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Abstract

Minimax lower bounds for concept learning state, for example, that for each sample

size n and learning rule gn, there exists a distribution of the observation X and a

concept C to be learnt such that the expected error of gn is at least a constant times

V=n, where V is the vc dimension of the concept class. However, these bounds do not

tell anything about the rate of decrease of the error for a �xed distribution-concept

pair.

In this paper we investigate minimax lower bounds in such a|stronger|sense. We

show that for several natural k-parameter concept classes, including the class of linear

halfspaces, the class of balls, the class of polyhedra with a certain number of faces,

and a class of neural networks, for any sequence of learning rules fgng, there exists a

�xed distribution of X and a �xed concept C such that the expected error is larger

than a constant times k=n for in�nitely many n. We also obtain such strong minimax

lower bounds for the tail distribution of the probability of error, which extend the

corresponding minimax lower bounds.
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1 Introduction

Let X be a random variable on a domain X with distribution �, that is, for each measurable

subset A of X , �(A) = PfX 2 Ag. Let C be a class of subsets of X . Members of C are

called concepts, and C is a concept class. A �xed, but unknown concept (or target) C 2 C
is to be learnt based on the data

Dn = ((X1; IfX12Cg); : : : ; (Xn; IfXn2Cg));

where X1; : : : ;Xn are independent, identically distributed copies of X, and IA denotes the

indicator of an event A. All random variables are de�ned on a common probability space

(
;A;P), and E denotes expectation with respect to P. A learning rule|or classi�er|

intends to decide, based on the data Dn and X, if X 2 C. Formally, it is a function

gn : X � (X � f0; 1g)n ! f0; 1g, whose probability of error is the random variable

L(gn) = Pfgn(X;Dn) 6= IfX2CgjDng:

Thus, L(gn) is the probability that, trained on the data sequence Dn, the classi�er gn makes

a mistake. Its value depends on the actual value of the data sequence Dn. The expected

probability of error

EL(gn) = Pfgn(X;Dn) 6= IfX2Cgg
is the expected value of L(gn). The joint distribution of the pair (X; IfX2Cg) is determined

by the pair (�;C), which will be referred to as a distribution-target pair.

The minimax behavior of the expected probability of error has been thoroughly studied.

Here the question is the size of the minimax error

inf
gn

sup
(�;C)

EL(gn);

where the in�mum is taken over all (measurable) learning rules, while the supremum is

taken over all possible distribution-target pairs with C 2 C. The minimax error expresses

the minimal achievable worst-case error for a given sample size n, and concept class C.
It is a beautiful fact that for a given n, the minimax expected error infgn sup(�;C)EL(gn)

is basically determined by V , the vc dimension V of the class C, and it is insensitive to

other properties of C. V is de�ned as the largest integer k � 1 with s(k) = 2k, where the

k-th shatter coe�cient s(k) of the class C is de�ned as the maximal number of di�erent sets

in

ffx1; : : : ; xkg \ C;C 2 Cg;
where the maximum is taken over all x1; : : : ; xk 2 X . If s(k) = 2k for all k, then, by

de�nition, V =1.

Haussler, Littlestone, and Warmuth [7] showed that there exists a learning rule such that

for all distribution-target pairs,

EL(gn) � V

n
: (1)
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Minimax lower bounds show that, in a sense, this is the smallest possible distribution-free

upper bound obtainable for any learning function. For example, Vapnik and Chervonenkis

[12] (see also [7]) showed that for every n � V � 1, and every classi�er gn, there exists a

distribution-target pair such that

EL(gn) � V � 1

2en

�
1� 1

n

�
: (2)

(1) and (2) together essentially solve the minimax problem for the expected probability of

error, since they state that for each n � V � 1, the minimax expected error is sandwiched

between constant multiples of V=n, that is,

V � 1

2en

�
1 � 1

n

�
� inf

gn

sup
(�;C)

EL(gn) � V

n
:

The expected probability of error is a useful quantity in describing the behavior of L(gn).

However, it is rather the tail probabilities

PfL(gn) � �g
(where � 2 [0; 1]) that completely describe the distribution of the probability of error. The

minimax problem for the tail probabilities is thus a more interesting (and harder) problem.

Here one is interested in the quantity

inf
gn

sup
(�;C)

PfL(gn) � �g;

if n, �, and C are given. The vc dimension also features minimax upper and lower bounds

for the tail probabilities. For example, a classical result of Vapnik and Chervonenkis [12]

(see also [3]) states that if gn is any classi�er such that gn(Xi) = IfXi2Cg for all i = 1; : : : ; n,

then for n � V ,

PfL(gn) � �g � 2

�
2ne

V

�V
e�n� log 2=2: (3)

Improved versions of this inequality can be found in [11] and [8]. Corresponding minimax

lower bounds were �rst proved by Blumer, Ehrenfeucht, Haussler, and Warmuth [3], and

Ehrenfeucht, Haussler, Kearns, and Valiant [6]. Devroye and Lugosi [5] (see also [4]) show

that for any classi�er gn, there exists a distribution-target pair such that

PfL(gn) � �g � 1

2e
q
�(V � 1)

�
2ne�

V � 1

�(V�1)=2

e�4n�=(1�4�); (4)

whenever V � 2, n � V � 1 and � < 1=4.

The combination of (3) and (4) yield that for any concept class C, with V � 2, n � V ,

and � < 1=4,

1

2e
q
�(V � 1)

�
2ne�

V � 1

�(V�1)=2

e�4n�=(1�4�) � inf
gn

sup
(�;C)

PfL(gn) � �g � 2

�
2ne

V

�V
e�n� log2=2:
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Note that in terms of n and �, there is an order-of-magnitude gap between the upper and

lower bounds: the pre-exponent of the upper bound is roughly of the order of nV , while that

of the lower bound is (n�)V . The \interesting" values of � are clearly around 1=n, therefore

the di�erence may be quite signi�cant. (The improved versions of (3) in [11] and [8] also

leave the gap open.) For some concept classes|for example for the class of unions of V

initial segments discussed below|it is possible to prove an upper bound which, apart from

constant factors, coincides with the lower bound (4). It is an interesting open question if the

lower bound is tight for all concept classes.

In some sense, lower bounds of the form of (2) and (4) are not satisfactory. They do

not tell us anything about the way the error decreases as the sample size is increased for a

given classi�cation problem. These bounds, for each n, give information about the maximal

error within the class, but not about the behavior of the error for a single �xed distribution-

target pair as the sample size n increases. In other words, the \bad" distribution-target pair,

causing the largest error for a learning rule, may be di�erent for each n. For example, the

lower bound (2) does not exclude the possibility that there exists a sequence of classi�ers

fgng such that for every � and C the expected error EL(gn) decreases at an exponential

rate in n. Indeed, it is easy to see that such classes exist with arbitrarily large, and even

with in�nite, vc dimension (see Propositions 1 and 2 below). Schuurmans [10] studied the

question when such exponential decrease occurs, and characterized it among certain \one-

dimensional" problems. We are interested in \strong" minimax lower bounds that describe

the behavior of the error for a �xed distribution-target pair (�;C) as the sample size n grows.

For example, the sequence fang of positive numbers is a strong minimax lower bound for the

expected error for C if

inf
fgng

sup
(�;C)

lim sup
n!1

EL(gn)

an
� 1;

where the in�mum is taken over all sequences fgng of classi�ers and the supremum is taken

over all distribution-target pairs with C 2 C. A slightly di�erent, but essentially equivalent,

de�nition requires that for all sequences fgng, there exists a �xed pair (�;C) such that

EL(gn) � an for in�nitely many n. The notion of strong minimax lower bounds can be

de�ned similarly for tail probabilities by replacing EL(gn) by PfL(gn) � �ng, where f�ng is
a �xed sequence of positive numbers.

The purpose of this paper is to establish minimax lower bounds in the described strong

sense. The main results extend the lower bounds of (2) and (4). Because of the reason

mentioned above, this is clearly not possible for all vc classes. However, the extension

is possible for many important geometric concept classes, and the role of the vc dimen-

sion is played by the number of parameters of the class, which, in all of our examples, is

closely related to the vc dimension of the class. Thus, the situation here signi�cantly di�ers

from that of the usual minimax theory, where a single combinatorial parameter|the vc

dimension|completely determines the behavior of the concept class.

We close this introduction by illustrating through a simple example why it is impossible

to give a \strong" extension of the lower bound of (2) for all vc classes. (See Schuurmans

[10] for much more on this.) It can be seen similarly that no strong extension of (4) can be

given for all vc classes either.
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As the simplest example, let C be any class containing �nitely many concepts. Then

consider a learning rule that selects a concept Cn from C which is consistent with the data

Dn, that is, gn(x) = Ifx2Cng for some Cn 2 C, and

gn(Xi) = IfXi2Cg for all i = 1; : : : ; n;

where C 2 C is the true concept. Then (3) implies that

EL(gn) � 2V log(2n) + 4

n log 2
;

where V is the vc dimension of C. The beauty of this bound is that it is independent of

the distribution-target pair, and that it is essentially the best such bound (see [7, Theorem

4.2]). However, for all distribution-target pairs, the error decreases at a much faster rate.

This can be seen from the simple fact that gn can only make an error if there is at least one

concept C 0 2 C with �(C 04C) > 0 such that no one of X1; : : : ;Xn falls in the symmetric

di�erence of C 0 and C. The probability of this event is at most

X
C02C:�(C04C)>0

(1 � �(C 04C))
n � jCj max

C02C:�(C04C)>0
(1� �(C 04C))

n
;

which converges to zero exponentially rapidly. Since a �nite concept class can have an

arbitrary vc dimension, this proves the following:

Proposition 1 Let V be an arbitrary positive integer. There exists a class C with vc di-

mension V and a corresponding sequence of learning rules fgng such that for all distribution-

target pairs (�;C) with C 2 C and for all n,

EL(gn) � a � bn;

where b < 1. The positive constants a and b depend on the distribution-target pair.

If a concept class C is �nite, its n-th shatter coe�cient s(n) is bounded above by jCj for
all n, that is, the shatter coe�cients do not increase with n for large n. In such cases it is not

surprising that the error can decrease at an exponential rate for all distribution-target pairs.

It is natural to ask if the growth of s(n) determines the rate of convergence of the error.

This conjecture is false, and in fact, we may have an exponential rate of convergence for all

distribution-target pairs even for classes with in�nite vc dimension (for which s(n) = 2n for

all n):

Proposition 2 There exists a class C whith V =1 and a corresponding sequence of learning

rules fgng, such that for all distribution-target pairs and for all n,

EL(gn) � a � bn;

where b < 1. The positive constants a and b depend on the distribution-target pair.
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Proof. Let X = R and let C contain all �nite subsets of R. Let gn(x) = 1 if and only if

there exists an Xi such that x = Xi and IfXi2Cg = 1. 2

The rest of the paper is organized as follows. In Section 2 we introduce a general tool,

an application of the \probabilistic method," for obtaining strong minimax lower bounds.

In Section 3 we provide strong minimax lower bounds for the expected probability of error

EL(gn) if the concept class Ck is the class of unions of k initial segments. (This class was

introduced in [7].) In particular, we show that for every sequence of learning rules fgng,
there exist a distribution-target pair (�;C) such that if C is the \true" concept, then

EL(gn) > (1 � �)
k

2n
for in�nitely many n,

where � is an arbitrarily small �xed number; see Theorem 1 for the precise statement. Since

the vc dimension of this class is k, this result states that there always exists a distribution-

target pair such that the error is essentially within a factor of two of the upper bound of

(1) in�nitely many times. We extend this result to more general classes of concepts showing

that the above lower bound remains true for many other important classes of \dimension"

k. (Here by dimension we mean the number of parameters of the class, which, in most of

our cases, essentially coincides with the vc dimension of the class.) These examples include

the class of halfspaces, the class of d-dimensional intervals, the class of euclidean balls, the

class of all ellipsoids, certain classes of neural networks, etc.

Section 4 extends the results of Section 3 for the expected cumulative error.

Section 5 contains the main results of the paper. Here we present analogous lower bounds

for the tail probabilities PfL(gn) � �g, which extend (4). Clearly, these bounds are much

more informative than bounds for the expected value of L(gn), however, their proof is much

more technical. Parts of the proofs are given in Appendix 2.

2 The probabilistic method

In this technical section we present a simple lemma that equips us with a general tool for

proving strong minimax lower bounds. Let Rn(z) be a sequence of nonnegative numbers

parametrized by an abstract parameter z from a set Z. Assume that we wish to prove that

for some �xed n, there exists a z 2 Z such that Rn(z) � an, where an > 0. Then it su�ces to

�nd a random variable Z on Z such that PfRn(Z) � ang > 0. This simple trick is the basic

idea of the powerful \probabilistic method." Another, equally simple, way for obtaining a

lower bound by the probabilistic method is using the trivial fact that for any random variable

Z,

sup
z2Z

Rn(z) � ERn(Z): (5)

For example, we may take Rn(z) = EL(gn), where the parameter space Z is obtained by

a suitable parametrization of the concept class C, and the parameter z corresponds to a

concept C 2 C. Thus, to show that there exists a concept such that the error EL(gn) is

greater than an, one might use one of the ideas above. In fact, (5) is at the heart of the

proof of essentially all minimax lower bounds we are aware of.
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In this paper we wish to prove something of a stronger form: there exists a �xed z 2 Z
such that Rn(z) � an for in�nitely many n, where a1; a2; : : : is a sequence of positive numbers.

The �rst di�culty to overcome is that the randomizing distribution cannot depend on n any

longer. However, it is not su�cient to �nd a �xed random variable Z such that ERn(Z) � an
for all n. An additional stability property is needed to obtain a bound of the desired form.

The following lemma provides a simple way of proving lower bounds of the desired form.

A somewhat weaker version is implicitely used by Schuurmans [10]. A signi�cantly stronger

form and more discussion is added in Appendix 1.

Lemma 1 Let Rn(z) be a sequence of nonnegative numbers parametrized by an abstract

parameter z from a set Z. If there exists a random variable Z taking its values from Z such

that
ess supRn(Z)

ERn(Z)
6! 1 as n!1; (6)

then there exists a z 2 Z such that for every 0 < � < 1,

Rn(z) > (1 � �)EfRn(Z)g for in�nitely many n:

Proof. It su�ces to prove that

P

(
lim sup
n!1

Rn(Z)

ERn(Z)
� 1

)
> 0:

The condition means that there exists a sequence fnig of indices along which the subsequence
ess supRni

(Z)=ERni
(Z) is bounded. Thus, Fatou's lemma may be applied to the sequence

of random variables Rni
(Z)=ERni

(Z), i = 1; 2; : : ::

E

(
lim sup
n!1

Rn(Z)

ERn(Z)

)
� E

(
lim sup
i!1

Rni
(Z)

ERni
(Z)

)
� lim sup

i!1
E

(
Rni

(Z)

ERni
(Z)

)
= 1;

and the statement follows. 2

Remark. Finding a �xed random variable Z such that ERn(Z) � an for all n, is useful in a

di�erent situation, even if the additional stability property (6) cannot be veri�ed. It allows

us to derive lower bounds for the cumulative error. In particular, in such a case we have, for

every n, that

sup
z2Z

 
nX
i=0

Ri(z)

!
�

nX
i=0

ERi(Z): (7)

We discuss lower bounds for the cumulative error in Section 4.
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3 Bounds for the expected probability of error

In this section we provide examples of concept classes for which the minimax lower bound

(2) for the expected probability of error EL(gn) = Pfgn(X) 6= IfX2Cgg can be extended to

its strong version. All examples shown here are based on lower bounds obtained for a very

simple concept class. The class Ck of unions of k initial segments is de�ned as follows: let

X = [0; 1]� f1; 2; : : : ; kg, and

Ck =
8<
:

k[
j=1

([0; zj]� fjg) : z 2 [0; 1]k

9=
; : (8)

The class Ck is therefore parametrized by a vector of k parameters: z = (z1; : : : ; zk) 2 [0; 1]k.

Clearly, the vc dimension of Ck is also k. For this class, we have the following result:

Theorem 1 Let � be the uniform distribution on X . For every sequence of learning rules

fgng, there exist a C 2 Ck such that if C is the \true" concept, then for all 0 < � < 1,

EL(gn) > (1 � �)
k

2n
for in�nitely many n:

Remark. Haussler, Littlestone, and Warmuth [7, Theorem 3.2] showed for the class Ck
of unions of k initial segments that for every learning rule, and for every n, there exists a

C 2 Ck such that

EL(gn) � k

2n
�O

�
n�2

�
:

Furthermore, in their proof of this lower bound, the randomization Z is independent of n.

To make the proof of Theorem 1 short, we use many elements of the proof of the above

inequality. A di�erent proof (for a slightly weaker version) of Theorem 1 may be found in

[1].

Remark. Note that the lower bound k=(2n) � O (n�2) for the minimax expected error is

better in the constant factor than the bound of (2). However, it is less general, since it does

not apply to any vc class.

Remark. It is clear from the proof of the theorem that the uniform distribution may be

replaced by any nonatomic distribution on X .

Proof. Let z 2 [0; 1]k be the parameter that determines C 2 Ck. First we introduce some

notation. Let Y (z) = IfX2Cg, Yi(z) = IfXi2Cg, and Dn(z) = ((X1; Y1(z)); : : : ; (Xn; Yn(z))).

Denote X = hU;Mi so that U is uniformly distributed on [0; 1], M is uniform on f1; : : : ; kg,
and U and M are independent. Introduce

� = maxfu 2 [0; 1] : u � U and hu;Mi 2 fX1; : : : ;Xng [ h0;Mig

and

� = minfu 2 [0; 1] : u � U and hu;Mi 2 fX1; : : : ;Xng [ h1;Mig ;
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that is, � and � are the left and right neighbors of U among the data points falling on the

M -th segment. Finally, de�ne the following (random) sets of parameters:

Ln =
n
z 2 [0; 1]k : zM 2 [�;U)

o
and Rn =

n
z 2 [0; 1]k : zM 2 [U; �)

o
:

Clearly,

EL(gn) � Rn(z)
def
= Pfgn(X;Dn(z)) 6= Y (z); z 2 Ln [ Rng:

We apply Lemma 1 for Rn(z). (The reason why we do not de�ne Rn(z) as the expected

probability of error EL(gn) itself is that this is the only way we can ensure that the additional

stability property (6) required by Lemma 1 holds.) We will show that if the random vector

Z = (Z1; : : : ; Zk) is uniformly distributed on [0; 1]k and independent of X;X1; : : : ;Xn, then

EfRn(Z)g � k

2(n+ 1)
� k2

2(n + 1)(n+ 2)

 
1�

�
1� 1

k

�n+2
!
; (9)

and sup
z
Rn(z)=EfRn(Z)g does not tend to in�nity, from which the theorem follows.

First we prove the lower bound for the expected value of Rn(Z). By the independence

of Z and X;X1; : : : ;Xn,

Rn(Z) = Pfgn(X;Dn(Z)) 6= Y (Z); Z 2 Ln [RnjZg; (10)

and

EfRn(Z)g = Pfgn(X;Dn(Z)) 6= Y (Z); Z 2 Ln [ Rng
= E fPfgn(X;Dn(Z)) 6= Y (Z); Z 2 Ln [ RnjX;X1; : : : ;Xngg
= E

n
Pfgn(X;Dn(Z)) 6= Y (Z)jZ 2 Ln;X;X1; : : : ;XngPfZ 2 LnjX;X1; : : : ;Xng

+Pfgn(X;Dn(Z)) 6= Y (Z)jZ 2 Rn;X;X1; : : : ;XngPfZ 2 RnjX;X1; : : : ;Xng
o

� E
n
min(PfZ 2 LnjX;X1; : : : ;Xng;PfZ 2 RnjX;X1; : : : ;Xng)

o
= E fmin(U � �; � � U)g

=
k

2(n+ 1)
� k2

2(n+ 1)(n + 2)

 
1 �

�
1� 1

k

�n+2
!
;

where the last equality follows from direct calculation, which is detailed in the proof of

Theorem 3.2 in [7].

On the other hand, we observe that for each �xed z 2 [0; 1]k,

Rn(z) � Pfz 2 Ln [Rng � 2k

n+ 1
: (11)

This may be seen by conditioning on the set fX;X1; : : : ;Xng, and observing that since

X;X1; : : : ;Xn are i.i.d., the probability remains the same by permuting them. Of the (n+1)!

permutations, there are at most 2kn! such that X is a neighbor of one of the zi's. Therefore,

sup
z
Rn(z)

ERn(Z)
� 4 + o(1);
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so the condition of Lemma 1 is satis�ed, and the proof of the theorem is complete. 2

We may extend Theorem 1 to other important classes of geometric concepts by embed-

ding. For example, we have the following straightforward corollary of Theorem 1.

Corollary 1 Let X = Rd
, and let C be a class of concepts. If there exist invertible mea-

surable mappings f1; : : : ; fk : [0; 1]! Rd
such that the sets fi([0; 1]) are disjoint and for all

z = (z1; : : : ; zk) 2 [0; 1]k there exists a C 2 C with

C \ (f1([0; 1]) [ � � � [ fk([0; 1])) = f1([0; z1]) [ � � � [ fk([0; zk]);

then for any sequence of classi�ers fgng, there exists a distribution-target pair (�;C) with �

concentrated on f1([0; 1]) [ � � � [ fk([0; 1]) and C 2 C such that for all 0 < � < 1,

EL(gn) �
(1� �)k

2n
for in�nitely many n:

The above corollary may be applied to many important geometric concept classes. Below

we give a short list of examples. The proofs are quite straightforward, most of them can be

found in [7, p.279].

1. If C is the class of subsets of R that can be written as a union of m intervals, then k = 2m.

2. k = d for the class of d-dimensional octants:

n
x 2 Rd : xi � ai; i = 1; : : : ; d

o
; a1; : : : ; ad 2 R;

where x1; : : : ; xd are the components of the vector x.

3. k = 2d for the class of d-dimensional intervals:n
x 2 Rd : ai � xi � bi; i = 1; : : : ; d

o
;

where a1; b1; : : : ; ad; bd 2 R.
4. k = d if C is the class of halfspaces of Rd, that is, sets of the form

(
x :

dX
i=1

aixi + a0 � 0

)
; a0; a1; : : : ; ad 2 R:

5. k = d if

C =

((
x 2 Rd :

dY
i=1

(xi � ai) � 0

)
: a1; : : : ; ad 2 R

)
:

6. k = d + 1 for the class of balls in Rd:

(
x 2 Rd :

dX
i=1

(xi � ai)
2 � r

)
;
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where a1; : : : ; ad; r 2 R; r � 0.

7. k = 2d for the class of all d-dimensional ellipsoids:(
x 2 Rd :

dX
i=1

(xi � ai)
2

bi
� 1

)
;

where a1; b1; : : : ; ad; bd 2 R.
8. k = md for the class of convex polyhedra of m faces in Rd.

9. k = md for the class C of all neural network classi�ers on Rd with m hidden nodes in

their single hidden layer, that is, each C 2 C is of the form(
x :

mX
i=1

ai�(bix
T + ci) + a0 � 0

)
;

where a0; : : : ; am; c1; : : : ; cm 2 R, b1; : : : ; bm 2 Rd, and � is the threshold sigmoid �(x) =

Ifx>0g. (x
T denotes the transpose of a vector x.)

Remark. Based on Corollary 1, we may de�ne a new \dimension" � for a concept class

C as follows: let � be the largest integer k such that there exist k invertible measurable

mappings f1; : : : ; fk : [0; 1] ! Rd such that the sets fi([0; 1]) are disjoint and for all z =

(z1; : : : ; zk) 2 [0; 1]k there exists a C 2 C with

C \ (f1([0; 1]) [ � � � [ fk([0; 1])) = f1([0; z1]) [ � � � [ fk([0; zk]):

If no such mapping exists then � = 0, and if for each k there are k mappings with the above

property, then � =1.

Corollary 1 shows the relation of � to strong minimax lower bounds for the expected

error. Lower bounds for � may be obtained in speci�c cases by construction. For upper

bounds, note that it is easy to see that � � V , since a set fx1; : : : ; x�g is shattered by C if

for each i � �, xi 2 fi([0; 1]). Further, it is easy to see that for each n,

s(n) �
�
n

�

��

(just put at least bn=�c of the n points on each segment fi([0; 1]), i = 1; : : : ;�), which

means that also � � D, where D is the Assouad density of C, de�ned as

D = inf

(
r > 0 : sup

n

s(n)

nr
<1

)
;

see Assouad [2]. (It is well-known that D � V , D <1 if and only in V <1, and that for

each k there exists a class C with V = k and D = 0.) Thus, we have

� � D � V:

On the other hand, it follows from Proposition 2 and Corollary 1 that there exists a class C
such that D = V =1, but � = 0.
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4 Cumulative error bounds

Let fgng be a sequence of learning rules. The cumulative error is de�ned as

nX
i=1

Ifgi(Xi+1;Di)6=IfXi+12Cgg
;

that is, the number of errors committed by the sequence in the �rst n steps, if the �rst i

labelled examples are always used to predict the label of the i + 1-th example. Based on

the results of the previous section, it is easy to obtain strong minimax lower bounds for the

expected value of the cumulative error.

It is a direct consequence of (1) that there exists a sequence of learning rules such that

for all distribution-target pairs

E

(
nX
i=1

Ifgi(Xi+1;Di)6=IfXi+12Cgg

)
� V log(n + 1):

(see [7]).

Haussler, Littlestone, andWarmuth [7] considered minimax lower bounds for the expected

cumulative error. The observation (7) is at the basis of the proof of their Corollary 3.1 where

it is proved 1 for the class Ck introduced in Section 3 that for every n, and for every sequence

of learning rules, there exists a distribution-target pair such that the expected cumulative

error satis�es

E

(
nX
i=1

Ifgi(Xi+1;Di) 6=IfX
i+12Cgg

)
� k

2

�
log

n+ 1

k
� 1

�
: (12)

We have the following \strong" extension of the above minimax lower bound:

Theorem 2 Let � be the uniform distribution on [0; 1] � f1; 2; : : : ; kg. For every sequence

of learning rules fgng, there exist a C 2 Ck such that for all 0 < � < 1,

E

(
nX
i=1

Ifgi(Xi+1;Di)6=IfXi+12Cgg

)
> (1� �)

k

2
log n for in�nitely many n:

Proof. We apply Lemma 1 with

Rn(z)
def
=

nX
i=1

Pfgi(Xi+1;Di(z)) 6= Yi+1(z); z 2 Li [Rig:

(Recall the de�nition of Yi(z);Di(z); Li and Ri from Section 3.) Clearly,

E

(
nX
i=1

Ifgi(Xi+1;Di) 6=IfX
i+12Cgg

)
=

nX
i=1

Pfgi(Xi+1;Di(Z)) 6= Yi+1(Z)g � ERn(Z):

1Corollary 3.1 of [7] states more than what is actually proved there. It states that for every sequence of

learning rules, there exists a distribution-target pair such that for every n, the expected cumulative error

is lower bounded as in (12). The statement of Corollary 3.1 of [7] has the quanti�ers reversed, so it in fact

does not show that there is a �xed C such that the lower bound holds for all n.

11



Then it follows from (9) that if Z is uniform on [0; 1] � f1; 2; : : : ; kg, and independent of

X;X1;X2 : : :, then

ERn(Z) � k

2

�
log

n+ 1

k
� 1

�
:

(For the details see [7, p.278].) On the other hand, (11) implies that for each z,

Rn(z) �
nX
i=1

2k

i+ 1
� 2k(log(n+ 1) + 1);

so condition (6) is satis�ed, which completes the proof. 2

5 Bounds for the tail probabilities

The purpose of this section is to give strong lower bounds of the following type: let C be a

class of concepts, and let f�ng be a sequence of positive numbers. Then for any sequence of

learning rules fgng, there exists a distribution-target pair (�;C) with C 2 C such that

PfL(gn) � �ng � an for in�nitely many n:

Here we would like to have

an � (c0n�n)
kc1e�n�nc2

for some constants c0; c1; c2, where k is the \dimension" of C so that the result is indeed an

extension of (4). For some sequences of �n's (which we believe to be the most interesting ones)

we will be able to prove such results if C is one of the geometric concept classes discussed in

Section 3.

Clearly, the most interesting values of �n are constant multiples of 1=n, since this is the

range where the probability of error L(gn) of a good learning rule gn is expected to be with

high probability. Our main result extends (4) to such values of �n:

Theorem 3 Let Ck be the class of unions of k initial segments as de�ned in (8), and let � be

the uniform distribution on X = [0; 1]� f1; : : : ; kg. Let  > 0 be �xed, and de�ne �n = =n.

For any sequence fgng there exists a C 2 Ck such that for each � 2 (0; 1),

PfL(gn) � �ng � (1� �)
1

2

k�1X
i=0

(c)i

i!
e�c for in�nitely many n; (13)

where c = log 256 � 5:545.

Note that since
k�1X
i=0

(c)i

i!
e�c �

�
c

k � 1

�k�1
e�c ;

apart from constants, the lower bound of Theorem 3 has the same form as that of (4). By the

same embedding argument as the one used in Corollary 1, Theorem 3 can be extended to the

12



concept classes listed in Section 3. The intuitive idea behind the proof of Theorem 3 is that

in each of the k initial segments, inside the interval between the rightmost data point labelled

by 1 and the leftmost data point labelled by 0, no learning rule can do better than mere

guessing. Thus, the sum of the lengths of these intervals determines the size of the minimal

probability of error. In the proof we exploit the fact that the length of these intervals have

approximately exponential distribution, and they are almost independent, therefore we may

approximate the minimax tail distribution of L(gn) by the tail of an appropriate gamma

distribution.

Proof of Theorem 3. First we introduce some notation:

U�
nj
= maxfu 2 [0; 1] : hu; ji 2 fXi : Yi = 1g [ h0; jig;

U+
nj
= minfu 2 [0; 1] : hu; ji 2 fXi : Yi = 0g [ h1; jig;

A0
nj
= (U�

nj
; U+

nj
);

Anj = A0
nj
� fjg;

An =
k[

j=1

Anj:

Step 1. We apply Lemma 1 for Rn(z) = Rn;�n(z), where for each � > 0,

Rn;�(z)
def
= PfL(gn) > �g = P

8<
:
Z
X

Ifgn(x;Dn(z)) 6=Y (x;z)g d�(x) > �

9=
; :

Just like in the proof of Theorem 1, let Z = (Z1; : : : ; Zk) be uniformly distributed on [0; 1]k,

and independent of Dn. Since Rn�n(z) is always bounded above by 1, and since the desired

lower bound of (13) is independent of n, it su�ces to prove a suitable lower bound for

ERn;�(Z), as the stability property (6) is automatically satis�ed. We will show that for each

n and � � 1=4,

ERn;�(Z) � 1

2

k�1X
i=0

(c)i

i!
e�c � 1

2

" 
k�1X
i=0

(c)i

i!
e�c

!
ke�n=k + ke

�n

k

�
1�

p
e

2

�#
(14)

(where  = n�), which proves the theorem, since the term inside the brackets converges to

zero rapidly as n!1.

Clearly, by the independence of Z and Dn,

Rn;�(Z) = P

8<
:
Z
X

Ifgn(x;Dn(Z)) 6=Y (x;Z)g d�(x) � �

������Z
9=
;

� P

8><
>:
Z
An

Ifgn(x;Dn(Z)) 6=Y (x;Z)g d�(x) � �

�������Z
9>=
>; :

13



Thus, we have

ERn;�(Z) � P

8><
>:
Z
An

Ifgn(x;Dn(Z))6=Y (x;Z)g d�(x) � �

9>=
>;

= E

8><
>:P

8><
>:
Z
An

Ifgn(x;Dn(Z))6=Y (x;Z)g d�(x) � �

�������Dn(Z)

9>=
>;
9>=
>;

= E

8><
>:P

8><
>:

kX
j=1

Z
Anj

Ifgn(x;Dn(Z)) 6=Y (x;Z)g d�(x) � �

�������Dn(Z)

9>=
>;
9>=
>; :

Step 2. In this step we obtain a lower bound for PfL(gn) > �g in terms of the spacings

containing the Zi's. Let �nj = U+
nj
� U�

nj
. For all n and � > 0,

ERn;�(Z) � 1

2
P

8<
:1

k

kX
j=1

�nj � 4�

9=
; :

Proof. Clearly,

Z
Anj

Ifgn(x;Dn(Z))6=Y (x;Z)g d�(x) =
1

k
�(Anj \ (Bnj 4C)) =

1

k
�(Bnj 4Cnj);

where

Bnj = fx 2 Anj : gn(x;Dn(Z)) = 1g;
and

Cnj = C \Anj:

Then it follows by Lemma 3 in Appedix 2 that

Z
Anj

Ifgn(x;Dn(Z))6=Y (x;Z)g d�(x) � 1

k

���U�
nj
+ �(Bnj )� Zj

��� ;

and therefore

P

8><
>:

kX
j=1

Z
Anj

Ifgn(x;Dn(Z)) 6=Y (x;Z)g d�(x) � �

�������Dn(Z)

9>=
>;

� P

8<
: 1

k

kX
j=1

jU�
nj
+ �(Bnj)� Zj j � �

������Dn(Z)

9=
;

� 1

2
In

1

k

P
k

j=1
�nj�4�

o;
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where the last inequality is proved in Lemma 4 (see Appendix 2). Taking expected values

of both sides, we obtain

ERn;�(Z) �
1

2
P

8<
:1

k

kX
j=1

�nj � 4�

9=
;

as desired. 2

Step 3. Obviously,

P

8<
:1

k

kX
j=1

�nj � 4�

9=
; � P

8<
:1

k

kX
j=1

�nj � 4�;8Nj > 0

9=
; ;

where Nj denotes the number of Xi's falling on the j'th initial segment. If Nj > 0, given Nj,

the conditional distribution of �nj is the same as the distribution of the sum of two spacings

de�ned by Nj + 1 i.i.d. uniform random variables on [0; 1], that is, for all � 2 [0; 1],

Pf�nj � �jN1; : : : ; Nkg = Pf�nj � �jNjg = (1 � �)Nj(1 +Nj�)

(see, e.g., Reiss [9]). A crucial step of the proof is approximating the conditional distributions

of the �nj 's by appropriate exponential distributions. For Nj > 0, de�ne �j = Nj log 4 �
2 log(1 + Nj=2), and de�ne the random variables �0

n1; : : : ; �
0
nk

such that given N1; : : : ; Nk,

they are conditionally independent, and the conditional distribution of �0
nj

is exponential

with parameter �j , that is,

Pf�0
nj
� �jN1; : : : ; Nkg = Pf�0

nj
� �jNjg = e��j�:

(If Nj = 0 for some j, then Pf�0
nj
� �jN1; : : : ; Nkg is de�ned arbitrarily.) Then, by Lemma

5 in Appendix 2, for all � � 1=4,

P

8<
:1

k

kX
j=1

�nj � 4�;8Nj > 0

9=
; � P

8<
:1

k

kX
j=1

�0
nj
� 4�;8Nj > 0

9=
;� ke

�n

k

�
1�

p
e

2

�
:

Step 4. To �nish the proof of (14), it remains to show that

P

8<
:1

k

kX
j=1

�0
nj
� 4�;8Nj > 0

9=
; �

k�1X
i=0

(c)i

i!
e�c

�
1 � ke�n=k

�
:

To do this, we may proceed as follows:

P

8<
:1

k

kX
j=1

�0
nj
� 4�;8Nj > 0

9=
; = E

8<
:If8Nj>0gP

8<
: 1

k

kX
j=1

�0
nj
� 4�

������N1; : : : ; Nk

9=
;
9=
;

� E

8<
:If8Nj>0gP

8<
: 1

k

kX
j=1

�00
nj
� 4�

������N1; : : : ; Nk

9=
;
9=
;

(where the �00
nj

are de�ned exactly as the

�0
nj

but with �j replaced by �0
j
= Nj log 4)
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� E

(
If8Nj>0gP

(P
k

j=1 �
0
j
�00
njP

k

i=1 �
0
j

� 4�

�����N1; : : : ; Nk

))

(by Lemma 6 in Appendix 2)

= E

(
If8Nj>0gP

(
�k � 4�

kX
i=1

�0
j

�����N1; : : : ; Nk

))

(where the random variable �k has k-th order gamma

distribution with parameter 1, since each �0
j
�00
nj

has exponential distribution with parameter 1.)

= P

(
�k � 4�

kX
i=1

�0
j

)
Pf8Nj > 0g

= P f�k � 4n� log 4gPf8Nj > 0g

�
k�1X
i=0

(c)i

i!
e�c

�
1� ke�n=k

�
;

since

Pf8Nj > 0g � 1 � kPfN1 = 0g = 1 � k

�
1 � 1

k

�n
� 1� ke�n=k;

and the proof of (14) is �nished, so the proof of the theorem is complete. 2

The reason why we can prove strong tail lower bounds only for certain sequences of �n's

is that the stability condition (6) is di�cult to check in more general cases than �n = =n

for some �xed . It is possible, however, to generalize Theorem 3 for other sequences. The

proof of the following generalization is identical to that of Theorem 3:

Theorem 4 Let Ck be the class of unions of k initial segments, and let � be the uniform

distribution on X = [0; 1]�f1; : : : ; kg. Let nj (j = 1; 2; : : :) be a sequence of positive integers,

end let �j � 1=4 be positive numbers such that j = nj�j does not tend to 1 as j ! 1.

Then for any sequence fgng there exists a C 2 Ck such that for each � 2 (0; 1),

PfL(gnj ) � �jg � (1� �)
1

2

k�1X
i=0

(cj)
i

i!
e�cj for in�nitely many j;

where c = log 256.

Appendix 1. Sharpening and remarks to Section 2

The following is a signi�cantly stronger form of Lemma 1.

Lemma 2 Let Rn(z) be a sequence of nonnegative numbers parametrized by an abstract

parameter z from a set Z, and let Z be a random variable taking its values from Z. If for

some p > 1, EfRn(Z)
pg=EpfRn(Z)g does not tend to 1 then either

P

(
lim sup
n!1

Rn(Z)

ERn(Z)
> 1

)
> 0
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or

lim sup
n!1

Rn(Z)

ERn(Z)
= 1 with probability one:

Remark. In any case,

P

(
lim sup
n!1

Rn(Z)

ERn(Z)
� 1

)
> 0;

which implies that there exists a z 2 Z such that for every � 2 (0; 1) Rn(z) > (1� �)ERn(Z)

for in�nitely many n.

Proof. Let S = lim sup
n!1

Rn(Z)

ERn(Z)
. Assume, on the contrary, that S � 1 with probability one

and PfAg > 0, where A = fS < 1g. For � > 0, de�ne

X = max

�
S + 1

2
; 0

�
IA + (1 + �)(1� IA):

Since

EX = E

�
max

�
S + 1

2
; 0

�����A
�
PfAg+ (1 + �)(1�PfAg)

= 1�
�
1�E

�
max

�
S + 1

2
; 0

�����A
��

PfAg+ �(1�PfAg);

and
�
1 �E

n
max

�
S+1
2
; 0
����Ao�PfAg > 0, we may choose � so small that EX < 1. Then

0 � X � 1 + � with probability one. Introduce the events An =
n

Rn(Z)

ERn(Z)
� X

o
, and

Bn =
T
m�nAm. Since S < X with probability one, An occurs for su�ciently large n with

probability one, that is,

1 = Pf
1[
n=1

\
m�n

Amg = Pf
1[
n=1

Bng = lim
n!1

PfBng:

Thus, for every k we have PfBng > 1 � 1=k if n is su�ciently large. Since Bn � An, we

have

E

(
Rn(Z)

ERn(Z)
IBn

)
� E fXIBn

g ;

and therefore

E

(
Rn(Z)

ERn(Z)
(1� IBn

)

)
= E

(
Rn(Z)

ERn(Z)

)
�E

(
Rn(Z)

ERn(Z)
IBn

)

� E

(
Rn(Z)

ERn(Z)

)
�E fXIBn

g

� 1�EfXg > 0:
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Let 1=q = 1 � 1=p, and apply H�older's inequality for the random variables Rn(Z)

ERn(Z)
(1 � IBn

)

and (1� IBn
):

E1=p

( 
Rn(Z)

ERn(Z)

!
p

(1 � IBn
)

)
E1=qf(1� IBn

)g � E

(
Rn(Z)

ERn(Z)
(1 � IBn

)

)
:

Thus,

EfRn(Z)
pg

EpRn(Z)
= E

( 
Rn(Z)

ERn(Z)

!
p
)
� E

( 
Rn(Z)

ERn(Z)

!
p

(1� IBn
)

)

� Ep

(
Rn(Z)

ERn(Z)
(1� IBn

)

)
1

(1 �PfBng)p�1
> (1�EfXg)pkp�1

for su�ciently large n. Therefore, EfRn(Z)
pg=EpRn(Z) tends to in�nity, a contradiction.

2

Remark. Note that Lemma 2 is indeed stronger than Lemma 1, since condition (6) implies

that EfRn(Z)
pg=EpfRn(Z)g 6! 1, but not vice versa. However, the inequality

P

(
lim sup
n!1

Rn(Z)

ERn(Z)
� 1

)
> 0:

cannot be strengthened even if (6) is assumed in the sense that even under (6) we may have

(
lim sup
n!1

Rn(Z)

ERn(Z)
> 1

)
� fRn(Z) > ERn(Z) for in�nitely many ng

� fRn(Z) � ERn(Z) for in�nitely many ng
= ;:

To see this, let Z � Uniform[0; 1], and consider Rn(Z) = nIfZ2(0;1=n)g + n � 2. Then

ERn(Z) = n� 1, ess supRn(Z) = 2n � 2, but

fRn(Z) � ERn(Z) for in�nitely many ng
= fnIfZ2(0;1=n)g+ n� 2 � n� 1 for in�nitely many ng
= fnIfZ2(0;1=n)g � 1 for in�nitely many ng
= fZ 2 (0; 1=n) for in�nitely many ng = ;:

2

Remark. Lemma 1 states that minimax lower bounds obtained by using the simplest form

(5) of the probabilistic method can be extended to their strong form if the randomization Z

does not depend on n, and, in addition, the stability property

ess supRn(Z)

ERn(Z)
6! 1
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is veri�ed. The following example demonstrates that this additional condition cannot be

dropped, and some kind of stability condition is necessary. Let C = ffxg : x 2 Xg be the

class of one-point concepts on the domain X of positive integers. Let fgng be an arbitrary

sequence of learning rules, and for z 2 X , de�ne Rn(z) = Pfgn(X;Dn(z)) 6= Y (z)g, where
Y (z) = IfX=zg, and Dn(z) = ((X1; IfX1=zg); : : : ; (Xn; IfXn=zg)). Let PfX = ig = c=(i log2 i)

for an appropriate normalizing constant c, and introduce the random variable Z distributed

asX, and independent ofX;X1; : : : ;Xn. Using a similar argument as in the proof of Theorem

1, one sees that for every n, ERn(Z) � const.=(n+2)5=2. However, Proposition 1 shows that

there exists a sequence fgng such that for every z, Rn(z) converges to zero exponentially

rapidly. This demonstrates the fact that a lower bound for ERn(Z) cannot necessarily be

converted into a strong minimax lower bound, even if the randomization Z is independent

of n. An additional condition, such as (6) needs to be satis�ed.

Appendix 2. Lemmas for the proof of Theorem 3

The following lemmas are used in the proof of Theorem 3. We use the notation introduced

in the text.

Lemma 3 Let

Enj = (U�
nj
; U�

nj
+ �(Bnj))� fjg:

For all n, j 2 f1; : : : ; kg, z 2 [0; 1]k, and data points X1; : : : ;Xn,

�(Bnj 4Cnj) � �(Enj 4 Cnj):

Proof. Clearly, �(Enj ) = �(Bnj). Assume, on the contrary, that

�(Enj 4Cnj) > �(Bnj 4Cnj):

Then

either �(Enj \ Cnj) > �(Bnj \ Cnj) or �(Enj \ Cnj) > �(Bnj \ Cnj);

where A = [0; 1] � fjg � A is the complement of a set A � [0; 1] � fjg. In the �rst case

Cnj � Enj , so we have

�(Enj) = �(Enj \ Cnj) + �(Enj \ Cnj) > �(Bnj \ Cnj) + �(Cnj) � �(Bnj);

a contradiction. In the second case Enj � Cnj . Then similarly to the �rst case,

�(Enj) = �(Enj \ Cnj) + �(Enj \ Cnj) > �(Cnj) + �(Bnj \ Cnj) � �(Bnj);

again a contradiction. 2
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Lemma 4

P

8<
: 1

k

kX
j=1

jU�
nj
+ �(Bnj)� Zj j > �

������Dn(Z)

9=
; � 1

2
I
f 1
k

P
k

j=1
�nj�4�g

:

Proof. Since given Dn, the Zj 's are independent and uniform on the sets A0
nj
,

P

8<
: 1

k

kX
j=1

jU�
nj
+ �(Bnj )� Zj j > �

������Dn(Z)

9=
;

=
�k(fz 2 Nk

j=1A
0
nj
: 1
k

P
k

j=1 jU�
nj
+ �(Bnj)� zjj > �g)

�k(
N

k

j=1A
0
nj
)

where � is the one-dimensional, and �k is the k-dimensional Lebesgue measure. De�ne

Mnj =
1
2
(U�

nj
+ U+

nj
), and

Tn
def
=

kO
j=1

(Mnj ; U
+
nj
):

Then

�k(fz 2 Nk

j=1A
0
nj
: 1
k

P
k

j=1 jU�
nj + �(Bnj)� zjj > �g)

�k(
N

k

j=1A
0
nj
)

�

� �k(fz 2 Nk

j=1A
0
nj
: 1
k

P
k

j=1 jzj �Mnj j > �g)
�k(

N
k

j=1A
0
nj
)

=
2k�k(fz 2 Tn :

1
k

P
k

j=1(zj �Mnj) > �g)
2k�k(Tn)

� �k(fz 2 Tn :
1
k

P
k

j=1(zj �Mnj) >
1
k

P
k

j=1
�nj

4
g)

�k(Tn)

=
�k(Tn \ fz :Pk

j=1(zj � (Mnj +
�nj

4
)) > 0g)

�k(Tn)
;

whenever 1
k

P
k

j=1 �nj � 4�. Observe that the last expression equals 1=2, since the numerator

is the volume of the intersection of the rectangle Tn with a halfspace de�ned by a hyperplane

containing the center of the rectangle. The proof is complete. 2

Lemma 5 Let the random variables �nj and �0
nj

be as de�ned in the proof of Theorem 3.

Then for all � > 0,

P

8<
:1

k

kX
j=1

�nj � �;8Nj > 0

9=
; � P

8<
:1

k

kX
j=1

�0
nj
� �;8Nj > 0

9=
;� ke

�n

k

�
1�

p
e

2

�
:
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Proof. It is easy to see that for all Nj > 0,

Pf�nj � �jNjg � Pf�0
nj
� �jNjg;

whenever � � 1=2, and we have equality for � = 1=2. Thus, if 8Nj > 0,

P

8<
: 1

k

kX
j=1

�nj � �

������N1; : : : ; Nk

9=
;

� P

8<
: 1

k

kX
j=1

�nj � �

������max
j�k

�nj <
1

2
; N1; : : : ; Nk

9=
;P

�
max
j�k

�nj <
1

2

����N1; : : : ; Nk

�

� P

8<
: 1

k

kX
j=1

�0
nj
� �

������max
j�k

�0
nj
<

1

2
; N1; : : : ; Nk

9=
;P

�
max
j�k

�0
nj
<

1

2

����N1; : : : ; Nk

�

= P

8<
: 1

k

kX
j=1

�0
nj
� �;max

j�k
�0
nj
<

1

2

������N1; : : : ; Nk

9=
;

= P

8<
: 1

k

kX
j=1

�0
nj
� �

������N1; : : : ; Nk

9=
;

�P
8<
: 1

k

kX
j=1

�0
nj
� �;max

j�k
�0
nj
� 1

2

������N1; : : : ; Nk

9=
;

� P

8<
: 1

k

kX
j=1

�0
nj
� �

������N1; : : : ; Nk

9=
;�P

�
max
j�k

�0
nj
� 1

2

����N1; : : : ; Nk

�

� P

8<
: 1

k

kX
j=1

�0
nj
� �

������N1; : : : ; Nk

9=
;�

kX
j=1

P

�
�0
nj
� 1

2

����Nj

�
:

Clearly, for each j with Nj > 0,

P

�
�0
nj
� 1

2

����Nj

�
= e��j=2 � e�Nj log2+Nj=2:

Using the fact that Nj is a binomial random variable with parameters n and 1=k, we get, by

straightforward calculation, that

P

�
�0
nj
� 1

2
; Nj > 0

�
= E

�
IfNj>0gP

�
�0
nj
� 1

2

����Nj

��

� E
n
e�Nj(log 2�1=2)

o

=

"
1� 1

k

 
1�

p
e

2

!#n

� e
�n

k

�
1�

p
e

2

�
:

Taking expected values, we get the desired inequality. 2
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Lemma 6 Let �1; : : : ; �k be independent exponential random variables with parameters �1; : : : ; �k >

0, respectively. Then for each � > 0,

P

8<
:1

k

kX
j=1

�j � �

9=
; � P

(P
k

j=1 �j�jP
k

j=1 �j
� �

)
= Pf�k > k��g;

where � = 1
k

P
k

j=1 �j , and the random variable �k has k-th order gamma distribution with

parameter 1.

Proof. We prove the lemma by induction for k. We will use two simple facts:

Fact 1. Let �; �; �0 be real-valued random variables such that � is independent of (�; �0) and

Pf� > xg � Pf�0 > xg for all x 2 R. Then Pf� + � > xg � Pf�0 + � > xg for all x.
Fact 2. Let �1 and �2 be indepndent, exponential random variables with parameters �1
and �2, respectively. Assume 0 < �1 � �2, and let � = (�2 � �1)=2. Then for all � > 0,

the probability Pf�1 + �2 > �g is monotone increasing in �. In particular, Pf�1 + �2 > �g �
Pf�2 > �0�g for �0 = (�2 + �1)=2.

Proof. Straightforward calculation shows that for � > 0,

Pf�1 + �2 > �g = �2e
��1� � �1e

��2�

�2 � �1
= e��

0
�

 
�0�

sinh(��)

��
+ cosh(��)

!
;

and for � = 0,

Pf�1 + �2 > �g = Pf�2 > �0�g = (1 + �0�)e��
0
�:

Since sinh(x)=x and cosh(x) are monotone increasing on [0;1), Fact 2 follows.

Now we are ready to prove the lemma. The statement is trivially true for k = 1, and by

Fact 2 for k = 2. Let k � 3, and assume that the statement is true for k � 1. There exist

two indices j; j0 � k such that �j � � and �j0 � �. Without loss of generality, we assume

that �1 � � and �2 � �. Let �01 and �02 be independent exponetial random variables with

parameter � and �1 + �2 � �, also independent of all �j. Since

j�1 � �2j
2

�
������� �1 + �2

2

����� ;
Fact 2 implies that

Pf�1 + �2 > �g � Pf�01 + �02 > �g:
Also, by the inductive assumption,

P

8<
:�02 +

kX
j=3

�j > �

9=
; � Pf�k�1=� > �g:
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Using these and Fact 1 twice, we obtain

P

8<
:

kX
j=1

�j > �

9=
; � P

8<
:�01 + �02 +

kX
j=3

�j > �

9=
;

� Pf�01 + �k�1=� > �g
= Pf�k > ��g:

2
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