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Abstract. This paper introduces the attention-entropy random utility (AERU) model, a behavioral model of discrete choice in

which a decision-maker endogenously allocates attention across subsets of attributes in order to increase subjective confidence by

reducing ex post choice uncertainty, and subsequently chooses an option based solely on the attended information. By endogeniz-

ing attention, the decision problem is reformulated from “which alternative to choose” to “which informational cues to process,”

with the observed choice emerging as the outcome of this attentional allocation. The AERU framework nests random utility model

(RUM)-like behavior under transparent conditions, yet it is not restricted by Luce’s independence of irrelevant alternatives (IIA),

order-independence, or regularity. This flexibility enables AERU to capture key context effects in a disciplined manner and to gen-

erate sharp, testable predictions regarding the conditions for each context effect. From an empirical standpoint, AERU preserves

the parsimony of the multinomial logit, requiring only a single additional attention parameter. Employing a scalable estimation

procedure based on block coordinate ascent combined with a quasi-Newton method, I provide results from computational experi-

ments demonstrating that AERU can produce better in-sample and out-of-sample predictions. Overall, AERU provides a flexible,

parsimonious, and interpretable model of boundedly rational choice with a clear behavioral foundation and implications for context

effects.

Funding: This work was supported by Ramón y Cajal grant, funded by the Spanish Ministry of Science and Innovation

[RYC2021-034981-I], and the Severo Ochoa Programme for Centres of Excellence in R&D [CEX2024-001476-S].

Key words: discrete choice, endogenous attention, entropy, subjective confidence, random utility, context effects, regularity

1. Introduction

Making a choice inevitably involves trade-offs and conflicts. Alternatives differ across multiple attributes,

and decision-makers (DMs) are often unsure how to trade off one attribute against another. Thus, preferences

are constructed, at least partly, in context (Lichtenstein and Slovic 2006). Understanding choice behavior,
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therefore, requires understanding not only DMs’ underlying tastes, but also how those tastes are expressed

in the specific context of each choice.

I introduce the attention-entropy random utility (AERU) model, a behavioral framework in which context-

dependent choice behavior emerges from an endogenous attention-allocation mechanism. AERU’s choice

behavior is driven by standard utility maximization combined with an ex post uncertainty-minimization

through which the DM enjoys maintaining a high level of subjective confidence in their choice. These two

behavioral principles capture, respectively, trade-offs and conflict resolution in choice. 1 AERU builds on

the idea that the DM does not process the entire set of available attribute information symmetrically. Instead,

they allocate attention across subsets of attributes in a way that favors information structures that reduce ex

post uncertainty in the induced choice probabilities, in the sense of having a low entropy. In other words,

choice is shaped by a tendency toward decisiveness, in which attention is endogenously skewed toward

fragments of available information that make one option stand out. The model distinguishes between the

information set available in the choice environment and the information subset that is effectively used for

choice, while leaving the underlying taste parameters over attributes intact.

AERU implements this idea by specifying (i) a random utility representation at the attribute level, and

(ii) a menu-dependent attention distribution over subsets of attributes, where the weight on each subset is

decreasing in the entropy of the resulting choice probabilities. Overall choice probabilities are the mixture

of within-subset multinomial logits under this attention distribution.

This structure has several implications. First, it gives a behavioral foundation for context effects. By

endogenizing attention, context effects such as compromise and attraction emerge through systematic shifts

in attention rather than ad hoc utility distortions. Second, it provides a unified structure connecting classic

random utility models (RUMs), random attention or consideration models, and rational inattention. AERU

retains the random utility core and applies an information-theoretic discipline to the distribution of attention

1 There are two types of conflicts influencing the choice: (i) the within-alternative conflict, that is, the conflict among the set of

attributes of a single alternative, and (ii) within-menu conflict, that is, the conflict due to choosing from competing options in a menu.

The utility maximization aspect captures the first conflict type, whereas ex post choice-uncertainty minimization, or equivalently,

subjective confidence maximization, addresses the second.
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across attributes. Third, AERU is internally disciplined, it nests multinomial logit (MNL) as a limiting case

when attention is uniform, and relaxes IIA, regularity, and order-independence in a transparent and testable

way. Fourth, because the attention mechanism is defined in the preference space (over induced choice dis-

tributions) rather than directly on attribute contrasts, AERU is sensitive to which attributes actually matter

for context effects, consistent with evidence from the attribute non-attendance and selective processing

literatures, and hence is relatively robust to misspecification.

AERU is intentionally parsimonious. Compared to standard MNL, it introduces a single additional param-

eter that governs the strength of the entropy-based attention filter. This one parameter spans a continuum

from “full” attention to all attributes, as in the RUM/MNL benchmark, to highly selective attention that

amplifies context effects. Despite its behavioral richness, the resulting choice probabilities retain a sim-

ple form as mixtures of logits over attribute subsets. This yields a tractable, menu-sensitive model that

is substantially more flexible than MNL, yet far more structured than fully nonparametric choice models.

Moreover, I will show how the same framework can be extended to incorporate additional behavioral prim-

itives, such as attribute-specific processing costs or complexity aversion, by altering the attention prior over

attribute subsets without changing the core choice structure.

The contributions of the paper are threefold. First, I derive AERU from an explicit decision problem in

which the DM chooses an attention strategy over attribute subsets subject to an entropy-based criterion on

ex post choice uncertainty. This delivers the AERU representation as the choice rule of a conflict-resolving,

attention-allocating agent. Second, I analyze the theoretical properties of AERU, characterizing when and

how it departs from classical random utility. I show that it can capture key context effects, such as similarity

and compromise, as well as particular patterns of attraction. I then identify conditions under which specific

effects arise or are excluded, and establish links between these effects and the entropy profile of menus

and the strength of the attention filter. Moreover, I characterize the role of the attention parameter and

establish limit and convergence-rate results that clarify the geometry of AERU choice probabilities relative

to the MNL benchmark and extreme attention regimes. Third, I develop a scalable maximum-likelihood

estimation procedure and evaluate AERU in a computational experiment using finite choice data and based

on in-sample and out-of-sample fit.
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The remainder of the paper is organized as follows. Section 2 situates AERU within the literature on dis-

crete choice, inattention, and context-dependent preferences. Section 3 introduces the primitives. Section 4

formally defines the AERU model. Section 5 presents the behavioral decision problem from which AERU

arises. Section 6 studies context effects, e.g., similarity, compromise, and attraction-type patterns, and links

AERU predictions to classical axioms such as regularity, IIA, and order-independence. Section 7 analyzes

the attention filter. Section 8 describes the estimation procedure, and Section 9 reports the computational

experiment. Finally, I conclude and discuss future directions in Section 10.

2. Related Literature

Understanding human choices is a central theme in mainstream economics (Samuelson 1938, Richter 1966,

McFadden 2001), decision theory (Fishburn 1970), operations research (Ben-Akiva and Lerman 1985, Train

2009, Farias et al. 2013, Berbeglia et al. 2022, Ghaderi et al. 2025), marketing (Louviere et al. 2000, Toubia

et al. 2003), and psychology (Lichtenstein and Slovic 2006, Bettman et al. 1998), with applications in areas

such as pricing, revenue management, healthcare, product development, and transportation (Talluri and

Van Ryzin 2004, Hensher 1994, Ben-Akiva and Bierlaire 1999, de Bekker-Grob et al. 2012).

Conventional random utility models, such as logit-based models, posit that the DM evaluates all available

information relevant to their choice, which, in conjunction with their individual taste parameters, determines

their choice. Central to these models are the assumptions of regularity and Luce IIA (Block and Marschak

1959, Luce 1959). Regularity suggests that adding more options to a menu should not increase the popularity

of any existing option. Luce’s IIA asserts that the relative popularity of two options remains unchanged

regardless of the availability of other options. A large body of empirical and experimental research over the

past few years has documented systematic departures from these implications. As an early example, in their

experiment, Tversky and Shafir (1992) observes that adding a higher-quality music player reduces the share

of a previously popular low-price music player and increases “no choice,” violating regularity. When both

options are present, conflict between price and quality appears to trigger deferral. Similar context effects

have been observed outside the lab (Simonson and Tversky 1992, Kivetz et al. 2004, Wu and Cosguner

2020, Webb et al. 2021).
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Motivated by such findings and by the aim of developing realistic choice models, an active interdisci-

plinary research area has emerged in recent years, focusing on bounded rationality in choice. In the domain

of discrete choice, the boundedly rational behavior often arises when the menu as a whole serves as a

unique stimulus, conveying information beyond its constituent elements. This phenomenon is referred to as

the context effect. In this literature, AERU sits at the intersection of random choice (Marschak 1959, Luce

1959, McFadden 1973) and context-dependent choice behavior (Simonson and Tversky 1992, Tversky and

Simonson 1993), with an endogenous attention mechanism at its core.

Building on standard random utility primitives, AERU contributes to the context effect literature (Simon-

son and Tversky 1992, Tversky and Simonson 1993, Kivetz et al. 2004, Rooderkerk et al. 2011, Simonson

2014) by offering a structurally transparent account in which context-dependence arises from an endoge-

nous attention allocation that favors attribute subsets yielding low ex post choice uncertainty. The attention

mechanism is driven by the DM’s desire to maintain a high level of subjective confidence in their choice by

resolving within-menu conflict when choosing from competing options. Thus, conflict resolution remains a

central concept in AERU.

In an attempt to understand how people resolve conflict in binary choice, Slovic (1975) conducted an

experiment in which subjects were asked to choose between pairs of alternatives that they had previously

equated in value, thereby involving a high level of preferential conflict. They report that subjects tend to

resolve conflicts by choosing the option that is superior on the more important dimension. Consistent with

reason-based choice (Shafir et al. 1993, Dietrich and List 2016), people seek justifiable grounds for their

decision. In other words, people resolve such conflicts by seeking reasons for choosing one option over

another. In AERU, this appears as attention shifting toward attribute subsets that better discriminate between

options in the preference space, thereby producing more decisive (lower-entropy) judgments. Thus, AERU

relates to reason-based choice where the reasons to attend to or ignore particular subsets of attributes depend

on how they change ex post uncertainty in induced choice probabilities over the options in the menu.

In choice among multiple options, when conflict among competing alternatives is difficult to resolve

through direct comparison, decision-makers leverage menu composition to construct reasons in favor of one
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option. For instance, adding new options to the menu can make certain trade-offs between attributes more

justifiable. This gives rise to context-dependent choice behavior. AERU captures such patterns through its

entropy-based attention rule, in which menu composition shapes the reasons for attending specific attribute

subsets based on the choice uncertainty they yield. The same attribute subset may enhance or diminish

induced choice uncertainty, depending on which other options are available in the menu.

Context dependence often leads to choice behavior that departs from standard predictions of random

utility models. A prominent account is salience theory (Bordalo et al. 2013, 2020, 2022), which explains

context effects through context-sensitive reweighting of attribute differences based on contrast or promi-

nence. Compared to salience models, AERU holds tastes fixed and generates context dependence by endoge-

nously allocating attention across collections of attributes, thereby reshaping the induced choice probability

distributions. The two perspectives are conceptually related. Salience emphasizes taste reweighting in the

attribute space, while AERU emphasizes attention allocation in the preference space.

AERU is also related to rational inattention (Sims 2003). Similar to the inattention models, AERU uses

information-theoretic discipline on attention (Caplin 2016, Caplin et al. 2022), but applies it to the attribute

subsets of options within a menu rather than to signals about states. This shift allows AERU to generate con-

text effects, whereas rational-inattention logit models inherit IIA (Matějka and McKay 2015). Conceptually,

AERU aligns with the endogenous attention view (Gabaix 2019), operationalizing attribute sparsity (Gabaix

2014) via attention allocation over information subsets, that is also consistent with eye-tracking evidence

on attribute non-attendance (Orquin and Loose 2013, DellaVigna 2009). 2

Relatedly, Gul et al. (2014) models random choice as behavioral optimization using attribute-based prim-

itives and weaker independence axioms. Their representation is not aimed at context-dependent choice

behavior and preserves regularity, whereas AERU’s menu-dependent attention permits disciplined viola-

tions of regularity.

2 In cognitive terms, rational inattention formalizes top-down (deliberative, goal-directed) information acquisition. In contrast,

AERU can be read as a decisiveness-seeking, stimulus-driven, and reflexive attention allocation, hence belonging to the bottom-up

category of attention mechanisms. For more details on this categorization, see Loewenstein and Wojtowicz (2025).
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On the other hand, AERU differs from consideration-set models and random attention over

options (Manzini and Mariotti 2014, Caplin et al. 2019, Cattaneo et al. 2020, Abaluck and Adams-Prassl

2021, Gallego and Li 2024). Those frameworks relate attention to awareness or product salience in the

menu, and are well suited when many simple options compete, and limited consideration is the bottleneck.

AERU is complementary. It models which information cues or product features are processed when options

are complex, reallocating attention across attributes and thereby operating in the preference space rather

than pruning the option set.

Several works in marketing and operations have examined limited information acquisition and attribute-

level search. Branco et al. (2016) explores costly consumer information search and derives the seller’s opti-

mal information disclosure in situations where consumers can choose to search only a subset of attributes

based on their ex ante valuation of the product. Ke et al. (2016) develops a framework for continuous

information search, where expected utility depends on the attributes consumers decide to search for, with a

search cost that is alternative-specific but fixed across attributes for the same alternative. Ning et al. (2025)

explores the case of time-varying search cost. Other works have developed empirical models of choice under

limited information and applied them to new product introduction (Joo 2023), pricing (Boyacı and Akçay

2018), and the evolution of product assortment (Natan 2025). These papers endogenize attribute inspection

effort or stopping rules in the presence of search costs. AERU shares the focus on the attribute-level infor-

mation processing mechanism but differs in its menu-dependent attention discipline, yielding closed-form

mixture-of-logits probabilities rather than dynamic stopping rules.

Finally, sequential sampling and decision field theory views decision-making as a dynamic process in

which the DM sequentially samples information (Roe et al. 2001) while shifting their attention back and

forth between stimuli (Noguchi and Stewart 2018). AERU is static but consistent with the idea that attention

shifts across attributes. From this perspective, the entropy-based attention mechanism can be interpreted

as favoring stimuli that would reach a stopping boundary more decisively. For a concise discussion and

eye-tracking evidence, see Krajbich (2019), Noguchi and Stewart (2014).
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3. Primitives

Let A be a finite set, where each element a∈A represents a choice option or alternative, including possibly a

no-choice option. 3 Denote by A the collection of all non-empty subsets of A, where each S ∈A represents

a choice set or menu. When facing a menu S ∈ A, the DM chooses an option a ∈ S with a probability

ρ(a,S). 4 The function ρ : A × A → [0,1], where ρ(a,S) = 0 for all a /∈ S, and
∑

n ρ(an, S) = 1, is

called a stochastic choice function (SCF). 5 A choice model is a parameterization of an SCF. Different

parameterizations lead to different choice models.

A general class of choice models includes the popular random utility model, where parametrization of

the SCF ρ is via a random vector U over alternatives such that:

ρ(an, S) = P
{
Un =max

ai∈S
Ui

}
, (1)

where P is a probability measure and Un, the n-th component of U , is the random utility for an ∈ A.

Defining vn =E[Un], the nominal utility, and εn =Un−vn, and assuming positivity, that is ρ> 0, the model

is expressed as:

ρ(an, S) = P
{
εn ≥ max

i:ai∈S
(υi − υn + εi)

}
, (2)

a formulation known as the discrete choice model (Ben-Akiva and Lerman 1985). Varying the joint distri-

bution of the ε= (εn)n yields different choice models (Train 2009). One of the most popular choice models

is the MNL (McFadden 1973, 2001), which is obtained by assuming independent and identically distributed

3 Throughout the paper, I use the terms option and alternative interchangeably.

4 The stochasticity of such choice functions admits multiple interpretations. At the population level, it can represent taste hetero-

geneity among individuals. At the individual level, choices may appear observationally stochastic due to limited information from

the analyst’s perspective, inferential uncertainty, measurement errors, or intrinsically stochastic behavior arising from cognitive

factors such as inattention, inertia, or intentional randomization as modeled in perturbed utility frameworks (Fudenberg et al. 2015).

While interpretations vary across domains, the formalism and operationalization of stochastic choice functions remain consistent.

Thus, they are natural modeling tools for observed choice behavior and are amenable to empirical validation.

5 When values of ρ are restricted to {0,1}, it collapses to a deterministic choice behavior. Moreover, if choices are consistent with

the utility maximization principle, this deterministic choice function can be represented by a strict linear ordering on A.
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Type-I Extreme Value εn terms. MNL yields a closed-form expression for the choice probabilities as fol-

lows: 6

ρMNL(an, S) =
eυn∑
ai∈S e

υi
· (3)

Following the MNL parametrization, ρMNL(an, S)/ρMNL(am, S) = evn−vm , is independent of S, sug-

gesting that the choice probability ratio of two alternatives is independent of the presence or absence of any

other alternative in the menu. This property, known as the IIA, is recognized as a restrictive assumption

and often inconsistent with empirical observations. Moreover, the model implies that an option’s choice

probability cannot increase when more options are added to the menu, a property known as regularity or

monotonicity. While MNL can be extended to accommodate non-IIA choices, for instance, as in the nested

logit model (Ben-Akiva 1973, Galichon 2022), regularity remains a central assumption to the entire class

of random utility models (Falmagne 1978).

However, research in behavioral economics and marketing has documented many situations in which

regularity does not hold. In most such cases, the composition of the menu systematically influences choice.

For instance, adding an asymmetrically dominated option, also known as a decoy, can increase the choice

probability of a target superior option in the menu (Huber et al. 1982), adding an extreme option can make

the compromise option more attractive (Simonson 1989, Kivetz et al. 2004), or introducing a new option

can hurt similar options more than dissimilar options, hence creating preference for products that stand

out (Tversky 1972). These observations, respectively known as the attraction, compromise, and similar-

ity effects, highlight instances of context-dependent preferences arising from various underlying behav-

ioral patterns, such as the trade-off contrast and extremeness aversion (Simonson and Tversky 1992) and

salience (Bordalo et al. 2013). Context effects suggest that menus function as independent information sig-

nals beyond the information provided by their constituent elements and thus influence choices in ways that

standard random utility models cannot explain.

6 Note that under the random utility model (1), choice probabilities are invariant to any affine transformation of U , and thus the

scale parameter in the variance of ε can be scaled to one.
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4. Model

AERU builds on the idea that the information contained in the menu influences the DM’s attention by

shifting it to some subset of attributes in a systematic way. In other words, the DM does not rely on the

same set of attributes in evaluating alternatives across different menus. I define an endogenous attention

mechanism in the preference space that captures this structured context-dependent attention filter.

Two factors influence the attention mechanism: (i) the DM’s taste parameters, and (ii) the ex-post uncer-

tainty in choice. The first component is fixed and stable across menus, and captures substitution patterns

among attributes. The second component concerns the extent to which a specific subset of attributes pro-

vides the DM with greater subjective confidence in their choice and builds on the observation that resolving

a higher choice conflict entails a higher cognitive cost, requires more effort, and therefore imposes disutility.

Let M = {1,2, · · · ,M} be a finite set of attributes or variables describing or evaluating the choice

options, and J the collection of all non-empty subsets of M. Moreover, let υn = (υ1n, υ2n, · · · , υMn) be

the vector of nominal utilities of an over the attributes. An attention filter is a mapping f : A → J that

specifies the set of attributes in the attention set for a given set of options in a menu. Conditional on the

attention set, that is, assuming that the DM considers attributes J ∈ J for evaluating alternatives in S, the

choice probabilities follow the MNL form: 7

P(an|J,S) =
eUJn∑
s∈S e

UJs
· (4)

where UJn =
∑

j∈J υjn.

The attention filter is inherently stochastic, and the DM might select a different subset J for a menu in

repeated choice. Thus, J is a random variable. The probability of attending to a specific subset of attributes

J is endogenously determined based on the degree of ex-post uncertainty it induces in choice. Endogeneity

arises because taste parameters and the attention filter influence choice probabilities, whereas attention itself

depends on those probabilities. I use the Shannon entropy measure to quantify uncertainty in the induced

choice probability vector over the menu as follows.

H(J,S) =−
∑
k∈S

P(ak|J,S)× logP(ak|J,S)· (5)

7 With slight abuse of the notation, I use s∈ S instead of s : as ∈ S.
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Given the taste parameters or the nominal utilities (υn)n, a high entropy H(J,S) suggests that attending

the attribute subset J ∈J when choosing from the menu S yields high ex post uncertainty, or, equivalently,

low subjective confidence, in choice. Therefore, I define the attention filter, proportional to this uncertainty,

as follows.

P(J |S) = e−αH(J,S)∑
K∈J e−αH(K,S)

, (6)

where α ∈ R≥0 is a parameter of the attention filter. Thus, the DM probabilistically samples information

from subsets of attributes, with sampling probabilities proportional to the negative ex-post uncertainty.

Therefore, the stochastic choice function under the attention-entropy random utility model is given by:

ρAERU(an, S) =
∑
J∈J

P(J |S)×P(an|J,S)· (7)

The AERU parameters are {{υjn}, α}, that is, taste parameters and the attention parameter. 8 Although it

has only one additional parameter relative to MNL, I demonstrate that AERU is considerably more flexible

and can capture non-IIA choice data and various forms of context effects.

5. The Behavioral Foundation: Choice as an Attention Allocation Problem

I will first focus on the subjective-confidence maximization component of choice behavior through endoge-

nous attention and derive the posterior attention distribution. Then I will show that the attention-entropy

random utility model emerges naturally as the output of a behavioral model in which, for every menu S, the

DM solves a constrained optimization problem. Consider the following optimization problem:

min
w

F{α,u}(w) = αEJ∼w

(
H(J,S)

)
+KL

(
w||u

)
s.t. w ∈∆(J )

(8)

where H is the ex-post entropy in choice probabilities after fixing attention on a subset of attributes J ∈J ,

u is the DM’s attention prior on J , and KL(.||.) is the Kullback-Leibler divergence between probability

vectors. The model interpretation is that the DM is willing to pay a convex penalty, captured by the KL

divergence, to lower the ex-post uncertainty in choice, where α is the price of uncertainty. Then, the DM’s

attention posterior is obtained as follows.

8 Note that, except for additivity, the model does not assume any functional form for the utility function and vjn can be any function

of the j-th attribute level.



Ghaderi, M.: Attention-Entropy Random Utility
12 Management Science

THEOREM 1. For every menu S and α≥ 0, problem (8) has a unique solution

w∗
J(α,u) =

uJe
−αH(J,S)∑

K uKe−αH(K,S)
(9)

with optimal value log
∑

J uJe
−αH(J,S).

Proofs are provided in the Appendix.

COROLLARY 1. Given w∗
J(α,u) in (9), the induced choice probability is ρ(an, S) =∑

J w
∗
J(α,u)P(an|J,S).

The proof follows immediately from the law of total probability.

The following result shows how the AERU structure is directly derived from a joint randomization policy

over the attribute subsets and choice options.

THEOREM 2. For a menu S, let π(J,n) be a joint randomized policy over the attribute subsets and

choice options, and consider the following DM’s problem.

min
π∈∆(J×S)

G{α,u}(π) = αEJ∼π(J)

(
H(J,S)

)
+KL

(
π(J)||u

)
+EJ∼π(J)

(
KL

(
π(·|J)||PJ

))
(10)

where π(J) =
∑

n∈S π(J,n), π(·|J) =
(
π(J,n)/π(J)

)
n∈S

is the vector π(n|J) for n ∈ S, and PJ =(
P(an|J,S)

)
n∈S

is the MNL choice probabilities vector for a fixed set of attributes J . Then, G{α,u}(π) is

strictly convex in π, and has the unique minimizer

π∗(J,n) =w∗
J(α,u)PJ(n) (11)

where

w∗
J(α,u) =

uJe
−αH(J,S)∑

K uKe−αH(K,S)
·

Moreover, the induced choice function is as follows.

ρ(an, S) = π∗(n) =
∑
J

π∗(J,n) =
∑
J

w∗
J(α,u)P(an|J,S)·

The proof is similar to that of Theorem 1 except for one additional term in the Lagrangian.

COROLLARY 2. If the prior u is uniform, then the induced choice model is AERU.
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The proof follows immediately from Theorem 1 and by taking uJ = 1/|J |. The induced choice function ρ

is obtained following the law of total probability, ρ(an, S) =
∑

J w
∗
J(α,1/|J |)P(an|J,S).

The third term in (10) guarantees that the within-attribute-subset choice probabilities are RUM. The first

two terms capture the subjective confidence-maximizing behavior by minimizing ex post choice uncertainty

(the first term) and avoiding large deviations from the attention prior (the second term). Then, the posterior

attention takes the form given in (9), in which AERU arises from a uniform attention prior.

5.1. Generalized AERU

Taking a uniform prior in (8) yields AERU. Nevertheless, AERU can be conveniently generalized by con-

sidering different priors. Here I provide two brief examples.

5.1.1. Complexity-aversion: Complexity can be defined by the cardinality of attribute subsets that

the DM attends to make a choice. Minimal complexity occurs when the choice is based on a single attribute.

Let the attention prior be

uJ(γ) =A(γ) exp(−γ|J |) (12)

where A(γ) is the normalizing constant. Taking this prior gives

w∗(α,γ) =
e−αH(J,S)−γ|J|∑

K∈J e−αH(K,S)−γ|K| , (13)

implying complexity aversion since the DM is less likely to attend a higher cardinality attribute subset. At

the same time, uncertainty aversion, avoiding attribute subsets that induce a higher ex-post entropy, remains

part of the attention filter.

5.1.2. Attribute-specific information processing cost: Collecting and processing information

from different attributes might entail different levels of difficulty. For instance, while information on product

price is often readily accessible and has a clear numerical representation, information on product durability

or quality is more subjective and harder to evaluate, thereby entailing a higher cognitive cost in the choice

process. This cost may influence the degree of attention the DM allocates to an attribute. To capture the

attribute-specific information processing cost in AERU, let the attention prior be

uJ(λ) =A(λ)e−
∑

j∈J λj , (14)
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with λj > 0 being the cost of obtaining or processing information from attribute j, and A(λ) is the normal-

izing constant. Taking this prior gives

w∗(α,λ) =
e−αH(J,S)−

∑
j∈J λj∑

K∈J e−αH(K,S)−
∑

k∈K λk
, (15)

implying that the DM is less likely to attend attribute subsets that entail high-cost (large λ). A related

setting in which some attributes of a product may be easier to evaluate than others is discussed in Bar-Isaac

et al. (2012). For further discussions on inattention and information cost, see Matějka and McKay (2015),

Huettner et al. (2019), Brown and Jeon (2024).

6. Context Effect

In this section, I analyze context effects through varying menu S while holding the attention filter parameter

α fixed. I start with an initial menu S and expand the menu by adding a new alternative d ∈ A \ S, hence

S′ = S ∪ {d}. Throughout this section, I fix the attention parameter and defer the analysis of the attention

filter to the next section. Hence, I simplify the notation by denoting ρn(S) = ρ(an, S), wJ(S) = P(J |S),

HJ(S) = H(J,S), and P S
J (n) = P(an|J,S). Moreover, let qJ = P(d|J,S′) = eUJd∑

s∈S′ eUJs
be the within-

subset MNL choice probability of the new option d, and ∆J =HJ(S
′)−HJ(S) be the entropy change in

subset J after adding option d.

PROPOSITION 1. Expand a menu S by adding a new option d, S′ = S ∪{d}. For any option an ∈ S

ρn(S
′)− ρn(S) =

∑
J

wJ(S)
(
P S′

J (n)−P S
J (n)

)
︸ ︷︷ ︸

within-subset MNL

+
∑
J

(
wJ(S

′)−wJ(S)
)
P S′

J (n)︸ ︷︷ ︸
attention shift

. (16)

Proposition 1, derived directly from the definition of ρ=
∑

wJPJ and by adding and subtracting
∑

wJP
′
J ,

states that the change in the choice probability of an existing option in a menu, after adding a new option,

is the sum of two terms. i) The first term is the weighted average of within-subset MNL choice probability

changes. Because MNL assumes regularity, this term is always negative. ii) The second term is the attention

shift and captures the context effect. It can be positive or negative and is the only channel that can overturn

regularity. Lemma 1 below describes the behavior of the attention shift.
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LEMMA 1. Let S′ = S ∪{d}. Then for a fixed attention parameter α,

wJ(S
′) =wJ(S)

e−α∆J

EwJ (S)

[
e−α∆J

] , (17)

∆J =−qJ log qJ − (1− qJ) log(1− qJ)− qJHJ(S), (18)

and P S′
J (n) = (1− qJ)P

S
J (n)· (19)

Therefore, under AERU, adding a new option redistributes attention based on changes in relative entropy,

∆J . On the other hand, two factors shape ∆J : the baseline entropy HJ(S), and the within-attribute shares of

the new option, qJ . Holding qJ fixed, ∆J decreases linearly with HJ since ∂
∂HJ (S)

∆J =−qJ ≤ 0. Holding

HJ fixed, ∆J is concave in qJ since ∂
∂qJ

∆J = log 1−qJ
qJ

−HJ and ∂2

∂q2
J
∆J =− 1

qJ
− 1

1−qJ
≤ 0. Hence, across

the attribute subsets, the attention reweighting is governed by the combined profile (HJ , qJ). Attribute

subsets where the new option share qJ is small incur small ∆J and gain attention, even if their baseline

entropy HJ is low. Attribute subsets where the new option is more competitive, hence larger qJ up to a

threshold 1/(1+ eHJ ), can suffer a larger ∆J and lose attention, even if baseline entropy is high.

Next, I describe how the AERU choice probabilities, ρ, change when a new option is added to the menu.

LEMMA 2. Let S′ = S ∪{d}. Then for a fixed attention parameter α and any option an ̸= d,

ρn(S
′) =

EwJ (S)

[
(1− qJ)P

S
J (n)e

−α∆J

]
EwJ (S)

[
e−α∆J

] · (20)

Using Lemma 2 to characterize how ρ changes under menu expansion, we are now ready to derive our

main result on changes in choice probabilities for the analysis of context effects.

THEOREM 3 (AERU Context-Effect Covariance Identity). The AERU choice probability change for

any option an ∈ S, ∆ρn = ρn(S ∪{d})− ρn(S), when adding a new option {d}, is obtained as follows,

∆ρn =CovwJ (S)

(
P S

J (n),KJ

)
−EwJ (S)

[
P S

J (n)qJKJ

]
(21)

where KJ =
e−α∆J

EwJ (S)

[
e−α∆J

] ·
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Notice that in the absence of attention filter, KJ = 1 for every J , the covariance term vanishes, and thus

∆ρn =−EwJ (S)

[
P S

J (n)qJ

]
≤ 0, satisfying regularity.

To analyze the AERU context effect, first note that under the Luce independence assumption and the

MNL model, the following holds.

PROPOSITION 2. Under IIA, for any an ∈ S and d∈A \S,

∆ρIIAn = ρ(an, S ∪{d})− ρ(an, S) =−Qρ(an, S) (22)

where Q= ρ(d,S ∪{d}) is the choice share attained by the new option.

Therefore, under IIA, ∆ρn/ρn =−Q is the same for all an ∈ S, meaning that the new option draws choice

shares symmetrically from all options in S. Below, I show how AERU can capture context effects in which

options in S are asymmetrically affected by the new option.

Following Theorem (3) and Proposition (2), I define

Dn =∆ρn −∆ρIIAn

in order to capture the difference in choice probability changes when adding a new option, relative to the

baseline IIA without a context effect. If Dn ≡ 0 for all an ∈ S, then IIA holds and there’s no context

effect. A Dn < 0 implies that an loses more choice share compared to what no-context-effect predicts. This

happens, for instance, in the case of the similarity effect, a classic example of context effect in which an

option is hurt more by similar options than by dissimilar ones, implying preference for options that stand

out (Tversky 1972). When Dn > 0, it implies that the loss in an choice share is smaller than what the no-

context-effect predicts. This can occur in the case of the compromise effect, in which adding an extreme

option increases the relative popularity of an existing compromise option (Tversky and Simonson 1993). It

is important to notice that, despite a common misunderstanding, context effect may exist without violating

regularity. In fact, if 0<Dn <Qρn, then there is a positive context effect without violating regularity. The

regularity axiom is violated only in the case of extreme context effects when Dn >Qρn. For a discussion,

see Frederick et al. (2014) and Ghaderi et al. (2025). Below, in Lemma 3 and the following section, I
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show that under AERU, Dn can take both negative and positive values, including violations of regularity,

depending on the within-subset choice shares of the new option, qJ , and the values of the two covariance

terms.

LEMMA 3. For any an ∈ S,

Dn =CovwJ (S)

(
P S

J (n),KJ

)
−CovwJ (S)

(
P S

J (n), qJKJ

)
· (23)

6.1. What drives the context-effect?

Lemma 3 shows that the sign of Dn depends on how PJ(n) covaries with attention reweighting factor KJ =

e−α∆J

EwJ (S)

[
e−α∆J

] versus with the qJKJ . On the other hand, KJ is increasing in HJ(S) because ∂
∂HJ (S)

∆J =

−qJ ≤ 0 (see the discussion of Lemma 1). Thus, the sign of Dn depends on the following two terms.

• The first covariance Cov(P S
J (n),KJ) is positive when an tends to be strong (high P S

J (n)) on higher-

entropy subsets since KJ is increasing in HJ(S).

• The second covariance term, Cov(P S
J (n), qJKJ), is positive when the new option captures more share

precisely in subsets where an is strong.

Therefore, if the target option an ∈ S is strong on high-entropy subsets and the new option is weak

there, that is, Cov(P S
J (n),HJ(S)) > 0 and Cov(P S

J (n), qJ) < 0, then Cov(P S
J (n),KJ) > 0 while

Cov(P S
J (n), qJKJ) < 0, hence Dn > 0 and an benefits from adding the new option to the menu. This

is the compromise effect pattern. On the other hand, if an is strong on low-entropy subsets and the new

option too is strong there, then Cov(P S
J (n),KJ) < 0 and Cov(P S

J (n), qJKJ) > 0, and Dn < 0. This is

the similarity effect pattern. Finally, regularity can be violated only when Cov(P S
J (n),HJ(S)) ≫ 0 and

Cov(P S
J (n), qJ)≪ 0 so that

CovwJ (S)

(
P S

J (n), (1− qJ)KJ

)
>Qρn(S)·

Next, I present three numerical examples to illustrate the three important context effects in the literature:

similarity (Tversky 1972), compromise (Simonson 1989, Kivetz et al. 2004), and attraction (Huber et al.

1982). Following the established measures in the literature (Tversky and Simonson 1993, Kivetz et al. 2004,

Rooderkerk et al. 2011), I focus on changes in the popularity of a focal option relative to a competing option

when menu composition changes in a particular way that generates a context effect.



Ghaderi, M.: Attention-Entropy Random Utility
18 Management Science

EXAMPLE 1 (SIMILARITY). The similarity effect occurs when adding a similar option to the menu

makes the dissimilar option more popular. That is, ρ(A,{A,B,A′})< ρ(A,{A,B,B′}) where A′ and B′

are options similar to A and B, respectively, as depicted in Figure 1.

Figure 1 Similarity effect: The share of option A relative to option B is greater in the presence of B′ than A′.

Let υA = (0,9), υB = (3,6), and the AERU attention parameter α = 2. For the two similar options,

let their utility values be υA′ = (0.1,8.9) and υB′ = (2.9,6.1). In the baseline menu Sbase = {A,B},

ρIIA(A,Sbase) = ρAERU(A,Sbase) = 1/2. When adding either A′ or B′, the IIA choice share of each option

becomes 1/3. However, consistent with the prediction of the similarity effect, AERU yields different results.

When adding the option similar to A, ρAERU(A,Sbase ∪A′) = 0.21 whereas ρAERU(B,Sbase ∪A′) = 0.59,

meaning that adding A′ hurts A while increases share of B. Hence, the popularity of A relative to B drops to

0.21
0.21+0.59

= 0.26 compared to the IIA prediction of 0.50. Conversely, When adding the option similar to B,

ρAERU(A,Sbase∪B′) = 0.59 whereas ρAERU(B,Sbase∪B′) = 0.21, meaning that adding B′ hurst B while

making A more popular. Hence, the popularity of A relative to B increases to 0.59
0.59+0.21

= 0.74 compared to

IIA prediction of 0.50. Hence, the share of A relative to B is 25.9% in set {A,B,A′} versus 74.1% in set

{A,B,B′}, a substantial similarity effect of 48.2%. These results are summarized in Table 1.

In both expansions, regularity is violated. When adding either A′ or B′ to the base menu {A,B}, the

share of the dissimilar option increases. Specifically, in this example, while IIA predicts that the new option
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Table 1 Summary of the results in Example 1 for the similarity effect. The new option draws

disproportionately from the similar option, while increasing the share of the competing option.

Menu ρIIA(·, S)
ρAERU

ρ(A,S)

ρ(A,S)+ρ(B,S)

A B

Sbase = {A,B} 1/2 0.50 0.50 0.50

Sbase ∪A′ 1/3 0.208 0.594 0.259

Sbase ∪B′ 1/3 0.594 0.208 0.741

Figure 2 Compromise effect: The share of option B relative to option C is greater in the presence of A

(when B is a compromise option) than in the presence of D (when B is an extreme option).

draws a share of 1/6 from each options A and B, AERU predicts that the new option draws a share of 0.198

from the similar option and transfers an additional share of 0.094 from the similar option to the competing

dissimilar option.

EXAMPLE 2 (COMPROMISE). The compromise effect occurs when the share of a focal option relative

to a competing option increases as it becomes an intermediate option and decreases as it becomes an extreme

option in the menu. That is, in Figure 2, the popularity of option B relative to option C is greater in menu

{A,B,C} than in menu {B,C,D}.
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Let υB = (0.50,2), υC = (0.55,1), and the AERU attention parameter α= 10. In the base menu Sbase =

{B,C}, ρIIA(B,Sbase) = 0.72 and ρAERU(B,Sbase) = 0.69. Now consider two different expansions of

the base menu: one is obtained by adding a left-extreme option υA = (0.45,5) to Sbase, and therefore

making option B a compromise and C an extreme. The other menu is obtained by adding a right-extreme

option υD = (4,0), making option B an extreme and C a compromise. Compromise effect predicts that

ρ(B,S)

ρ(B,S)+ρ(C,S)
is larger in Sbase ∪A than in Sbase ∪D. Under AERU, these relative shares are 72.6% and

51.1% in the Sbase∪A and Sbase∪D menus, respectively. Therefore, adding the extreme option A increased

the share of B relative to C from 69.1% to 72.6%, whereas adding the extreme option D decreased it to

51.1%, indicating a compromise effect of 21.5%.

6.1.1. How to achieve a compromise effect? The compromise effect arises from two forces.

First, adding an extreme option reduces the focal option’s within-attribute-subset shares in the attributes

where the new option is strong. In other words, adding an extreme option that is strong on some attributes

shrinks the within-attribute share of both the focal and the competing option in those attributes. Second,

because the extreme option lowers entropy within those attribute subsets, AERU shifts attention towards it.

A relative gain for the focal option arises when this tilt shifts attention away from attributes where it is weak

relative to the competing option and toward those where it is strong. Thus, if the focal option is stronger

than the competing option in the attribute subset where the new extreme option is strong, this attention shift

boosts its relative share.

Consequently, to achieve a compromise effect, the way the new option’s extremeness is defined is crucial.

For the extreme option to boost the relative share of a focal option, it must shift attention away from the

attribute subsets in which the focal option is weak by increasing entropy; hence, to achieve this, it must

be comparably attractive (similar utility values). Next, and more importantly, to shift the attention to the

attributes where the focal option is strong, it must exhibit extreme attractiveness up to a certain point. If

the new option becomes too extreme on any attribute, it dominates both the focal and competing options in

all attribute subsets, thereby preventing high entropy in attribute subsets where the focal option is weak. To

illustrate this, Figure 3 shows the compromise effect across different extremeness levels in υD for the first
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Figure 3 (Color online) Compromise effect versus extreme option utility for different α parameter values.

attribute, and across different levels of attention filter intensity. As discussed, the extreme option must be

strong enough to shift attention toward its own favored attribute, and where the focal option is strong, but

not so dominant as to annihilate the focal option everywhere.

6.2. Attraction

The attraction effect occurs when adding an asymmetrically dominated option, a decoy, increases the choice

probability of the dominating option relative to a competing option. The attraction effect has been among

the widely debated and controversial context effects regarding its robustness and replicability (Frederick

et al. 2014). For a discussion, see Huber et al. (2014), Simonson (2014).

The asymmetric dominance in attraction effect requires the decoy to be dominated by the target option,

but not by the competing option. For instance, in Figure 4, Ad is a decoy to A and Bd a decoy to B. The

attraction effect predicts that the share of option A relative to B will increase by adding its decoy Ad to the

menu Sbase = {A,B}. If the decoy captures no choice share at all, this leads to a violation of regularity.

This is how the attraction effect has been originally introduced (Huber et al. 1982), and I refer to it as the

absolute attraction effect. Alternatively, in the psychology literature, the attraction effect has been measured

as the difference in the relative popularity of A to B between two menu expansions, Sbase ∪ Ad versus

Sbase ∪ Bd. From this view, ρA/(ρA + ρB) is expected to be larger in the first compared to the second

menu expansion, and ρB/(ρA + ρB) is expected to be larger in the second compared to the first menu

expansion (Trueblood et al. 2013). I refer to this as the relative attraction effect. I show that AERU can
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Figure 4 Absolute attraction effect: The share of an option, A or B, increases by adding its decoy, Ad or Bd,

respectively, to the menu. Relative attraction effect: The share of option A relative to B is greater in the

presence of its own decoy Ad than in the presence of the competing option’s decoy, Bd.

capture the absolute attraction effect when the focal option satisfies certain conditions, but does not generate

the relative attraction effect.

PROPOSITION 3. Let Sbase = {A,B} and Ad be a decoy to A, that is υjd ≤ υjA for all j with strict

inequality for at least one attribute. Suppose there exists a nonempty collection J̄ of attribute subsets such

that:

(i) P
Sbase
J (A)>P

Sbase
J (B) for all J ∈ J̄ ,

(ii) for all J , qJ ≤ 1/(1+ eHJ (Sbase)) so that ∆J is increasing in qJ ,

(iii) for all J ∈ J̄ , the decoy’s within-subset share qJ is sufficiently small;

(iv) for all J /∈ J̄ , qJ is uniformly larger than on J̄ , that is, minJ /∈J̄ qJ >maxJ∈J̄ qJ .

Then there exists α∗ > 0 such that for all α>α∗,

∆ρA = ρ
(
A, Sbase ∪{Ad}

)
− ρ

(
A, Sbase

)
≥ 0.

Proposition 3 states that for the attraction effect to occur, an option A must be the option that is stronger

than B on low-entropy attributes, and the decoy Ad must capture sufficiently small choice probabilities on

these attribute subsets, whereas sufficiently large shares on the rest of the attribute subsets. Therefore, in
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this menu, the attraction effect can be produced for A, but adding Bd to the menu {A,B} need not produce

an attraction effect.

Therefore, attraction is asymmetric and target–specific. It is possible but cannot be manufactured for

everyone in the same menu. The sufficient conditions in Proposition 3 describe the target–specific nature of

the attraction effect. They require a partitioning of attribute–subsets into a set J̄ on which the target A is

stronger (than B) and the decoy’s within–attribute shares are uniformly smaller than within its complement

subsets where those shares are uniformly larger. For the other option B to satisfy the same conditions with

its own decoy Bd, one would need the reverse partition to receive uniformly smaller decoy shares for Bd

and larger shares elsewhere. These two requirements are generally incompatible for a given base menu

S = {A,B} and a fixed attention parameter α because they induce opposite attention shifts. Hence, absolute

attraction can be produced for some target option(s) in S but, in general, not for all options. This observation

is crucial and can partly explain the mixed results in the literature, where attraction is sometimes observed

and at other times adding a decoy does not produce the effect (Frederick et al. 2014, Huber et al. 2014,

Simonson 2014).

In conclusion, AERU accommodates context effects in a disciplined way. From Proposition 1 and Theo-

rem 3, the change in choice shares decomposes into an MNL within–attribute dilution and an endogenous

entropy–weighted attention reallocation; only the latter can overturn regularity. In summary: (i) Similarity

arises when the new option captures more choice share precisely in attributes where the focal option is

strong, shifting attention against it; (ii) Compromise arises when an extreme option lowers entropy more in

attributes that favor the compromise option, shifting attention toward those attributes; (iii) Attraction (abso-

lute) can occur only for some target options under transparent conditions (Proposition 3), but, in general,

not all options in the same menu are qualified to become a target option for generating attraction effect.

Moreover, the alternative relative attraction effect is ruled out, at least under strict decoys and attention

over all attribute subsets. Nevertheless, this can potentially occur under the generalized AERU described in

section 5.1. This requires further analysis.
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7. The Attention Filter

In this section, I analyze the attention filter by varying the attention parameter while holding the menu S

fixed. The aim is to link the endogenous attention mechanism to observable choice probabilities. The results

serve three purposes. i) Theoretically, they provide necessary conditions for AERU-representability of an

SCF ρ. Specifically, they provide easy-to-test conditions for identifying a stochastic choice function that

does not belong to the AERU family. ii) Empirically, the results provide tools for partial identification of

the attention parameter. Specifically, I identify bounds on the attention parameter directly from observable

variables, such as choice shares and menu size. iii) Finally, they impose cross-environment restrictions

relating AERU attention filters, useful when attention intensity varies with different intensities of attention

filter, for instance due to different time pressure or engagement.

Holding the menu fixed for the analysis in this section, I simplify the notation by denoting ρn(α) =

ρ(an, S), wJ(α) = P(J |S), PJ(n) = P(an|J,S), and HJ =H(J,S). Hence, the next observation follows

immediately.

REMARK 1. ρn =EwJ (α)

[
PJ(n)

]
∈Conv

(
PJ(n)

)
J . Thus, minJ PJ(n)≤ ρn(α)≤maxJ PJ(n),∀α.

PROPOSITION 4. For a fixed (S,{vjn}), the map α → ρn(α) is real analytic on R, hence infinitely

differentiable with converging Taylor series for any α. Moreover

ρn(0) =
1

|J |
∑
J∈J

PJ(n) (24)

and

ρn(∞) =
1

|J ∗|
∑
J∈J ∗

PJ(n) (25)

where J ∗ = {J :HJ =minK HK}.

Remark 1 and Proposition 4 describe the geometry of ρ. It lives in the convex hull of the within-subset

MNL choice probabilities, and the AERU choice probabilities for extreme attention parameters are the

arithmatic means over all or the minimum entropy attribute subsets. The following Lemma is the main result

of this section. It characterizes the behavior of ρ with respect to the attention filter and is used to derive

subsequent bounds and convergence results.
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LEMMA 4 (AERU Attention Covariance Identity). For a fixed menu S and any alternative an,

dρn
dα

=−CovwJ (α)

(
PJ(n),HJ

)
· (26)

The attention covariance identity states that if an alternative is strong on attributes with low induced entropy

and weak on attributes with high induced entropy, it gains choice share as the attention filter becomes

stronger. In other words, whether strengthening the attention filter benefits or harms an option depends on

its entropy profile with respect to the induced choice probabilities.

LEMMA 5 (Global Bound). For a fixed menu S and any alternative an ∈ S and any α∈R≥0∣∣∣∣∣ρn(α)− 1

|J |
∑
J∈J

PJ(n)

∣∣∣∣∣≤ log |S|
4

α· (27)

Thus, ρ lies in the convex hull of PJ within a Lipschitz distance of the centroid ρn(0). Consequently, for

the same menu S, observed at two environments with attention parameters α1, α2, the AERU attention

parameters difference is bounded below by

|α2 −α1| ≥
4

log |S|
|ρn(α2)− ρn(α1)| · (28)

The global bound in Lemma 5 is tight when ρn(α) = 0.5. The following curvature-sensitive bound,

although not global, provides tighter bounds for all values of ρ.

LEMMA 6 (Curvature-Sensitive Bound). For a fixed menu S and any alternative an ∈ S and any

α1, α2 ∈R≥0, α2 ≥ α2

arcsin
√

ρn(α2)− arcsin
√

ρn(α1)≤
log |S|

4
(α2 −α1)· (29)

Note that when ρn(α) = 0.5, ρn(1−ρn) = 1/4, and the Bhatia-Davis inequality gives the same upper bound

obtained for the global bound. The curvature-sensitive bound becomes increasingly tighter as the choice

becomes more deterministic, that is, when ρn gets closer to 0 or 1.

Lemma 5 provides a global bound for ρAERU in relation to the base choice model ρ(0) from Proposition 4.

The following lemma provides the upper bound and an exponential convergence rate in relation to the other

extreme choice model ρ(∞).
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LEMMA 7 (Exponential Convergence Rate). For a fixed menu S, let J ∗ = {J :HJ =minK HK}.

Define the entropy gap ∆=minJ /∈J ∗(HJ −minK HK). Then, for any p-norm ||.||p,∣∣∣∣∣
∣∣∣∣∣ρn(α)− 1

|J ∗|
∑
J∈J ∗

PJ(n)

∣∣∣∣∣
∣∣∣∣∣
p

≤ 21/pCe−α∆ (30)

for some C depending only on |J ∗|. Specifically, for L∞ norm,

max
n∈S

∣∣∣∣∣ρn(α)− 1

|J ∗|
∑
J∈J ∗

PJ(n)

∣∣∣∣∣≤Ce−α∆.

8. Estimation

In this section, I describe the AERU maximum-likelihood estimation using block coordinate ascent and a

quasi-Newton method. Let {(at, St)}Tt=1 denote a finite collection of observed choices where each element

(at, St) reads as option at ∈ St was chosen when the menu St was presented. The corresponding likelihood

function is defined as:

L(α,{υjn}) =
T∏

t=1

∑
J∈J

( e−αH(J,St)∑
K∈J e−αH(K,St)

)( e
∑

j∈J υjt∑
s∈S e

∑
j∈J υjs

)
(31)

where

H(J,St) =−
∑
k∈S

( e
∑

j∈J υjk∑
s∈S e

∑
j∈J υjs

)(∑
j∈J

υjk − log
∑
s∈S

e
∑

j∈J υjs

)
.

This likelihood function is nonconvex in the unknown parameters {{υjn}, α}.

Notice that no specification assumptions were made on the shape of utility functions. Nevertheless, if the

utility functions are parametrized, then the likelihood function can be easily modified by replacing the taste

parameters υjn with the utility function parameters. For instance, for a linear utility function υn = θTzn,

where θ is the vector of utility parameters and zn is the vector of attribute values for option an, υjn = θjzjn

and therefore the taste parameters {υjn} will be replaced by the utility function parameters {θj} in the

likelihood function. In the numerical experiment in the next section, a linear utility function is used, and the

model parameters are estimated by solving the following constrained optimization problem.

max
α≥0,θ

L(α,θ), (32)

where L is obtained by replacing υjn elements with θjzjn in the likelihood function (31).
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To solve the optimization problem (32), an iterative procedure combining the block coordinate descent

method (Wright 2015) with a quasi-Newton method is employed. At each iteration, I first maximize the

likelihood function with respect to α, holding θ fixed. I then maximize the likelihood function with respect

to θ, holding α fixed at its value from the previous step. Maximizing with respect to α is straightfor-

ward since this is a univariate optimization problem with a sign constraint. I solve the optimization prob-

lem in the second step, updating the θ parameters, using the Newton method with the BFGS (Broyden-

Fletcher–Goldfarb–Shanno) approximation of the Hessian matrix. Therefore, this solution method requires

only the first-order partial derivatives of the likelihood function with respect to α and θ, which can be com-

puted easily since the stochastic choice function 7 has a closed form. It is easy to show that the likelihood

function improves in each iteration since

L(αitr+1,θitr+1) ≥
by maximizing .w.r.t θ

L(αitr+1,θitr) ≥
by maximizing .w.r.t α

L(αitr,θitr)

and therefore the solution from each iteration weakly dominates the previous iteration solution. 9 I repeat

this process until improvement in the likelihood function falls below a prespecified threshold, set to 10−3 in

the simulation analysis in section 9.

9. Simulation

To evaluate AERU performance, this section presents a computational experiment using synthetic choice

data generated under various configurations. Following the setup in Ghaderi et al. (2025), I employed a ran-

dom lexicographic model (Tversky 1972, Kohli and Jedidi 2007) since i) it is a flexible non-compensatory

choice model capable of generating non-IIA and context-dependent choices, and ii) it closely resembles a

realistic choice process.

9 The block coordinate descent is not guaranteed to find the global maximum in nonconvex cases. In the case of our analyses, it

consistently achieved a better likelihood value compared to using the BFGS quasi-Newton method alone to solve the optimization

problem (32), but it also nearly doubled the solution time.
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9.1. Setup

To generate the choice data, I first draw attribute weights from a Dirichlet distribution, (α1, . . . , αM) ∼

Dir(1M), where 1M denotes an M -dimensional vector of ones. For each choice task S, attribute priorities

are then generated according to the following rule:

Prioritym = log(αm)− log(− log(qm)), (33)

where qm ∼ Uniform(0,1). The resulting ordered priority values determine the sequence in which alterna-

tives are screened for that particular choice task S. A new priority sequence is generated independently for

each choice task by drawing a new uniform random number qm, for each attribute m, and then by applying

Eq. (33).

In each iteration of the simulation study, the menu length is set to 3 or 6, then 25 menus of that length

are randomly generated. Each menu option is randomly generated from M = 4 or 6 attributes, each with

five levels. Menus are constructed to ensure that no alternatives are dominated within a menu. For each

menu, I randomly generated 40 choice tasks according to the random lexicographic model described above.

Therefore, a total of 1000 choice instances are generated in each replication. I then randomly partitioned the

menus into the training and test sets. The training set included only the choice data from menus assigned to

the training condition. The training set comprises 15 or 20 menus out of the 25. For each setting, I repeated

the process 50 times, hence a total of 2× 2× 2× 25× 40× 50 = 40,000 synthetic (menu, choice) pairs.

9.2. Results

I report results on choice probability estimation using the mean absolute error (MAE) for in-sample and

out-of-sample menus, with MNL as a benchmark. The results show that AERU improvement of out-of-

sample MAE ranges from 20.1% to 30.7% across the simulation settings, with the lowest improvements

in the settings with many attributes (6), and the highest improvements in the setting with few attributes (4)

and a large training set (20 menus). The average AERU improvement of out-of-sample MAE is 24.6% (and

22.7%− 26.3% for 95% bootstrap confidence interval with 10,000 replications).

Similarly, for in-sample, AERU consistently provides better results, with MAE improvement ranging

from 24.0% (in the settings with many attributes (6) and large menu length (6)) to 32.1% (in the setting with
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Figure 5 Distribution of out-of-sample MAE improvement by Number of Attributes (4 or 6 attributes),

Training Size (60% or 80% of total 25 menus), and Menu Length (3 or 6 options in the menu). Dashed lines

show the mean values, which are also displayed in the graph.

few attributes (4), large training set (20 menus), and large menu length (6)), with an average improvement

of 27.7% (and 26.1%− 29.1% for 95% bootstrap confidence interval with 10,000 replications). Figure 5

shows the distribution of out-of-sample MAE improvement for different simulation settings.

Moreover, Figure 6 shows a positive relationship between the estimated attention filter parameter (α) and

the out-of-sample MAE improvement (Pearson correlation coefficient 0.107, p-value 0.034), suggesting

that improvements over the benchmark MNL come from instances where the attention filter needed to be

activated more strongly.

The results, summarized in Table 2, show that AERU consistently provides better in-sample and out-of-

sample predictions compared to the benchmark MNL model.
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Figure 6 Correlation between the out-of-sample MAE improvement and the attention parameter (α).

Table 2 Mean Model Performance by Number of Attributes, Training Size, and Menu Length. Lower MAE

indicates a better performance.

Num. of Attributes Training Size Menu Length
Out-of-Sample MAE In-Sample MAE Log Likelihood

AERU MNL AERU MNL AERU MNL

Few

Small
Small 0.096 0.132 0.085 0.119 -451 -496

Large 0.070 0.098 0.064 0.095 -694 -803

Large
Small 0.094 0.138 0.087 0.129 -619 -689

Large 0.067 0.101 0.066 0.096 -937 -1079

Many

Small
Small 0.094 0.123 0.081 0.114 -475 -512

Large 0.067 0.085 0.060 0.080 -743 -802

Large
Small 0.099 0.126 0.086 0.117 -668 -715

Large 0.065 0.084 0.061 0.081 -991 -1075
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In summary, these results complement the previous theoretical results and show that, while preserving

the parsimony of MNL, AERU consistently fits and predicts better.

10. Concluding Remarks

This paper develops a behavioral model of discrete choice combining random utility maximization with a

novel subjective-confidence maximization. The resulting choice model endogenizes attention and captures

various context effects. Subjective-confidence maximization can be viewed as a drive for decisiveness, in

which the decision maker allocates attention across attribute subsets and favors those subsets that yield

low ex post uncertainty in the induced choice probabilities. Choice emerges as a mixture of within-subset

logits, weighted by a menu-sensitive attention filter. The model preserves interpretable taste parameters,

nests MNL as a limit case, and relaxes regularity, IIA, and order-independence in a transparent and testable

way.

On the theoretical side, I demonstrate how AERU departs from the classical random utility model, why

this departure is important for explaining boundedly rational choice behavior, and how it achieves this

in a disciplined way. The changes in AERU choice probabilities under menu expansion decompose into

(i) dilution within attribute subsets (regularity) and (ii) an entropy-based attention shift (the only source of

regularity violations). This yields sharp conditions for context effects. I show how AERU can capture the

three important context-effects, compromise, similarity, and an absolute attraction effect only for options

that satisfy certain conditions in the menu, alongside a negative prediction for the relative decoy effect under

strict dominance. These results can also be used to reconcile previous mixed empirical findings (Frederick

et al. 2014, Simonson 2014, Huber et al. 2014).

Empirically, AERU is parsimonious. Relative to MNL, it adds a single attention parameter while sub-

stantially enlarging the set of behaviors the model can capture. Moreover, as the computational experiments

show, it consistently improves both in-sample (MAE improvement from 24% to 32%) and out-of-sample

(MAE improvement from 20% to 31%) fit while maintaining interpretability.

Future directions. This paper focuses on modeling, theory, and operationalization of AERU, while a

full algorithmic treatment and computational analysis is deferred. Exact evaluation of AERU requires sum-

ming over all 2M attribute subsets. This motivates sparsity and screening. Two practical strategies can be
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employed to control the computational cost: (i) Cardinality truncation by restricting attention to attrubute

subset with small cardinality, |J | ≤K (a special case of complexity aversion). This reduces the worst-case

count to
∑K

k=1

(
K
k

)
and has a clear behavioral interpretation. (ii) Sparse mixing by approximating ρ as a

convex combination of a few low-entropy attribute subsets of any cardinality. To populate the candidate set

in the latter approximation strategy, heuristic search methods can be used to minimize approximation error

by adding one attribute subset at a time, for instance via column generation or Frank-Wolfe method. Both

cardinality truncation and sparse mixing approximations preserve the model’s behavioral content while

keeping computation tractable when the number of attributes is very large. A systematic study of the accu-

racy–speed trade-offs and finite-sample guarantees for these approximation strategies is a promising avenue

for future research.

AERU offers falsifiable, managerially relevant predictions. Because the attention shift is disciplined by

entropy in preference space, the model predicts when assortment changes should increase a focal option’s

share (and when they should not), provides conditions for context effects, and delivers bounds on their mag-

nitude as functions of attention intensity and the menu’s entropy profile. There are at least three promising

avenues:

1. Experimental tests of the mechanism. Tests that manipulate menu composition to alter entropy pro-

file can be used to evaluate the AERU predicted choice share shifts for attraction and compromise

effects, alongside its null prediction for relative attraction under strict dominance. The results have

immediate implications for assortment and information design.

2. Consumer search behavior. AERU links naturally to reason-based choice, and thus can be used

to integrate behavioral insights into standard search models. 10 From the AERU perspective, search

10 Consider this example from Tversky and Shafir (1992). They reported that the DM is more likely to pay a cost to receive a

new lottery, that is, incur a search cost to discover a new option, when choosing between (A) Winning $15 with 65% chance and

(B) Winning 35 with 30% chance, compared to when choosing between (A) Winning 15 with 65% chance and (C) Winning 14

with 65% chance. In the latter case, the DM has a good reason to select option (A), whereas in the former case, this reason is absent,

and thus the DM continues the search. Notice the considerable difference between this search rule and the standard view, where the

search terminates as soon as the expected value of continuing the search exceeds its cost.
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should terminate when choice conflict is sufficiently resolved, rather than when search cost exceeds

expected improvement in decision making. Embedding AERU into consumer search, by incorporating

insights from the rapidly growing literature at the intersection of consumer search and consideration

set formation (Zwick et al. 2003, Onzo and Ansari 2025, Kosilova and Alptekinoğlu 2025), can yield

novel results, particularly for assortment policies in markets with complex products.

3. Richer attention primitives. The same attention architecture accommodates attribute-specific pro-

cessing costs, complexity aversion, or heterogeneity in the attention parameter. These extensions retain

the AERU behavioral interpretation while broadening its applicability.

Finally, a natural next step is to embed AERU into assortment optimization problems, where a firm

chooses a menu S to maximize its expected revenue. Generally, this has two parts: estimation of a choice

model that captures substitution, and optimization of the assortment using price or profit information and

the choice-share estimates for each feasible option. AERU is well-suited here because it treats assortments

not merely as availability sets but as attention-shaping instruments influencing the choice behavior. By

changing the menu, the firm shifts attention across attribute subsets and can, under transparent conditions,

improve the choice share of high-margin items. Thus, in an AERU-based assortment optimization frame-

work, the estimation component already encodes the levers that the optimization problem would exploit.

Methodologically, because AERU’s menu-dependent attention can violate regularity, classical structural

properties exploited in MNL-type models, such as revenue-ordered optimality, need not apply, creating new

algorithmic challenges. Developing this theory, scalable solution algorithms, and revenue implications is an

appealing direction for future work.

Overall, AERU provides a behaviorally grounded, interpretable, and empirically tractable model of

bounded rationality in choice. It augments random utility maximization with a novel subjective-confidence

maximization, implemented via an endogenous, entropy-based allocation of attention across attribute sub-

sets. The model preserves the parsimony of standard RUM (Louviere et al. 2000, McFadden 2001), while

capturing key context effects and offering flexibility comparable to that of the nonparametric choice mod-

els (Farias et al. 2013, Ghaderi et al. 2025, Susan et al. 2025). In practice, it is substantially more flexible

than MNL yet far more structured than fully nonparametric approaches.
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Huettner F, Boyacı T, Akçay Y (2019) Consumer choice under limited attention when alternatives have different

information costs. Operations Research 67(3):671–699.

Joo J (2023) Rational inattention as an empirical framework for discrete choice and consumer-welfare evaluation.

Journal of Marketing Research 60(2):278–298.

Ke TT, Shen ZJM, Villas-Boas JM (2016) Search for information on multiple products. Management Science

62(12):3576–3603.

Kivetz R, Netzer O, Srinivasan V (2004) Alternative models for capturing the compromise effect. Journal of Marketing

Research 41(3):237–257.

Kohli R, Jedidi K (2007) Representation and inference of lexicographic preference models and their variants. Market-

ing Science 26(3):380–399.
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Appendix
10.1. Proof of Theorem 1

The KL(.||u) is convex and Ew

[
H(J,S)

]
is linear in w. Therefore F{α,u}(w) is strictly convex. Moreover,

the simplex ∆(J ) is closed and compact, so a minimizer exists and it is unique. Writing the Lagrangian

with multiplier λ,

L(w, λ) =
∑
J

wJ

(
αH(J,S)+ log(

wJ

uJ

)
)
−λ(

∑
J

wJ − 1)

and taking derivative

∂L/∂wJ = αH(J,S)+ log(
wJ

uJ

)+ 1+λ= 0

yield wJ = loguJ −αH(J,S)− (1+λ), that is, wJ = uJe
−(1+λ)e−αH(J,S). The ∂L/∂λ=

∑
J wJ − 1 = 0

gives e−(1+λ) = 1/
∑

J uJe
−αH(J,S), and therefore

w∗
J =

uJe
−αH(J,S)∑

K uKe−αH(K,S)
·

Plugging w∗
J into F{α,u}(w) and using the optimal form log(w∗

J/uJ) =−αH(J,S)− log
∑

J uJe
−αH(J,S)

gives F{α,u}(w
∗
J) =− log

∑
J uJe

−αH(J,S). □

10.2. Proof of Lemma 1

The third line of Lemma follows directly from the construction of the within-subset MNL choice probabil-

ities. The second line follows from the definition of Shannon entropy and from replacing the P S′
J terms in

the third line. The first line follows from wJ(S
′)∝ e−αH(J,S′) and replacing H(J,S′) with H(J,S) +∆J .

□

10.3. Proof of Lemma 2

By plugging in the wJ(S
′) and P S′

J (n) from Lemma 1,

ρn(S
′) =

∑
J∈J

wJ(S
′)P S′

J (n) =
∑
J∈J

wJ(s)(1− qJ)P
S
J (n)e

−α∆J

EwJ (S)

[
e−α∆J

] .
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The proof follows from the fact that the sum over the attribute subsets of the numerator is in fact EwJ (S)

[
(1−

qJ)P
S
J (n)e

−α∆J

]
. □

10.4. Proof of Theorem 3

Firs, note that, since KJ = e−α∆J

EwJ (S)

[
e−α∆J

] , if follows that EwJ (S)

[
KJ

]
= 1. Moreover, EwJ (S)

[
P S

J (n)
]
=∑

J∈J wJ(S)P
S
J (n) = ρn(S). Therefore,

CovwJ (S)

(
P S

J (n),KJ

)
=

∑
J∈J

wJ(S)
(
P S

J (n)− ρn(S)
)(

KJ − 1
)

=
∑
J∈J

wJ(S)P
S
J (n)KJ −

∑
J∈J

wJ(S)P
S
J (n)− ρn(S)

∑
J∈J

wJ(S)KJ − ρn(S)
∑
J∈J

wJ(S)

=
∑
J∈J

wJ(S)P
S
J (n)KJ − ρn(S)·

The last equality follows from
∑

J∈J wJ(S)P
S
J (n) = ρn(S),

∑
J∈J wJ(S)KJ = EwJ (S)

[
KJ

]
= 1, and∑

J∈J wJ(S) = 1. Therefore,

CovwJ (S)

(
P S

J (n),KJ

)
−EwJ (S)

[
P S

J (n)qJKJ

]
=

∑
J∈J

wJ(S)P
S
J (n)KJ − ρn(S)−

∑
J∈J

wJ(S)P
S
J (n)qJKJ

=
∑
J∈J

wJ(S)(1− qJ)P
S
J (n)KJ︸ ︷︷ ︸

=ρn(S∪{d}) (by inserting KJ and using Lemma 2)

−ρn(S) =∆ρn·

□

10.5. Proof of Proposition 2

Under IIA, ρ(an, S ∪ {d}) = eυn∑
s∈S eυs+eυd

= (1− eυd∑
s∈S eυs+eυd

) eυn∑
s∈S eυs

= (1−Q)ρ(an, S) and therefore

∆ρIIAn = (1−Q)ρ(an, S)− ρ(an, S) =−Qρ(an, S). □

10.6. Proof of Lemma 3
Dn =∆ρn −∆ρIIAn (by definition)

=∆ρn +Qρn(S) (by Proposition 2)

=CovwJ (S)

(
PS
J (n),KJ

)
−EwJ (S)

[
PS
J (n)qJKJ

]
−Qρn(S) (by Theorem 3)

=CovwJ (S)

(
PS
J (n),KJ

)
−EwJ (S)

[
PS
J (n)qJKJ

]
+EwJ (S′)[qJ ]EwJ (S)[PJ(n)] (by Q=EwJ (S′)[qJ ] and ρn(S) =EwJ (S)[PJ(n)])

Finally, by Lemma 1, EwJ (S′)[qJ ] =EwJ (S)[qJKJ ]. Using the definition Cov(X,Y ) =E[XY ]−E[X]E[Y ]

where X = P S
J (n) and Y = qJKJ , Dn =CovwJ (S)

(
P S

J (n),KJ

)
−CovwJ (S)

(
P S

J (n), qJKJ

)
. □
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10.7. Proof of Proposition 3

By Lemma 1, wJ(Sbase ∪{Ad})∝wJ(Sbase)e
−α∆J . By part (ii) of the proposition, ∆J is increasing in qJ .

Hence, by (iii)–(iv),

min
J /∈J̄

∆J > max
J∈J̄

∆J .

Therefore, as α grows, the reweighting KJ ∝ e−α∆J concentrates on J̄ , thus wJ(Sbase∪{Ad})≥wJ(Sbase)

for J ∈ J̄ and wJ(Sbase ∪ {Ad})≤wJ(Sbase) for J /∈ J̄ . Using P
Sbase∪{Ad}
J (A) = (1− qJ)P

Sbase
J (A) and

P
Sbase
J (A)>P

Sbase
J (B) on J̄ , and noting that qJ is uniformly small there, the attention shift toward J̄ will

dominate the within-attribute IIA loss as α becomes large enough and therefore ∆ρA ≥ 0. □

10.8. Proof of Proposition 4

ρn(α) =
∑

J∈J wJ(α)PJ(n) where wJ(α) =
e−αHJ∑

k∈J e−αHK
. Thus, for α = 0, it immediately follows that

wJ(0) = 1/|J |. On the other hand, when α→∞, let Hmin =minK HK and J ∗ = {J :HJ =minK HK}.

Multiplying and diving wJ(α) by eαHmin > 0 and noting that HJ −Hmin = 0 for all J ∈J ∗,

ρn(α) =
∑

J∈J
e−α(HJ−Hmin )∑

k∈J e−α(HK−Hmin)PJ(n)

=
∑

J∈J ∗
1

|J ∗|+
∑

k/∈J e−α(HK−Hmin)PJ(n)+
∑

J /∈J ∗
e−α(HJ−Hmin )

|J ∗|+
∑

k/∈J e−α(HK−Hmin)PJ(n)·

When α→∞, all the e−α(HJ−Hmin) terms vanish if J /∈ J ∗ since HJ −Hmin > 0. Therefore, it follows

that limα→∞ ρn(α) =
∑

J∈J ∗
1

|J ∗|PJ(n) =
1

|J ∗|

∑
J∈J ∗ PJ(n). □

10.9. Proof of Lemma 4

dρn
dα

=
∑

J∈J PJ(n)
d
dα
wJ(α) since PJ(n) is independent from α. Therefore,

dρn
dα

=
∑
J∈J

PJ(n)
d

dα

e−αHJ∑
K∈J e−αHK

=
∑
J∈J

PJ(n)
( −HJe

−αHJ∑
K∈J e−αHK

+
e−αHJ

∑
K∈J HKe

−αHK

(
∑

K∈J e−αHK )2
)

=
∑
J∈J

−PJ(n)HJ

e−αHJ∑
k∈J e−αHK

+
∑
J∈J

PJ(n)
e−αHJ∑

k∈J e−αHK

∑
K∈J HKe

−αHK∑
K∈J e−αHK

=
∑
J∈J

−PJ(n)HJwJ(α)+
(∑
J∈J

PJ(n)wJ(α)
)( ∑

K∈J

HKwK(α)
)

=−EwJ (α)

[
PJ(n)HJ

]
+EwJ (α)

[
PJ(n)

]
EwJ (α)

[
HJ

]
=−CovwJ (α)

(
PJ(n),HJ

)
. □
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10.10. Proof of Lemma 5

By the AERU identity covariance,

ρn(α) = ρn(0)−
∫ α

0

CovwJ (τ)

(
PJ(n),HJ

)
dτ

Therefore

|ρn(α)− ρn(0)|=
∣∣∣∫ α

0
CovwJ (τ)

(
PJ(n),HJ

)
dτ

∣∣∣ ≤ ∫ α

0

∣∣∣CovwJ (τ)

(
PJ(n),HJ

)∣∣∣dτ∫ α

0

√
VarwJ (τ)

[
PJ(n)

]√
VarwJ (τ)

[
HJ

]
dτ (by Cauchy-Schwarz inequality)

≤
∫ α

0
1
2
· log |S|

2
dτ (since 0≤ PJ(n)≤ 1, and 0≤HJ ≤ log |S|)

= log |S|
4

α. □

10.11. Proof of Lemma 6

Given that 0≤ PJ(n)≤ 1 and 0≤HJ ≤ log |S|,

dρn
dα

≤
∣∣ dρn

dα

∣∣= ∣∣∣CovwJ (α)

(
PJ(n),HJ

)∣∣∣ (by Proposition 4)

≤
√

VarwJ (τ)

[
PJ(n)

]√
VarwJ (τ)

[
HJ

]
dτ (by Cauchy-Schwarz inequality)

≤
√(

1−EwJ (α)

[
PJ(n)

])
EwJ (α)

[
PJ(n)

]√(
log |S| −EwJ (α)

[
HJ

])
EwJ (α)

[
HJ

]
(by Bhati-Davis inequality )

=
√

ρn(1− ρn)
√

µ(log |S| −µ) (by Proposition 1 and EwJ (α)

[
HJ

]
= µ)

≤
√

ρn(1− ρn)
log |S|

2
(by µ(log |S| −µ)≤ ( log |S|

2
)2 )

Therefore dρn
dα

≤
√

ρn(1− ρn)
log |S|

2
, which gives rise to the following ordinary differential equation:

dρn√
ρn(1− ρn)

≤ log |S|
2

dα·

We solve this differential equation by taking ρn ≡ sin2 θ, consequently dρ= 2sinθ cosθdθ. Since ρ∈ [0,1],

it follows that θ ∈ [0, π/2], and therefore sinθ≥ 0, cosθ≥ 0. Thus,

∫
dρn√

ρn(1− ρn)
=

∫
2 sinθ cosθdθ√
sin2 θ(1− cos2 θ)

=

∫
2 sinθ cosθdθ

sinθ cosθ
= 2θ≤ log |S|

2
α+constant.

But θ= arcsin
√
ρ. Thus, without loss of generality, for any α2 ≥ α1

arcsin
√

ρn(α2)− arcsin
√

ρn(α1)≤
log |S|

4
(α2 −α1)· □
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10.12. Proof of Lemma 7

Define δJ = HJ −minK HK . The proof follows from decomposing wJ(α) on J /J ∗ and J and recog-

nizing two facts: i) δJ = 0 for J ∈ J ∗ and δJ ≥ ∆ where ∆ is the entropy gap defined in Lemma (7),

and ii) wJ(α) =
e−αHJ∑

K∈J e−αHK

divide by minK HK
= e−αδJ

|J ∗|+
∑

K/∈J∗e−αδK

.

ρn(α) =
∑
J

wJ(α)PJ(n) =
∑
J /∈J ∗

wJ(α)PJ(n)+
∑
J∈J ∗

wJ(α)PJ(n)

=
∑
J /∈J ∗

wJ(α)
(∑

J /∈J ∗ wJ(α)PJ(n)∑
J /∈J ∗ wJ(α)

)
+

∑
J∈J ∗

1−
∑

J /∈J ∗ wJ(α)

|J ∗|
PJ(n)

= ν(α)ρ̃n(α)+
(
1− ν(α)

)
ρ∗(α)

where ν(α) =
∑

J /∈J ∗ wJ(α), ρ̃n(α) =
∑

J /∈J∗ wJ (α)PJ (n)∑
J /∈J∗ wJ (α)

, and ρ∗ = 1
|J ∗|

∑
J∈J ∗ PJ(n). Notice that for a

J ∈ J ∗, wJ(α) =
1

|J ∗|+
∑

K/∈J∗e−αδK

= k is a constant and therefore |J ∗|k +
∑

J /∈J ∗ wJ(α) = 1, hence

wJ(α) =
1−

∑
J /∈J∗ wJ (α)

|J ∗| for all J ∈J ∗. Subsequently,

||ρn(α)− ρ∗(α)||p = ν(α) ||ρ̃n(α)− ρ∗(α)||p ≤ 21/pν(α)

The last inequality follows from the fact that ρ̃andρ∗ are probability vectors and supu,v ||u−v||p = 21/p for

any two probability vectors p, q. Finally,

ν(α) =
∑
J /∈J ∗

wJ(α) =

∑
J /∈J ∗ e−αδJ

|J ∗|+
∑

K/∈J ∗e−αδK

≤
∑

J /∈J ∗ e−α∆

|J ∗|+
∑

K/∈J ∗e−αδK

≤
∑

J /∈J ∗ e−α∆

|J ∗|
≤ |J /J ∗|e−α∆

|J ∗|

Therefore, ||ρn(α)− ρ∗(α)||p ≤ 21/p |J /J ∗|
|J ∗| e−α∆. □




