, 9]), there

are two unknown distributions P1 and P2 associated with arm 1 and arm 2, respectively.

At each time we are allowed to select an arm from which to receive a reward drawn

according to the distribution for that arm. Our goal is to maximize the expected sum

of the rewards. Let m1 and m2 denote the expected values corresponding to P1 and P2,

respectively. If we knew which one of m1 and m2 is larger, we could keep selecting the

arm with larger mean, and after time n, our expected reward would be nmax(m1;m2).

Since the distributions P1 and P2 are unknown, the expected reward will always be

smaller than this optimal value. The di�erence between nmax(m1;m2) and the expected

reward is called the regret. Note that if, in each step, we select an arm independently

with equal probabilities, the regret is n�=2, where � = jm1 �m2j. The results of Lai

and Robbins [7] and subsequent extensions by others (e.g., [1, 2, 3, 4]) showed that in a

fairly strong asymptotic sense the optimum achievable regret is � log n=I, where I is the

Kullback-Leibler divergence between P1 and P2. In this paper, we consider the problem

from a non-asymptotic minimax perspective. We o�er a �nite-sample minimax version

of the Lai-Robbins lower bound (see Theorem 1 below). This result can be used to

provide bounds on the sample size necessary to guarantee a desired performance. Also,

in sharp contrast to the well-known log n asymptotic results on the regret, we show that

the minimax regret is about n�=2 under fairly mild conditions on the set of allowable

con�gurations of the two arms. We show that if the set of allowable con�gurations is

su�ciently \large," then for any n, for any small �, and for any strategy of selecting

arms, there is a con�guration such that the regret is larger than (1 � �)n�=2. In other

words, regardless of how large n is, up to time n, the \bad" arm will be played almost

half of the time for some con�guration. That is, in the minimax sense, no arm-selection

strategy can perform better than completely random selections.

2 Formulation and Lower Bounds

Let a con�guration � = (�1; �2) be a pair of parameters determining the distributions of

the two arms. That is, if arm i is pulled, a reward is payed according to the probability

density f�i (i = 1; 2). All densities are understood with respect to a common dominating

�-�nite measure � on the real line. Denote the respective means by

mi =

Z
xf�i(x)d�(x); i = 1; 2;

and let � = jm1 �m2j. Assume without loss of generality that m1 > m2, that is, arm

1 is optimal. We denote the measure and expectation with respect to the distribution

associated with � by P� and E�, respectively.

Introduce the alternative con�guration �0 = (�01; �2), for some �01 such that m0
1 =R

xf�0

1
(x)d�(x) = m2 � �. Thus, the distribution of the reward after pulling arm 2 is

unchanged, but arm 2 is optimal in con�guration �0.
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Our bounds involve the information divergence (or Kullback-Leibler number) between

the densities f�1 and f�0

1
given by

I = I(�01; �1) =

Z
f�0

1
(x) log

 
f�0

1
(x)

f�1(x)

!
d�(x) = E�0

(
log

 
f�0

1
(x)

f�1(x)

!)
;

as well as a variance-like quantity, denoted V , related to the information divergence I by

V =

Z
f�0

1
(x) log2

 
f�0

1
(x)

f�1(x)

!
d�(x)� I2 = E�0

(
log2

 
f�0

1
(x)

f�1(x)

!)
� I2:

(All logarithms are of the natural base.)

An adaptive allocation rule � = (�1; �2; : : :) is a sequence of random variables taking

values in f1; 2g such that �j is measurable with respect to the �-�eld Fi�1 generated

by the previous values �1;X1; : : : ; �i�1;Xi�1, where X1;X2; : : : are the random variables

denoting the sequence of rewards obtained. That is, based on the previous rewards

(X1; : : : ;Xi�1) and the previous selections (�1; : : : ; �i�1), �i denotes whether arm 1 or arm

2 is to be pulled at time i. Under a particular adaptive allocation rule and con�guration

�, our reward up to and including time n is

Sn =
nX
i=1

Xi:

Since E[XijFi�1] = m�i, the expected reward is

E[Sn] =
nX
i=1

E[Xi] =
nX
i=1

E (E[XijFi�1]) = E

"
nX
i=1

m�i

#
:

and the regret at time n is

Rn(�) = nmax(m1;m2)� E[Sn]:

In other words, Rn(�) is � times the expected number of times the arm with worse

expected payo� is pulled.

Our goal is to obtain lower bounds on the minimum value of

max(Rn(�); Rn(�
0));

over all possible adaptive allocation rules. For all integers n > 0 and � > c, introduce

��;n = e��I (1� p�;n) ;

where

p�;n = P�0

(
nX
i=1

log

 
f�1(xi)

f�0

1
(xi)

!
� ��I

)
:

Theorem 1 For any n, an 2 (0; 1), cn 2 (0; n), � > cn, and for any adaptive allocation

rule,

max(Rn(�); Rn(�
0)) � �min(cn(1� an); (n� cn)an��;cn) :
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To interpret the theorem, we need lower bounds for ��;n, that is, upper bounds for

p�;n. Note that p�;n is the probability that the sum of n i.i.d. random variables (with

negative mean �I) is less than the mean of the sum minus (�� n)I. Thus, it follows by

Chebyshev's inequality that

��;n � e��I
 
1 � nV

(�� n)2I2

!
: (1)

We will see that (1) is a satisfactory bound if the ratio V=I is not too large. This is

indeed the case for many interesting cases. The next two examples serve as illustration.

Example. Let f�1 be the normal density with mean m1 and variance �2, and let f�0

1

be the normal density with mean m0
1 and variance �2. Then straightforward calculation

shows that V = I for all values of m1;m
0
1, and �.

Example. Let �1 correspond to the Bernoulli distribution P�1(f0g) = p, P�1(f1g) = 1�p,
and let �01 be de�ned by P�0

1
(f0g) = 1 � p, P�0

1
(f1g) = p and assume that p > 1=2. Then

using the inequality log x � x� 1,

V

I
=

(1 � (2p� 1)2) log2(p=(1 � p)

(2p � 1) log(p=(1 � p)
� 4p � 4:

Note that in this example we can take f�2 to be any density with mean m2 = 1=2, for

example, we may let P�2(f1=2g) = 1.

In speci�c situations, one may get much sharper estimates. For example, if both

f�1 and f�0

1
are Gaussian with variance �2, then log(f�1(X)=f�0

1
(X)) also has a Gaussian

distribution, so one may get sharper estimates for p�;n by using standard bounds for the

tail of a Gaussian distribution, but we do not detail these, rather straightforward, bounds

here.

Corollary 1 Fix any � 2 (0; 1). If n is so large that

n�
2 � max

 
4
(1 � �)2

�

log n

I
; e2V=(I(1��))

!
;

then

max(Rn(�); Rn(�
0)) � �(1� �)2

log n

I
:

Proof. In Theorem 1 take an = �, cn = (1 � �) log n=I, and � = (1 + �)cn. Then (1)

and a straightforward calculation shows that

cn(1 � an) � (n� cn)an��;cn

whenever the condition for n is satis�ed, and therefore max(Rn(�); Rn(�
0)) � cn(1�an).

2

For smaller values of n, Theorem 1 may be used to derive much larger lower bounds:
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Corollary 2 Let a 2 (0; 1). If n1�a � 4e and naI +
q
naV=2 � 1 then

max(Rn(�); Rn(�
0)) � na�

2
:

Proof. Take cn = na, an = 1=2, and � = n +
q
nV=(2I2) in Theorem 1. 2

Taking cn = n=2 and an = 1=2 in Theorem 1 we obtain the lower bound (n�=4)��;n=2.

The following theorem improves on this:

Theorem 2 For any n, � > n, and for any adaptive allocation rule,

max(Rn(�); Rn(�
0)) � n�

2
��;n;

Corollary 3 For any n � d1=Ie and for any adaptive allocation rule,

max(Rn(�); Rn(�
0)) � �n

4
e�1�

p
V=(2I):

Proof. Note that if we take � = n+
q
nV=(2I2),

1 � nV

(� � n)2I2
=

1

2
;

and therefore, the corollary follows by applying Theorem 2 with (1) for n = d1=Ie. 2

Corollary 4 Let � > 0 be arbitrary. If there exists an � > n such that � � � log(1 �
�)=2I and (�� n)2=n � 2V=(�I2), then

max(Rn(�); Rn(�
0)) � �n

2
(1� �):

Proof. Straightforward calculation shows that if the conditions are satis�ed then e��I �p
1� � and 1 � nV= ((n� �)2I2) � p

1 � �, so the statement follows by Theorem 2 and

the bounds of (1). 2

Corollary 4 may be applied with arbitrary � in many cases when, in the class of allow-

able con�gurations, there are pairs (�1; �
0
1) with arbitrarily small information divergence.

The following two special cases illustrate such situations.

Corollary 5 Suppose P2 is an arbitrary distribution with mean zero (which can even be

known). Suppose P1 is Gaussian with mean either � or �� with arbitrary variance.

Then for every adaptive allocation rule, for every � > 0, and for every n, there is a

con�guration such that the regret at time n is at least (1� �)n�=2.

Corollary 6 Let S be the set of all con�gurations � = (�1; �2) such that both P�1 and

P�2 are Bernoulli distributions (i.e., of the form P�(f0g) = p, P�(f1g) = 1 � p for some

p). Then for every adaptive allocation rule �, for every � > 0, and for every n,

sup
�2S

Rn(�) � n�

2
(1� �);

where � is the di�erence between the means corresponding to the two arms.

5



3 A Change-of-Measure Lemma

As before, let the vector X = (X1; : : : ;Xn) of random variables denote the rewards up

to time n if a particular adaptive allocation rule is used. Let x = (x1; x2; : : : ; xn) 2 Rn

denote a �xed realization of X.

Tx(1) and Tx(2) denote the number of times arm 1, and arm 2 are pulled up to time

n.

The key part of the proofs of the results in the previous section is the following

measure-transformation lemma, which is based on ideas of Lai and Robbins [7].

Lemma 1 For any integer k 2 [0; n], and � > k,

P�fTx(1) = kg � ��;kP�0fTx(1) = kg:

Proof. Let J � f1; : : : ; ng be a set of indices. On J , introduce the likelihood ratio

LJ(x) =
X
j2J

log

 
f�1(xj)

f�0

1
(xj)

!
:

The �rst step of the proof is trivial:

P�fTx(1) = kg � P�fTx(1) = k; LB(x)(x) > ��Ig; (2)

whereB(x) is the set of indices indicating the times when arm 1 is pulled by the allocation

rule based on the sequence of observations x.

For each index set J , de�ne AJ � Rn by

AJ =
n
x : B(x) = J;LB(x)(x) > ��I

o
:

Thus,

P�fTx(1) = k; LB(x)(x) > ��Ig = P�

8<
:

[
J :jJj=k

AJ

9=
; =

X
J :jJj=k

P�fAJg:

Now

P�fAJg =

Z
AJ

0
@Y

j2J

f�1(xj)

1
A
0
@Y
j =2J

f�2(xj)

1
A d�(x1) � � � d�(xn)

=

Z
AJ

0
@Y

j2J

f�1(xj)

f�0

1
(xj)

1
A
0
@Y
j2J

f�0

1
(xj)

1
A
0
@Y
j =2J

f�2(xj)

1
A d�(x1) � � � d�(xn):

But for each x 2 AJ , we have LJ(x) > ��I, so
0
@Y

j2J

f�1(xj)

f�0

1
(xj)

1
A > e��I;
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and therefore

P�fAJg � e��IP�0fAJg:
It follows that

P�fTx(1) = k; LB(x)(x) > ��Ig
� e��I P�0fTx(1) = k; LB(x)(x) > ��Ig
= e��I P�0fTx(1) = kgP�0fLB(x)(x) > ��IjTx(1) = kg: (3)

But by the de�nition of p�;k, we have

P�0fLB(x)(x) > ��IjTx(1) = kg � 1� p�;k: (4)

Summarizing (2), (3), and (4), the proof of the lemma is complete. 2

4 Proofs of Theorems 1 and 2

Proof of Theorem 1. There are two cases. If P�0fTx(1) � cng < an, then by Markov's

inequality, we have

E�0 [Tx(1)] � cn(1 � an):

If, on the other hand, P�0fTx(1) � cng � an, then

P�fTx(1) � cng =
cnX
k=1

P�fTx(1) = kg

� ��;cn

cnX
k=1

P�0fTx(1) = kg (by Lemma 1, whenever � > cn)

= ��;cnP�0fTx(1) � cng
� an��;cn:

Thus,

P�fTx(2) � n � cng = P�fTx(1) � cng � an��;cn;

and by Markov's inequality,

E�[Tx(2)] � (n� cn)an��;cn:

Therefore,

max(Rn(�); Rn(�
0)) = �max(E�[Tx(2)]; E�0 [Tx(1)])

� �min (cn(1 � an); (n� cn)an��;cn) ;

and the theorem is proved. 2

Proof of Theorem 2. After time n, the regret under con�guration � is

Rn(�) = �E�[Tx(2)]:
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For any � > n, we have

max(Rn(�); Rn(�
0)) � Rn(�) +Rn(�

0)

2

= �
E�[Tx(2)] + E�0 [Tx(1)]

2

=
�

2

nX
i=1

(P�fTx(2) � ig+ P�0fTx(1) � ig)

� �

2
��;n

nX
i=1

(P�fTx(2) � ig+ P�fTx(1) � ig) (by Lemma 1)

=
�

2
��;n (E�[Tx(2)] + E�[Tx(1)])

=
n�

2
��;n;

and the proof is complete.
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