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Abstract

In a location-allocation system, it is necessary to obtain not only
an efficient set of facility locations, but also an efficient relationship
among the catchment areas. This is specially important in services
that are hierarchical in nature and where there is a strong relationship
: between the different levels. In seeking an effective relation among the
different levels, all the areas assigned to a particular facility at one hi-
: erarchical level should belong to one and the same district in the next
level. This property leads to a ”coherent” districting structure. In
this paper the concept of coherence is introduced within a network lo-
cation covering framework: the Coherent Covering Location model lo-
cates two hierarchical facility levels by maximizing the coverage while
ensuring coherence. Adaptations of the model to different location
patterns and computational experience are provided.
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1. Introduction.

Space has a profound impact on the organization of economic and social activities.
The discipline of location-allocation theory addresses questions related to the spatial
organization of activities. A myriad of different formulations have been designed
in the past decades to locate many types of public and private sector facilities by
optimizing some specified measurable criteria. Some of these models have studied
the location of facilities that are hierarchical in nature, such as health care services,
bank services or postal facilities. While most hierarchical location models were
designed to obtain an optimal location of resources in space, little or no importance
was given to the spatial organization obtained once the locations were found.
The division of a region into districts according to some specific criteria also plays
a very important role in the spatial organization of services. To achieve an
efficient and effective hierarchical system, it is necessary to obtain not only an
efficient set of locations but also an efficient districting of the areas served, since
these areas will be the ones to benefit from the services provided by the located
facilities. In seeking a more responsive and effective relation among the different
levels in a hierarchy, all the districts corresponding to a given hierarchical level
should belong to one and the same district in the next level of the hierarchy. This
property leads to a "coherent” districting structure. Coherent districts and linkages
can define optimal capacities for the facilities, integrated planning units for socio-
economic studies, and administrative regions for better management.

The research presented here concerns the optimal location and districting of
hierarchical facilities. Among the formulations proposed to solve location-
allocation problems, two of these, the P-Median Problem (ReVelle and Swain,
1970) and the Maximal Covering Location Problem (MCLP, Church and ReVelle,
1974) have played particularly dominant roles. The key difference between p-
median models and covering models is that while p-median models define a clear
assignment of the demand areas to the nodes where services are located, covering
models determine only the sites for services, and not the assignment. In a covering
model a node can be covered by more than one facility, and assignment to the
closest facility is done after solving the model - even if the demand area is not
covered, or is not within a given distance to any facility.

The first atempt known to the author to combine hierarchical location and coherent
districting with a network location framework has recently been studied in the PQ-
Median Model (Serra and ReVelle, 1992). The pq-median problem relies on the
assignment characteristic of the p-median to obtain coherent locations and districts.
The Coherent Covering Location Problem (CCLP), presented in Section 3, will
relax the strict assignment constraints of the pg-median and attempt to obtain
coherence to the maximum extent possible. As in the pg-median problem, facility
location in a two-level hierarchy will be addressed.

The CCLP basically integrates two traditional maximal covering formulations, one
for each level of the hierarchy, together with a constraint to achieve coherence.
This model attempts to locate facilities in a two-level hierarchical system so that



the maximum population is covered within some distance threshold, given the
achievement of covering coherence. The number of facilities to be located in the
first level of the hierarchy will be larger than the number of facilities in the second
level. The CCLP can be reformulated using a p-median objective in one of the
hierarchical leverl. Therefore, the p-median g-covering problem described in
Section 4 will use a p-median formulation for one of the hierarchical levels, and
a maximal covering formulation for the other hierarchical level, together with a
constraint on coherence. Computational experience and results for both models are
described in section 5.

In fact, some type of services do not require a strict assignment. Covering models
give excellent results when locating services such as health care emergency services
and fire services, since the main objective is to cover the maximum population
within a given distance or travel time. In these types of services, assignment does
not play a crucial role. On the other hand, the characteristic of coherence can also
be important in these types of services. Although assignment and districting are
not crucial in the siting of these services, it may be necessary to cover a given are
by two types of facilities that are related to each other. Coherence, in covering
terms, is achieved when all areas covered by a facility at level one are also covered
at least by one and the same facility at level two. Observe that in this case, we do
not specify that the area has to be covered by only one and the same facility.
Coherence coverage allows a node to be covered by more than one facility, but it
stresses coverage of all nodes covered by a type A facility by one and the same
type B facility.

Several considerations must be taken into account to utilize the concept of covering
with coherence. First of all, covering models derived from the MCLP attempt to
cover as many people or as much area as possible within a distance standard, but
this objective admits that not everybody or all areas will be covered. Coverage
depends on the distance standard used and the number of facilities located. The
larger the distance standard and the greater the number of facilities, the more likely
it is that coverage will be complete. Second, it may be possible that coherence is
not fully achieved in both the CCLP and the p-median g-covering model, since it
depends on the covering distances chosen at each hierarchical level. The
formulation and its explanation will clarify the idea of coherence in the covering
models.

The concept of coherence has already been considered in the early works of
Christaller (1933). The theory of Central Places defines a hexagonal spatial pattern
where there are well defined relations between size and type or function of the
centers and their distances. In this context, coherence is achieve in a k-7 hierarchy
where a hexagonal area corresponding to a lower center is completely within the
hexagonal area associated with the next higher hierarchical center.




2. Hierarchical Covering Location Models.

Hierarchical systems generally apply to large regions or countries, as well as urban
areas. The minimum number of levels within the hierarchy is two. The literature
on network location contains only several articles on hierarchical systems were the
models are generally integrated, i.e., the solution to the model is provided for all
levels. Another characteristic is that, in general, lower hierarchical levels have
more service centers than higher ones. The number of services increases as we go
up the hierarchy to the higher levels.

The concept of a hierarchy has been invoked frequently in the locational modeling
of urban service systems and though much analysis has been performed within
multilevel frameworks, most studies have presented primarily structural
elaborations of more basic single level location problems such as the p-median or
MCLP (O’Kelly and Storbeck 1984). The MCLP has been successfully used to
locate any given number of hierarchical facilities so that the area or population
covered within a given distance or time standard is maximized. Covering problems
are very well suited to the location of hierarchical services.

Banergi and Fisher (1974) integrated the Set Covering Problem and the p-median
problem to locate different hierarchical services (hospitals, schools, markets,
post-offices. etc.) in a region of rural India. As they point out, "these two
algorithms may be combined provided that violations of the maximum travel
distance standards are acceptable for some settlements”(p.55). Hence, the Set
Covering Model determined the minimum number of centers to cover all
settlements, and the p-median located the centers minimizing users costs. First,
they solved for the location for the highest level in the hierarchy taking into
account existing centers following several ranking techniques based on service-area
populations and other parameters. Then, after fixing the location of the
highest-level facilities, the next lower level was solved using the same procedure.
In the solution, changes from the p-median solution did not violate to a large extent
the maximum distance chosen for the Set Covering Problem.

Charnes and Storbeck (1980) formulated a goal programming model to locate
emergency medical services. Two levels of vehicles (services) were defined: Basic
Life Support (BLS) and Advanced Life Support (ALS). The objective was to cover
all the demand area by vehicles. If demand cannot be covered by any vehicle
within a given distance criterion, then at least the BLS service should cover it.
Moore and ReVelle (1982) defined a nested hierarchical maximal covering model
for locating clinic and hospital facilities. The services were nested; hospitals
provide clinic services as well as hospital services. No referral patterns were
considered between the levels. Demand areas were conceptually assigned to the
closest clinic and closest hospital for the level of services required, but there is no
spatial relation such as coherence whatsoever between the different facilities. The
integer model was solved by relaxed LP and was applied in Honduras. The
authors extended the model to take into account the case where coverage by less
than all types of facilities is also relevant (Moore and ReVelle 1983).



Church and Eaton (1987) presented two 2-level hierarchical formulations addressed
to the location of health care facilities which take into account referral patterns.
The two models depend on the relative importance of (1) health professional
referrals (or top-down referrals) from higher to lower levels, and (2) patient
referrals (or bottom up referrals) from lower to higher health care levels. Both
models used a multiobjective integer approach. The first model maximizes the
number of people covered by clinics and minimizes the number of clinics
uncovered by a hospital. The second model maximizes population covered by
clinics and maximizes referral coverage.




3. The Coherent Covering Location Problem.

In this section, a formulation for the CCLP is offered in the context of coherence.
The mathematical formulation of the problem is derived from the Hierarchical
Service Location Problem of Moore and ReVelle (1982). This model locates two
types of facilities such that coverage by both levels is achieved within some
distance thresholds. The CCLP locates type A and type B facilities such that
coverage at each level is maximized and coherence is obtained.
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T® = Threshold distance for type B facilities offering type B services
§* = Maximum distance from a type A to a type B facility

r, = 1, if area i is covered by a type A facility; 0, otherwise
s; = 1, if area i is covered by a type B facility; 0, otherwise
u; = 1, if there is a type A facility at j; 0 otherwise
v, = 1, if there is a type B facility at k; 0 otherwise

The objectives are to maximize coverage by both type A and type B facilities. The
first set of constraints state that a node cannot be covered for type A services if
there is not a type A facility within $“ or a type B facility within SIB. The
parameters $“ and S” are the threshold distances for type A and type B facilities
respectively, since type B facilities also offer type A services. Observe that both
distance standards do not need to be equal, even though they refer to the same type
of services. This is due to the nature of the facilities. For example, in the field
of health care delivery, people may be willing to travel further to large facilities
than to small facilities to obtain the same type of services, such as the assistance
of a nurse, which are offered in both types of centers.

The second set of constraints allow a node i to be covered for type B services if
there is a type B facility within 7%. In this case only one distance is used, since
type B services are offered only by type B facilities.

The third set of constraints enforces coherence. It states that a type A facility has
to be within a given distance standard $*° from any type B facility. If this
constraint was not included, results such as the one in Figure 1 are very likely.
Observe that nodes 1 and 2 are covered by the same type A facility for type A
services, but they are covered by different facilities for type B services.
Constraints (3) try to avoid this situation. The closer both types of facilities are
from each other, the more likely that all areas covered by a type A facilities will
be covered by one and the same type B facility.

The bottom part of Figure 1 shows a possible solution of the hierarchical covering
model with coherence constraints. Both nodes are covered by the same type A
facility and the same type B facility. Therefore, coherence is observed.

One must be careful when choosing $*°. It is an arbitrary distance based on how
much coherence one wants to enforce. If $*° were equal to 0, type B facilities
would be forced to locate on top of type A facilities. Since 7% > S“, all areas
covered by a type A facility would be also covered by a type B facility.

On the other hand, the distance standard between type A and type B facilities
should not exceed T - $¥ if complete coherence is needed, that is,

< TB-sH



Figure 1: Coherent and Non-Coherent Covering Hierarchies
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This can be seen in Figure 2. This figure shows two different situations. The first
one is such that the maximum distance $* from both facilities is larger than the
difference between the distance thresholds S and 7 .i.e.,

§® > T - 54

Observe that while in this case constraint set (3) is met and there is a type B
facility within $* from the type A facility, node i is not covered by type B
services. The second situation shows that if 2 < 7% - | then node i will be
covered by both facilities with coherence enforced.

If $* is strictly less than T* - §“, coherence is observed, but by increasing $* it
is possible to obtain a better solution in the objective without violating coherence.
As $* increases, the number of candidate nodes for a type B facility that are
within $*2 from a type A facility increases. Therefore the NB set in constraint (2)
is larger and the constraint is less tight. As a consequence, in order to achieve
complete coherence, that is, all nodes covered by a type A facility are covered at
least by one and the same type B facility, the maximum distance S*® between type
A and type B facilities has to be equal to the difference between the distance
thresholds of both type A and type B facilities, that is,

5 = 7o g

Observe that if $*° is strictly smaller 7% - §“, coherence will be achieved but at
greater cost than necessary.

The assumption of coherence can be relaxed if it is sufficient that most nodes
covered by a type A facility are also covered by at least one and the same type B
facility. In this case, the maximum distance $*° is allowed to be slightly larger
than 7 - $“, that is,

M=T%_8§4+0

where O is small enough that most such nodes have the needed coverage.

A formal definition of two types of coherence can be now stated. Strong
coherence is achieved when all nodes that are covered by a type A facility are
covered at least by one and the same type B facility. This will be best achieved
when $* is equal to T - §“.

Weak coherence is achieved when as many nodes as possible, but not necessary all,
that are covered by a type A facility have also to be covered by at least one and
the same type B facility. In this case $* is strictly larger than 7% - $“ by some
small amount.

Figure 3 shows the three scenarios described above. The first one corresponds to
$*® < T* - §“. The circle around the type A facility is the area covered for type
A services. The large circle (truncated by the picture) corresponds to the covering



Figure 2: Strong and Weak Coherence
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area for type B services, its center being the type B facility. All nodes covered by
the type A facility are also covered by the same type B facility. Therefore
coherence is observed. But if one allows $*2 to increase from $*% to §*%’, the type
B facility can be located in node 2, and then node 3 will be also covered (and
therefore the B objective will improve), while coherence is maintained. This
situation is depicted in the second scenario. In this case $*2 is equal to 7% - §“
and node 3 is covered by B.

The bottom part of Figure 3 corresponds to $*2 > T* - §“. Now the type B
facility is allowed to move from node 2 to node S in order to cover node 4,
assuming that node 4 has a larger population than node 1. The objective B will
improve, but strong coherence is not observed because node 1 is no longer covered
by type B services.

As Figure 3 shows, strong coherence does not prevent a node from being
exclusively covered by one or more type B facilities. The weights chosen in the
objective will more or less enforce this situation. The first objective, even though
it explicitly maximizes type A coverage, also implicitly maximizes coherent
coverage, since if a node is covered for type A services it will be also covered for
type B services. If the second objective, B coverage, is heavily weighted, the
model will tend to enforce B coverage to the detriment of coherent coverage.

In the case of strong coherence the model can be slightly modified and the number
of variables reduced. Instead of using two objectives, one for each level, one can
use a single objective: the maximization of the population covered by both type A
and type B facilities. Variables r; and s, can be replaced in constraint sets (1) and
(2) by a single one, e, where e, is equal to 1 if area i is covered by at least once
by both type A and type B services, and 0 otherwise. In this modification there
is not a trade-off between coverage at both levels.

The objective can also be modified so that only type A coverage is maximized, that
is, the B objective, maximization of coverage by type B facilities, is eliminated,
together with its associated constraint (constraint 2). By virtue of the coherence
constraint (constraint 3), type B facilities will be located within a given distance
from the nodes covered by a type A facility. Therefore, the node covered by a
type A facility will be also covered by the type B facility if the distance standard
for the type B facilities is equal to $“ + $*®. This relaxation of the problem might
lead to alternate solutions for the B level. The inclusion of the the type B objective
with a small weight and the constraint on B coverage may eliminate some of them.
Finally, constraints (4) and (5) specify the number of facilities to locate in each
level. All variables are to be 0-1 integer for the problem to have meaning.

Following the classification proposed by Narula (1985), this covering location
formulation locates coherent hierarchical facilities with successively inclusive
services. If the facilities have exclusive services, constraint set (1) can be replaced
by the following one:
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Figure 3: Results Obtained with Different S*2 Distances
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Constraint (7) states that a node can be covered by type A facilities only for type
A services, since in this case type B facilities do not offer type A services. On the
other hand, if locally inclusive services are considered, constraint set (1) can be
replaced by the following ones:
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The first set of constraints (8) allows node i to be covered by a type A facility
only, since the constraints are defined for all nodes in 7 - K. The second constraint
set (9) allows node i to be covered by a type A facility located at a distance at most
equal to or if there is a type B facility located in the same node i, since type B
facilities can locate at these nodes.

4 The P-Median Q-Covering Model.

The CCLP can be reformulated using a p-median criterion for the first level. The
statement of the problem is as follows: locate p type A facilities and g type B
facilities such that (1) the average distance from demand areas to A services is
minimized (2) the population with type B services is maximized within a distance
standard, and (3) coherence is observed. At level A a p-median objective is used.
Level B uses a Maximal Covering objective.

In the p-median g-covering problem, coherence has to be redefined. While in the
pg-median problem it is possible to have all areas that are assigned to a type A
facility to be assigned to only one and the same type B facility, and similarly, with
the CCLP to have strong coherence enforced, the p-median g-covering model will
be unlikely to achieve this full coherence. The p-median problem at the first level
of the hierarchy assigns every demand area to a facility. The second level of the
hierarchy uses the Maximal Covering Location Problem to cover areas within a
threshold distance. If this threshold distance is not extremely large it may happen
that not all areas assigned to a type A facility are covered within this distance to
a type B facility. Therefore, coherence cannot be fully enforced. In this case,
coherence is observed when a demand area assigned to a type A facility is covered
by at least one and the same type B facility within some distance standard. The
model will try to maximize the coverage by type B facilities, but such that as many
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areas covered as possible belong to (are assigned to) the same type A facility. This
coherence, as in the coherent covering location problem, is called weak coherence.

The multiobjective formulation for the p-median g-covering problem is as follows.
The notation used is the same as in the CCLP.
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where x; is equal to 1 if demand node i is assigned to a facility at j for type A
services and 0 otherwise.

The first group of equations (10) forces each demand area to be assigned to only

one type A facility (p-median constraints). The second group of constraints (11)
correspond to the g-covering part of the model. The elements in set NB; represent
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the potential type B locations that are within a given distance standard 7% from
area i. Therefore, an area i will be covered for type B services (s; = 1) if there
is a type B facility at a potential location j that is within 7% from it, i.e., if v,
equals 1, and j is in the set NB,.

Constraints (12), (13), and (14) state that area i cannot be assigned to a node j for
type A services if there is not a type A or a type B facility located there.
Constraint set (12) says that if demand area i is assigned for level A services to
node j (j € J - K), then this node must a have a type A facility. Observe that this
node is not a candidate for a type B facility as it is capable of housing only a type
A facility. If node j is candidate for both type A and type B facilities, then
constraint type (13) is used; this constraint allows a node i to assign to a type A
or B facility for type A services. That is, demand nodes may assign to a type B
facility for type A services if this assignment gives a better overall objective than
assigning to a type A facility for the same services. If node j can only have type
B facilities (j € K - J) then node i will be free to assign to it for type A services
only if a type B facility is sited there (constraint group (14)). Observe that
constraints (12), (13) and (14) put together account for all candidate nodes to have
a facility, that is, (J U K) - (J N K).

Constraints (15) enforce coherence. The constraint states that a type A facility
must always have at least one type B facility within a given distance. The set O
has as elements all potential type B locations that are within a given distance S"é
from a potential type A facility sited at node j. Coherence is enforced in this way
as follows: if there is a type B facility at k within $*° from a type A facility at j,
and all areas within 7% are covered by B, then all areas assigned to the type A
facility that are within 7% - $*® from the type B facility will be covered for type
B services. This does not imply that some areas assigned to the type A facility but
that are further than 7% - $*® are not covered by a type B facility, since it is 7%
and not T™ - $*° that determines B coverage.

This can be seen in Figure 4. Node 2 is assigned to a type A facility and covered
by a type B facility, but it is located at a further distance than 7% - $**, On the
other hand node 1 is assigned to the same facility but it is not covered by the type
B facility, since it is located at a place further than T® from B. All nodes within
T® - $* from A and assigned to it will be covered by the same type B facility.
Therefore, it is the arbitrary maximum distance $*# chosen that will determine the
rigidity in coherence, as in the CCLP. The smaller this distance is, the more
coherence is enforced, since more nodes assigned to a type A facility will be
covered by the same type B facility. Therefore, in the p-median g-covering model
the maximum distance $*° between type A and type B facilities should be chosen
taking into consideration the coverage of nodes by both type A and type B
facilities, even though first level coverage is not explicit in this model. As in the
CCLP, $* should be equal to T® - S, to obtain the best possible coherence, even
though, unlike in the CCLP, strong coherence is not necessarily obtained.

The p-median g-covering model can be transformed to consider coherent facilities
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with successively exclusive services. Constraint sets (12), (13) and (14) can be
replaced by the following constraint set:

Xy S U Viel VjelJ 19

By including constraint set (19) areas will be allowed to assign to type A facilities
only for type A services.

Similarly, the p-median g-covering model can be adapted if the services offered at
the first level are locally inclusive. Constraint sets (12), (13) and (14) can be
replaced by the following constraints:

% < u, Vied-K) VjeJ (20)
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Area i can be assigned to a type A facility or to a type B facility if this one is
located there, by virtue of constraint (21). On the other hand, if area i is not a
canditate for type B facilities, then it can assign only to type A facilities for type
A services by virtue of constraint (20).

The p-median g-covering model can become computationally expensive as the
number of nodes increases, since it has assignment variables x; and Balinski type
constraints. The number of these variables can be reduced by n* - n(n - p + 1)
without affecting the formulation, where n is the number of nodes and p the
number of type A facilities to locate. Nevertheless, the model can be solved using
the weigthing method and linear programming relaxation with branch and bound
when necessary for relatively large networks. For example, if n = 100 the
problem will have 10.300 variables and 10.302 constraints. Observe that in most
cases it will not be necessary to declare assignment variables and coverage
variables integer, unless there are ties in the coefficients of the weighted objective,
since they are upper bounded by the locational variables. By declaring only these,
the model will try to set the coverage and assignment variables with the largest
coefficient in the objective to one.
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Figure 4: P-Median Q-Covering Result
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5. Computational Experience

Both models were solved using the weighting method and linear programming
relaxation, with branch and bound when non-integer solutions were found. The
software used was MPSX/MIP in an IBM 3091 E-600 mainframe computer. Only
locational variables were declared integers in both models. No fractions were ever
found for the assignment or coverage variables of both models in any of the runs.
Two networks, a 25-node network and a 79-node network, were used.

For the 25-node network the distance threshold to type A services was set to 10
kilometers. The distance to type B services was set to 40 kilometers. Since in the
CCLP strong coherence was sought, the maximum distance between type A and
type B facilities was set to 30 kilometers. This problem had 100 variables and 77
constraints. To be able to compare both models the same distance thresholds were
used in the p-median g-covering problem. This problem had 175 variables and 202
constraints.

Figure 5 shows the trade off between both objectives obtained with the CCLP when
P, = (3,2), 4,2), (5,2), (6,2) type A facilities and type B facilities are located
respectively in the 25-node network. Figure 6 shows the trade off between both
objectives when solving the p-median g-covering problem when the same number
of facilities are located. Each curve in both charts represents a given number of
type A and type B facilities. Only problems where g = 2 are represented. It is
interesting to note that in both models, regardless of the number of type A facilities
sited, the locations of the type B facilities remained unchanged. Therefore, the
trade off curves are parallel in both figures.

Table 1 presents the results for the 25-node network for both models. For each set
of facilities located the value of the objectives obtained by changing weights is
shown. The first column corresponding to the CCLP gives the values of the first
objective: maximize coverage by type A services. The second column represents
the second objective of the CCLP: maximization of coverage by type B facilities.
The third column gives the average distance to type A facilities, even though it is
not an objective of the CCLP. This is done to be able to compare both the CCLP
and the p-median q-covering model, since this last model has as its first objective
the minimization of average distance to type A facilities. Therefore, the columns
corresponding to the p-median g-covering model represent both of its bjectives and
the coverage by type A services.

The coverage by type B facilities was the same in most cases for both models since
it is a common objective. This was expected specially when the weights used
emphasized type B coverage. The p-median g-covering model did not give very
good coverage for type A services, but as the number of facilities increased the gap
between coverage obtained with the coherent covering location and the p-median
g-covering decreased. The average distance to type A services was substantially
different depending on the models used.
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Figure 5: Trade off curve: CCLP, 25-node network
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Figure 6: Trade off curve: p-median q-covering, 25-node network
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Table 1: Results of the CCLP, 25-node Network

PQ-Covering Model

P-Median Q-Covering Model

# of
Facilities A B A A B A
Located Coverage | Coverage | p-median Coverage | Coverage | p-median
(p.9) (people) | (people) | (km/pers) | (people) | (people) | (km/pers)
2,1) 545 2097 18.20 275 1617 14.67
469 1849 14.81
463 2097 15.93
(3,2) 800 1841 14.50 565 1926 11.50
722 2016 14.40 547 2016 11.74
659 2019 14.26 462 2019 12.92
(4,2) 895 1841 11.90 642 1926 10.31
819 2016 12.73 626 2008 10.40
754 2019 12.59 639 2019 11.57
754 2019 12.59 639 2019 11.57
(5,2) 986 1846 11.63 813 1926 9.36
915 2016 11.71 787 2008 9.43
845 2019 11.14 795 2016 9.56
725 2019 10.59
(6,2) 1081 1846 10.03 983 1926 8.52
1009 2016 11.19 984 2008 8.61
933 2019 10.08 878 2016 8.90
922 2019 9.60
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Figure 7 represents two solutions obtained in the CCLP when 4 type A facilities
and 2 type B facilities are located in the 25-node network. The first one (top)
correspond to the maximization of type A coverage, with a very small weight on
the second objective. The opposite is presented in the bottom part of the picture.
Observe that in both cases all areas covered by a type A facility are also covered
by the same type B facility. Therefore, coherence was observed. Figure 8 shows
two solutions obtained locating the same amount of facilities with the p-median g-
covering model and using the same weights. In this case strong coherence is not
achieved. Some nodes assigned to type A services are not covered by type B
facilities.

Average run times for each model are shown in Tables 2 and 3. In very few
instances branch and bound was needed to obtain integer solutions when the results
obtained with the linear programming relaxation were non-integer. In the CCLP,
of a total of 31 runs, only 7 required some branch and bound. Similarly, in the
p-median g-covering model out of 24 runs only 7 needed additional B&B to obtain
integer solutions. In any case, for both models the B&B runs did not require a
long CPU time to obtain integer solutions.

Both models were also solved in the 79 nodes network using MPSX. The
threshold distance for type A services was set to 300 meters and the threshold
distance for type B services to 800 meters in both models. Different weights were
chosen to generate the tradeoff between both objectives in each model. Again
strong coherence was enforced by setting the maximum distance between both
types of facilities to 500 meters.

Table 4 shows the results for both models. After doing several runs using different
weights for each combination of type A and type B facilities, only two non-inferior
points were found in the trade off curve of both models, except for the CCLP
when 6 type A and 3 type B facilities were located. On the other hand, observe
that, for the CCLP, the population covered by type A services is larger when 6
type A facilities and 3 type B facilities offering type A services are located than
when 8 type A and 2 type B facilities are located. This may seem odd, but it is
due to the coherence constraint. Since the coherence constraint forces the type A
facilities to be located at a given distance threshold from type B facilities, the less
there are type B facilities, the more constrained the type A facilities will be in
deciding their location. In this case, with 3 type B facilities the type A facilities
can "spread” more in the region and hence covering more people than when 2 type
B facilities are located.

Run times are displayed for each model in Tables 5 and 6. An interesting feature
was common to both models. When the B objective was heavily weighted, little
or no additional runs were necessary to obtain solutions after linear relaxation was
used to solve the problem. In contrast, when the objective A was heavily
weighted, these run times increased substantially, making both models expensive
to solve. Or the models would solve quickly (when the weighted objective was
favorable to the B objective) or heavy additional branch and bound was necessary
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to obtain integer solutions.

The CCLP and the p-median g-covering model can be solved using linear
programming relaxation and branch and bound when needed for fairly large
networks. Nevertheless, heuristic procedures such as the ones developed for the
pg-median problem can be used for the solution of the CCLP and the p-median g-
covering model. The objective of average distance in the Solution Algorithms for
the Hierarchical Problem (SAPHIERS, Serra and ReVelle 1992.b) can be replaced
by a maximal covering objective without modifying the one-opt iterative process.
In the case of the the CCLP, at each iteration the weighted objective of maximal
coverage is computed for both types of services and compared to the one obtained
so far. Similarly, in the p-median g-covering model at each iteration the weighted
objective is computed after finding the values of the p-median objective for the type
A level and the covering objective for the type B level.
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Table 2: Average CPU time, CCLP, LP+B&B,
25-Node Network

Optimal Average
# of Total Integer Average Additional Total
Located Number Solution Run Time Run Time Average
Facil. of Runs using LP LP using B&B Run Time
®,9 only (CPU sec) (CPU sec) (CPU sec)
2,1 4 4 102.6 0.0 102.6
3,2) 8 8 120.0 0.0 120.0
@4,2) 5 4 141.4 93.0 155.4
(5,2) 6 4 145.4 167.1 197.5
6,2) 8 4 128.1 197.8 223.7
Table 3: Avge. CPU time, p-median q-covering LP+B&B
25-Node Network
Optimal Average
# of Total Integer Average Additional Total
Located Number Solution Run Time Run Time Average
Facil. of Runs using LP Lp using B&B Run Time
@,9 only (CPU sec) (CPU sec) (CPU sec)
2,1) 8 8 352.2 0.0 352.2
3,2) 4 1 544.2 804.6 1348.8
4,2) 4 2 858.0 1780.0 2638.0
5,2) 5 3 575.2 2853.2 3428.4
6,2) 5 3 846.8 1025.5 1872.3
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Table 4: Results of the Covering Models, 79 Nodes Network

Optimal Avge.
int. sol. Avge. additional
# of using run time run time Total
facilities Toral linear linear using avg.
located number relax. solution B&B run time
(p.q) of runs only {(CPU sec.) | (CPU sec.) | (CPU sec.)
2, 8 8 352.2 0 3522
(3,2) 4 1 544.2 804.6 1348.8
(4,2) 4 2 858.0 1780.0 2638.0
(5,2 5 3 575.2 28532 3428.4
(6,2) 5 3 846.8 1025.5 18723
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Table §5: Average CPU time, CCLP, LP+B&B, 79 nodes

Optimal Average
# of Total Integer Average Additional Total
Located Number Solution Run Time Run Time Average

Facil. of Runs using LP LP using B&B Run Time
P9 only (CPU sec) (CPU sec) {CPU sec)
(6,3)

I 3 3 14.0 0 14.0

1 3 0 13.8 274 287.4
8,2)

I 3 3 15.0 0 15

1 3 0 14.6 203 217.6

Table 6: Average CPU time, p-median q-covering LP+B&B, 79 nodes

Optimal Average
# of Total Integer Average Additional Total
Located Number Solution Run Time Run Time Average
Facil. of Runs using LP LP using B&B Run Time
@9 only (CPU sec) (CPU sec) (CPU sec)
(6,3)
1 3 3 107.4 45.0 152.4
i 3 0 130.2 3501.6 3631.8
@8,2)
| 3 3 126.0 73.2 199.2
I 3 0 96.0 4107.0 4204.0

I indicates predominant weights on B objective
II indicates predominant weights on A objective
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Figure 7: Solutions for the CCLP, p =4,q = 2
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Figure 8: Solutions for the p-median q-covering model, p =4, q = 2
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