
The term structure of interest rates for default-free discount bonds has been

a topic covered in many papers. As a �rst approximation to its analysis, one-

factor models were developed. These models assume that the movements of

the yield curve are determined by a single state variable. This state variable

is usually the instantaneous riskless interest rate and is modeled as a di�usion

process. Examples of these models are Vasicek (1977), Dothan (1978) and

Cox, Ingersoll and Ross (hereafter CIR) (1985b). An empirical comparison

among them can be seen in Chan et al (1992).

In this type of models, the instantaneous returns on bonds of all maturi-

ties are perfectly correlated. Moreover, since the single state variable follows

a Markov process, the whole term structure of interest rates may be derived

from the current value of the instantaneous interest rate. Although these

models are very tractable, a single state variable may be not su�cient to

capture adequately the direction of future yield curve changes.

Some theoretical work employing one-factor models with jumps also ex-

ists. Ahn and Thompson (1988) extend the CIR model to accommodate

jump e�ects in the day-to-day movements in interest rates, and they develop

a bond pricing model. Das (1994a) is the �rst empirical study of a jump-

di�usion model of interest rates. The estimation procedure, using weekly

data, allows him to identify where jumps occur in the data. He is also able

to estimate the jump arrival frequency, size and sign along with the parame-

ters of the di�usion process. In a subsequent paper, Das (1994b) analyzes the

role of jump-di�usion interest rates in the bond markets when allowing the

distribution of stochastic jumps to be time-varying. Das and Foresi (1996)

extend the Vasicek model with the addition of jumps which displace interest

rates by discrete amounts, but do not change their central tendency. Finally,

Moreno and Pe~na (1996) study the dynamic behavior of the term structure of

Interbank interest rates and the pricing of options on interest rate derivative

securities by positing a single factor model with jumps. They also perform a

qualitative examination of the linkage between Monetary Authorities' inter-

ventions and jumps in daily data.

Multi-factor models of interest rates, which arise as an attempt to avoid

the unrealistic features related to one-factor models and to explain a greater

variety of term structure movements over time, assume the existence of more

than one state variable in the term structure of interest rates. As a practical
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matter, the number of factors is usually restricted to a maximum of two. For

instance, Richard (1978) and CIR(1985b) assume that bond prices depend

on the expected short-term (instantaneous) real interest rate, R, and the

expected short-term (instantaneous) in
ation rate, �. Brennan and Schwartz

(1979) use the instantaneous interest rate and the long-term rate as state

variables. In a similar way, Schaefer and Schwartz (1984) consider a model

based on the consol rate (the yield on a bond with in�nite maturity) and

the spread, the di�erence between the consol rate and the short rate. Heath,

Jarrow and Morton (1992) use two unspeci�ed factors that a�ect forward

rates. These two factors can be interpreted as a \long-run" factor (it a�ects

all maturity forward rates equally), and a spread between a \short" and a

\long term" factor because it a�ects the short maturity forward rates more

than long term rates. Finally, Longsta� and Schwartz (1992) develop a model

in which the state variables are the short-term interest rate and the volatility

of the short-term interest rate. Examples of two-factor models with jumps are

Naik and Lee (1995) and Das and Foresi (1996). The former authors consider

regime shifts that alter the mean of bond yields as well as the volatility of

yield changes. The two state variables are the regime index, with discrete

changes, and the deviation of the short rate from the mean rate for the

current regime. On the other hand, Das and Foresi (1996) develop a model

in which jumps change the conditional central tendency of interest rates.

More recently, Chen (1996) proposes a three-factor model in which the

future short rate depends on 1) the current short rate, 2) the short-term mean

of the short rate, and 3) the current volatility of the short rate. These three

state variables are modeled as square root processes and a general formula

for interest rate derivatives is obtained. Although this type of models is still

in a very preliminary stage, the �rst results seem to be very promising.

In this paper a two-factor model of the term structure of interest rates

is presented. As indicated above, most one-factor models use the short-term

rate as the single state variable. We add the long-term rate as the second

state variable. With both factors, we are able to explain not only the changes

in the yield curve (short and long) end but also the intermediate movements

of the yield curve using its extremities. Brennan and Schwartz (1979) have

also dealt with these two factors. They assume that the long-term rate and

the instantaneous rate follow a joint Gauss-Markov process and evaluate the

ability of the model to price bonds of di�erent maturities. The parameters

of the stochastic processes followed by interest rates are estimated with data
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on Canadian interest rates and a sample of Canadian bonds is priced.

In the spirit of Schaefer and Schwartz (1984), we rede�ne variables and

model default free discount bond prices as a function of time to maturity

and two factors, the long-term interest rate and the spread (di�erence be-

tween the long-term rate and the short-term (instantaneous) riskless rate of

interest). As interest rates have a tendency to be pulled back to a long-run

level, a phenomenon known as mean reversion, we re
ect this fact assuming

that each factor follows an Ornstein-Uhlenbeck process. Using non-arbitrage

conditions, a general bond pricing equation is derived and a closed-form ex-

pression for the prices of bonds of di�erent maturities is computed.

The paper is organized as follows. Section 2 derives the basic valuation

equation that prices of any default free discount bond must satisfy. In Section

3 we compute a closed-form expression for the price of a bond of any maturity.

The implications for the properties of the term structure are analyzed in

Section 4. In Section 5 a closed-form expression for interest rate derivatives

prices is derived. We apply this formula to price bond options and options on

a bond portfolio. Moreover, more complex options prices are also evaluated.

Section 6 describes the basic characteristics of the empirical application in

which we compare the accuracy of our model with a one-factor model. Section

7 summarizes the main conclusions.

In this section, we derive the partial di�erential equation that prices of bonds

of di�erent maturities must verify. This equation is an equilibrium rela-

tionship between the expected returns of bonds which di�er only in their

maturity.

The main assumption we make is that the price, at time t, of a default

free discount bond that pays $1 at maturity T depends only on the current

values of a set of state variables (Xi) and time to maturity, � = T � t. Thus,

our �rst problem concerns to the selection of the state variables which are

relevant for the determination of these prices.

One possible alternative would be to use the short-term (instantaneous)

interest rate and the long-term rate as state variables. Thus, we may explain

the intermediatemovements of the yield curve by means of its extreme values.
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Although most previous studies use the short-term interest rate as one of

the state variable, we rede�ne these variables and, similarly to Schaefer and

Schwartz (1984), choose two factors: the long-term rate, denoted by L, and

the spread, denoted by s, the di�erence between the long rate and the short-

term rate, denoted by r.

This selection of state variables allows us to use the assumption that both

variables are orthogonal. Empirical evidence that supports this assumption

has been shown in several papers as that of Ayres and Barry (1980), Schaefer

(1980), and Nelson and Schaefer (1983). Ayres and Barry (1980) propose that

the correlations of changes in long rates and changes in spreads are close to

zero and corroborate this assumption using data from the Salomon Brothers

yield book from January, 1956 through August, 1978. Schaefer (1980) shows

that this idea is consistent with Brennan and Schwartz's (1980) estimates.

Finally, Nelson and Schaefer (1983) have also tested the Ayres and Barry's

orthogonality proposition for notes and bonds from the CRSP Government

Bond Tape during the period 1930-1979. Using orthogonal variables helps

to simplify the computation of the closed-form solution for the fundamental

bond pricing equation.

After choosing the state variables, we assume that their dynamics over

time are given by the following stochastic di�erential equations:(
ds = �1(s; L)dt+ �1(s; L)dw1

dL = �2(s; L)dt+ �2(s; L)dw2
(1)

where t denotes calendar time, and dw1 and dw2 are Wiener processes where

E[dw1] = E[dw2] = 0, dw2
1 = dw2

2 = dt, and (by the orthogonality between

these variables) E[dw1dw2] = 0. �1(:) and �2(:) are the expected instan-

taneous rates of change in the state variables and �2
1(:) and �2

2(:) are the

instantaneous variances of changes in these two variables.

Therefore, these two variables follow a joint markovian process. This

assumption implies that the expected future values of these variables is de-

termined exclusively by their present values.

Let P (s; L; t; T ) � P (s; L; � ) be the price, at time t, of a default free

discount bond that pays $1 at maturity T = t + � . The instantaneous

percentage price change of this bond is given by the following stochastic

di�erential equation

dP (s; L; t; T )
a

P (s; L; t; T )
= �(s; L; t; T )dt+ s1(s; L; t; T )dw1 + s2(s; L; t; T )dw2 (2)
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where �(s; L; t; T ) is the expected rate of return of the bond, and s1(s; L; t; T )

and s2(s; L; t; T ) are the unexpected variations in return due to the random

changes in the state variables.

Applying Itô's Lemma and the equation (1), we obtain

dP (:) = Psds + PLdL + Ptdt+
1
a

2
Pss(ds)

2 +
1
a

2
PLL(dL)

2

=

�
Ps�1(:) + PL�2(:) + Pt +

1
a

2
�2
1(:)Pss +

1
a

2
�2
2(:)PLL

�
dt

+ �1(:)Psdw1 + �2(:)PLdw2 (3)

where

Ps =
@P (:)
a

@s
; PL =

@P (:)
a

@L
; Pss =

@2P (:)
a

@s2
; PLL =

@2P (:)
a

@L2

Equating (2) to (3), we obtain

�(s; L; t; T ) =
1
a

P

�
Ps�1(:) + PL�2(:) + Pt +

1
a

2
�2
1(:)Pss +

1
a

2
�2
2(:)PLL

�
(4)

s1(s; L; t; T ) = �1(:)
Ps
a

P
; s2(s; L; t; T ) = �2(:)

PL
a

P
(5)

Since there are two stochastic variables driving all bond prices, we can

set up a hedge portfolio, consisting of bonds of three di�erent maturities,

that is instantaneously riskless. Thus, we consider the investment strategy

consisting of a portfolio V with three discount bonds of (arbitrary) maturities

T1, T2 and T3. The proportions we invest in each bond are z1, z2 and z3,

respectively. Therefore, the rate of return of this portfolio is given by

dV (s; L; t; T )
a

V (s; l; t; T )
=

3X
i=1

zi
dP (s; L; t; Ti)
a

P (s; L; t; Ti)

=
3X

i=1

zi�(s; L; t; Ti)dt+
3X

i=1

zis1(s; L; �i)dw1 +
3X

i=1

zis2(s; L; t; Ti)dw2 (6)

Now we choose the proportions invested in each bond, zi, (
P3

i=1 zi = 1)

in such a way that the uncertainty of the return of this portfolio disappears,

that is, these proportions are chosen so that the coe�cients of dwi in the

above equation are equal to zero:

3X
i=1

zis1(s; L; t; Ti) =
3X

i=1

zis2(s; L; t; Ti) = 0 (7)
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Under no-arbitrage conditions, the expected rate of return of this portfolio

must be equal to the instantaneous riskless rate of interest, that is

3X
i=1

zi�(s; L; t; Ti) = r

or, equivalently
3X

i=1

(zi�(s; L; t; Ti)� r) = 0 (8)

The equations (7) and (8) form a linear homogeneous system of three

equations and three unknowns (the portfolio proportions). This system has

a non-zero solution if and only if the matrix

C =

0
B@

s1(s; L; t; T1) s1(s; L; t; T2) s1(s; L; t; T3)

s2(s; L; t; T1) s2(s; L; t; T2) s2(s; L; t; T3)

�(s; L; t; T1)� r �(s; L; t; T2)� r �(s; L; t; T3)� r

1
CA (9)

is singular. Hence, it must be veri�ed that the rows of this matrix are linearly

dependent. The coe�cients of the linear relationship which links these rows

do not depend on maturity because we have chosen arbitrarily the maturities

of the three bonds of this portfolio.

Therefore, there is a vector �(s; L; t) = (�1(s; L; t); �2(s; L; t)) indepen-

dent of � such that

�(s; L; t; T )� r = �1(s; L; t)s1(s; L; t; T ) + �2(s; L; t)s2(s; L; t; T ) (10)

We have substituted Ti for T because, since we have chosen arbitrarily

the maturities of the bonds to be included in the portfolio, then this equi-

librium relationship for the expected rate of return on a bond is valid for

all maturities. Equation (10) expresses the instantaneous risk premium (the

di�erence between the expected rate of return on the bond and the riskless

interest rate) as a sum of two components which are derived from the two

sources of uncertainty, that is, the two state variables.

The coe�cients of this linear combination, �1(:) and �2(:), can be inter-

preted as the market prices of the spread and long-term rate risk because

s1(s; L; t; T ) and s2(s; L; t; T ) are the instantaneous standard deviations of

the return on the bond derived from unexpected changes in both variables.
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Substituting the expressions for �(:), s1(:), and s2(:) given by (4) and (5)

into (10) we get

�
Ps�1(:) + PL�2(:) +

1
a

2
�2
1(:)Pss +

1
a

2
�2
2(:)PLL

�
+ Pt

= rP + �1(s; L; t)�1(:)Ps + �2(s; L; t)�2(:)PL (11)

Rearranging terms, we obtain the partial di�erential equation that the

price of a default free discount bond for all maturities must satisfy:

1
a

2
[�2

1(:)Pss + �2
2(:)PLL] + [�1(:)� �1(:)�1(:)]Ps

+[�2(:)� �2(:)�2(:)]PL + Pt � rP = 0 (12)

Given the stochastic process (1), assumed for the state variables, (12)

is the fundamental equation for the pricing of default free discount bonds

of di�erent maturities which depend solely on the spread, s, the long-term

interest rate, L, and the time to maturity, � . In this equation we have the

market prices of risk, �i, because our model solves for all bond prices relative

to each other. The only way to tie down the prices is by means of the

exogenous parameters, the market prices of risk.

The solution of the equation (12), subject to the terminal condition given

by the payment to be received at maturity, that is, P (s; L; 0) = 1, 8s; L,
allows us to price discount bonds and, thereafter, infer the term structure of

interest rates. This solution is carried out in the next section.

In this section, closed-form expressions for default free discount bond prices

for all maturities are computed from the fundamental valuation equation we

have obtained in the previous section. Once obtained this solution, implica-

tions on the properties of the term structure are analyzed.

The coe�cients of the bond pricing equation (12) are the market prices of

state variables risk, �i(:), and the parameters of the joint stochastic process

(1) which is assumed for the spread and the long-term rate. In order to solve

this valuation equation, we must make some assumptions about the market

prices of risk and the dynamics of the state variables. Since a constant market
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price of risk implies strong restrictions on the preferences of investors, we

establish the following:

Assumption 1 The market price of each state variable risk is linear in this

variable, that is

�1(:) = a+ bs; �2(:) = c+ dL (13)

Assumption 2 Each of the state variables follow a di�usion process

(
ds = k1(�1 � s)dt+ �1dw1

dL = k2(�2 � L)dt+ �2dw2
(14)

This process, known as Ornstein-Uhlenbeck process, has been used pre-

viously by Vasicek (1977). It has mean reversion - an important stylized

fact that interest rates usually show - and constant variance. For each state

variable, ki > 0 is the coe�cient of mean reversion which re
ects the speed

of adjustment of the variable towards its long-run mean value, �i, �i is the

(constant) standard deviation of each variable and dwi are standard Gauss-

Wiener processes.

The stationary (or steady state) distribution of a stochastic process, if

it exists, is obtained from a time-independent solution of the stochastic dif-

ferential equations given by (14), that is, s(t; w) = s(w), L(t; w) = L(w).

Following Malliaris and Brock (1988) (Section 2.9, pp. 106-108), we prove

the existence (and compute the expression) of the stationary distributions

for the state variables:

�(s) =
f(s)
a

1 � F (0)
(15)

�(L) =
g(L)
a

1 �G(0)
(16)

where F (:) and f(:) are, respectively, the distribution and density functions

of a normal variable with mean �1 and standard deviation �1=
pa
2k1. Analo-

gously, G(:) and g(:) are, respectively, the distribution and density functions

of a normal variable with mean �2 and standard deviation �2=
pa
2k2.
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Moreover, it can be proved (see Vasicek (1977)) that the conditional ex-

pectation and variance of the processes fs(u); u � tg, and fL(u); u � tg,
given the current value of each variable, are

Et[s(u)] = �1 + (s(t)� �1)e
�k1(u�t); u � t

Vt[s(u)] =
�2
1
a

2k1
(1 � e�2k1(u�t)); u � t (17)

and

Et[L(u)] = �2 + (L(t)� �2)e
�k2(u�t); u � t

Vt[L(u)] =
�2
2
a

2k2
(1 � e�2k2(u�t)); u � t (18)

respectively.

It may be veri�ed that, as ki tends to in�nity, the conditional mean of

the state variable goes to �i and its variance vanishes. If ki approaches to

zero, the conditional mean goes to the current value of the factor and the

variance to �2
1(u� t).

Under Assumptions 1 and 2, we can rewrite the equation (12) as

1
a

2
[�2

1Pss + �2
2PLL] + [(k1�1 � a�1)� (k1 + b�1)s]Ps

+[(k2�2 � c�2)� (k2 + d�2)L]PL + Pt � (L+ s)P = 0 (19)

or, equivalently

1
a

2
�2
1Pss + q1(�̂1 � s)Ps +

1
a

2
�2
2PLL + q2(�̂2 � L)PL + Pt � (L+ s)P = 0 (20)

subject to the terminal condition

P (s; L; T; T ) = 1; 8s; L (21)

where (
q1 = k1 + b�1; �̂1 = (k1�1 � a�1)=q1
q2 = k2 + d�2; �̂2 = (k2�2 � c�2)=q2

(22)

Solving the partial di�erential equation (20) we obtain the following

proposition:
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Proposition 1 The value at time t of a discount bond that pays $1 at time

T , P (s; L; t; T ) � P (s; L; � ), is given by

P (s; L; t; T ) = A(� )e�B(�)s�C(�)L (23)

where � = T � t and

A(� ) = A1(� )A2(� )

A1(� ) = exp
n
� �2

1
a

4q1
B2(� ) + s�(B(� )� � )

o
A2(� ) = exp

n
� �2

2
a

4q2
C2(� ) + L�(C(� )� � )

o
B(� ) = (1� e�q1� )=q1
C(� ) = (1� e�q2� )=q2

(24)

with

q1 = k1 + b�1; s� = �̂1 � �2
1=(2q

2
1); �̂1 = (k1�1 � a�1)=q1

q2 = k2 + d�2; L� = �̂2 � �2
2=(2q

2
2); �̂2 = (k2�2 � c�2)=q2 (25)

Proof:

The method of the separation of variables allows us to write the solution

of the equation (20) subject to (21) as

P (s; L; t; T ) = X(s; t; T )Z(L; t; T ) (26)

where X(s; t; T ) solves the equation

1
a

2
�2
1Xss + q1(�̂1 � s)Xs +Xt � sX = 0 (27)

subject to the terminal condition

X(s; T; T ) = 1; 8s (28)

and Z(L; t; T ) is the solution of the equation

1
a

2
�2
2ZLL + q2(�̂2 � L)ZL + Zt � LZ = 0 (29)

with terminal condition

Z(L; T; T ) = 1; 8L (30)
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To solve Equation (27), we posit a solution of the type

X(s; t; T ) = A1(� )e
�B(�)s (31)

where � = T � t. From (31), we have

Xs(:) = �B(t; T )X(:); Xss(:) = B2(t; T )X(:)

Xt(:) = �
"
A01(� )
a

A1(� )
�B 0(� )s

#
X(:) (32)

and, so, the equation (27) becomes

1
a

2
�2
1B

2(t; T )� q1(�̂1 � s)B(t; T )�
"
A01(� )
a

A1(� )
�B 0(� )s

#
� s = 0 (33)

where, from (28), the terminal conditions are given by

A1(0) = 1; B(0) = 0 (34)

Equation (33) is linear in the variable s and, therefore, it becomes null

when the corresponding coe�cients are equal to zero. Hence, this equation

is equivalent to the following system of �rst-order di�erential equations

q1B(� ) +B0(� )� 1 = 0 (35)

1
a

2
�2
1B

2(� )� q1�̂1B(� )�
A01(� )
a

A1(� )
= 0 (36)

subject to the terminal conditions (34).

We �rst solve (35) with terminal condition B(0) = 0. Including this

solution in (36), integrating this equation, and using the condition A1(0) = 1,

we obtain

B(� ) =
1 � e�q1�
a

q1

A1(� ) = exp

(
�
�2
1
a

4q1
B2(� ) + s�(B(� )� � )

)
(37)

where

s� = �̂1 � �2
1=(2q

2
1) (38)
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Replacing (37) into (31), we obtain the �nal expression for X(s; t; T ). In

a completely similar fashion, the solution of Equation (29) is given by

Z(L; t; T ) = A2(� )e
�C(�)L (39)

where

A2(� ) = exp

(
�
�2
2
a

4q2
C2(� ) + L�(C(� )� � )

)

C(� ) =
1 � e�q2�
a

q2
(40)

with

L� = �̂2 � �2
2=(2q

2
2) (41)

Therefore, the �nal expression for Z(L; t; T ) is given by replacing (40)

into (39). Including the �nal expressions for X(L; t; T ) and Z(L; t; T ) into

(26), we obtain the closed-form formula for the default free discount bond

prices for all maturities.

2

The two terms in equation (37) verify

8><
>:

B(� ) > 0;8� > 0; B(0) = 0; B(1) = 1=q1
B(� )� � < 0;8� > 0

A1(� ) < 1;8� > 0; A1(0) = 1; A1(1) = 0

(42)

and, analogously, the terms A2(� ) and C(� ) in (40) satisfy

8><
>:

C(� ) > 0;8� > 0; C(0) = 0; C(1) = 1=q2
C(� )� � < 0;8� > 0

A2(� ) < 1;8� > 0; A2(0) = 1; A2(1) = 0

(43)

The discount bond price, P (s; L; � ), is a function of the two state vari-

ables, s, and L, and the time to maturity, � = T � t. It depends on the

parameters of the joint Ornstein-Uhlenbeck process (k1, �1, �1, k2, �2, and

�2) as well as on the market prices of risk.
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Substituting t = T , into (23), it is easily checked that the maturity con-

dition for the price bond, P (s; L; 0) = 1;8s; L, is satis�ed. Moreover, using

(42) and (43), it is derived that

P (0; 0; � ) = A(� ) = A1(� )A2(� ) < 1; 8� > 0

The bond price also shows economically realistic features such as

lim
s!1

P (s; L; � ) = 0; lim
L!1

P (s; L; � ) = 0; lim
�!1

P (s; L; � ) = 0

that is, when any of the variables which a�ect the bond price (state variables

or time to maturity) tends to in�nity, the price converges to zero.

The bond price function is decreasing and convex in both factors because

its partial derivatives with respect to s and L are negative

Ps(s; L; � ) = �B(� )P (s; L; � ) < 0

PL(s; L; � ) = �C(� )P (s; L; � ) < 0 (44)

and the second partial derivatives verify

Pss(s; L; � ) = B2(� )P (s; L; � ) > 0

PLL(s; L; � ) = C2(� )P (s; L; � ) > 0

PsL(s; L; � ) = B(� )C(� )P (s; L; � ) > 0 (45)

The bond price is decreasing with the time to maturity. To see this, we

apply (23) and (24) to get

P� (s; L; � ) =

"
A0(� )
a

A(� )
�B 0(� )s� C 0(� )L

#
P (s; L; � )

=

"
A01(� )
a

A1(� )
�B 0(� )s+

A02(� )
a

A2(� )
� C 0(� )L

#
P (s; L; � )

When analyzing the sign of these derivatives, we will consider only the

two �rst derivatives since the proofs are exactly the same for A02(� )=A2(� )

and C 0(� ).

Using (36) and (37), and rearranging terms we obtain

A01(� )
a

A1(� )
= �q1B(� )

"
s� +

�2
1e
�q1�

a

2q21

#
< 0; 8� > 0 (46)
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while, deriving in (37), we get

B0(� ) = e�q1� > 0; 8� > 0 (47)

As the proofs for A02(� )=A2(� ) and C 0(� ) are completely similar, we omit

them and we have the result aforementioned.

After computing the closed-form expression for the bond price for any ma-

turity, we obtain the term structure (and properties) of interest rates.

The forward interest rates, denoted by f(s; L; t; T ) � f(s; L; � ), at time

t for the future period at date T = t+ � are given by

f(s; L; � ) =
Pt
a

P
= �

P�
a

P
= �

"
A01(� )
a

A1(� )
+
A02(� )
a

A2(� )
�B 0(t; T )s� C 0(t; T )L

#
(48)

which, from (46) and (47) are always positive.

Applying the equations (35)-(36) and their analogous for the variable

Z(:), and rearranging terms, it is veri�ed that

f(s; L; � ) = r � q1(s� �̂1)B(� )� q2(L� �̂2)C(� )

�
1
a

2

h
�2
1B

2(� ) + �2
2C

2(� )
i

(49)

Using (42) and (43), it may be checked that

f(s; L; 0) = r(t); 8s; L
f(s; L;1) = s� + L�; 8s; L

that is, the forward rate curve starts at the current value of the spot rate and

the forward rate on a very long period is independent of the current value of

the two factors.

Derivating (48), it may be shown that, for a given maturity, the forward

rate is a linear and increasing function of the two factors:

fs(s; L; � ) = B 0(t; T ) > 0

fL(s; L; � ) = C 0(t; T ) > 0

14



As depicted in Figure 1, the forward rate curve may present many shapes:

increasing, decreasing or humped. From (48), we have

f� (s; L; � ) = [q1(�̂1 � s)� �2
1B(� )]B

0(� ) + [q2(�̂2 � L)� �2
2C(� )]C

0(� ) (50)

The shape of this curve depends on its starting value. Thus, it increases

with maturity if (
s < �̂1 � (�1=q1)

2

L < �̂2 � (�2=q2)
2

it decreases with maturity if (
s > �̂1
L > �̂2

and it is a humped curve in the remaining cases.

The bias of this curve, denoted as bf(s; L; � ), is given by the excess of

the forward rate over the expected level of interest rates at time T when the

bond matures, Et[r(T )]. Applying (17), (18), and (49) leads to

bf(:) = f(s; L; � )� Et[r(T )]

= (�̂1 � s)(1� e�q1� ) + (s� �1)(1� e�k1�)�
1
a

2
�2
1B

2(� )

+ (�̂2 � L)(1 � e�q2� ) + (L� �2)(1 � e�k2� )�
1
a

2
�2
2C

2(� ) (51)

It is veri�ed that

bf(s; L;1) = (s� + L�)� (�1 + �2)

It may be shown that the bias of the forward curve is negative when(
a+ b�1 � 0

c+ d�2 � 0

it has a positive value if (
a+ b�1 � ��1=q1
c+ d�2 � ��2=q2

and it depends on the maturity of the bond in the remaining cases.

15



The yield on a bond that matures at time T = t + � , denoted by

Y (s; L; t; T ) � Y (s; L; � ), is the continuously compounded rate of return

related to such bond. It is implicitly de�ned as

P (s; L; � )eY (s;L;�)� = 1

or, equivalently

Y (s; L; � ) = �
1
a

�
ln(P (s; L; � )) (52)

which in our model, from (23), becomes

Y (:) = �
ln(A(� ))
a

�
+
B(� )
a

�
s+

C(� )
a

�
L

=
�2
1
a

4q1

B2(� )
a

�
+ s�

"
1�

B(� )
a

�

#
+
B(� )
a

�
s

+
�2
2
a

4q2

C2(� )
a

�
+ L�

"
1 �

C(� )
a

�

#
+
C(� )
a

�
L (53)

For �xed s and L, the shape of Y (s; L; � ) characterizes the term structure

of interest rates, or yield curve, at time t. By applying the L'Hôpital's rule,

it can be seen that

lim
�!0

B(� )
a

�
= lim

�!0

C(� )
a

�
= 1 (54)

which implies

lim
�!0

B2(� )
a

�
= lim

�!0

C2(� )
a

�
= 0 (55)

Using these results into (53), it may be veri�ed that

lim
�!0

Y (s; L; � ) = s(t) + L(t) = r(t)

that is, the yield curve starts at the current value of the spot rate.

As B(� ) and C(� ) are bounded functions of maturity (see (42) and (43)),

they satisfy

lim
�!1

B(� )
a

�
= lim

�!1

B2(� )
a

�
= lim

�!1

C(� )
a

�
= lim

�!1

C2(� )
a

�
= 0 (56)

and, so, the yield to maturity on a very long bond is

Y (s; L;1) = s� + L�

16



a quantity that is independent of the current value of the two factors.

Given a certain maturity, the yield on a bond is a linear and increasing

function of the two factors, s, and L. Its partial derivatives with respect to

these factors are

Ys(s; L; � ) =
B(� )
a

�
> 0

YL(s; L; � ) =
C(� )
a

�
> 0

This curve may present di�erent shapes. From (52), it is shown that

Y� (s; L; t; T ) =
[f(s; L; t; T )� Y (s; L; t; T )]
a

�
(57)

The shape of this curve depends on the initial value, r(t). If it is \small

enough", the curve is increasing with maturity. In other cases, it is decreasing

or humped.

The bias of the yield curve, denoted as by(s; L; � ) is given by the compar-

ison between the yield of the bond and the expected level of interest rates in

the period until maturity of the bond, 1
a

�

R T
t Et[r(u)]du. Integrating (17) and

(18), we obtain that

1
a

�

Z T

t
Et[r(u)]du = �1 + (s� �1)

1� e�k1�
a

k1�
+ �2 + (L� �2)

1� e�k2�
a

q2�
(58)

Subtracting (58) from (53), we get

by(s; L; � ) = Y (s; L; � )�
1
a

�

Z T

t
Et[r(u)]du

= (s� � �1)

"
1 �

B(� )
a

�

#
+ (s� �1)

"
1 � e�q1�
a

q1�
�

1� e�k1�
a

k1�

#

+ (L� � �2)

"
1 �

C(� )
a

�

#
+ (L� �2)

"
1� e�q2�
a

q2�
�

1 � e�k2�
a

k2�

#

+
�2
1
a

4q1

B2(� )
a

�
+

�2
2
a

4q2

C2(� )
a

�

It may be veri�ed that the bias of the yield curve is positive If(
s < �1 < s�

L < �2 < L�

17



and if (
a+ b�1 � 0

c+ d�2 � 0

then we have a negative bias.

The instantaneous term premium, �(s; L; t; T ) � �(s; L; � ), is de�ned as

the excess of the expected return on the bond over the current spot rate.

Substituting the expression (23) given by Proposition (1 into (5), we get the

expressions for the unexpected variations in the return on the bond

s1(s; L; t; T ) = s1(s; L; � ) = ��1B(� )
s2(s; L; t; T ) = s2(s; L; � ) = ��2C(� )

Including this equation into (10), it is obtained that the expected rate of

return of the bond, �(s; L; t; T ) � �(s; L; � ), is

�(s; L; t; T ) = r � �1(a+ bs)B(� )� �2(c+ dL)C(� )

Thus, the instantaneous term premium is given by

�(s; L; � ) = ��1(a+ bs)B(� )� �2(c+ dL)C(� ) (59)

Therefore, the term premium is proportional to the unexpected varia-

tions in the return on the bond. Moreover, these unexpected variations are

proportional to the standard deviation of the factors and are increasing with

the time to maturity of the bond.

It is easily checked that

�(s; L; t; t) = 0

�(s; L;1) = �
�1(a+ bs)
a

q1
�
�2(c+ dL)
a

q2

For a given maturity, the term premium is linear in both factors. From

(59), it is veri�ed that

�s(s; L; � ) = �b�1B(� )
�L(s; L; � ) = �d�2C(� )
��(s; L; � ) = ��1(a+ bs)B 0(� )� �2(c+ dL)C 0(� )

Hence, the term premium increases with the factor s(L) if b(d) < 0. It is

a smooth function of time to maturity, � , which increases (decreases) with

time to maturity if the market prices of risk are negative (positive).
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The bond pricing equation (20), with the addition of the appropriate bound-

ary conditions, allows us to derive closed-form expressions for other contin-

gent claims. Thus, the price at time t, U(s; L; t; T ) � U(s; L; � ), of a security

with terminal payo� g(sT ; LT ) at time T , satis�es the following partial dif-

ferential equation

1
a

2
�2
1Uss + q1(�̂1 � s)Us +

1
a

2
�2
2ULL + q2(�̂2 � L)UL + Ut � (L+ s)U = 0 (60)

subject to the terminal condition1

U(s; L; T; T ) = g(sT ; LT ) (61)

Hence, we may use the solution to this equation (for a particular function

g(s; L)) to obtain the prices of di�erent interest rate derivatives. Solving the

partial di�erential equation (60) with the terminal condition (61) leads to

the following proposition:

Proposition 2 Given the interest rate dynamics speci�ed in Assumption 2,

the value at time t, U(s; L; t; T ) � U(s; L; � ), of an interest rate derivative

with the terminal payo� g(sT ; LT ) at time T is

U(s; L; t; T ) = P (s; L; t; T )E[g(s0; L0)] (62)

where

s0 � N(ms(s; t; T )� qsY (t; T ); v
2
s(t; T ))

L0 � N(mL(s; t; T )� qLY (t; T ); v
2
L(t; T )) (63)

with

ms(s; t; u) = e�q1(u�t)s+
�
1� e�q1(u�t)

�
�̂1

a

1Notice that, if g � 1, we obtain the closed-form expression for discount bond prices of

Section 3.
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qsY (t; u) =
�
2
1

�
1 � e

q1(u�t)
�2
a

2q21

v
2
s
(t; u) =

�
2
1
a

2q1

�
1� e

�2q1(u�t)
�

mL(L; t; u) = = e
�q2(u�t)L+

�
1� e

�q2(u�t)
�
�̂2

qLY (t; u) =
�
2
2

�
1 � e

q2(u�t)
�2
a

2q22

v
2
L
(t; u) =

�
2
2
a

2q2

�
1� e

�2q2(u�t)
�

(64)

Proof:

Let ~s(t) and ~L(t) be the \risk-neutral processes" de�ned by

(
d~s = q1(�̂1 � ~s)dt+ �1dw1

d~L = q2(�̂2 �
~L)dt+ �2dw2

and set Y (t; u) =
R
u

t
(~s(v) + ~L(v))dv.

Then, we can apply Friedman (1975) (Section 6, Theorem 5.3, p. 148) to

obtain the solution to (60)-(61). This solution is given by2

U(s; L; t; T ) = Es;L;t

h
g(~s(T ); ~L(T ))e�Y (t;T )

i
(65)

Denoting by p(s; L; t; u; s0; L0; Y ) the joint probability density of the vari-

able

X(u) = [~s(u); ~L(u); Y (t; u)]0

conditional on ~s(t) = s, ~L(t) = L, (65) is equivalent to

U(s; L; t; T ) =

Z
1

�1

Z
1

�1

Z
1

�1

g(s0; L0)e�Y p(s; L; t; T; s0; L0; Y )dY ds0dL0

=

Z
1

�1

Z
1

�1

G(s; L; s0; L0; t; T )g(s0; L0)ds0dL0 (66)

where

G(s; L; s0; L0; t; u) =

Z
1

�1

e
�Y

p(s; L; t; u; s0; L0; Y )dY (67)

a

2Es;L;t[:] = E[:j~s(t) = s; ~L(t) = L]. Similarly for variance and covariance terms.
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Applying Arnold (1974) (Corollary 8.2.4, p. 130), we have

~s(u) = e
�q1(u�t)~s(t) +

Z
u

t

e
�q1(u�z)[q1�̂1dz + �1dw1(z)]

~L(u) = e
�q2(u�t) ~L(t) +

Z
u

t

e
�q2(u�z)[q2�̂2dz + �2dw2(z)]

Rearranging terms, we obtain

~s(u) = e
�q1(u�t)[~s(t)� s] + �̂1 + �1

Z
u

t

e
�q1(u�z)

dw1

~L(u) = e
�q2(u�t)[ ~L(t)� L] + �̂2 + �2

Z
u

t

e
�q2(u�z)

dw2

and, hence, it may be veri�ed (see Arnold (1974), Section 8.3, pp. 134{136)

that

ms(s; t; u) � Es;L;t[~s(u)] = e
�q1(u�t)

s+
�
1 � e

�q1(u�t)
�
�̂1

v
2
s
(t; u) � Vs;L;t[~s(u)] =

�
2
1
a

2q1

�
1 � e

�2q1(u�t)
�

mL(L; t; u) � Es;L;t[ ~L(u)] = e
�q2�L+

�
1 � e

�q2�

�
�̂2

v
2
L
(t; u) � Vs;L;t[ ~L(u)] =

�
2
2
a

2q2

�
1� e

�2q2(u�t)
�

Applying Arnold (1974) (Theorem 8.2.12, p. 133), it may be veri�ed that

the variable X(u) is trivariately normally distributed. A little algebra leads

us to

Es;L;t[Y (t; u)] =

"
�̂1(u� t) + (s� �̂1)

1 � e
�q1(u�t)

a

q1

#

+

"
�̂2(u� t) + (L� �̂2)

1� e
�q2(u�t)

a

q2

#

� nsY (s; t; u) + nLY (L; t; u) (68)

Interchanging order of integration and applying Davidson (1994) (Section

30.3, pp. 503{509), we get

Vs;L;t[Y (t; u)] =

"
�
2
1
a

2q31

�
4e�q1(u�t) � e

�2q1(u�t) + 2q1(u� t)� 3
�#
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+

"
�
2
2
a

2q32

�
4e�q2(u�t) � e

�2q2(u�t) + 2q2(u� t)� 3
�#

� v
2
sY
(t; u) + v

2
LY

(t; u)

qsY (t; u) � Covs;L;t[~s(u); Y (t; u)] =
�
2
1

�
1 � e

q1(u�t)
�2
a

2q21

qLY (t; u) � Covs;L;t[ ~L(u); Y (t; u)] =
�
2
2

�
1 � e

q2(u�t)
�2
a

2q22

and, so, we obtain the distribution of the variable X:

X � N(�; V )

where

� =

0
B@

ms

mL

nsY + nLY

1
CA ; V =

0
B@

v
2
s

0 qsY

0 v
2
L

qLY

qsY qLY v
2
sY

+ v
2
LY

1
CA

Therefore, the joint probability density of X(u) conditional on ~s(t) = s,
~L(t) = L is given by

p(s; L; t; u; s0; L0; Y ) =
1
a

(2�)3=2jV j1=2
exp

�
�

1
a

2
(X � �)0V �1(X � �)

�

Replacing this expression into (67), we obtain

G(s; L; s0; L0; t; u) =

Z
1

�1

1
a

(2�)3=2jV j1=2
e
�Y exp

�
�

1
a

2
(X � �)0V �1(X � �)

�
dY

which, after a tedious algebra, becomes

G(s; L; s0; L0; t; u) = exp

�
1
a

2
v
2
sY
(t; u)� nsY (s; t; u)

�
f1(s

0)

� exp

�
1
a

2
v
2
LY

(t; u)� nLY (L; t; u)

�
f2(L

0)

where f1(:) is the density function of a normal variable with mean ms � qsY

and standard deviation vs. Similarly, f2(:) corresponds to a normal distribu-

tion with mean mL � qLY and standard deviation vL.
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Substituting this expression into (66), we get

U(s; L; � ) =

Z
1

�1

Z
1

�1

exp

�
1
a

2
v
2
sY
� nsY

�
exp

�
1
a

2
v
2
LY

� nLY

�

� f1(s
0)f2(L

0)g(s0; L0)ds0dL0 (69)

If g � 1 and T = u, equation (69) implies that

P (s; L; t; T ) = exp

�
1
a

2
v
2
sY
(t; T )� nsY (s; t; T )

�

� exp

�
1
a

2
v
2
LY

(t; T )� nLY (L; t; T )

�
(70)

Replacing (70) into (69) leads to the �nal expression for the value, at

time t, of the interest rate derivative.

2

Next, we may use the closed-form expression given by this proposition,

with the appropriate terminal payo�, g(sT ; LT ), to obtain the prices of dif-

ferent interest rate derivatives. The following are several examples:

� European option on a zero-coupon bond.

� European option on a portfolio of bonds.

� Interest rate cap.

� Interest rate 
oor.

� Interest rate collar.

� Interest rate swap.

� Interest rate swaption.

� Compound option.

� \As you like it" option.

� Binary option.
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(a) An European call option on a zero-coupon bond is the right,

not the obligation, to buy a zero-coupon bond at �xed maturity date. Let K

be the strike price of this option. If the option is exercised at expiration, Tc,

the callholder pays K and receives a discount bond which matures at time

Tb > Tc.

Equation (62) for the particular case

g(s; L) = P (s; L; Tc; Tb)

implies that the price, at time t, of the bond received by the callholder is

given by

P (s; L; t; Tb) = P (s; L; t; Tc)E[P (s
0

; L
0

; Tc; Tb)]

If we de�ne
~P = P (s0; L0; Tc; Tb)

then, it is veri�ed that

E[ ~P ] =
P (s; L; t; Tb)
a

P (s; L; t; Tc)
(71)

Applying (70), we have

~P = exp

�
1
a

2
[v2

sY
(Tc; Tb) + v

2
LY

(Tc; Tb)]

�
� expf�[nsY (s

0

; Tc; Tb) + nLY (L
0

; Tc; Tb)]g

Since nsY (s
0

; Tc; Tb) and nLY (L
0

; Tc; Tb)] are linear in s
0 and L

0 (see equa-

tion (68)), then ~P is the exponential of a linear combination of two normal

variables (see equation (63)) and, therefore, ~P follows a lognormal distribu-

tion. Moreover, the coe�cients of this linear combination imply that

�
2
~p � Var[ln( ~P )]

=

"
1 � e

�q1(Tb�Tc)

a

q1

#2
v
2
s
(t; Tc) +

"
1 � e

�q2(Tb�Tc)

a

q2

#2
v
2
L
(t; Tc)

The price at time t, C(s; L; t; Tc;K;Tb), of the aforementioned call option
follows from the equation (62) with the terminal condition

g(s; L) = C(s; L; Tc; Tc;K;Tb) = maxfP (s; L; Tc; Tb)�K; 0g (72)
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At this point, we require that P (0; 0; Tc; Tb) > K. Otherwise, since the
bond price is decreasing in both state variables, P (s; L; Tc; Tb) < K for all s
and L and the option will never be exercised.

Replacing (72) into (62) gives

C(s; L; t; Tc;K;Tb) = P (s; L; t; Tc)E[ ~Z] (73)

where
~Z = maxf ~P �K; 0g = ( ~P �K)I[K;1)( ~P )

and I(:) is the indicator function de�ned as

I[K;1)(x) =

(
0 if x < K

1 if x > K

Then
E[ ~Z] =

Z
1

k

( ~P �K)f( ~P )d ~P (74)

To compute this expectation, we de�ne the new variable

v( ~P ) =
E[ln( ~P )]� ln( ~P )
a

� ~P

If we apply the relationship

ln(E[ ~P ]) = E[ln( ~P )] +
1
a

2
V [ln( ~P )]

then (74) becomes

E[ ~Z] = E[ ~P ]�(h + �~p)�K�(h) (75)

where �(:) denotes the distribution function of a standard normal variable
and

h = v(K) =
E[ln( ~P )]� ln(K)
a

� ~P

Substituting (71) and (75) into (73), it follows that the �nal expression
for the call price is

C(s; L; t; Tc;K;Tb) = P (s; L; t; Tb)�(h+ �~p)�KP (s; L; t; Tc)�(h) (76)
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There is a big likeness between this formula and the Black-Scholes ex-
pression for option prices. In both formulae, we have a random variable, ~P ,
the price of the underlying security at option expiration, that is lognormally
distributed. The discount factor P (s; L; t; Tc) is the analogous of e�r(Tc�t)

and �
2
~p, the variance of the logarithm of ~P , is equivalent to �2(Tc � t).

European put prices are obtained by call-put parity, that is

call� put = P (s; L; t; Tb)�KP (s; L; t; Tc) (77)

(b) Equation (76) may be extended to obtain the price of an European

call option on a portfolio of N discount bonds. Let K and Tc be the
strike price and expiration of this option, respectively. The portfolio consists
of N discount bonds and we invest a proportion �i, i = 1; :::; N in each
T
i

b
-maturity bond.
Let C�(s; L; t; Tc;K;T

N

b
) denote the price, at time t, of the portfolio op-

tion. Analogously to the bond option price, it follows that

C�(s; L; t; Tc;K;T
N

b
) = P (s; L; t; Tc)E[maxf ~P� �K; 0g] (78)

where
~P� =

X
i

�iP (s
0

; L
0

; Tc; T
i

b
) (79)

and i is such that Tc < T
i

b
.

Equations (71) and (79) imply that

E[ ~P�] =
X
i

�i

P (s; L; t; T i

b
)
a

P (s; L; t; Tc)
(80)

Let �s and �L be such that

K =
X
i

�iP (�s; �L; Tc; T
i

b
) =

X
i

�iKi (81)

Since the bond price is decreasing in both factors, s and L, it follows that

maxf ~P� �K; 0g] =
X
i

�imaxfP (s0; L0; Tc; T
i

b
)�Ki; 0g (82)
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Replacing this equality into (78), a little algebra leads to

C�(s; L; t; Tc;K;T
N

b
) =

X
i

C�(s; L; t; Tc;Ki; T
i

b
) (83)

Hence, the call option on a N-bond portfolio is equivalent to a portfolio
of call options with adequate strike prices, Ki. Moreover, since a coupon
bond is a particular case of the above bond portfolio, this expression allows
us to price any call option on coupon bonds. A similar argument applies to
European put options on a portfolio of discount bonds

(c) An interest rate cap places a maximum amount on the interest
payments made on a 
oating-rate loan. Thus, as shown in Figure 2, a cap
guarantees that the rate charged on a loan at any given time will be the lesser
of the prevailing rate and a certain level, known as the cap rate. Therefore,
this �nancial instrument insures against the rate of interest on a 
oating rate
rising above the cap rate.

We assume that interest payments are made at times 1; 2; :::; n from the
beginning of the life of the cap. Let Rc and Rk (k = 1; 2; :::; n) be the cap
rate and the prevailing interest rate at each payment time, respectively. Let
$M be the principal of the loan. Then, at time k + 1, the writer of the cap
is required to pay

M maxfRk �Rc; 0g

This payo� is equivalent to

M
a

1 +Rk

maxfRk �Rc; 0g

at time k. Rearranging terms, this expression becomes

max
�
M �

1 +Rc
a

1 +Rk

M; 0
�

Therefore, this expression corresponds to the payment of a put option
(named caplet) that expires at time k on a discount bond of maturity k +1.
The face value of the bond is (1 +Rc)M and the strike price is M . As a cap
is a sequence of such caplets, it can be interpreted as a portfolio of European
put options on discount bonds.
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(d) Interest rate 
oors can be de�ned analogously to caps. A 
oor
places a lower limit on the interest rate to be charged (see Figure 2). There-
fore, it provides insurance against a fall in interest rate below a certain level
(
oor rate). Similarly to interest rate caps, an interest rate 
oor is a portfolio
of European call options on discount bonds. If the 
oor rate is Rf , then

max
�
1 +Rf
a

1 +Rk

M �M; 0
�

(84)

is the terminal payo� to be used at each payment time.

(e) A collar is just a long position on a cap and a short position on a

oor with the same settlement dates and reset intervals. Therefore, the price
of the collar is the di�erence between the prices of these two derivatives.

(f) A swap is a private arrangement between two companies, A and B,
to exchange a stream of cash 
ows in the future according to a prearranged
formula. The most common type of swap is an interest rate swap in which
B agrees to make A periodic interest payments at a �xed rate on a notional
principal $M for a number of years. At the same time, B receives interest
at a 
oating rate on the same notional principal for the same period of time.
There is no exchange of principal amounts. Thus, a swap has the e�ect of
transforming a �xed rate loan into a 
oating rate loan or vice versa. Usually,
the two companies deal with a �nancial intermediary to arrange the swap.

We can assume, for valuation purposes only, that, at the end of its life,
both companies pay one each other the notional principal $M . Hence, the
swap is an arrangement in which 1) Company B has lent the intermediary
$M at a 
oating rate and 2) the intermediary has lent company B $M at
a �xed rate. That is, the �nancial institution has sold a $M 
oating rate
bond to company B and has purchased a $M �xed rate bond to company
B. Therefore, an interest rate swap can be regarded as an agreement to
exchange a �xed rate bond for a 
oating rate bond and, hence, the value
of this swap is the di�erence between the values of these two bonds. Thus,
assuming that the �nancial institution receives �xed payments and makes

oating payments, and denoting by P1 and P2 the values of the �xed and

oating rate bonds underlying the swap, respectively, the value of the swap,
Vs is given by

Vs = P1 � P2
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Analogously, if the �nancial institution is paying �xed and receiving 
oating,
the value of the swap is

Vs = P2 � P1

(g) An interest rate swaption is an option on an interest rate swap.
Thus, it gives the holder the right to enter into an interest rate swap for the
strike price K at time T < Ts, time in which the swap expires. Therefore,
it can be regarded as an option to exchange a �xed rate bond for a 
oating
rate bond. Let V (s; L; t; Ts) be the value at time t of this swap. The value
of the call swaption can be obtained by letting

g(s; L) = maxfV (s; L; T; Ts)�K; 0g

in formula (72). A similar argument applies to put swaptions.

(h) A compound option is an option on an option. Therefore, it has
two strike prices and two exercise dates, T1 < T2. We have four possible
con�gurations: a call on a call, a call on a put, a put on a call, and a put on
a put. The �rst two give the holder the right to buy the underlying option
and the second two allow the holder to sell.

If we consider a call on a call, at time T1, the holder of the compound
option has the right to buy the underlying call option at the �rst strike price,
K1. This second call option gives the holder the right to buy, at time T2, the
underlying bond which matures at time T3 for the second strike price, K2.

This option will be exercised at T1 if the value of the underlying option
on that date, C(s; L; T1; T2;K2; T3), is greater than the �rst strike price.
Therefore, the terminal payo� at T1 of the compound option is

g(sT1; LT1
) = maxfC(s; L; T1; T2;K2; T3)�K1; 0g

(i) An \As you like it" option is an option in which the holder, at
time T1, can buy either a call or a put. Thus, the value at this time of this
option is

maxfC;Pg

where C and P are the values of the underlying call and put, respectively.
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We assume that both options are European, have the same strike price,
K, and mature at time T2. The underlying asset in the two options is a bond
with maturity at time T3. Using the call-put parity (77), we obtain that

maxfC;Pg = maxfC;C +KP (s; L; T1; T2)� P (s; L; T1; T3)g

= C +maxfKP (s; L; T1; T2)� P (s; L; T1; T3); 0g

Therefore, this option is a combination of 1) a call option with strike price K
and maturity T2 and 2) a put option with strike price KP (s; L; T1; T2) and
maturity T1. So, it can be valuated using the formulas obtained for options
on discount bonds.

If the underlying options di�er in the strike price and time to maturity,
the \as you like it" option is similar to the compound options that we have
analyzed above.

(j) A binary option is an option with discontinuous payo�s. Two ex-
amples of this type of options are cash or nothing call and asset or nothing

call.
A cash or nothing call pays out a predetermined �xed amount, Q, if the

option is in-the-money at expiration, and zero otherwise. That is, it pays
out nothing if the underlying bond price P ends up below the strike price
K and pays out Q, if it ends up above the strike price. Let Tc and Tb be
the expiration dates of the call option and the underlying bond, respectively.
The terminal payo� of this option is given by

Q
a

P (s; L; Tc; Tb)�K
maxfP (s; L; Tc; Tb)�K; 0g

An asset or nothing call pays out nothing if the bond price P ends up
below the strike price K and pays an amount equal to the bond price if it
ends up above the strike price. Therefore, its terminal payo� is given by

P (s; L; Tc; Tb)
a

P (s; L; Tc; Tb)�K
maxfP (s; L; Tc; Tb)�K; 0g

where Tc and Tb are the maturity dates of the call option and the underlying
bond, respectively.

Many other types of options can be priced using similar approaches. Sim-
ilarly to the European options we have seen above, we can price American

30



options. This type of options can be exercised at any time up to the ex-
piration date in contrast to European options that can only be exercised on
the expiration date itself. We consider an American call option that has an
exercise price of K and expires at time Tc. We assume that this option is
written on a coupon bond paying a continuous dividend at a rate of �(t) and
maturing at time Tb > Tc. Denoting by P (s; L; t; Tb) the value at time t of the
underlying bond, the price at time t, V (s; L; t; Tc;K;Tb), of this American
option follows from the equation (62) with the boundary conditions

V (s; L; Tc; Tc;K;Tb) = maxfP (s; L; Tc; Tb)�K; 0g (85)

lim
(s;L)!B

V (s; L; t; Tc;K;Tb) = P (s; L; t; Tb)�K (86)

lim
(s;L)!B

@V (s; L; t; Tc;K;Tb)
a

@P (s; L; t; Tb)
= �1 (87)

where B denotes the exercise region, which represents the bond price above
which the American call is exercised optimally. Conditions (86) and (87)
are called the \value matching" and the \supper contact" conditions, respec-
tively.

In this section, we describe the basic characteristics of empirical application.
The spread, the di�erence between short and long-term interest rates, and
the long-term rate are the state variables of the two-factor model. The in-
stantaneous riskless interest rate and the long-term rate are approximated
by the 1-day and 10-year interest rates, respectively.

Our database is given by daily interest rates and zero-coupon bond prices
and was obtained from the Research Department, Bank of Spain3. The price
data used consists of a cross-sectional time-series database of zero-coupon
bonds for the period from 2 January 1991 to 29 December 1995. We consider
ten maturities: 1, 7, and 15 days, 1, 3, and 6 months, and 1, 3, 5, and 10
years. Interest rates are expressed in annualized form and cover the same
sample period, providing 1230 observations in total.
a

3See Nu~nez (1995) for details on these data and the procedure they were estimated.
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Plots of the spread and interest rate series as well as its �rst di�erence are
provided in Figures 3 and 4. Both interest rate series increase in the period
March-October 1992 and from June 1994 to March 1995 and decrease in the
�rst semester of 1991, in the period from June to December 1993 (when they
attain the minimum values which are close to 7%) and in the second semester
of 1995. Short-term interest rates are larger than 10% until October 1993
while the long-term interest rates exceed this level in the whole period except
from June 1993 through June 1994.

Focusing on the �rst di�erence of the variables, most of the changes in
the short-term interest rates are smaller than 100 basis points. The highest
changes in this variable (about 4%) are obtained at the second week of May
1993. On the other hand, changes in long-term rates are much smoother.
These changes move into a narrower interval and are never bigger than 80
basis points. Therefore, changes in the spread are quite similar to changes
in short-term interest rates. Thus, the spread does not usually rise (or fall)
more than 1% except in the second week of May 1993 when we attain the
extreme values of the changes in this variable which are close to 4%.

Tables I{III show summary statistics, correlation and autocorrelation
structure for all the state variables entering the model. In short, Table I
shows means, variances, extreme values, skewness and excess of kurtosis co-
e�cients for the state variables. These numerical characteristics concerning
to the location, dispersion and shape are computed for the data set through
the entire sample period. The autocorrelation coe�cient of �rst order, de-
noted by �1, is included in this table.

For the two interest rates, the unconditional average interest rates are
larger than 10%. The short-term rate is more volatile and moves into a wider
interval than long-term rates do. On the other hand, the spread has a mean
value very close to zero and ranges between �4% and 8%. The maximum
(18:21%) and minimum (6:53%) short-term interest rates correspond to 13
May 1993 and 7 June 1994, respectively. Analogously, the long-term interest
rates attain their extreme values (13:28% and 7:58%) at 6 February 1991 and
1 February 1994, respectively.

The correlation matrix (see Table II) shows the small correlation between
the spread and the long-term rate. The autocorrelation coe�cients of order
j of the state variables are shown in Table III. These coe�cients are near
one and decay very slowly. Hence, the main characteristic of these data is
the almost uniformly high degree of serial correlation.
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Characteristics concerning to the �rst order di�erentiation of the original
data are included in Tables IV-VI. We observe that mean changes in interest
rates are negative but quite close to zero. Hence, a small decrease - in mean
- in interest rates through the sample period is inferred. As mean decreases
with maturity, we deduce that long-term rates go down less than short-term
interest rates. Therefore, the mean value of changes in the spread is negative.

Changes in long-term interest rates are less dispersed than changes in
short-term rates. Daily changes show a large kurtosis coe�cient (indicative
of fat tails in the distribution of the variables) though it decreases with
maturity.

Table V reports the correlation coe�cients among changes in the state
variables. This table shows the small correlation between the change in the
spread and the change in the long-term rate and, hence, suggests that our
theoretical assumption about the state variables is empirically corroborated.

Table VI shows the increased stationarity in the data. The autocorre-
lation coe�cients for the �rst di�erence of the data decay more quickly (in
comparison with the variables in levels) and are negligible when lag is large
enough. Since the �rst order autocorrelation coe�cient, �1, is negative, evi-
dence of mean reversion in spread and interest rates is derived.

Next we present the empirical performance of the two-factor model in
comparison with the one-factor model that assumes the short-term interest
rate as the unique state variable. Similarly to the state variables of the
two-factor model, we make the following assumptions:

Assumption 3 The market price of the short-term interest rate risk is linear

in this variable, that is

�3(:) = e+ fr (88)

Assumption 4 The short-term interest rate follows a Ornstein-Uhlenbeck

process

dr = k3(�3 � r)dt+ �3dw3 (89)

The quantity k3 re
ects the speed of adjustment of the short-term inter-
est rate towards its long-run mean value, �3, �3 is the (constant) standard
deviation of this state variable and dw3 is a standard Gauss-Wiener process.

Under the one-factor model, the closed-form expression for the default
free discount bond prices is given by:

P (s; L; t; T ) = P (s; L; � ) = A3(� )e
�D(�)r (90)
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where
A3(� ) = exp

n
�

�
2

3
a

4q3
D

2(� ) + r
�(D(� ) � � )

o
D(� ) = (1 � e

�q3�)=q3
(91)

with

q3 = k3 + f�3; r
� = �̂3 � �

2
3=(2q

2
3); �̂3 = (k3�3 � e�3)=q3 (92)

Each state variable of the two-factor model, s and L, as well as the short-
term interest rate, r, follow a Ornstein-Uhlenbeck process (see equations
(14) and (89)). The di�usion parameters of these processes (ki; �i; �i; i =
1; 2; 3) are estimated by Hansen's Generalized Method of Moments4. The
econometric speci�cation in discrete time is

st � st�1 = a1 + b1st�1 + "
s

t
; "

s

t
� IID(0; �2

1)

Lt � Lt�1 = a2 + b2Lt�1 + "
L

t
; "

L

t
� IID(0; �2

2)

rt � rt�1 = a3 + b3rt�1 + "
r

t
; "

r

t
� IID(0; �2

3)

with
Cov("s

t
; "

L

t
) = Cov("s

t
; "

r

t
) = Cov("L

t
; "

r

t
) = 0

so that

k1 = �b1; �1 = �
a1
a

b1

k2 = �b2; �2 = �
a2
a

b2

k3 = �b3; �3 = �
a3
a

b3

The estimation results obtained for the whole period 1991-1995 are in-
cluded in Table VII and show that the parameters bi of the discrete time
speci�cation are signi�cantly di�erent from zero. Hence, the di�usion pa-
rameters ki are also signi�cantly di�erent from zero and, so, there is evidence
of mean reversion in interest rates and spread series. Both interest rates tend
to a mean value close to 10%. The spread tends to a mean value close to
zero and is the state variable with highest speed of mean reversion.
a

4For details on this procedure and its applications in this framework, see Moreno and

Pe~na (1996).
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After estimating the di�usion parameters of the processes followed by the
three state variables of both models (the spread and the long-term rate in
the two-factor model, the short-term rate in the one-factor model), we use
the values of these parameters (ki; �i; �i; i = 1; 2; 3) to obtain the remaining
parameters of equations (23) and (90).

Thus, following Das (1994a), we use the speci�cations

P = P (q1; q2; s
�

; L
�jk1; k2; �1; �2; �1; �2; s; L; � ) + "

P = P (q3; r
�jk3; �3; �3; r; � ) + "

(93)

where P is the observed price of the discount bonds available at time t, P (:)
is the closed-form pricing equation for each model (see equations (23) and
(90)) and " is an error term.

We employ a panel of data consisting of a time series of yield curves
containing a cross-section of zero-coupon bond prices to estimate the param-
eters (qi; i = 1; 2; 3; s�; L�; r�) of equation (93) for each day of the period
1991-1995. Thus, we have a data matrix with 1230 rows and 10 columns.
The row i contains the (ten) zero-coupon bond prices available at time i.
Each column includes the bond prices corresponding to a certain maturity:
the �rst column contains the 1-day bond prices for each day, the second one
includes the 7-day bond prices,..., and the last column provides the prices of
bonds with 10 years to maturity.

For each day of the period 1991-1995, we estimate the non-linear equa-
tions (93). This estimation, when applied to the �rst equation, provides the
parameters of the two-factor model (that is, q1; q2; s

�, and L�) while estimat-
ing the second equation we obtain the parameters of the one-factor model,
that is, q3 and r

�. Estimation results for the daily parameters of the two
models are portrayed in Table VIII. This table shows the average of the es-
timated values obtained for the full sample period and re
ects that all the
parameters are highly signi�cant.

At this step, we can use the estimated parameters obtained from equation
(93) in conjunction with equations (25) and (92) and Assumptions 1 and 3 to
obtain explicitly the daily market prices of risk related to each state variable.
A summary of these values is reported in Table IX. Panel A of this table
includes the averages of market prices of risk for the period 1991-1995 and
Panel B reports the average results when we divide this period year by year.

For the full period, we can observe that the market prices of risk for
the three state variables are positive and signi�cantly di�erent from zero.
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The highest mean value corresponds to the long-term interest rate while the
lowest minimum value is related to the spread.

Dividing this period year by year, the parameters are also signi�cantly
di�erent from zero. Dealing with the one-factor model, the mean market
price of risk has a positive value in the three �rst years and reaches the
largest values at 1993. The mean market price of risk of the spread is also
negative in the last two years of the period that we have considered. On the
other hand, the market price of risk related to the long-term interest rate
takes a positive mean value in 1993 (when it attains its maximum values)
and 1995 and is negative in the remaining years.

We can also use the parameters obtained from the estimation of the equa-
tion (93) and the estimates of the di�usion parameters to analyze the within
and out-of-sample properties of both models.

The two competing models are evaluated �rst on within-sample data for
1991-1994 and then on out-of-sample forecasts for 1995. For each day of the
period 1991-1994, the within-sample estimated data are obtained by includ-
ing the (daily) estimated parameters and the estimated di�usion parameters
in the equation (93). In order to generate k-step-ahead forecasts for the
bond prices, for both models, the coe�cient estimates are taken from time t.
These estimates are used to generate the t+ k-time forecast. This procedure
is continued throughout the forecast sample until the last day of 1995.

Once obtained the within and out-of-sample forecasts, we compute the
(within and out-of-sample) pricing errors of both models to compare one each
other. We de�ne, for time t, the error, et, and the percentage error, PEt, as

et = Pt � P̂t

and

PEt =
Pt � P̂t
a

Pt

100

where Pt and P̂t are, respectively, the observed and the estimated bond price,
for time t, of the discount bond of a given maturity.

Pricing errors, in absolute and percentage terms, for both models, in the
whole within-sample period are provided in Figures 5 and 6. Considering
maturities up to 1 month, it can be seen - for both models - a very large
pricing error in the second week of May 1993. This error coincides with
a sharp change (mentioned earlier) in the short-term interest rates and in
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the spread. This large error is also found in the remaining maturities when
dealing with the two-factor model.

The one-factor model, for maturities from 3 months to 3 years, overesti-
mates the bond prices in 1991-1992, period in which short-term interest rate
is greater than 10%. For these maturities, the largest positive errors, indica-

tive of underpricing, occur in the �rst semester of 1994, period in which the
short-term interest rates were smaller than 8%. For the longest maturity,
10 years, the one-factor model provides the opposite result: underpricing
in 1991-1992 and overpricing from January, 1993 to June, 1994. Finally, a
sight of these two �gures does not suggest that the errors from the two-factor

model follow a systematic pattern.
Denoting by N the number of days of the period (or subperiod) that we

consider, we compute �ve di�erent measures related to pricing errors in order
to compare the performance of the one and two-factor models:

1. Mean Error (ME). This measure gives an equal weight to the error of
each day. If the errors are added together, positive values will o�set negative

values and the average error may be small, even though the daily errors may
be substantial. It is de�ned as

ME =
1
a

N

NX
t=1

et =
1
a

N

NX
t=1

(Pt � P̂t)

2. Mean Absolute Error (MAE). This measure is also known as mean
absolute deviation. As the mean error, it also weights equally the error of
each day but it does not o�set the positive and negative values of the daily

errors. Its expression is

MAE =
1
a

N

NX
t=1

jetj =
1
a

N

NX
t=1

jPt � P̂tj

3. Root Mean Squared Error (RMSE). It is one of the most com-
monly used measures of accuracy. It is supposed that the loss function is
quadratic and its de�nition is

RMSE =

vuut
a

1
a

N

NX
t=1

(et)2 =

vuut
a

1
a

N

NX
t=1

(Pt � P̂t)2
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4. Mean Percentage Absolute Error (MAPE) This measure is sim-
ilar to the mean absolute error but it weights each error by the actual value
of each day. It is given by

MAPE =
1
a

N

NX
t=1

jPEtj

5. Root Mean Squared Percentage Error (RMSPE). It is similar
to the root mean squared error and the daily errors are weighted by the
actual values. Its expression is

RMSPE =

vuut
a

1
a

N

NX
t=1

(PEt)2

These measures, using both models, are computed for the within and
the out-of-sample periods as well as for di�erent subperiods. The within

and out-of-sample results are reported in Tables X-XII and Tables XIII-XVI,
respectively.

Thus, the results for the whole within-sample period (1991-1994) are
shown in Table X. For this period, the one-factor model overestimates the
prices of bonds of maturities up to 6 months as well as the 10-year bond
prices. On the other hand, the two-factor model underprices the bonds whose

maturities range from 15 days to 1 year and the longest bonds.
We �nd that both models �t the data very well. Although it can be seen

that the pricing error measures increase with time to maturity, the mean
absolute percentage error (MAPE) from the one and two-factor models never
exceeds 1:6% and 0:3%, respectively.

The MAE and the MAPE statistics indicate that the estimates from the
two-factor model are more accurate than those from the one-factor model.
Thus, the two-factor model estimates decrease these statistic relative to the
one-factor model by more than half for bonds of maturities up to 1 year and
by more than 80% for 3 and 10-year bonds.

This table also re
ects that, based on a root mean squared error (RMSE or
RMSPE) criterion, the two-factor model produces more accurate estimates,
especially on 3 and 10-year bonds. Only in 1 and 3-month bonds, the one-
factor model performs slightly better than the two-factor model.

Table XI includes the within-sample error measures for the year 1992.

The one-factor model produces a slight overpricing for all the maturities,
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except for 10-year bonds. As in the period 1991-1994, the two-factor model
overestimates slightly the prices of bonds of maturities up to six months.

All the statistics show the large increase in accuracy of the two-factor
model relative to the one-factor model. It can be seen that, for all maturities
but 5 years, the error measures from the one-factor model are more than

three times those from the two-factor model. As with the full within-sample
period, the largest improvements in accuracy are found in 3 and 10-year
bonds where the statistics from the two-factor model are less than 20% than
the ones obtained with the one-factor model.

We conclude the within-sample results with Table XII which contains the

error measures, for each semester5 of the period 1991-1994, for 10-year bonds.
For these bonds, based on a MAPE criterion, the one-factor model performs
quite well for the period 1991-1992 while its accuracy declines in the period
June 1993 - June 1994. On the other hand, the two-factor model works better
in all the semesters of the within-sample period, it �ts specially well in the

�rst semester of 1992 and in the second one of 1994, and its superiority over
the one-factor model is specially high in the three last semesters.

The predictive power of both models is analyzed by studying one and �ve-
step ahead forecasts of daily bond prices, in the year 1995, for each maturity.
Summary statistics are reported in Tables XIII-XVI.

Tables XIII-XIV include the results for one-step-ahead forecasts while the

last two tables contain the �ve-step-ahead forecasts. Thus, Table XIII shows
that the predictive performance of both models is reasonably good although it
deteriorates with time to maturity. Both models perform similarly on shorter
maturities but, increasing the maturity of the bonds, the two-factor model
forecasts better than the one-factor model. Thus, all the error measures are

reduced by more than 20% when we consider bonds longer than three years.
Table XIV focuses on 10-year bonds and details its forecasts for each

month of 1995. The one-factor model performs better in the second semester
of this year when the MAPE is always smaller than 1%. Analogously, the
MAPE statistic for the two-factor model is generally close to 0:5%. The

performance of this model is specially well in the �rst term of 1995 when it
reduces the error measures from the one-factor model by more than 40%.

The last two tables report the results that we have obtained with �ve-
step-ahead forecasts for both models. Similarly to Table XIII, Table XV
a

5Other subperiods were analyzed and the conclusions do not change qualitatively.
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includes the overall forecasts for all the bonds in the year 1995.
The predictive power decreases relative to one-step-ahead forecasts and

it declines with time to maturity. In both models, the forecast errors, in per-
centage terms, are smaller than 1% for all maturities but for 10-year bonds.
As before, both models perform similarly in maturities up to three months.

The superiority of the two-factor model is weaker than in the previous fore-
casts but there is still an improvement of 10% in the longer bonds.

Finally, Table XVI includes the forecasting results, separating the year
1995 by quarters, for 6-month and 10-year bonds. For 6-month bonds, the
MAPE statistic is smaller than 0:11% in all the subperiods. Both models

reach the best forecasts in the second semester of 1995. The improvement of
forecasting power of the two-factor model is about 10% in all the quarters.
When considering 10-year bonds, the MAPE statistic ranges between 1% and
2:5%. Once again, the two-factor model produces more accurate forecasts and
decreases the MAE and MAPE statistics in about 20% in the �rst quarter

of this year. In the remaining quarters, the predictive improvement never
exceed 11%.

We have presented a two-factor model of the term structure of interest rates.

The main assumption is that the price of all default free discount bonds is
a function of time to maturity and two state variables. These variables are
the long-term interest rate and the spread (di�erence between the short-term
(instantaneous) riskless rate and the long-term rate).

Assuming that both factors follow a joint Ornstein-Uhlenbeck process, we

derived a general bond pricing equation which must be satis�ed by the values
of all default free discount bonds. After computing a closed-form expression
for zero-coupon bond prices for any maturity, we examined its implications
for the term structure of interest rates.

We also derived a closed-form solution for interest rate derivatives. This

formula was applied to price European options on discount bonds. We showed
the similarity between this expression and the one derived by Black-Scholes.
Moreover, we extended this formula to options on discount bond portfolios.
As a consequence, we are able to price any European option on coupon bonds.
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We also illustrated how this formula can be used to price more complex types
of options.

Finally, we presented the empirical performance of the two-factor model in
comparison with a one-factor model that assumes the short-term interest rate
as the single state variable. The di�usion parameters have been estimated by

Hansen's Generalized Method of Moments and the results suggest evidence of
mean reversion in interest rate and spread series. The remaining parameters
were estimated by a cross-sectional technique that allowed us to identify the
market prices of risk related to each state variable. For the full sample, we
have shown that the market prices of risk for the three state variables are

positive and signi�cantly di�erent from zero.
The two competing models were evaluated �rst on within-sample data

for 1991-1994 and then on out-of-sample forecasts for 1995. Although both
models �t the data very well, the error statistics indicate that, for all the
bonds, the within-sample estimates from the two-factor model reduced the

error measures relative to the one-factor model by more than 50%. Moreover,
the largest improvements in accuracy are found in 3 and 10-year bonds in
which all the statistics from the one-factor model are reduced by more than
75%.

The predictive power of both models has been analyzed by studying one
and �ve-step ahead forecasts of daily bond prices, in the year 1995, for each

maturity. Although the predictive performance of both models is reasonably
good, the statistics show that the one-step-ahead forecasts from the two-
factor model are always closer to the data than those from the one-factor
model. Both models perform in a similar way on shorter maturities but, for
longer bonds, all the error measures decrease more than 20%.

The predictive performance of �ve-step-ahead forecasts declines with re-
gard to one-step-ahead forecasts, although both models still forecast quite
well. These forecasts deteriorate with time to maturity but the forecast er-
rors, in percentage terms, are smaller than 1% for most of the maturities.
Although the superiority of the two-factor model over the one-factor model

is weaker than in the previous forecasts, there still remains an improvement
of 10% for the longer bonds.

Therefore, regardless of statistics used, the subperiods analyzed or the
maturities considered, empirical evidence suggests that the two-factor model
is more accurate (in both within and out-of-sample data) than the one-factor

model.
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Table I. Summary Statistics of State Variables

This table provides summary statistics of the state variables. Means, standard deviations,

extreme values, skewness coe�cients, and excess kurtosis are computed from January 1991

through December 1995. Raw data is in percentage terms. The number of observations is

denoted by n.

a

Variable Spread Long-term Rate Short-term Rate
a

n 1230 1230 1230
Mean 0.09257 10.4467 10.5393
Standard Deviation 1.96963 1.0884 2.1808
Minimum -4.078 7.5794 6.5306

Maximum 7.433 13.2838 18.2134
Skewness -0.27139 -0.5503 0.16944
Excess of Kurtosis -0.59905 0.39954 -0.84618
�
1

0.9842 0.9919 0.9861
a

Table II. Correlation Matrix of State Variables

This table provides correlation coe�cients of the state variables. These coe�cients are

computed from January 1991 through December 1995. Raw data is in percentage terms.

a

Variable Spread Long-Term Rate Short-Term Rate
a

Spread 1.0000
Long-Term Rate -0.0718 1.0000
Short-Term Rate 0.8673 0.4342 1.0000
a
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Table III. Correlation Structure of State Variables

This table shows correlation coe�cients of order j, denoted by �j , of the state variables.

These coe�cients are computed from January 1991 through December 1995. Raw data is

in percentage terms.

a

Spread Long-Term Rate Short-Term Rate
a

�
1

0.9842 0.9919 0.9861
�
2

0.9758 0.9854 0.9786
�
3

0.9718 0.9780 0.9745
�
4

0.9667 0.9718 0.9693
�
5

0.9625 0.9655 0.9647

�
6

0.9590 0.9591 0.9608
�
7

0.9534 0.9531 0.9554
�
8

0.9481 0.9468 0.9501
�
9

0.9439 0.9420 0.9457
�
10

0.9403 0.9361 0.9416

�
11

0.9376 0.9304 0.9380
�
12

0.9329 0.9247 0.9333
a

Table IV. Summary Statistics of Changes in State Variables

This table provides summary statistics of the changes in state variables. Means, standard

deviations, extreme values, skewness coe�cients, and excess kurtosis are computed from

January 1991 through December 1995. Raw data is in percentage terms. The number of

observations is denoted by n.

a

Variable Spread Long-term Rate Short-term Rate
a

n 1229 1229 1229

Mean -0.00165 -0.00284 -0.00449
Standard Deviation 0.34792 0.11608 0.3453
Minimum -4.0344 -0.7715 -4.0929
Maximum 3.3687 0.8188 3.417
Skewness -0.4659 -0.12488 -0.45456

Excess of Kurtosis 25.0356 8.70715 27.553
�
1

-0.2393 -0.1508 -0.2565
a

46



Table V. Correlation Matrix of Changes in State Variables

This table provides correlation coe�cients of the changes in state variables. These coe�-

cients are computed from January 1991 through December 1995. Raw data is in percentage

terms.
a

Maturity Spread Long-Term Rate Short-Term Rate
a

Spread 1.0000
Long-Term Rate -0.1891 1.0000
Short-Term Rate 0.9439 0.1456 1.0000
a

Table VI. Correlation Structure of Changes in State Variables

This table shows correlation coe�cients of order j, denoted by �j , of the state variables.

These coe�cients are computed from January 1991 through December 1995. Raw data is

in percentage terms.

a

Spread Long-Term Rate Short-Term Rate
a

�
1

-0.2393 -0.1508 -0.2565

�
2

-0.1435 0.0356 -0.1415
�
3

0.0396 -0.0699 0.0451
�
4

-0.0312 -0.0099 -0.0289
�
5

-0.0261 0.0353 -0.0259
�
6

0.0693 -0.0577 0.0590

�
7

-0.0093 0.0920 -0.0030
�
8

-0.0374 -0.1064 -0.0281
�
9

-0.0157 0.0769 -0.0157
�
10

-0.0283 -0.0488 -0.0183
�
11

0.0625 -0.0010 0.0478

�
12

0.0497 0.0616 0.0460
a

47



Table VII. Estimates of the Di�usion Parameters
This table provides the parameter estimates (with t-values in parentheses) of the Vasicek

processes followed by each state variable. The sample period is from January 1991 to

December 1995. The parameters are estimated by means of the Generalized Method of

Moments applied to the following equation

st � st�1 = a1 + b1st�1 + "
s
t ; "

s
t � IID(0; �21)

Lt � Lt�1 = a2 + b2Lt�1 + "Lt ; "Lt � IID(0; �22)
rt � rt�1 = a3 + b3rt�1 + "rt ; "rt � IID(0; �23)

with
Cov("st ; "

L
t ) = Cov("st ; "

r
t ) = Cov("Lt ; "

r
t ) = 0

a

Variable a b k � �
a

Spread �2:08� 10�4 -0.015447 0.015447 -0.01347 0.3467

(-0.0210) (-3.0756) (3.0756) (-0.021)

Long-Term Rate 0.0732 -0.007287 0.007287 10.05747 0.1159

(2.2968) (-2.3988) (2.3988) (20.881)

Short-Term Rate 0.13086 -0.01284 0.012841 10.19102 0.3443

(2.6980) (-2.8498) (2.8498) (13.155)
a
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Table VIII. Averages of Pure Cross-Sectional Regressions
This table contains the estimation results, for each day of the period 1991-1995, of the
parameters (qi; i = 1;2;3; s�; L�; r�) in the closed-form pricing equation for both models

P (s; L; t; T ) = P (s; L; � ) = A(� )e�B(�)s�C(�)L

where
A(� ) = A1(� )A2(� )

A1(� ) = exp
n
�

�
2

1
a

4q1
B2(� ) + s�(B(� ) � � )

o

A2(� ) = exp
n
�

�
2

2
a

4q2
C2(� ) + L�(C(� )� � )

o

B(� ) = (1� e�q1� )=q1
C(� ) = (1� e�q2� )=q2

and
P (s; L; t; T ) = P (s; L; � ) = A3(� )e

�D(�)r

where
A3(� ) = exp

n
�

�
2

3
a

4q3
D2(� ) + r�(D(� ) � � )

o

D(� ) = (1� e�q3� )=q3

Numbers in parentheses represent the average of the t-statistics of cross-sectional regres-

sions. The numbers in square brackets [:] represent the standard deviation of the time

series of parameter estimates.

a

One-Factor Model a Two-Factor Model
a

q3 r
�

a q1 q2 s
�

L
�

a

1.8803 6.7638 a 0.4984 0.3909 -12.5420 0.0708

(47.32) (583.88) a (65.24) (52.02) (-39.98) (61.59)

[5:5197] [10:8496] a [0:9849] [0:6812] [27:7878] [30:2253]
a
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Table IX. Averages of Market Prices of Risk

This table contains the estimation results, for each day of the period 1991-1995, of the

market prices of risk (�i; i = 1; 2; 3) related to each state variable. Numbers in parentheses

represent the average of the t-statistics of these estimates. The numbers in square brackets

[:] represent the standard deviation of the time series of market prices of risk estimates.

Panel A: Period 1991-1995
a

One-Factor Model a Two-Factor Model
a

�3 (Short-term rate) a �1 (Spread) �2 (Long-term rate)
a

3.5178 a 0.2386 4.8419

(34.54) a (5.09) (15.22)

[13:1444] a [12:2793] [41:8299]
a

Panel B: Period 1991-1995, year by year
a

One-Factor Model a Two-Factor Model
a

�3 (Short-term rate) a �1 (Spread) �2 (Long-term rate)
a

2.4644 a 3.1513 -8.4789

1991 (73.75) a (46.88) (-49.31)

[5:9616] a [10:1866] [32:8720]
a

0.9249 a 1.8632 -6.9682

1992 (75.95) a (34.10) (-30.41)

[1:7058] a [5:6779] [15:2471]
a

20.3565 a 2.6534 37.8514

1993 (72.67) a (1.19) (30.75)

[15:5313] a [13:3915] [59:6728]
a

-0.5997 a -0.7678 -1.7900

1994 (-11.00) a (-2.07) (-29.76)

[13:0031] a [18:0933] [44:0095]
a

-5.8946 a -5.7401 2.8856

1995 (-38.70) a (-54.31) (1.75)

[3:2618] a [7:5040] [20:7386]
a
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Table X. Within-Sample Pricing Error Measures. 1991-1994

This table contains the within-sample pricing error measures of the one and two-factor

models for the period 1991-1994. We consider zero-coupon bonds with face value of $1

and with maturities ranging from 1 day to 10 years. We have computed �ve di�erent error

measures: the mean error (ME), the mean absolute error (MAE), the root mean squared

error (RMSE), the mean absolute percentage error (MAPE) and the root mean squared

percentage error (RMSPE).

a

One-Factor Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

1-day -0.000000 0.000000 0.000000 0.000012 0.000020

7-day -0.000002 0.000002 0.000005 0.000228 0.000463

15-day -0.000005 0.000007 0.000016 0.000753 0.001570

1-month -0.000017 0.000028 0.000052 0.002849 0.005281

3-month -0.000078 0.000165 0.000256 0.016969 0.026337

6-month -0.000116 0.000424 0.000742 0.044640 0.078232

1-year 0.000106 0.001154 0.001969 0.127859 0.219042

3-year 0.001170 0.003030 0.004746 0.402362 0.632349

5-year 0.000208 0.002157 0.003050 0.358169 0.508367

10-year -0.003633 0.006202 0.010055 1.587365 2.506414
a

Two-Factor Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

1-day -0.000000 0.000000 0.000000 0.000010 0.000016

7-day -0.000000 0.000001 0.000004 0.000106 0.000421

15-day 0.000000 0.000003 0.000015 0.000321 0.001519

1-month 0.000003 0.000012 0.000053 0.001239 0.005413

3-month 0.000034 0.000074 0.000273 0.007631 0.028254

6-month 0.000109 0.000200 0.000712 0.021114 0.075686

1-year 0.000241 0.000480 0.001457 0.053265 0.162536

3-year -0.000081 0.000517 0.001156 0.070541 0.159114

5-year -0.000481 0.001547 0.002887 0.256526 0.467754

10-year 0.000157 0.000606 0.001535 0.167148 0.432554
a
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Table XI. Within-Sample Pricing Error Measures for the year 1992

This table contains the within-sample pricing error measures of the one and two-factor

models for the year 1992. We consider zero-coupon bonds with face value of $1 and

with maturities ranging from 1 day to 10 years. We have computed �ve di�erent error

measures: the mean error (ME), the mean absolute error (MAE), the root mean squared

error (RMSE), the mean absolute percentage error (MAPE) and the root mean squared

percentage error (RMSPE).

a

One-Factor Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

1-day -0.000000 0.000000 0.000000 0.000002 0.000003

7-day -0.000001 0.000001 0.000001 0.000077 0.000149

15-day -0.000003 0.000003 0.000006 0.000313 0.000640

1-month -0.000014 0.000015 0.000030 0.001481 0.003054

3-month -0.000114 0.000121 0.000246 0.012435 0.025345

6-month -0.000382 0.000407 0.000818 0.043320 0.087150

1-year -0.001071 0.001137 0.002253 0.129028 0.256560

3-year -0.001963 0.001995 0.004337 0.293732 0.644732

5-year -0.000032 0.001308 0.002251 0.238129 0.421463

10-year 0.001693 0.001890 0.004296 0.600565 1.396797
a

Two-Factor Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

1-day 0.000000 0.000000 0.000000 0.000003 0.000005

7-day 0.000000 0.000000 0.000001 0.000035 0.000068

15-day 0.000000 0.000001 0.000002 0.000124 0.000230

1-month 0.000001 0.000005 0.000009 0.000533 0.000940

3-month 0.000005 0.000037 0.000062 0.003838 0.006357

6-month 0.000002 0.000109 0.000188 0.011595 0.019969

1-year -0.000042 0.000305 0.000510 0.034493 0.057827

3-year -0.000081 0.000349 0.000500 0.050313 0.072872

5-year 0.000208 0.001013 0.001542 0.181938 0.281741

10-year -0.000061 0.000341 0.000605 0.103375 0.187527
a
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Table XII.Within-Sample Pricing ErrorMeasures for 10-year Bonds

This table contains the within-sample pricing error measures of the one and two-factor

models for each semester of the period 1991-1994. We consider zero-coupon bonds with

face value of $1 and with maturity of 10 years. We have computed �ve di�erent error

measures: the mean error (ME), the mean absolute error (MAE), the root mean squared

error (RMSE), the mean absolute percentage error (MAPE) and the root mean squared

percentage error (RMSPE).

a

One-Factor Model
a

Period ME MAE RMSE MAPE RMSPE
a

1991:I 0.000248 0.001060 0.002724 0.337539 0.852722

1991:II 0.000076 0.000794 0.001811 0.232777 0.529352

1992:I -0.000053 0.000313 0.000522 0.087562 0.148913

1992:II 0.003498 0.003521 0.006103 1.130811 1.986138

1993:I -0.004414 0.004420 0.007783 1.246517 2.191687

1993:II -0.018630 0.018630 0.018928 4.503009 4.590118

1994:I -0.014238 0.015052 0.017290 3.511278 4.022404

1994:II 0.005308 0.005308 0.005577 1.537958 1.621560
a

Two-Factor Model
a

Period ME MAE RMSE MAPE RMSPE
a

1991:I -0.000107 0.000380 0.000814 0.119866 0.253813

1991:II 0.000388 0.000718 0.001193 0.209669 0.348161

1992:I -0.000023 0.000261 0.000420 0.071953 0.115901

1992:II -0.000099 0.000425 0.000750 0.135853 0.240062

1993:I -0.000184 0.001061 0.003271 0.309411 0.963612

1993:II 0.000468 0.000765 0.001397 0.186202 0.341814

1994:I 0.000892 0.001025 0.001746 0.245455 0.414290

1994:II -0.000123 0.000181 0.000385 0.050999 0.107501
a
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Table XIII. Comparison of One-Step-Ahead Forecasts for the year

1995

This table contains the out-of-sample pricing error measures of the one and two-factor

models for the year 1995. We compute one-step-ahead forecasts for prices of zero-coupon

bonds with face value of $1 and with maturities ranging from 1 day to 10 years. We report

�ve di�erent error measures: the mean error (ME), the mean absolute error (MAE), the

root mean squared error (RMSE), the mean absolute percentage error (MAPE) and the

root mean squared percentage error (RMSPE).

a

One-Factor Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

1-day 0.000000 0.000002 0.000004 0.000241 0.000353

7-day 0.000001 0.000016 0.000024 0.001648 0.002410

15-day 0.000003 0.000032 0.000047 0.003246 0.004740

1-month 0.000011 0.000068 0.000098 0.006831 0.009912

3-month 0.000074 0.000188 0.000264 0.019189 0.026946

6-month 0.000213 0.000345 0.000472 0.036095 0.049372

1-year 0.000423 0.000592 0.000782 0.065144 0.086047

3-year -0.000827 0.001647 0.002221 0.225719 0.306270

5-year -0.001998 0.002710 0.003500 0.467543 0.609406

10-year 0.002731 0.003469 0.004322 1.035002 1.300559
a

Two-Factor Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

1-day 0.000000 0.000002 0.000004 0.000241 0.000353

7-day 0.000000 0.000016 0.000024 0.001648 0.002410

15-day 0.000000 0.000032 0.000047 0.003242 0.004738

1-month -0.000001 0.000067 0.000098 0.006781 0.009874

3-month -0.000016 0.000180 0.000255 0.018363 0.026064

6-month -0.000065 0.000321 0.000436 0.033589 0.045608

1-year -0.000209 0.000580 0.000767 0.063822 0.084462

3-year -0.000239 0.001320 0.001790 0.180321 0.245460

5-year 0.000961 0.002096 0.002760 0.357493 0.473140

10-year 0.000177 0.002174 0.002889 0.641176 0.857203
a

54



Table XIV. Comparison of One-Step-Ahead Forecasts for 10-year

Bonds

This table contains the out-of-sample pricing error measures of the one and two-factor

models for each month of the year 1995. We compute one-step-ahead forecasts for prices

of zero-coupon bonds with face value of $1 and with maturity of 10 years. We report �ve

di�erent error measures: the mean error (ME), the mean absolute error (MAE), the root

mean squared error (RMSE), the mean absolute percentage error (MAPE) and the root

mean squared percentage error (RMSPE).

a

One-Factor Model
a

Period ME MAE RMSE MAPE RMSPE
a

1995:I 0.006637 0.006637 0.007043 2.037704 2.161546

1995:II 0.005492 0.005492 0.005802 1.651017 1.743038

1995:III 0.003847 0.004455 0.005099 1.426704 1.632764

1995:IV 0.003368 0.003585 0.003896 1.131093 1.228890

1995:V 0.003515 0.004376 0.005721 1.296065 1.683145

1995:VI 0.002111 0.003443 0.004240 1.028990 1.263961

1995:VII 0.002515 0.003142 0.004035 0.924951 1.189217

1995:VIII 0.001255 0.002028 0.002312 0.579070 0.660393

1995:IX 0.000804 0.002788 0.003323 0.788667 0.941235

1995:X 0.000756 0.001676 0.002115 0.475194 0.599417

1995:XI 0.001623 0.002134 0.002423 0.585739 0.664042

1995:XII 0.000989 0.001852 0.002329 0.482712 0.608311
a

Two-Factor Model
a

Period ME MAE RMSE MAPE RMSPE
a

1995:I -0.000097 0.001703 0.002181 0.524966 0.673928

1995:II -0.000148 0.001449 0.001841 0.436042 0.554446

1995:III -0.000615 0.002752 0.003596 0.885325 1.156787

1995:IV 0.000267 0.001483 0.001907 0.468220 0.603750

1995:V 0.000543 0.003592 0.004614 1.061447 1.351137

1995:VI -0.000863 0.002836 0.003771 0.850663 1.135221

1995:VII 0.000135 0.002498 0.003163 0.735885 0.934982

1995:VIII 0.000309 0.001714 0.001953 0.489602 0.558105

1995:IX 0.000550 0.002790 0.003398 0.790182 0.963648

1995:X 0.000321 0.001597 0.002033 0.453225 0.576983

1995:XI 0.000914 0.001732 0.002053 0.475627 0.563572

1995:XII 0.001045 0.001725 0.002163 0.448974 0.564103
a
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Table XV. Comparison of Five-Step-Ahead Forecasts for the year

1995

This table contains the out-of-sample pricing error measures of the one and two-factor

models for the year 1995. We compute �ve-step-ahead forecasts for prices of zero-coupon

bonds with face value of $1 and with maturities ranging from 1 day to 10 years. We report

�ve di�erent error measures: the mean error (ME), the mean absolute error (MAE), the

root mean squared error (RMSE), the mean absolute percentage error (MAPE) and the

root mean squared percentage error (RMSPE).

a

One-Factor Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

1-day 0.000000 0.000004 0.000006 0.000425 0.000599

7-day 0.000001 0.000029 0.000041 0.002912 0.004107

15-day 0.000003 0.000057 0.000081 0.005764 0.008117

1-month 0.000013 0.000121 0.000170 0.012228 0.017145

3-month 0.000089 0.000338 0.000469 0.034582 0.047975

6-month 0.000265 0.000638 0.000871 0.066794 0.091163

1-year 0.000588 0.001208 0.001623 0.132807 0.178648

3-year -0.000178 0.003421 0.004461 0.467336 0.613071

5-year -0.001071 0.004838 0.006269 0.829320 1.085631

10-year 0.003801 0.006263 0.007752 1.843197 2.291128
a

Two-Factor Model
a

Maturity ME MAE RMSE MAPE RMSPE
a

1-day 0.000000 0.000004 0.000006 0.000425 0.000600

7-day 0.000000 0.000029 0.000041 0.002909 0.004112

15-day 0.000001 0.000057 0.000081 0.005751 0.008135

1-month 0.000001 0.000120 0.000171 0.012137 0.017204

3-month -0.000003 0.000327 0.000469 0.033434 0.047936

6-month -0.000017 0.000590 0.000857 0.061792 0.089773

1-year -0.000052 0.001140 0.001600 0.125428 0.176266

3-year 0.000457 0.003296 0.004247 0.449916 0.582409

5-year 0.001967 0.004852 0.006077 0.826338 1.039909

10-year 0.001142 0.005498 0.006991 1.617977 2.074195
a
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Table XVI. Comparison of Five-Step-Ahead Forecasts for 6-month

and 10-year Bonds

This table contains the out-of-sample pricing error measures of the one and two-factor

models for each quarter of the year 1995. We compute �ve-step-ahead forecasts for prices

of zero-coupon bonds with face value of $1 and with maturity of 6 months and 10 years. We

report �ve di�erent error measures: the mean error (ME), the mean absolute error (MAE),

the root mean squared error (RMSE), the mean absolute percentage error (MAPE) and

the root mean squared percentage error (RMSPE).

Panel A: 6-month Bonds
a

One-Factor Model
a

Period ME MAE RMSE MAPE RMSPE
a

1995:I 0.000076 0.001038 0.001306 0.108704 0.136850

1995:II 0.000313 0.000619 0.000765 0.064922 0.080179

1995:III 0.000281 0.000406 0.000557 0.042469 0.058307

1995:IV 0.000397 0.000489 0.000651 0.051043 0.067861
a

Two-Factor Model
a

Period ME MAE RMSE MAPE RMSPE
a

1995:I -0.000281 0.000992 0.001336 0.103954 0.140094

1995:II -0.000056 0.000543 0.000718 0.056939 0.075213

1995:III 0.000016 0.000382 0.000508 0.039963 0.053153

1995:IV 0.000262 0.000442 0.000608 0.046100 0.063438
a

Panel B: 10-year Bonds
a

One-Factor Model
a

Period ME MAE RMSE MAPE RMSPE
a

1995:I 0.003895 0.006470 0.007815 2.004213 2.424683

1995:II 0.004386 0.007751 0.009623 2.337035 2.877908

1995:III 0.002966 0.005815 0.007382 1.665991 2.114848

1995:IV 0.004015 0.005018 0.005661 1.364009 1.531478
a

Two-Factor Model
a

Period ME MAE RMSE MAPE RMSPE
a

1995:I -0.001815 0.005149 0.006909 1.612713 2.194463

1995:II 0.001280 0.006844 0.008548 2.063493 2.555043

1995:III 0.001610 0.005236 0.006751 1.498283 1.928249

1995:IV 0.003603 0.004780 0.005391 1.300279 1.460397
a
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Figure 1: Forward Rate Curve.

The forward rates f(s; L; t; T ) � f(s; L; � ) at time t for the future period at date
T = t+ � are given by

f(s; L; � ) = r � q1(s � �̂1)B(� ) � q2(L� �̂2)C(� ) �
1
a

2

�
�21B

2(� ) + �22C
2(� )

�

The parameter values correspond to 2 January 1991: q1 = 1:3456, �̂1 = 4:5924,

�1 = 0:3467, q2 = 0:744, �̂2 = 7:9259, �2 = 0:1159. The two factor values, s and L, from

left to right, top to bottom, are given by the vectors (2; 8), (2; 10), (3; 10), and (4; 10),

respectively.
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Figure 2: Borrower's E�ective Interests Rates with Caps and Floors.

This �gure depicts the 
oating interest rate (solid line), the cap rate (dotted line),

and the e�ective capped interest rate (dashed line).
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Figure 3: Plot of state variables.
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Figure 4: Plot of state variables in di�erences.
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Figure 5: Within-Sample Errors of the One and Two-Factor Model.
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Figure 6: Within-Sample Percentage Errors of the One and Two-Factor

Model.


