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Abstract

We study a framework for robust mechanism design that can accommodate various de-
grees of robustness with respect to agents’ beliefs, which encompasses both the belief-free and
Bayesian settings as special cases. For general belief restrictions, we characterize the set of
incentive compatible direct mechanisms in general environments with interdependent values.
Our main results, which we obtain based on a first-order approach, inform the design of trans-
fers via ‘belief-based’ terms to attain incentive compatibility. In environments that satisfy a
property of generalized independence, our results imply a robust version of revenue equivalence
in non-Bayesian settings. Instead, under a notion of comovement between types and beliefs,
which extends the idea of correlated information to non-Bayesian settings, we show that any
allocation rule can be implemented, even if standard single-crossing and monotonicity condi-
tions do not hold. Yet, unless the environment is Bayesian, information rents typically remain,
and they decrease monotonically as the robustness requirements are weakened.

Keywords: Moment Conditions, Robust Mechanism Design, Incentive Compatibility, In-
terdependent Values, Belief Restrictions

JEL: D62, D82, D83

1 Introduction

Mechanism design has greatly succeeded in deepening our understanding of incentives under
private information, and it has had a dramatic impact on the design of real world mecha-
nisms and institutions. Yet, the classical approach also features some important limitations,
particularly due to the strong assumptions on agents’ beliefs that are implicit in standard
models, and the role they play in several results. The ‘Full Surplus Extraction’ results of
Crémer and McLean (1985, 1988) are notorious examples of findings that cast doubt on the
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adequacy of the classical mechanism design paradigm.1 Together with several other results
in the literature, they motivated Wilson (1987)’s famous call for a “repeated weakening
of common knowledge assumptions”. In response, a robust approach to mechanism design
developed, where mechanisms are required to perform well for a large set of beliefs.2

In this paper we provide a systematic analysis of robust mechanism design under general
belief restrictions. We characterize the set of incentive compatible mechanisms, we identify
a novel and tractable design principle, and discuss several of its implications. These include
a robust version of revenue equivalence for non-Bayesian settings, as well as constructive
implementation results for environments that violate standard single-crossing and mono-
tonicity conditions. We also provide a notion of comovement between types and beliefs
that extends the idea of correlation to non-Bayesian settings, and we show that it enables
permissive implementation results, while at the same time avoiding the pitfalls of the clas-
sical Bayesian paradigm that we discussed above. Thus, on the one hand we provide design
suggestions and results that do not rely on the full distributional specificity of beliefs; on the
other, we show that the latter are the ultimate responsible of the ‘disturbing’ FSE results.

More specifically, we model agents’ beliefs as belief restrictions, B = ((Bθi)θi∈Θi)i∈I ,
where each type θi ∈ Θi of an agent is endowed with a set of beliefs about others’ types,
Bθi ⊆ ∆(Θ−i), that the designer regards as possible. This way, we accommodate as special
cases the classical Bayesian framework (where all such sets are singletons), the belief-free
setting of Bergemann and Morris (2005) (where Bθi = ∆(Θ−i) for all i and θi ∈ Θi), but also
the intermediate cases where the designer can rely on some, but not full, information about
agents’ beliefs. For instance, the designer may have information about agents’ beliefs over
some moment of the distributions of types, but not necessarily know the exact distribution.
The framework also accommodates restrictions motivated by behavioral economics research,
which cannot be cast within the standard paradigm, such as incomplete preferences a la
Bewley (2002), or models with belief distortions (e.g., Gagnon-Bartsch et al. (2021) and
Gagnon-Bartsch and Rosato (2024)).3 Within these settings, we say that a direct mechanism
is B-incentive compatible (B-IC) if truthful revelation is a mutual best-response, for all types
and for all beliefs in the belief restrictions. Thus, depending on the belief restrictions, B-IC
generalizes both belief-free (or ex-post) and Bayesian (or interim) incentive compatibility,
as well as intermediate notions of robustness.4

1For instance, Crémer and McLean (1988, p.1254): “Economic intuition and informal evidence (we know
of no way to test such a proposition) suggest that this result is counterfactual, and several explanations can
be suggested.” The influential critique of Neeman (2004) may also be ascribed to this view.

2This approach was put forward by Bergemann and Morris (2005, 2009a,b), who studied partial, full,
and virtual implementation in belief-free settings. The related literature is discussed in Section 6.

3The general framework to accommodate varying degrees of robustness was introduced by Ollár and
Penta (2017) to study how beliefs can be used to attain full implementation, taking incentive compatibility
as given. Here, in contrast, we tackle the more fundamental issue of incentive compatibility.

4In Section 2 we discuss several foundations for this notion, and the sense in which the restriction to
direct mechanisms and B-IC is without loss for our purposes (see Ennuschat and Penta, 2025). From a
methodological perspective, we depart from the now dominant envelope approach and revisit instead the
classical first-order approach (Rogerson, 1985; Jewitt, 1988). Carvajal and Ely (2013) also studied incentive
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For the sake of illustration, first consider the problem of implementing an allocation
rule, d : Θ → X, in a belief-free setting. As we show, this is possible if and only it is
attained by the canonical transfers: namely, the transfers that are pinned down by the
necessary first-order conditions for truthful revelation to be an ex-post equilibrium of the
direct mechanism (e.g., if d is the efficient allocation rule, then the canonical transfers
coincide with generalized VCG transfers). Under standard single-crossing conditions, the
ex-post payoff functions that they induce are concave at each truthful profile if and only if the
allocation rule is increasing, in which case truthful revelation is an ex-post equilibrium, and
incentive compatibility is attained in a belief-free sense (ex-post incentive compatibility, ep-
IC). But if either single-crossing or monotonicity fail, then the second-order conditions are
not met, and ep-IC is not possible. In those cases, suitable modifications of the transfers may
restore incentive compatibility, but only by relying on information about beliefs. Whether
this is possible, or how, depends on the information that is available to the designer.

Given some belief restrictions, B, suppose that a B-IC transfer scheme can be obtained
by an additive modification of the canonical transfers. Since, by construction, the canonical
transfers ensure that truthful revelation satisfies the first-order conditions in the ex-post
sense, so they do for all beliefs in B. Hence, if an additive modification of the canonical
transfers yields a B-IC transfer scheme, then it must be that the added term also satisfies
the first-order conditions, for all beliefs in the belief sets, while at the same time ensure
that the payoff functions they induce have the right curvature.

Theorems 1 and 2 in Section 3 show that this intuition is fully general: for any belief-
restrictions B = ((Bθi)θi∈Θi)i∈I , any B-IC transfer can be written as

ti(m) = t∗i (m) + βi(m),

where (letting m ∈ M = Θ denote a generic message profile in the direct mechanism)
t∗i : M → R denotes the canonical transfers, which by construction only depend on the
allocation rule and agents’ preferences, and βi : M → R is a belief-based term such that,
for all θi and bθi ∈ Bθi , it must satisfy two conditions: (i) Ebθi

[
∂βi
∂mi

(θi, θ−i)
]

= 0, and

(ii) Ebθi
[
∂2βi
∂2mi

(θi, θ−i)
]
≤ −Ebθi

[
∂2U∗i
∂2mi

(θi, θ−i)
]
(where U∗i (·) denotes the payoff function

induced by the canonical transfers). Furthermore, a slight strengthening of the latter con-
dition is also sufficient (Theorem 2). These results are further generalized by Theorem
3, which provides a tight characterization that highlights the role of belief-based terms in
overcoming failures of standard single-crossing and monotonicity conditions.

These results formalize a general principle, according to which designing B-IC transfer
schemes boils down to designing belief-based terms that satisfy conditions (i) and (ii) above.
The bite of these conditions depends on the richness of the belief sets, which determine the
set of suitable belief-based terms and, hence, the set of incentive compatible transfers. For

compatibility in settings where the envelope approach cannot be used, albeit only in Bayesian settings.

3



instance, if the belief sets are constant across a player’s types (what we call generalized inde-
pendence), then the only βi-terms that satisfy condition (i) do not affect agents’ incentives
to report truthfully, and hence B-IC is possible if and only if it is attained by the canonical
transfers (Corollary 1).5 In these cases, the information about beliefs cannot be used to
attain implementation when t∗ does not. Outside of these settings, however, belief-based
terms can greatly expand the possibility of implementation: As we show in Section 4, if
types and belief sets ‘comove’ in a precise sense, then implementation can be attained even
in settings that do not satisfy standard single-crossing and monotonicity conditions.

Specifically, in Section 4 we show that a weak responsive moment condition suffices to
make any allocation rule d : Θ → X incentive compatible, in any environment, via the
suitable design of a belief-based term (Proposition 1). Loosely speaking, this condition
requires that the designer knows how agents’ expectations of a moment of the opponents’
types moves, conditional on their own type, and that this is described by a function that
is nowhere constant. This result, which arises discontinuously as generalized independence
is lifted, is somewhat reminiscent of the full surplus extraction (FSE) results (Crémer and
McLean, 1985, 1988), which also arise discontinuously in Bayesian environments, when min-
imal degrees of correlation are introduced. Importantly, however, FSE does not generally
ensue in our setup. If the belief-restrictions are not Bayesian, even if any d can be imple-
mented under the responsive moment condition, there may still be bounds to the surplus
that can be extracted (Propositions 2 and 3). Information rents generally remain, and
their size depends on the joint properties of the allocation rule, agents’ preferences, and
the belief restrictions. Moreover, information rents shrink as the belief sets get finer, and
the designer relies on more information about agents’ beliefs (Prop. 5). At the extreme,
if B is a Bayesian setting with correlated types, then FSE obtains. In fact, under a novel
‘full rank’ condition, we provide the following ‘anything goes’ result (Proposition 4): in a
Bayesian setting that satisfies ‘full rank’, for any (d, t), there exist transfers t′ that are both
incentive compatible and that attain the same expected payments as t.

Jointly, these results highlight an important feature of our framework. Specifically, since
their very inception, FSE results have famously been received as disturbing (cf. footnote
1). In response, mechanism design has largely shied away from studying environments with
correlated or, in the terminology of Postlewaite and Schmeidler (1986), ‘non-exclusive infor-
mation’. But the economic relevance of these settings can hardly be underplayed, and their
analysis should not be put aside, merely due to the inadequacy of the classical theoretical
toolbox.6 Our results show that the belief-restrictions framework is capable of expressing

5Note that both belief-free settings (where Bθi = ∆(Θ−i) for all i and θi) and Bayesian settings with
independent types (where, for each i, all Bθi consist of the same singleton for all θi) are special cases of
generalized independence. In the latter case, Myerson’s (1981) revenue equivalence Theorem obtains from
Corollary 1 as a special case. In Section 5 we show that in fact, a robust version of revenue equivalence holds
whenever the belief restrictions are such that ∩θi∈ΘiBθi 6= ∅ for all i and θi (Corollary 6).

6Again, in the words of Crémer and McLean (1988): “[...] we should stress that in our opinion the
independence assumption should be used only with great caution [...]. It does enable the derivation of
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a meaningful notion of non-exclusive information, where we show that even a minimalist
notion of comovement between types and beliefs may serve as an additional tool to screen
types and attain implementation, while at the same time avoiding the pitfalls of FSE results,
which instead really hinge upon full and precise knowledge of the distribution that describes
agents’ beliefs. This framework may thus help mechanism design’s reappropriation of envi-
ronments with non-exclusive information, in which distilling intuitive and reliable economic
intuition has long appeared elusive, within the prevailing paradigm.

In Section 5 we discuss further implications of our main Theorems, and their connections
with known results in the literature. We also expand on other uses of belief-based terms,
including in environments with generalized independence (such as Bayesian settings with
independent types), where they cannot be used to improve on the canonical transfers’
ability to attain incentive compatibility, but where they may still be useful to pursue extra
desiderata, beyond incentive compatibility.7 Propositions 6 and 7, for instance, provide both
possibility and impossibility results for unique implementation via moment conditions, to
gain perspective on what kind of information is useful for the design of transfers for unique
implementation, as a function of the agents’ preferences and allocation rule. We also discuss
further methodological considerations. Theorem 4, in particular, provides a characterization
of the equilibrium payoffs that clarifies the connection between standard envelope formulae
and the belief-based terms at the center of our analysis, and to compare the relative merits
of the envelope approach and of the first-order approach that we pursued in this paper.
Section 6 discusses the related literature. Section 7 concludes.

2 Framework

Payoff Environments. The payoff environment represents agents’ information about
everyone’s preferences over the set of feasible allocations, and an allocation rule that maps
agents’ information to the space of allocations, and which represents the designer’s objective.
Formally, let I = {1, ..., n} denote the (finite) set of agents, X ⊆ Rm the set of allocations.
For each i ∈ I, we let Θi denote the set of player i’s payoff types, with typical element
θi, assumed private information. We adopt the standard notation for type profiles, and let
θ ∈ Θ := ×i∈IΘi, and for each i, we let θ−i ∈ Θ−i := ×j 6=iΘj . For each i, the valuation
function is denoted vi : X ×Θ→ R. Note that we allow vi to depend on the entire profile
of types, so as to allow the case of interdependent values. For each i, we let ti ∈ R denote

results that on the surface look more ‘realistic’ (there is no full extraction of the surplus). However, the
derivation of these results rely on a very ‘unrealistic’ assumption. Furthermore, [...] a small deviation from
this assumption can induce fundamentally different results.”.

7Several such ‘extra desiderata’ have been considered in the literature (such as budget balance
(d’Aspremont and Gérard-Varet, 1979), surplus extraction (Crémer and McLean, 1985, 1988 ), collusion-
proofness (Laffont and Martimort, 1997; Che and Kim, 2006; Safronov, 2018), stability (Mathevet, 2010;
Mathevet and Taneva, 2013; Healy and Mathevet, 2012; Sandholm, 2002, 2005, 2007), uniqueness (Ollár
and Penta, 2017, 2022, 2023), etc.). But, prior to this paper, the lack of a general characterization of the
incentive compatible transfers, these analyses have escaped a unified, systematic analysis.
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the monetary transfer to agent i, and assume that i’s utility for each (x, t) ∈ X ×Rn, given
type profile θ ∈ Θ, is equal to ui(x, t, , θ) = vi (x, θ) + ti. The model can thus accommodate
both private and interdependent values, as well as general externalities in consumption,
including the cases of pure private goods and public goods. An allocation rule is a function
d : Θ → X, which assigns, to each type profile, the allocation that the designer wishes to
implement. We maintain throughout the following assumptions:

Assumption 1 (Payoff Environment). ((Θi, vi)i∈I , d) is such that for all i ∈ I:
(i) Θi := [θi, θi] ⊂ R
(ii) vi is twice continuously differentiable
(iii) d is piecewise differentiable.8

Note that these assumptions require that d is only piecewise differentiable in types,
and hence the model also accommodates discontinuous allocation rules, which are common
for instance in auctions, bilateral trade and assignement problems. The main substantial
restriction is the one-dimensionality of the payoff types.9

Belief Restrictions. We model the maintained assumptions on agents’ beliefs via the
belief-restrictions we first introduced in Ollár and Penta (2017). We let ∆(Θ−i) denote the
set of probability measures over Θ−i, which represent beliefs about the opponents’ types.
A belief restriction is a collection of sets of possible beliefs, for each type of each agent,
over the set of type profiles of the other agents. Formally, a belief restriction is a collection
B = ((Bθi)θi∈Θi)i∈I , such that, Bθi ⊆ ∆ (Θ−i) is non-empty for each i and θi. Belief
restrictions can be used to accommodate varying degrees of robustness. For instance:

(i) The belief-free settings of the early literature on robust mechanism design (e.g.,
Bergemann and Morris (2005, 2009a,b), Penta (2015), Müller (2016), etc.) are obtained by
letting Bθi = ∆(Θ−i) for all i and θi ∈ Θi, and denoted by BBF = ((BBF

θi
)θi∈Θi)i∈I .

(ii) The standard Bayesian settings are obtained if the belief restrictions are commonly
known and each belief set is a singleton for every type: B�θi = {b�θi} for all i and θi ∈ Θi.
In this case, each player’s payoff type uniquely pins down the infinite belief hierarchy, as
in the interim formulation in a standard Harsányi type space. Further, in the special case
of a common prior type space, there exists p ∈ ∆(Θ) s.t., for each i and θi, p(·|θi) = b�θi ∈
∆(Θ−i). If, furthermore, such a common prior is independent across agents, then we also
have b�θi = b�θ′i

for all θi, θ′i ∈ Θi and for all i ∈ I.
(iii) Intermediate notions of robustness obtain whenever Bθi ⊂ ∆(Θ−i) for some θi,

but not all singletons. Special cases have been considered, for instance, to model that
8We say that f : S → R is piecewise differentiable on a closed and convex set S ⊂ Rn if there exist a

collection (Sk)k=1,...,K of pairwise disjoint convex sets such that ∪Kk=1Sk = S, and continuously differentiable
functions gk : S → R, k = 1 . . .K, such that f =

∑K

k=1 fk where, for each k = 1, ...,K, fk(x) = 1[x∈Sk] ·gk(x).
We say that f : S → Rm is piecewise differentiable if it is componentwise piecewise differentiable.

9It is well known that incentive compatibility is significantly more problematic outside of this domain,
as multidimensionality of types severaly limits its possibility (Jehiel and Moldovanu, 2001 and Jehiel et al.,
2006). This approach is extended to the multidimensional case in Ollár (2024).
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agents commonly know some moments of the distributions of the opponents’ types (common
knowledge of moment conditions, Ollár and Penta, 2017), or that the opponents’ types are
identically distributed (common belief in identicality, Ollár and Penta, 2023).

These are examples of special instances from the mechanism design literature, but the
framework is more general. We stress that since the focus here is on partial implementation
and incentive compatibility, the results in this paper do not require the belief restrictions
to be common knowledge among the agents: they depend only on the first-order beliefs.

Given belief restrictions B = ((Bθi)θi∈Θi)i∈I and B′ = ((B′θi)θi∈Θi)i∈I , we write B ⊆ B′

to denote that Bθi ⊆ B′θi for all i ∈ I and all θi ∈ Θi. If B ⊆ B′, then B imposes
stronger restrictions than B′, in that the designer can rule out more beliefs in the former
than in the latter. In this sense, the belief-free model BBF is minimal in the information
that the designer has, as any model B is such that B ⊆ BBF . At the opposite extreme, any
Bayesian setting B� is maximal, as no distinct belief restriction B is such that B ⊆ B�. Belief
restrictions Bid are an example of an intermediate robustness requirement, B� ⊆ Bid ⊆ BBF .

Mechanisms. A mechanism is a tuple M = ((Mi)i, g), where Mi denotes the set
of messages of player i, and g : M → X × Rn assigns to each profile of messages, m ∈
M := ×i∈IMi, an allocation and a profile of payments. In a direct mechanism agents
report their type (i.e., Mi = Θi for all i) and the allocation is chosen according to d (i.e.
g(m) = (d(m), t(m))). A direct mechanism therefore is completely pinned down by the
transfer scheme t = (ti)i∈I , where for each i ∈ I, ti : M → R specifies the transfer to agent
i for all profile of reportsm ∈M ≡ Θ. Each (direct) mechanism (d, t) induces an incomplete
information game with ex-post payoff functions U ti (m; θ) = vi(d(m), θ)+ti(m), which under
the maintained assumptions are bounded. We adopt the following notation: For any θi ∈ Θi,
b ∈ ∆ (Θ−i) and mi ∈ Mi, we let EbU ti (mi; θi) :=

∫
Θ−i U

t
i (mi, θ−i; θi, θ−i) db, and for any

f : Θ→ R, θi ∈ Θi and b ∈ Bθi , we let Eb[f (θi, θ−i)] :=
∫

Θ−i f (θi, θ−i) db.

2.1 Incentive Compatibility

Incentive compatibility requires that truthtelling be a mutual best response, for all beliefs
that are consistent with the belief restrictions B.

Definition 1. A direct mechanism (d, t) is B-incentive compatible (B-IC) if for all i ∈ I,
θi ∈ Θi, mi ∈Mi, EbU ti (mi; θi) ≤ EbU ti (θi; θi) for all b ∈ Bθi.

When d is clear from the context, we say that the transfer scheme t is B-IC.

Here we take this notion as given, but it is straightforward to show that if robust-
ness concerns are embedded within the equilibrium notion in a natural way, via a suitable
generalization of ex-post and Bayes-Nash equilibrium, then a standard revelation principle
obtains, given which the restriction to direct mechanisms and incentive compatibility is
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without loss.10 With respect to this approach to robustness, which is in complete analogy
with ex-post equilibrium in belief-free settings, as well as with Bewley (2002)’s model of
incomplete preferences under uncertainty, the notion of B-IC is without loss.

Alternatively, one could approach robustness by requiring implementation on all type
spaces consistent with the belief restrictions. From this perspective, it can be shown that
an allocation rule d : Θ → X is interim (or Bayesian) incentive compatible on all type
spaces consistent with the belief restrictions if and only if d is B-IC in the sense above (cf.
Ennuschat and Penta, 2025). Hence, as far as implementation of such allocation rules goes,
nothing would be gained by considering mechanisms that also elicit agents’ beliefs.11

In Bayesian environments, B-IC is equivalent to interim (or Bayesian) incentive com-
patibility (IIC). At the opposite extreme, in belief-free settings, it is equivalet to ex-post
incentive compatibility (ep-IC). For intermediate belief restrictions, B-IC is weaker than
ep-IC (since truthful revelation need not be optimal for all beliefs about Θ−i) but it is
stronger than IIC (in that it requires truthful revelation to be optimal for all beliefs in Bθi ,
not just for one). More generally: If B ⊆ B′, and (d, t) is B′-IC, then it is also B-IC.

2.2 The canonical transfers

For later reference, we recall the definition of the canonical transfers, t∗ = (t∗i (·))i∈I , which
are pinned-down by the first-order conditions for ep-IC. Formally, for each i and m,

t∗i (m) = −vi (d (m) ,m) +
∫ mi

θi

∂vi
∂θi

(d (si,m−i) , si,m−i) dsi. (1)

We will refer to (d, t∗) as the canonical direct mechanism, and let U∗i : M × Θ → R
denote the ex-post payoff function associated to it. For later reference, we provide some
well-known results about the canonical transfers:12

Lemma 1. (i) If (d, t) is ep-IC, then for each i there exists κi : M−i → R such that for
each ti(m) = t∗i (m) + κi(m−i).

10Formally, given an arbitrary mechanism M and belief restrictions B, a strategy profile (σi)i∈I ,
where σi : Θi → Mi for each i, is a B-equilibrium if, for all i, θi and b ∈ Bθi , σi(θi) ∈
argmaxmi∈Mi

∫
Θ−i

ui (mi, σ−i(θ−i); θi, θ−i) db. Ex-post and Bayes-Nash equilibrium obtain, respectively,
for the special cases of BBF and Bayesian belief restrictions. It is straightforward to show that a revelation
principle also holds in this case. That is: d is B-IC if and only if there exists a (not necessarily direct)
mechanismM = (Mi, gi)i∈I and a B-equilibrium σ ofM such that g(σ(θ)) = d(θ) for all θ ∈ Θ.

11This is not to say that all interesting mechanism design questions necessarily boil down to implementing
some d : Θ → X, and hence satisfy the ‘separability’ condition in Ennuschat and Penta (2025). Without
separability, the restriction to B-IC may be with loss, but those cases are beyond the scope of this paper.

12The ‘canonical transfers’, and the associated canonical direct mechanism (d, t∗), should not be confused
with the ‘canonical mechanism’, which traditionally refers to Maskin’s (non-direct) mechanism for full im-
plementation. Special instances of the canonical direct mechanism have appeared throughout the literature
on partial implementation, e.g. in the auction mechanisms of Myerson (1981), Dasgupta and Maskin (2000)
and Segal (2003), the pivot mechanisms of Milgrom (2004) and Jehiel and Lamy (2018), the public goods
mechanisms in Green and Laffont (1977), Laffont and Maskin (1980) and Jehiel and Moldovanu (2001).
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(ii) If valuations satisfy the ex-post Single-Crossing Condition (ep-SCC: ∂2vi/∂x∂θi > 0
for all i), then (d, t∗) is ep-IC if and only if d is increasing in each θi.

(iii) If d is increasing, then (d, t∗) is ep-IC if and only if ∂2vi/∂x∂θi ≥ 0 for all i.

Point (i) shows that the canonical transfers are essentially the only ones that achieve
ep-IC, if at all possible. The results in points (ii) and (iii) follow from the fact that, with
t∗ pinned-down by the first-order conditions for ep-IC, single-crossing and monotonicity
ensure that U∗i also satisfies the second-order conditions.

2.3 Leading Example and Preview of Results

Example 1 (Implementing a Policy under Opposing Interests). A government is deciding
on the quantity x ≥ 0 of spending in pollution reduction activities. Society consists of
two agents, and the government’s desired level of expenditure is d (θ) = K (θ1 + θ2), where
K > 0, and θi ∈ [0, 1] denotes the productivity of agent i, which is their private information.
Agents work in different sectors, with opposing preferences over pollution reduction, as a
function of their productivity: their valuation functions are v1 (θ, x) = θ1x and v2 (θ, x) =
−θ2x, respectively.13 Due to the agents’ opposing interests, the single-crossing and mono-
tonicity conditions from Lemma 1 fail in this setting, and hence implementation would be
impossible in a belief-free sense. To see this, note that the formula for the canonical trans-
fers (eq. (1)) in this example induces payoff functions U∗1 (m, θ) = θ1K (m1 +m2)−K 1

2m
2
1

and U∗2 (m, θ) = −θ2K (m1 +m2) + K 1
2m

2
2. Hence, while truthful revelation satisfies the

F.O.C. for both agents, since the allocation rule moves with θ2 in the opposite direction of
2’s marginal utility for x, U∗2 is convex in m2 and hence the S.O.C. fail for agent 2. The
canonical transfers therefore are not ep-IC.

Now suppose that the designer knows that both agents’ expect the opponent’s type, on
average, to be half of their own. But the actual distributions that describe their beliefs are
not known to the designer. Formally, B is such that Bθi = {b ∈ ∆(Θj) : Eb(θj) = θi/2}
for each i and θi. Under the canonical transfers, truthful revelation violates the necessary
S.O.C. also with respect to the interim payoffs, for all beliefs consistent with B, and hence
(d, t∗) is not B-IC either. But now consider these modified transfers for agent 2:

tmod2 (m) = t∗2 (m) + −K
(
m2

2 − 4m1m2
)

︸ ︷︷ ︸
“belief-based term”: β2(m)

, (2)

which induce ex-post payoffs Umod2 (m; θ) = U∗2 (m; θ) + βi(m). Note that the belief-based
term is such that, for each θ2, and for each b ∈ Bθ2 :

13Clearly, this policy is not efficient in this example. This may be due to political reasons that may lead
the government to favor a particular agenda, despite the opposite preferences of certain social groups, or
because the policy reflects environmental externalities that are not accounted for by agents’ preferences.
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Eb
[
∂β2
∂m2

(θ1, θ2)
]

= −K · Eb[(2θ2 − 4θ1)]︸ ︷︷ ︸
=0 under B

= 0. (3)

Furthermore, we also have Ebθ2
[
∂2β2
∂2m2

(θ)
]

= −2K, which implies Ebθi
[
∂2Umodi
∂2mi

(θ)
]

=
−K < 0. Hence, truthful revelation satisfies both the first- and second-order conditions,
and hence (d, tmod) is B-IC. �

Note that the transfers in (2) can be written as tmodi (m) = t∗i (m) + βi(m), where βi :
M → R is a belief-based term that satisfies Ebθi

[
∂βi
∂mi

(θi, θ−i)
]

= 0 for all θi and bθi ∈ Bθi .
Theorem 1 in Section 3.1 shows that this holds in general: in any envrionment, and for
any belief-restrictions B, any B-IC transfers must take this form.14 Theorem 2 in Section
3.2 shows that, in order to guarantee that the second-order conditions are satisfied, the
belief-based terms should also be such that Eb

[
∂2U∗i
∂2mi

(θi, θ−i)
]
< −Eb

[
∂2βi
∂2mi

(θi, θ−i)
]
for

all θi and b ∈ Bθi ⊆ ∆ (Θ−i). Theorem 3 in Section 3.3 provides a characterization that
highlights the role of belief-based terms in overcoming failures of standard single-crossing
and monotonicity conditions.

Overall, these results highlight a general design principle, that reduces the design of
incentive compatible transfers to the design of suitably restricted belief-based terms. These
results serve several purposes. They guide the design of transfers to overcome violations
of standard single-crossing and monotonicity conditions, as we illustrated in Example 1.
They also enable a characterization of the set of B-IC transfers, which is useful to pursue
other questions or objectives beyond incentive compatibility. For instance, in the setting of
Example 1, in Section 3.2 we characterize the set of B-IC transfer schemes, we identify those
that minimize the cost of implementation for the designer, as well as those that attain unique
implementation. We also show that, in this setting, incentive compatibility always grants
informational rents to the agents. Hence, although these belief restrictions significantly
expand the possibility of implementation, in a setting where standard single-crossing and
monotonicity conditions do not hold, information rents still remain, and there are bounds
on the extent to which the designer can extract surplus from the agents.15

These insights are generalized in several directions by the results in Section 4. In par-
ticular, we show that under a weak property of ‘comovement’ between types and beliefs,
any allocation rule can be implemented (Proposition 1). Yet, unless the environment is
Bayesian, informational rents generally remain (Proposition 2-4), and they get larger as the
robustness requirements get stronger (Propoposition 5).

14In Section 5.1 we discuss several implications of this result, including a robust version of the revenue
equivalence theorem, which we obtain under a notion of generalized independence for non-Bayesian settings.

15This would not be the case in a Bayesian setting. For instance, if the designer knows that each type θi’s
beliefs about the opponent is that their types are distributed according to a uniform over [0, θi] (which is
consistent with the belief restrictions above), then not only could d be implemented, but the transfers could
be adjusted so as to extract the full surplus from the agents (Proposition 4).
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3 Main Results

In this section we provide the main results of our paper. Theorem 1 in Section 3.1 focuses
on the necessary implications of B-incentive compatibility; Theorem 2 in Section 3.2 also
provides sufficient conditions in environments with differentiability. Theorem 3 provides a
full characterization in general environments. Throughout this Section, we illustrate the
applicability of these results within our running Example. In Section 4 we apply them to
obtain permissive implementation results in general environments (with or without single-
crossing and monotonicity), and we formalize the sense in which our framework enables
us to capture a meaningful notion of ‘comovement’ of beliefs and types that is useful for
implementation, but without incurring into the pitfalls of ‘full-surplus extraction’ results.

3.1 B-IC Transfers: Necessity

In this section we derive necessary conditions for B-IC transfers, for general belief restric-
tions. Our results are based on a generalization of the classical first-order approach, that
identifies necessary conditions for local incentive compatibility constraints (cf. Rogerson,
1985; Jewitt, 1988). Compared to the classical results, the main difference is that, instead
of focusing on the ex-post payoff function, we take an interim perspective and consider the
expected payoff function of every type θi, for all beliefs in the set Bθi .

Theorem 1 (B-IC Transfers (Necessity)). Under the maintained assumptions, if t is piece-
wise differentiable and (d, t) is B-IC, then for all i, and for all m ∈M ≡ Θ,

ti (m) = t∗i (m) + βi (m) , (4)

where βi : M → R is piecewise differentiable; and it is such that for all θi and for all beliefs
b ∈ Bθi with a piecewise differentiable pdf, at all points of differentiability,

∂Eb [βi (mi, θ−i)]
∂mi

∣∣∣∣
mi=θi

= 0. (5)

Hence, in order to design a B-IC transfer scheme, it is without loss to restrict atten-
tion to additive modifications of the canonical transfers, provided that the added terms
satisfy the expectation condition in Equation (5). We refer to the functions βi : M → R
that satisfy Equation (5) as the belief-based terms that are consistent with B (or simply
belief-based terms, when B is clear from the context). In hindsight, the result may perhaps
appear straightforward for the special case where everything is differentiable (see the intro-
duction). But it remains true under the general maintained assumptions of the previous
section. Notwithstanding the relative simplicity of the result, Theorem 1 has a rich set of
implications, for both negative and positive results. First, consider the following definition:

Definition 2. B satisfies generalized independence if the belief sets are constant across
types: for all i ∈ I, Bθi = Bθ′i for all θi, θ′i ∈ Θi.
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Note that this condition holds in any of the following special cases: belief-free settings;
Bayesian models with independent types; the Bid-restrictions for common belief in identi-
cality from Ollár and Penta (2023). With this, Theorem 1 implies the following:

Corollary 1. Fix (v, d). Assume that B satisfies generalized indepence. If there exist a
B-IC transfer scheme t, then t∗ is B-IC.

In words, under generalized independence, an allocation rule is implementable if and
only if the direct canonical mechanism is B-IC.16 Hence, unlike in our leading example, the
information about beliefs in these settings cannot be used to establish incentive compat-
ibility when the canonical transfers fail it. Intuitively, if all types of an agent share the
same belief sets, beliefs are not helpful to screen types in a robust way, beyond what can be
achieved based on the ex-post payoffs. Further implications of Theorem 1 will be discussed
in Section 5, where we also present a robust revenue equivalence result that holds under a
weaker notion of generalized independence.

3.2 Incentive Compatible Transfers in the Differentiable Case

By design, the transfers that satisfy the conditions in Theorem 1 are such that truthful-
revelation satisfies the first-order conditions of the interim payoff functions, for all beliefs
consistent with the belief restrictions. Fully understanding incentive compatibility however
also requires ensuring that the payoff functions have the right curvature. This is typically
what single-crossing and monotonicity conditions do. In the absence of these conditions, the
next result shows how the belief-based terms can be used to induce concavity of the payoff
functions in settings with differentiability. This assumption will be relaxed in Theorem 3,
which provides a general characterization that highlights the role that belief-based terms
play in overcoming failures of standard single-crossing and monotonicity conditions.

Theorem 2 (Conditions under Differentiability). Assume that vi, ti, d are all twice differ-
entiable, and for each i, let βi := ti − t∗i .

Necessity: Transfers t are B-IC only if for all i, θi and for all b ∈ Bθi
(i) Eb[∂iβi (θi, θ−i)] = 0 and
(ii) there exists an open neighborhood of θi, Nθi such that for all mi ∈ Nθi:

Eb[∂2
iiU
∗
i (mi, θ−i; θi, θ−i)] ≤ −Eb[∂2

iiβi (mi, θ−i)]. (6)

Sufficiency:: Transfers t are B-IC if for all i, θi and for all b ∈ Bθi, Condition (i)
holds and Inequality (6) holds for all mi ∈Mi.

16This result generalizes the first point of Lemma 1, which obtains from this Corollary for the special case
of belief-free restrictions. It also generalizes Theorem 1 in Ollár and Penta (2023), which only referred to
the special case of Bid-restrictions. These and other related results will be further discussed in Section 5.1.
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Condition (i) states the necessary condition from Theorem 1, for the differentiable case;
Condition (ii) states the necessary second-order condition instead, which relates the curva-
ture of the payoff function of the canonical direct mechanism to the belief-based term. If
they hold globally, then these conditions are also sufficient.

In its simplicity, Theorem 2 distills a general design principle. To see this, note that the
canonical transfers are B-IC if the term on the left-hand side of (6) is less than zero. When
this is not the case, the belief-based term can be used to relax this constraint: if belief-based
terms exist that satisfy Condition (i), and that are sufficiently concave so as to make (6)
hold for all mi, then B-IC can be attained. The idea therefore is to identify sufficiently
concave belief-based terms, subject to Condition (i) being satisfied. This is useful both to
recover incentive compatibility when the canonical transfers do not achieve it (like we did,
for instance, in Ex. 1), but also to identify the limits of B-IC, as we illustrate next:

Example 2 (Ex. 1, continued). To characterize the set of B-IC transfers, under belief
restrictions B s.t. Bθi = {b ∈ ∆(Θj) : Eb(θj) = θi/2} for all θi and i, first we identify the
set of belief-based terms that satisfy the necessary condition in part 1 of Theorem 2. (We
maintain in this example that the lowest type of each agent always pays 0.) In this setting,
βi : M → R satisfies such condition if and only if ∂iβi (mi,mj) = (mi − 2mj)Hi (mi) where
Hi is a real function on Mi ≡ Θi (see the Appendix). Hence, belief-based terms in this
setting must necessarily take the following form:

βi(m) =
∫ mi

0
(s− 2mj)Hi(s)ds

Notice that, since for each θi and b ∈ Bθi we have Eb[θj ] = θi/2 the following simplification
occurs for all such beliefs:

∂2
iiEb[βi (θ1, θ2)] = Hi(θi) +

(
θi − 2Eb[θj |θi]

)
H ′i(θi) = Hi(θi)

Given this, for agent 1 part 2 of Theorem 2 holds if and only if, for all beliefs consistent
with the belief-restrictions, −K+∂2

11Eb[β1 (θ1, θ2)] ≤ 0. Exploiting the condition above, this
simplifies to H1(θ1) ≤ K for all θ1. Similarly, for agent 2 we obtain H2 (θ2) ≤ −K for all
θ2. Hence, a transfer scheme is B-IC if and only if it takes the form

t1 (m1,m2) = −K2 m
2
1 +

∫ m1

0
(s− 2m2)H1 (s) ds, and

t2 (m1,m2) = K

2 m
2
2 +

∫ m2

0
(s− 2m1)H2 (s) ds,

subject to the restriction on the Hi functions above. Exploiting again the fact that, for
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each θi and b ∈ Bθi , Eb[θj ] = θi/2, the expected transfers at the truth-telling profile are:

Eb[t1 (θ) |θ1] = −K2 θ
2
1 +

∫ θ1

0
(s− θ1)H1 (s) ds, and

Eb[t2 (θ) |θ2] = K

2 θ
2
2 +

∫ θ2

0
(s− θ2)H2 (s) ds,

which are minimized by setting each Hi(θi) at the corresponding upper bound, that is
H1 ≡ K and H2 ≡ −K. The resulting transfers, tCmin1 (m1,m2) = −2Km2m1, and
tCmin2 (m1,m2) = 2Km1m2, therefore attain the lowest expected transfers to each agent
pointwise, for each type realization θ ∈ Θ and regardless of agents’ true beliefs within Bθi .

If, instead of cost-minimization, the designer wished to achieve unique implementa-
tion (which is not attained by tCmin), then the H-terms should be chosen in order to
ensure weak strategic externalities (Ollár and Penta, 2023, 2025). Within the B-IC con-
straints, these are minimized by setting H1 ≡ 0 and H2 ≡ −2K. The resulting transfers,
tunique1 (m1,m2) = −K

2 m
2
1, and t

unique
2 (m1,m2) = −K

2 m
2
2 + 4Km1m2, induce truth-telling

as the unique strategy that survives two rounds of dominance under the belief restrictions.
But setting H1 ≡ 0 H2 ≡ −K − ε for some arbitrarily small ε > 0 ensures both uniqueness
and implementation costs that are arbitrarily close to the minimal ones. �

The insights in this example will be generalized in several directions by the results in
Section 4. In particular, we will show that under a weak property of ‘comovement’ between
types and beliefs, then any allocation rule can be implemented. Yet, unless the environment
is Bayesian, information rents in general remain, just as in the example above.

3.3 The general case: A Full Characterization

We provide next a characterization of the B-IC transfers in general environments, that
highlights the role that belief-based terms may play in overcoming failures of standard
single-crossing and monotonicity conditions, as it was the case in the previous example.

Theorem 3 (B-IC: Characterization). Under the maintained assumptions of Theorem 1,
for each i, let βi := t∗i − ti. Then, (d, t) is B-IC if and only if for all i, θi, b ∈ Bθi and mi:

Eb
[ ∫ θi

mi

(
∂vi

∂θi
(d (s, θ−i) , s, θ−i)− ∂vi

∂θi
(d (mi, θ−i) , s, θ−i)

)
ds

]
≥ Eb

[
βi (mi, θ−i)−βi (θ)

]
.

To understand this result, let us first consider the belief-free case, where B-IC coincides
with ep-IC. First, as this condition must hold for all beliefs, it must also hold in the ex-
post sense, and hence we can just focus on the terms inside the square brackets. Second, as
discussed, in belief-free settings the necessary condition in Theorem 1 implies that the belief-
based terms are constant in own message, and hence the right-hand side of the conditions
in Theorem 3 are equal to zero. Thus, for belief-free settings, the following holds:
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Corollary 2 (ep-IC and ep-SCM). Under the maintained assumptions of Theorem 1, ,
(d, t∗) is ep-IC if and only if for all θi, θ′i and for all θ−i:17

[
∂vi
∂θi

(
d
(
θ′i, θ−i

)
, θi, θ−i

)
− ∂vi
∂θi

(d (θi, θ−i) , θi, θ−i)
]
· (θ′i − θi) ≥ 0.

This condition entails joint restrictions on the single-crossing properties of the valuation
functions, and on the monotonicity of the allocation rule. The known results in Lemma
1 (points (ii) and (iii)), in particular, follow immediately from this Corollary. For these
reasons, we refer to this condition as ex-post Single-Crossing and Monotonicity (ep-SCM).

Analogously, in a Bayesian setting with independent types, the same logic implies that
IIC is possible if and only if a suitable interim-SCM condition is satisfied:

Corollary 3 (IIC with Independent Types). Let B� be a Bayesian environment with in-
dependent types, and let b�i ∈ ∆(Θ−i) denote agent i’s beliefs, regardless of his type. Then,
under the maintained assumptions of Theorem 1, an IIC transfer scheme exists if and only
if for all i, and for almost all pairs of θi, θ′i,

Eb
�
i

[
∂vi
∂θi

(
d
(
θ′i, θ−i

)
, θi, θ−i

)
− ∂vi
∂θi

(d (θi, θ−i) , θi, θ−i)
]
· (θ′i − θi) ≥ 0.

Corollaries 2 and 3 provide single-crossing and monotonicity conditions that are ‘stan-
dard’ in the sense that overall they prescribe agents’ marginal valuations and allocations to
increase with each agent’s type (either in the ex-post sense, or ‘in expectation’ with respect
to b�). Compared to these, the condition in Theorem 3 is more relaxed in the sense that,
if the belief restrictions admit non-trivial belief-based terms, then they may be used to
‘fill’ what the environment lacks in terms of the SCM conditions on the left-hand side, by
relaxing the constraints on the right-hand sides of the inequality.

The belief-based terms can thus be seen as additional tools to shape agents’ incentives,
when standard SCM conditions are not met. The extent to which this is possible depends on
the flexibility of the belief-based terms that are available to the designer, depending on the
belief-restrictions. As we discussed, these are minimal in settings in which the belief sets do
not vary with the type (as in belief-free settings, or in Bayesian settings with independent
types, etc.), but they get larger in other cases, and more so as the belief sets get smaller.

4 Comovement of Types and Beliefs

The condition in Theorem 3 entails a certain discontinuity between settings that satisfy
generalized independence (Def. 2), and those that do not. In the former, the only available
belief-based terms are constant in mi (cf. Corollary 6.(i) in Section 5.1.4), and hence they

17This Corollary generalizes known results on single-crossing and monotonicity conditions to our setting,
which allows for not-everywhere differentiable allocation rules.
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cannot be used to make up for failures of the SCM conditions, since the right-hand side
of the condition in Theorem 3 is zero. But as soon as beliefs vary with agents’ types, the
possibility of using belief-based terms to recover incentive compatibility suddenly expands.

Example 3 (Ex.1, continued: Comovement of types and belief-based terms ). Consider
the setting of Ex. 1, and replace the belief restrictions with the following formulation:
Bθi = {b ∈ ∆(Θj) : Eb (θj) = γ θi2 + (1− γ)1

2}, where γ ∈ [0, 1] is a fixed parameter, known
to the designer, that captures the degree of comovement between agents’ beliefs and their
types: for γ = 1 we obtain the baseline model from Ex. 1; for γ = 0 instead the belief
restrictions satisfy generalized independence. Since the payoff environment is the same as
in Ex. 1, ep-IC is still impossible. In fact, the canonical transfers in this setting are not
B-IC either, for any γ, and Corollary 1 and Theorem 3 jointly imply that no transfers are
B-IC when γ = 0. Now consider the following transfers:

tmod2 (m) = t∗2 (m)−A
(
γm2

2/2 + (1− γ)m2
2 −m1m2

)
. (7)

Under these belief restrictions, truthful revelation satisfies the first-order conditions,
and ∂2Umod2 (m;θ)

∂2m2
= K −Aγ/2 . Hence, m2 = θ2 is optimal for agent 2 whenever A > 2K/γ,

and hence B-IC is possible for any γ ∈ (0, 1]: an arbitrarily small level of comovement is
enough to recover incentive compatibility via the design of a suitable belief-based term. �.

The insight from this example is very general, and goes beyond private values. It
extends to a large class of belief restrictions, regardless of the valuation functions and of
the allocation rule. The following property of the belief restrictions is key:

Definition 3. We say that B admits a responsive moment condition if for each i there exist
Li : Θ−i → R and fi : Θi → R s.t. for all θi and b ∈ Bθi, EbLi (θ−i) = fi (θi) where fi is
cont. diff. and f ′i is bounded away from 0.

If, furthermore, B is such that, for each i and θi, Bθi consists of all the beliefs b ∈
∆(Θ−i) such that EbLi (θ−i) = fi (θi), then we say that B is maximal with respect to the
moment condition (Li, fi)i∈I .

In words, B admits a moment condition if, for every i, there exists a function of the
opponents’ types whose expectation given θi is known to the designer (i.e., for each θi, it is
the same for all beliefs in Bθi). If such expectations are strictly monotonic in θi, then we
say that the moment condition is responsive.

Moment conditions can be seen as pieces of information that the designer may have
about agents’ beliefs. In belief-free settings, for instance, only trivial moment conditions
(where all Li and fi are constant) satisfy the restrictions above, and hence the designer has
effectively no information about beliefs. At the oppositve extreme, in a Bayesian setting,
for any Li there is a fi such that Eb�iLi (θ−i) = fi (θi) (albeit with f ′i = 0 if types are

16



independent, not necessarily otherwise). More broadly, the stricter the belief restrictions,
the larger the set of admissible moment conditions, and hence the more information the
designer has about agents’ beliefs. The case when B is maximal with respect to some
(Li, fi)i∈I represents the idea that the specific moment condition is essentially the only
information about beliefs that the designer can (or is willing to) rely on.

Proposition 1. Fix v, and let the belief restrictions admit a responsive moment condition.
Then, for any d, there exist transfers t such that (d, t) is B-IC.

Hence, as long as the belief restrictions admit a responsive moment condition, then
any allocation rule can be made B-IC by some t. (In Example 3, Li(θ−i) = θj , and
fi(θi) = γθi+(1−γ)

2 , which satisfies the condition of the proposition if and only if γ > 0.)

The discontinuity we illustrated with Ex.3 is reminiscent of another well-known discon-
tinuity, between Bayesian settings with independent and correlated types, namely Crémer
and McLean (1985, 1988) full-surplus extraction (FSE) results.18 But, as the next two
propositions show, FSE need not obtain in these settings: Even if the designer’s informa-
tion about beliefs is enough to achieve the very permissive result of Proposition 1, there are
bounds to the incentive compatible transfers, and information rents typically remain.

Proposition 2. Consider a differentiable (v, d) and a B that is maximal with respect to
a responsive moment condition (Li, fi)i∈I . Then, if (ti)i∈I is a B-IC transfer scheme, for
each i there exist a function Hi : Mi → R such that ti can be decomposed as follows:

ti (m) = t∗i (m) +
∫ mi

θi

(Li (m−i)− fi (s))Hi (s) ds+ τi (m−i) .

Moreover, there exists a continuous lower bound Ki : Θi → R such that, for any B-IC
transfer scheme, Eb

[∫ θi
θi

(Li (θ−i)− fi (s))Hi (s) ds
]
≥ Ki (θi) for all θi and b ∈ Bθi.

For the next proposition, we say that a function g : Θ → R is Li-linear if it can be
written in the form g (θ) = δ1 (θi)Li (θ−i)+δ2 (θi). Also, a mechanism (d, t) is B-individually
rational (B-IR) if, for each i and θi, EbU ti (θi; θi) ≥ 0 for all b ∈ Bθi .19 Finally, we say that
a mechanism extracts the full surplus if the individual rationality constraints hold with
equality for all i, θi, and b ∈ Bθi
Proposition 3. Fix v and d, and let B be maximal with respect to a responsive moment
condition (Li, fi)i∈I . Unless for all i, ∂vi

∂θi
(d (θ) , θ) is Li-linear, no transfers t can extract

the full surplus.
18In Bayesian settings, Crémer and McLean (1985, 1988) first studied FSE with finite types. McAfee and

Reny (1992) extended the result to a continuum and to general mechanism design problems. Their condition
does not always ensure exact FSE, but it characterizes almost FSE, in the sense that for any ε > 0, there
is a mechanism in which agents’ surplus in the truthful equilibrium is less than ε. Chen and Xiong (2013)
further showed that this form of FSE holds generically in the space of Bayesian models. More recent results
are provided by Hu et al. (2021) and Lopomo et al. (2022), who consider distinct approaches to FSE.

19Recall that, for any b ∈ ∆ (Θ−i), we defined EbU ti (mi; θi) :=
∫

Θ−i
U ti (mi, θ−i; θi, θ−i) db. In this section

we set the outside option to 0 for simplicity, but the extension to type-dependent outside options is easy.
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We conclude this section with a novel sufficient condition for FSE. Our condition is
stronger than McAfee and Reny’s (1992), but closer in spirit to Crémer and McLean’s
(1988) full rank condition. In contrast with the work cited in footnote 18, our condition
ensures an exact FSE result (cf. Proposition 4).Most importantly, however, and the main
reason why we provide it, is that it highlights more clearly the gap between FSE and the
‘responsive moment condition’ above:

Definition 4. Let B� be a Bayesian setting (i.e., B�θi = {b�θi} for each i and θi).

(i) We say that B� is differentiable if for each i, and for any differentiable G : Θ → R,
the function fi : Θi → R, defined as fi(θi) = Eb

�
θi [G (θi, θ−i)], is differentiable.

(ii) We say that B� satisfies the full rank condition if, for each i, it holds that for any
differentiable gi : Θi → R, there exists a Borel-measurable function κi : Θ−i → R such
that

∫
Θ−i κi (θ−i) db�θi = gi (θi) for all θi.

Next we show that in Bayesian settings that satisfy these conditions, not only can any
allocation rule be made IIC, as in Proposition 1, but also the transfers can be chosen so as
to match any target for the equilibrium expected payments:

Proposition 4. Fix v, and let B� be a differentiable Bayesian setting that satisfies the full
rank condition. Then, for any d and for any differentiable t, there exist transfers t′ such
that: (i) (d, t′) is IIC; and (ii) for each i and θi, E

b�θi [t′i(θi, θ−i)] = Eb
�
θi [ti(θi, θ−i)].

These results together draw a line between the ‘any d goes’ result for general belief
restrictions (Prop. 1), and the ‘anything goes’ result for Bayesian settings (Prop. 4 below):
while, in the latter, any interim payment functions are achievable, the extra robustness
requirement in non-Bayesian settings does restrict the possible payments. We next illustrate
the results of Propositions 1-4, and the key logic of their proofs, within our running example:

Example 4 (Ex. 3, continued). Consider again the setting of Ex. 3, with belief restritions
Bθi = {b ∈ ∆(Θj) : Eb[θj ] = γ θi2 + (1− γ)1

2}. For simplicity, let us consider the case where
γ ∈ [0, 1/2]. As we already discussed, the conditions of Prop. 1 hold, and B-IC is attained
by the transfers in eq. (7), as long as A > 2K/γ and for any γ > 0. Figure 1 plots the
range of expected payments (as a function of θi, for any b ∈ Bθi) that are associated with
B-IC transfers and the condition that the lowest type pays 0.

If, however, the designer’s model consists of a Bayesian setting that also satisfies the
conditions of Prop. 4, then any expected payments can be induced in an incentive com-
patible way. For instance, let B� be such that, for each θi, b�θi consists of a mixture of
two independent uniform distributions, over [0, θi] and over [0, 1], respectively with weights
γ and (1 − γ). Then, mimicking the proof of Prop. 4, to obtain full surplus extraction
we can take our ‘target’ transfers to be ti(θ) = −vi(d(θ), θ). With this, we can define the
expected difference gi(θi) =

∫
Θj

(
ti − t̂i

)
dbθi , where t̂i is a suitable IIC transfer. For agent
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Figure 1: Possible Expected Payments to the Agents in Ex. 3: B-IC under ti (0, θ−i) ≡ 0. The
thick black line, in both figures, is the expected canonical transfer to each agent (feasible for agent 1 but
infeasible for agent 2). The gray area represents the possible interim payments under partial implementation
(resulting from possibly different transfer schemes, with the restriction that the lowest type pays zero).

1, the canonical transfers are IIC, and hence they can be used in the role of t̂1. One has
to solve the integral equation

∫
Θ2
κ1 (θ2) dbθ1 = −K

[
γ
θ2
1
2 + (1− γ) θ12

]
for κ1(·). The solu-

tion is κ1(θ2) = K(1+γ)
γ [θ2(2 + γ) + (1− γ)] if θ2 ∈ [0, γ] and κ1(θ2) = 0 otherwise. (See

Appendix B for more on the solution of this class of integral equations.) For agent 2, we
can take t̂2(θ) = t∗2 (θ)−A

(
γθ2

2/2+(1−γ)θ2
2 − θ1θ2

)
from eq. (7), which is IIC for A > 2K/γ.

The integral equation
∫
Θ1
κ2 (θ1) dbθ2 = θ2

2
2

[
K(1 + γ)− γA2

]
+K(1− γ) θ22 , solved for κ2(·),

yields κ2(θ1) = − (1−γ)
γ

[
θ1

(2+γ)
γ

(
K(1 + γ)− γA2

)
+ (1− γ)K

]
if θ1 ∈ [0, γ] and κ2(θ1) = 0

otherwise. The resulting transfers, t′i = t̂i + κi, preserve IIC and at the same time extract
all the surplus from both agents. In fact, as per Proposition 4, any other differentiable ti
payments can be matched by constructing transfers this way. �

Hence, information rents remain, even within models where agents’ beliefs might play a
role in facilitating the implementation task. If the belief-restrictions are not Bayesian, even
if any d can be implemented under the condition of Prop. 1, there may still be bounds to
the surplus that can be extracted. The size of the information rents depends on the joint
properties of the allocation rule, agents’ preferences, and the belief restrictions, and they
get larger as the robustness requirement strenghtens (i.e., as the belief sets get larger).

Formally, for any (v, d), and for any belief restrictions B, let F (B) denote the set of
transfer schemes that are both B-IC and B-individually rational, and let V (B) denote the
set of all triplets (i, θi, b) such that i ∈ I, θi ∈ Θi and b ∈ Bθi . Then, define:

τ(B) := inf
t∈F (B)

sup
(i,θi,b)∈V(B)

EbU ti (θi; θi)
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if F (B) is non-empty, and τ(B) := ∞ otherwise. With this, note that FSE obtains if and
only if there exists t ∈ F (B) such that the constraint for B-IR holds with equality for all
types of all agents, i.e. if τ(B) = 0. When τ(B) is finite but positive, in contrast, in
each incentive compatible and individually rational mechanism there is at least some type
that enjoys strictly positive rents. This bound to the designer’s ability to extract surplus,
however, decreases monotonically as belief restrictions get finer. At the extreme, if B is a
Bayesian setting with correlated types, then FSE obtains (cf. Prop. 4). Formally:

Proposition 5. For any (v, d), and for any B: B′ ⊆ B implies τ(B′) ≤ τ(B). Moreover,
if τ(BBF ) > 0, then there exist B and B′ such that:20 (i) B admits a responsive moment
condition (Def. 3) and is such that 0 < τ(B) <∞; (ii) B′ ⊂ B and is such that τ(B′) = 0.

The weak monotonicity of τ(·) with respect to set inclusion follows directly from the
definition of B-IC. The rest of the proposition states that – unless the environment is trivial
– there always exist belief restrictions B in which FSE is not possible, despite B already
granting maximal flexibility in implementing any allocation rule via belief-based terms. FSE
can be achieved, but only by relying on extra information B′ ⊂ B about beliefs. Hence, in
essentially any environment beliefs can play a meaningful role to expand the possibility of
implementation, without entailing FSE.

5 Other Results, Observations and Applications

5.1 Further Implications of Theorem 1

Theorem 1 implies that identifying the set of belief-based terms is crucial to understand
the limits of incentive compatibility. For some belief-restrictions, identifying this set, or
some of its key properties, is relatively straightforward and delivers immediately interesting
insights on the incentive compatible transfers. We discuss a few cases:

5.1.1 Belief-Free Settings

In belief-free settings, BBF , the condition in (5) is required to hold for all beliefs about Θ−i,
including degenerate ones, which is only possible if βi is constant in mi. Hence, a transfer
scheme is BBF -IC (that is, ep-IC) only if it coincides with the canonical transfers, up to a
function that is constant in agents’ own reports. Thus, when all beliefs are allowed, there
are no non-trivial belief-based terms. In this sense, the classical result in point (i) of Lemma
1 obtains as a special case of Theorem 1:

Corollary 4. If t is BBF -IC, then, ∀i, βi (m) := ti(m)− t∗i (m) is constant in mi.
20Note that τ(BBF ) = 0 only holds in trivial environments, in which each vi is constant in own type.
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5.1.2 Bayesian Settings

In a Bayesian setting, B�, for any agent i and for any function Gi : M → R that is Lebesgue-
integrable with respect to mi, the term fi (θi) := Eb

�
θiGi (θi, θ−i) is uniquely pinned down

by the collection (b�θi)θi∈Θi of agent i’s beliefs. Hence, letting

βi (m) :=
∫ mi

θi

Gi (s,m−i) ds−
∫ mi

θi

fi (s) ds,

we obtain a belief-based term, since βi thus defined satisfies the condition in eq. (5).
In this sense, Bayesian settings are maximal in the set of belief-based terms they admit,

since they can be generated starting from any arbitrary Gi : M → R. This is in stark con-
trast with the belief-free case, which as seen admits no non-trivial belief-based terms, and
hence essentially no incentive compatible transfers other than the canonical ones. Here, the
richness of belief-based terms gives rise to a multitude of IIC transfers, which may be used
to attain different objectives beyond incentive compatibility. The results in the previous
section showed how this richness, and the associated freedom to choose such functions, can
be used to obtain full-surplus extraction. Other results in the literature have also exploited
this richness, to pursue for instance budget balance, surplus extraction, supermodularity,
contractiveness, or uniqueness (see references in footnote 7). By identifying the key con-
dition on the belief-based terms, Theorem 1 unifies these results and lays the ground to a
systematic understanding of the possibilities, and particularly the limits, of IIC.

5.1.3 Independent Types

In Bayesian settings with independent types, the belief sets not only are all singletons, but
also contain the same distribution for all types of a player: for each i, B�θi = {b�i } for all
θi ∈ Θi. Then, the condition in eq. (5) implies that, for any belief-based term, its expected
value at the truthful profile is constant in the agent’s own type. This is stated formally in
point 1 of the next Corollary. In turn, it also implies the following two points:

Corollary 5. Let B� be a Bayesian environment with independent types, and let b�i ∈
∆(Θ−i) denote agent i’s beliefs, regardless of his type. Then:
(i) If ti is B�-IC, then ∃κi ∈ R s.t. Eb�i βi (mi, θ−i) = κi for all mi.
(ii) If ti is B�-IC, ∃κi ∈ R s.t. Eb�i ti (θi, θ−i) = Eb�i t∗i (θi, θ−i) + κi for all θi.
(iii) (d, t) is B�-IC for some t if and only if (d, t∗) is B�-IC.

Point (ii) is Myerson’s (1981) revenue equivalence, here stated for general environments
with interdependent values and independently distributed types. Point (iii) says that an
allocation rule is partially implementable in interim (or Bayes-Nash) equilibrium if and only
if it is implemented by t∗. But even with independence, and notwithstanding the payoff-
equivalence of all IIC transfers, there may still be a value in characterizing the full set, if
the designer has other objectives beyond mere incentive compatibility.
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Example 5 (Independence and Multiplicity). Consider two agents, with sets of types Θi =
[0, 1] and valuation functions vi (x, θ) = (θi + γθj)x, for each i and j 6= i, where x ≥ 0
denotes the quantity of a public good, and γ is a parameter of preference interdependence.
With cost of production c(x) = x2/2, the efficient allocation is d (θ) = (1 + γ) (θ1 + θ2). In
this case, the canonical transfers coincide with the generalized VCG mechanism.

Assume that types are i.i.d. draws from the uniform distribution over [0, 1]. Then,
Corollary 5 implies that IIC is possible if and only if the VCG transfers are IIC. In turn,
Corollary 3 ensures that this is the case if and only if γ ≥ −1. Nox let γ = 3/2, and consider
the following transfers:

tfulli = tV CGi + αi

(
mj −

1
2

)
(1 + γ)mi

With γ = 3/2, the VCG transfers are IIC. Furthermore, since Eb[θj |θi] = 1/2 for all θi, these
transfers satisfy both conditions in Theorem 2 for any αi. While this richness of transfers
is redundant from the viewpoint of IIC alone, it may still be useful for other purposes. For
instance, if one also cares about unique implementation, it can be shown that with γ = 3/2
truthful revelation is the only rationalizable strategy if and only if αi ∈ (1/2, 5/2). In fact,
for αi = γ, truthful revelation is an interim dominant strategy (Ollár and Penta, 2017). �

5.1.4 On Weak Generalized Independence, Robust Revenue Equivalence, and
the Equivalence between B-IC and ep-IC

The logic above points to another interesting implication of Theorem 1, which suggests
introducing the following weakening of generalized independence:

Definition 5. B satisfies weak generalized independence if
⋂
θi∈Θi Bθi 6= ∅ for all i ∈ I.

This is clearly weaker than generalized independence (Def. 2), which in turn encompasses
as special cases both belief-free settings and Bayesian models with independent types. In
these environments, Theorem 1 implies the following:

Corollary 6. Let B satisfy weak generalized indepence, and let pi ∈ ∩θi∈ΘiBθi. Then:
(i) For any belief-based term βi : M → R, ∃κi ∈ R s.t. Epiβi (mi, θ−i) = κi for all mi.
(ii) If ti is B-IC, then ∃κi ∈ R s.t. Epiti (θi, θ−i) = Epit∗i (θi, θ−i) + κi for all θi.

The discussion that follows Corollary 5 applies to any belief that belong to the intersec-
tion of the belief sets. Point (i) in Corollary 6, in particular, extends revenue equivalence
to the beliefs in the intersection in such non-Bayesian settings as well. Clearly, since Def. 5
is a weakening of Def. 2, this result applies under generalized independence too, where also
the statement of Corollary 1 holds true.

These results can be further extended to shed light on some influential results in Lopomo
et al. (2021) and in Jehiel et al. (2012)). To this end, we say that B satisfies ‘full dimen-
sionalilty and local independence’ if for each i and θi (i) Bθi is full dimensional (i.e., its
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continuous measures span the space of continuous functions) and (ii) for each θi and for all
p ∈ Bθi , there exists a neighborhood of θi, Nθi ⊆ Θi, such that p ∈ Bθ′i for all θ′i ∈ Nθi .
Then, Theorem 1 implies the following (the proof is in the Appendix):

Corollary 7. Let B satisfy ‘full dimensionality and local independence.’ Then:
(i) If ti is B-IC, then ∃κi ∈ RM−i s.t. ti (m) = t∗i (m) + κi (m−i) for all m.
(ii) There exists a B-IC ti if and only if t∗i is B-IC.

Lopomo et al. (2021) showed that, under standard single-crossing and monotonicity
assumptions, the ‘full dimensionality’ condition on the overlap of the belief sets implies that
there is no gap between the possibility of B-IC and ep-IC. Jehiel et al. (2012), however, gave
an example of local robust implementability in a non-standard single-crossing environment,
where ep-IC is impossible. Corollary 7 clarifies how close these robustness requirements are
to requiring ep-IC: Under ‘full dimensionality and local independence’, B-IC is possible if
and only if it is achieved by the canonical transfers. Under standard ep-SCM conditions,
the canonical transfers are ep-IC (Corollary 2), and hence our results also imply that there
is no gap between the possibility of ep-IC and B-IC.But without ep-SCC, as in our general
setting, the canonical transfers may be B-IC without necessarily being ep-IC.21 Hence,
without single-crossing and monotonicity, B-IC and ep-IC need not coincide, while revenue
equivalence still holds (Corollary 7.(i)).

5.2 Equilibrium Payoffs: An Envelope Formulation

Theorem 3 implies the following characterization of the equilibrium payoffs under B-IC:

Theorem 4 (Payoff Characterization). Fix belief restrictions B and allocation rule d. For
each i, let Di ⊆ RM denote the set of all belief-based terms that satisfy the inequalities of
Theorem 3. Then, (Ui)i∈I ∈ ×i∈IRΘ is a feasible payoff-function in the truthful equilibrium
of a B-IC mechanism if and only if, for each i, there exists βi ∈ Di such that

Ui (θi, θ−i; θ) =
∫ θi

θi

∂vi
∂θi

(d (s, θ−i) , s, θ−i) ds+ βi (θi, θ−i) . (8)

This formulation of the equilibrium payoffs resembles well-known envelope conditions
that characterize the equilibrium payoffs of incentive compatible transfers. In fact, Theorem
4 generalizes several such results along different dimensions. It also highlights the limitations
of pursuing an envelope approach either when beliefs do not fall within certain special cases,
or when the designer has other objectives beyond mere incentive compatibility.

To see this, first suppose that the environment is belief-free. Then, by Corollary 4, the
set Di only contains βi : M → R that are constant in mi, and hence (8) boils down to the
standard envelope condition (3) in Milgrom and Segal (2002). More generally, for belief-
restrictions that satisfy generalized independence (cf. Def. 2), and letting b ∈ ∩θi∈ΘiBθi ,

21Ollár and Penta (2023) provide an example of this possibility within the context of the Bid-restrictions.
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then all βi ∈ Di are such that Eb(βi) is constant in mi (Corollary 1), and thus the formula
in (8) again delivers the standard condition for the interim expected payoffs, Eb(Ui), here
generalized to accommodate both the possibility of interdependent values as well as non-
Bayesian settings with generalized independence.

Thus, when Eb(βi) is constant in mi for all βi ∈ Di, the interim expected equilibrium
payoffs under incentive compatibility are effectively pinned down, up to a constant in own
message, and hence the formula gives the incentive compatible transfers as well, by using
the fact that Ui(m, θ) = vi(d(m), θ) + ti(m). But when the set Di is richer, there may
be a non-trivial multiplicity of payoff functions, each with its own envelope condition. In
these cases (e.g., in Bayesian settings with correlated types), the payoff function is only
determined once the transfers are fixed, and hence the envelope formula cannot be used to
recover the incentive compatible transfers. The multiplicity of transfers determines a family
of envelopes, one for each distinct belief-dependent term in Di.

Finally, even when the envelope approach can be used to obtain transfers that are incen-
tive compatible whenever possible (as under generalized independence), it still overlooks the
richness of the set of incentive compatible transfers, which may be useful for other purposes
beyond incentive compatibility. For instance, in Bayesian settings with independent types,
the expected payments for all IIC transfers only differ up to a constant in own message.
Such transfers, however, may induce different payoffs at non-equilibrium profiles, and hence
exhibit different properties with respect to other objectives, such as uniqueness, budget
balance, etc. (cf. Example 5). In this sense, also in such settings the envelope approach is
more limited than the first-order approach that we pursue in this paper.

5.3 Responsive Moment Conditions and Unique Implementation

In this Section we use the characterization of the belief-based terms in Theorems 1-3, jointly
with the sufficient condition of Ollár and Penta (2017), to derive easy-to-check possibility
results for unique implementation under comovement.

Unique implementation requires truthful implementation to be the only strategy consis-
tent with players’ common belief in rationality and in the B-restrictions. For each θi, we let
RBi (θi) denote the set of B-rationalizable messages, that correspond to these assumptions.22

Definition 6 (Unique Implementation). The transfer scheme t = (ti)i∈I uniquely B-
implements d if RBi (θi) = {θi} for all θi and all i.

The next sufficient conditions for unique B-implementation follow directly from Theorem
2 above, and from Theorem 1 in Ollár and Penta (2017):

22Formally, for every i and θi, the set of conjectures that are consistent with B is defined as Cθi :={
µi ∈ ∆ (M−i ×Θ−i) : margΘ−iµi ∈ Bθi

}
. Then, given a transfer scheme t, for each agent i ∈ I let

RB,0i = Θi ×Mi and for each k = 1, 2, ..., define the sets RB,k−1
−i = ×j 6=iRB,k−1

j , RB,ki = {(θi,mi) : mi ∈
BRθi (µi) for some µi ∈ Cθi ∩∆

(
RB,k−1
−i

)
}, and RBi =

⋂
k≥0

RB,ki . Then, RBi (θi) := {mi : (θi,mi) ∈ RBi }.
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Proposition 6. Consider a twice differentiable (v, d), and let B admit a responsive mo-
ment condition (Li, fi)i∈I in which each fi is strictly increasing, f ′i > 0. Then, unique
B-implementation via transfers is possible if any of the following conditions holds:

1. Highly Sensitive Moments:
∑
j 6=i |∂jLi (m−i) | < f ′i (mi)

2. Symmetric Canonical Substitutes: For all i and j 6= i, ∂2
ijU
∗
i ≡ γi < 0, ∂2

iiU
∗
i < 0,

and ∂jLi (m) ≡ li ∈ R++.

3. Symmetric Canonical Complements: for all i and j 6= i, ∂2
ijU
∗
i ≡ γi > 0, ∂2

iiU
∗
i < 0

and ∂jLi (m) ≡ li ∈ R++, and f ′i/li < |∂2
iiU
∗
i |/γi. (In this case, truthful revelation is

a dominant strategy).

The condition in point 1 states that the moment condition is strongly responsive to each
agent i’s own type, compared to how the Li function depends on each of the opponents’
types. The conditions in points 2 and 3 refer to settings where the canonical transfers are ep-
IC (condition ∂2

iiU
∗
i < 0), and that induce, respectively, symmetric strategic substitutability

(condition ∂2
ijU
∗
i ≡ γi < 0 for all i and j 6= i) and complementarity (condition ∂2

ijU
∗
i ≡ γi >

0 for all i and j 6= i).23 In the first case, unique implementation obtains if the moment
conditions take the form Li(θ−i) = li

∑
j 6=i θj , for some li > 0. In the second case, if this

holds with f ′i/li < |∂2
iiU
∗
i |/γi, which in fact ensures dominant-strategy implementation.

In our running example, we illustrated how the general results in Theorems 1-3 can be
used to bound the surplus that can be extracted under B-incentive compatibility. Similarly,
the characterization of the B-IC transfers can also be used to explore the limits of unique
implementation. For instance, consider the class of ‘symmetric quadratic public-good en-
vironments’ (SQPG) that are analyzed in Bergemann and Morris (2009a): n agents, with
types θi ∈ [0, 1], valuation functions vi(x, θ) = (θi + γ

∑
j 6=i θj)x, where x denotes the

quantity of public good. With quadratic production costs, the efficient allocation rule is
d∗(θ) = (1 + (n− 1)γ)

∑
i=1,...,n θi.

In these settings, the canonical transfers (i.e., the VCG) are ep-IC if and only if γ ≥
−1/(n−1), and they achieve belief-free unique implementation if and only if |γ(n−1)| < 1.
If γ < −1/(n−1), the ep-SCM conditions fail and U∗i are convex; if |γ(n−1)| > 1, strategic
externalities are too strong, and uniqueness fails. In each of the two cases, belief-based terms
can be designed to ‘fix’ the problem, using the results in Proposition 1 or in Proposition
6, respectively. But suppose that the two issues are present at the same time, for instance
if (n − 1)γ < −1. Then, Theorems 1-3 above, jointly with Theorem 1 in Ollár and Penta
(2025), imply that even for belief restrictions that satisfy the sufficient condition of both
Propositions 1 and 6, unique B-implementation is impossible:

23Strategic substitutes, for instance, arise naturally in efficient implementation problems with public goods,
where agents’ marginal utility for the public good is increasing in others’ types.
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Proposition 7. In a SQPG environment with (n− 1)γ < −1, if B is maximal with respect
to a responsive moment condition (Li, fi)i∈I such that f ′i > 0 for all i and ∂jLi > 0 for all
j 6= i, then unique B-implementation is impossible.

6 Related Literature

This paper contributes to the literature on robust mechanism design, particularly following
the approach in Bergemann and Morris (2005), that is to achieve implementation of a given
allocation rule for a large set of beliefs. The first wave of this literature focused on belief-free
environments. More specifically, Bergemann and Morris (2005, 2009a,b) study belief-free
implementation in static settings, respectively in the partial, full and virtual implementation
sense. The belief-free approach has been extended to dynamic settings by Müller (2016) and
Penta (2015). Penta (2015) considers environments in which agents may obtain information
over time, and applies a dynamic version of rationalizability based on a backward induction
logic (cf. Penta (2011) and Catonini and Penta (2022)). Müller (2016) instead studies
virtual implementation via dynamic mechanisms, in a static belief-free environment, using
a stronger version of rationalizability with forward induction.

Belief restrictions, as a general framework to accommodate varying degrees of robust-
ness, was first introduced by Ollár and Penta (2017) to study how beliefs can be used to
attain unique implementation, and some special cases were were analyzed in Ollár and Penta
(2022, 2023, 2025), in settings where incentive compatibility followed directly from standard
assumptions. In this paper, in contrast, we focused on the more fundamental question of
how beliefs can be used via the design of the transfers for the very establishment of incentive
compatibility. An earlier instance of belief restrictions can also be found in Artemov et al.
(2013), which focuses instead on virtual implementation in environments where the baseline
belief-free approach of Bergemann and Morris (2009b) is enriched with a collection of (com-
monly known) first-order beliefs. More recently, belief restrictions have also proven useful
within the area of behavioral mechanism design, to model features of individuals’ beliefs
that cannot be cast within the standard framework (see, e.g., Gagnon-Bartsch, Pagnozzi,
and Rosato (2021), and Gagnon-Bartsch and Rosato (2024)).

From a methodological viewpoint, we pursued a generalization of the classical first-order
approach that identifies necessary conditions for local incentive compatibility constraints
(cf. Rogerson, 1985; Jewitt, 1988), and then studies sufficient conditions for global optimal-
ity. Carvajal and Ely (2013) also studied the design of incentive compatible mechanisms
in settings in which the envelope formula cannot be used, due to non-convexity or non-
differentiability of the valuations, but only within standard Bayesian settings.

A few papers have used special cases of belief restrictions to model robustness with
respect to local perturbations around a given Bayesian belief-setting. For instance, Jehiel
et al. (2012) show that, under certain restrictions on preferences, minimal notions of ro-
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bustness are as demanding as the belief-free case. A similar result is proven in Lopomo
et al. (2021), for overlapping beliefs, and in Lopomo et al. (2022), within an auction setting.
As discussed, these results are in line with those we obtain under generalized independence
(cf. Corollary 1). The exact connections between our results and those of these papers are
discussed in Section 5. In terms of the framework, the belief-restrictions that we consider
encompass the belief sets studied by the above papers. In contrast to those papers, we
develop a first-order approach and also provide several possibility results for transfer design
under various degrees of robustness. Lopomo et al. (2021), on the other hand, also consider
more general preferences, which are beyond the scope of our work. Their notion of overlap-
ping beliefs, however, excludes the belief restrictions that enable our possibility results and
characterizations under comovement (Propositions 1, 2, 3, and 5 in Section 4).

Several alternative approaches to robustness have been put forward, which we view
as complementary. For instance, Börgers and Smith (2012, 2014), focus on the role of
eliciting beliefs to weakly implement a correspondence in a belief-free setting. Börgers
and Li (2019) provide a more systematic analysis of implementation relying on first-order
beliefs. Other approaches model robustness with respect to certain behavioral concerns
directly in the implementation concept. These include criteria such as credibility of the
designer (Akbarpour and Li (2020)), a behavioral notion of strong strategy proofness (Li
(2017)), safety considerations with respect to model misspecification (Gavan and Penta
(2023)), convergence of best response dynamics (Mathevet (2010); Mathevet and Taneva
(2013); Healy and Mathevet (2012), and Sandholm (2002, 2005, 2007)), etc. Yet another
approach is based on maxmin criteria, as pursued for example by Chung and Ely (2007);
Chassang (2013); Carroll (2015); Yamashita (2015); He and Li (2022). The aim here is
typically to explore whether ‘natural’ mechanisms can be justified as worst-case optimal,
within a suitable robustness set (see Carroll (2019) for a survey of this literature). In this
paper, in contrast, we fix an allocation rule and require implementation not only for the
worst-case beliefs, but for all beliefs in the robustness set. In this sense, our approach is
closest to the original approach of Bergemann and Morris (2005, 2009a,b).

7 Conclusions

We studied incentive compatibility in a general framework for robust mechanism design that
can accommodate various degrees of robustness, including both belief-free (e.g., Bergemann
and Morris (2005, 2009a,b)) and standard Bayesian settings as special cases, as well as
accommodate interesting settings for behavioral mechanism design, to model features of in-
dividuals’ beliefs that cannot be cast within the standard framework (e.g., Gagnon-Bartsch,
Pagnozzi, and Rosato (2021), and Gagnon-Bartsch and Rosato (2024)).

For general belief restrictions, we characterized the set of incentive compatible direct
mechanisms in general environments with interdependent values. The necessary conditions
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that we identified provide a unified view of several known results, as well as novel ones,
including a robust version of the revenue equivalence theorem that holds under a notion
of generalized independence that also applies to non-Bayesian settings. Our general suffi-
cient conditions imply that, under weak properties on the belief restrictions, it is possible
to achieve implementation even in environments that violate standard single-crossing and
monotonicity conditions, and we provide an explicit design for the implementing transfers.

From a methodological perspective, we showed that, in spite of its simplicity, a suitable
generalization of the classical first-order approach (e.g., Laffont and Maskin, 1980; Rogerson,
1985; Jewitt, 1988, etc.), allows a wealth of novel results: (i) on the one hand, it identifies
the class of incentive compatible transfers in settings which cannot be handled with the
standard envelope approach (such as in Bayesian settings with correlated types, or with
general (non-Bayesian) belief restrictions); (ii) on the other hand, even in settings where
the equilibrium payoffs are pinned down by the envelope approach, it identifies the richness
of incentive compatible transfers that may serve purposes beyond incentive compatibility.24

More broadly, our main results develop a general design principle, centered around the
design of belief-based terms, in pursuit of various objectives in mechanism design. We showed
that minimal information about agents’ beliefs may suffice to implement any allocation rule.
Yet, if the setting is non-Bayesian, information rents are generally possible, and they get
larger the less information the designer has about agents’ beliefs. Our belief restrictions
may thus capture a meaningful notion of ‘comovement’ of beliefs and types that is useful
for implementation, but without incurring into the pitfalls of ‘full-surplus extraction’ results
(cf. Crémer and McLean, 1985, 1988). This framework may thus favor mechanism design’s
reappropriation of environments with non-exclusive information, in which distilling intuitive
and reliable economic intuition has long appeared elusive, within the prevailing paradigm.
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A Proofs

Proof of Theorem 1. Fix an agent i. First, we show that t∗i (m) is well-defined since the
allocation rule d is p.diff.25 Since vi is twice continuously differentiable, ∂vi∂θi

is continuously
differentiable over X × Θ. Now, for fixed m−i, ∂vi

∂θi
(d (·,m−i) , ·,m−i) – a function from

Mi to R – is a composite function of d and ∂vi
∂θi

and since d is piecewise differentiable over
Θi, we have that for all m−i, ∂vi∂θi

(d (·,m−i) , ·,m−i), a function from Mi to R, is piecewise
continuous, therefore integrable, over Mi.

Claim 1: t∗i is p.diff over M .

Proof of Claim 1: Recall that t∗i (m) = −vi (d (m) ,m) +
∫mi
θi

∂vi
∂θi

(d (s,m−i) , s,m−i) ds.
Since d is p.diff, restricted to its pieces, ∂vi∂θi

(d(·), ·) : M → R is continuously differentiable
over the same pieces as vi is twice cont.diff. Therefore

∫mi ∂vi
∂θi

is p.diff over M , and thus t∗i
is p.diff over M .

Now, consider a piecewise differentiable B-IC ti, and we let βi := ti − t∗i . Then, by
Claim 1, βi is p.diff over M . Next, since ti is B-IC, for all θi, b ∈ Bθi , we have that, when
the derivative exists,

[
∂iEb

(
vi (d (mi, θ−i) , θ) + ti (mi, θ−i)

)] ∣∣
mi=θi

= 0. Since the canonical
transfer t∗ by its construction satisfies the ex-post FOC, the above statement holds for t∗i
too. Now, from this, for ti − t∗i , for all θi and b ∈ Bθi for which both derivatives exist, we
have

[
∂iEb

(
ti − t∗i

)(
mi
)] ∣∣

mi=θi
= 0. Next, we use the following claim to extend this result

to all differentiability points of Ebβi, beyond the joint differenttiability points of Ebti and
Ebt∗i . �
Claim 2: For a p.diff f : M → R and b ∈ ∆ (Θ−i) with p.diff cdf, Ebf : Mi → R is p.diff.

Proof of Claim 2: Consider b’s cdf. which has finitely many pieces: Sb1, . . . , SbK . Write
Ebf (mi) =

∫
Θ−i f (mi, θ−i) db =

∑K
j=1

∫
int Sbj

f (mi, θ−i) db. For each j, let Aj (mi) :=∫
int Sbj

f (mi, θ−i) db. Since f is p.diff overM , it is p.diff over each Sbj and it has finitely many

pieces of Sbj : Sbj,1, . . . , Sbj,l, . . . , Sbj,Lj . RewriteAj such thatAj (mi) =
∑Lj
l=1
∫
int Sb

j,l
f (mi, θ−i) db,

and note that f is continuouse over int Sbjl. Therefore Aj : Mi → R is p.diff over Mi for
each j. Since Ebf is a sum of K such functions, it is p.diff over Mi (that is, it has at most
finitely many jumps). �

Note that by Claim 2, if b has a p.diff cdf, then Ebvi is p.diff and thus Ebt∗i is p.diff, which
also means that Eb (ti − t∗i ) is p.diff, moreover, it is differentiable in the joint differentiability
points of Ebti and Ebt∗i , that is, over Mi with the exception of at most finitely many points.
Therefore, if Ebβi (·) has further differentiability points, then the expected value condition
must extend to these as well, and hence the Theorem follows. �

Remark. As this is clear from the last part of the proof above, for a belief b ∈ Bθi
which has a p.diff cdf,26 Ebβi is almost everywhere differentiable on Mi. Thus the expected

25For example, consider two agents. The single item allocation rule given by the allocation probabilities
d1 (θ) = 1 − d2 (θ) = {1 if θ1 > θ2; 1/2 if θ1 = θ2; 0 otherwise} satisfies our definition of piecewise differen-
tiability.

26Note that for example, discrete distributions, full support continuous distributions, as well as their

33



value condition of Theorem 1, for typically considered belief-restrictions, implies substantial
restrictions on what form the function βi can take.
Proof of Corollary 1. It follows from Corollary 6. �
Proof of Theorem 2. By the assumed differentiability, βi is also twice continuously dif-
ferentiable and as the domains are compact, by the Leibniz rule, (1) obtains from Theorem
1. Further, under ti, reporting θi is locally optimal and thus (2) obtains from the decom-
position of the payoff function into U∗i and βi. In the other direction, if (2) holds strictly
for all mi, then the expected payoff function is strictly concave, and by the decomposition
and (1), the FOC holds at θi, hence ti is B-IC. �
Characterization of Belief-based Terms in Example 1.

Claim: Consider the belief-restrictions Bγ ; for all i ∈ {1, 2} and for all θi, Bγ
θi

={
b ∈ ∆ (Θj) : Ebθj = γiθi

}
. In the special case of γi = 1/2, this is the setting considered in

Ex. 1. Recall that θi ∈ [0, 1] and we assume that 0 < γi < 1. Then a function βi : M → R
which is differentiable in mi is a belief-based term if and only if for some real functions Hi

on M and τi on M−i, it takes the form βi (m) =
∫mi
0

(
s− mj

γi

)
Hi (s) ds+ τi (m−i).

Proof of the Claim. First, if βi is of the given form, then ∂iβi (mi,mj) =
(
mi − mj

γi

)
Hi (mi)

which for all θi, at the truthtelling profile for all beliefs in Bθi satisfies the expected value
condition, thus it is a belief-based term. Second, in the other direction, if βi is a differen-
tiable belief-based term, then by the point-beliefs in Bγ

θi
, we have that (i) ∂iβi (θi, γiθi) = 0

for all θi. Next, we show that ∂iβi : M → R is linear in mj . This is so, as Bγ
θi

con-
tains beliefs that place non-zero probabilities on two points x and y which give a splitting
of γiθi: there is a probability α such that αx + (1− α) y = γiθi. Note that such α ex-
ists for any points that are such that x ≤ γiθi ≤ y. Each of these beliefs imply, by the
expected value condition, that α∂iβi (θi, x) + (1− α) ∂iβi (θi, y) = 0 as well. Hence for
any fixed mi, ∂iβi is linear in mj . Hence, there are functions f1 and f2 onMi for which
∂iβi (m) = f1 (mi)mj + f2 (mi). At the same time, as by (i) above, these functions must be
such that for all θi, f1 (θi) γiθi + f2 (θi) = 0. From this and by change of notation for the
functions, βi (m) has the form as claimed. Finally, the initial condition of "0 type pays 0"
of this example implies that τi ≡ 0 and so βi takes the form as stated in Ex. 1. �

Remark. Notice that this result is a consequence of linear algebraic principles. Consider
a closed set X and a continuous function f : X → R from the usual normed vector space
of the continuous functions with the L1 norm. The set of continuous functions in M :=
{µ ∈ ∆ (X) : Eµf = 0} spans the orthogonal complement of f and thus a function g from
the same space satisfies Eµg = 0 for all µ ∈ M only if g = αf for some α ∈ R. Applying
this in the setting of the above example, for fixed θi: X is Θ−i, f is θj − θi/γi and g is ∂iβi
and it must satisfy the expected value condition in Eq. 5. Thus for any fixed θi, ∂iβi must
be in the linear space of θj − θi/γi, that is for some αθi ∈ R, ∂iβi = αθi (θj − θi/γi). We
generalize this characterization of belief-based terms by using this observation later in the

convex combinations have piecewise differentiable cdfs and are Borel-measures.
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Proofs of Prop. 2 and 3.
Proof of Theorem 3. The payoffs Ui = vi+t∗i+βi, by using (1) and adding and subtracting∫ θi
mi

∂vi
∂θi

(d (s,m−i) s,m−i) ds+ βi (θi,m−i), can be rewritten, at the profile m−i = θ−i, as
Ui (mi, θ−i; θ) =

∫ θi
θi

∂vi
∂θi

(d (s, θ−i) , s, θ−i) ds+ βi (θ)

−
∫ θi
mi

(
∂vi
∂θi

(d (s, θ−i) , s, θ−i)−
∂vi
∂θi

(d (mi, θ−i) , s, θ−i)
)

︸ ︷︷ ︸
=:SCi(mi,s,θ−i)

ds+ βi (mi, θ−i)− βi (θ) .

The first two terms do not depend on the report mi, and the latter three terms give 0
if mi = θi. Thus mi = θi is best response if and only if the expected gain from misreport,
−Eb

∫ θi
mi
SCi (mi, s, θ−i) ds+Ebβi (mi)−Ebβi (θi), is nonpositive; which is the condition from

the inequality of this theorem. �
Proof of Proposition 1. For each agent i, let ti := t∗i − Ai (

∫mi fi (s) ds− Li (m−i)mi).
By the smoothness and implied boundedness assumptions on v and d, the left-hand side
of the inequality in Theorem 3 is bounded, and hence there exists Ai large (resp., small)
enough if fi is increasing (resp., decreasing) such that the inequality in Theorem 3 holds
for βi(m) = −Ai (

∫mi fi (s) ds− Li (m−i)mi) . �
Proof of Proposition 2. Fix agent i. If B is maximal with respect to (Li, fi)i∈I , then
any belief-based term βi satisfies the necessary condition of Theorem 1 if and only if ∂iβi =
(Li (m−i)− fi (mi))Hi (mi), where Hi is a real function over Mi.27 Then, if ti is B-IC, by
Theorem 1, it can be written as,

ti (m) = t∗i (m) +
∫ mi

θi

(Li (m−i)− fi (s))Hi (s) ds+ τi (m−i) .

Next, we need to check when the SOC at the truthful profile holds.28 To this end, we need
to study when it is the case that for all bθi ∈ Bθi ,

∂2
iiEbθiU∗i (mi, θ−i, θ)

∣∣∣∣
mi=θi

+ ∂2
iiEbθiβi (mi, θ−i)

∣∣∣∣
mi=θi

≤ 0

−Ebθi
(
∂2vi (d (θ) , θ)

∂x∂θi

∂d (θ)
∂θi

)
≤ f ′i (θi)Hi (θi)

Let us set
SCM i (θi) := sup

bθi∈Bθi
Ebθi

(
−∂

2vi (d (θ) , θ)
∂x∂θi

∂d (θ)
∂θi

)
.

27One direction is clear. To prove the other direction, recall the following. Consider a closed set X and
a continuous function f : X → R from the usual normed vector space of continuous functions with the L1
norm. The set of continuous functions inM := {µ ∈ ∆ (X) : Eµf = 0} spans the orthogonal complement of
f and thus a function g from the same space satisfies Eµg = 0 for all µ ∈M only if g = αf for some α ∈ R.
Applying this here, for fixed θi: X is Θ−i, f is Li (θ−i)−fi (θi) and g is ∂iβi and it must satisfy the expected
value condition in Eq. 5. Thus for any fixed θi, ∂iβi must be in the linear space of Li (θ−i)− fi (θi).

28The canonical externalities are ∂2
ijU
∗
i (m, θ) =

(
∂2vi(θ,d(m))

∂2x
∂d
∂θj
− ∂2vi(m,d(m))

∂x∂θj
− ∂2vi(m,d(m))

∂2x
∂d
∂θj

)
∂d
∂θi

+(
∂vi(θ,d(m))

∂x
− ∂vi(m,d(m))

∂x

)
∂2d

∂θj∂θi
.

35



With this notation, if f ′i > 0, then SCM i/f
′
i is a lower bound on Hi and if f ′i < 0,

then SCM i/f
′
i is an upper bound on Hi. Next, consider the modification of the interim

payments and notice that the order of integration can be exchanged:

Ebθiβi (θ) = Ebθi
∫ θi

θi

(Li (θ−i)− fi (s))Hi (s) ds

=
∫ θi

θi

(
EbθiLi (θ−i)− fi (s)

)
Hi (s) ds =

∫ θi

θi

(fi (θi)− fi (s))Hi (s) ds.

First, if f ′i > 0, then the weights on Hi are positive, and the lower bound on Hi gives a
lower bound on the second term. Therefore Ebθiβi (θ) ≥

∫ θi
θi

(fi (θi)− fi (s)) [SCM i/f
′
i ] (s) ds.

Second, if f ′i < 0, then the upper bound on Hi gives a lower bound on the second term,
hence, in this case too, the same inequality holds. �
Proof of Proposition 3. By way of contradiction, assume that t is B-IC and extracts the
surplus. By Theorem 1, ti can be written as ti (m) = t∗i (m)+

∫mi
θi

(Li (m−i)− fi (s))Hi (s) ds+
τi (m−i). Moreover, for all θi and b ∈ Bθi , EbU ti (θ; θ) = 0. Using the formula in 1, and the
calculation for Ebθi

∫ θi
θi

(Li (θ−i)− fi (s))Hi (s) ds =
∫ θi
θi

(fi (θi)− fi (s))Hi (s) ds as in the
Proof of Prop. 2, these impy that

Eb
(∫ θi

θi

∂vi
∂θi

(d (s, θ−i) s, θ−i) ds+ τi (θ−i)
)

= −
∫ θi

θi

(fi (θi)− fi (s))Hi (s) ds.

The RHS of this expression depends on θi but not on b, therefore the LHS must be the
same for all b ∈ Bθi . Applying the argument of Footnote 27 to these functions, we have
that the function

∫ θi
θi

∂vi
∂θi

(d (s, θ−i) s, θ−i) ds + τi (θ−i) must be Li-linear. This function
is differentiable in θi and thus its derivative ∂vi

∂θi
(d (θ) , θ) must be Li-linear as well. In

summary, unless ∂vi
∂θi

(d (θ) , θ) is Li-linear, B-IC and FSE lead to a contradiction. �
Proof of Proposition 4. First note that if B� is differentiable and satisfies the full
rank condition, then there exist functions (Li, fi)i∈I that satisfy the condition of Prop. 1.
Then, for each i, consider t̂i := t∗i − Ai (

∫mi fi (s) ds− Li (m−i)mi). From the proof of
Prop. 1, (d, t̂) is IIC for Ai large (small) enough if fi is increasing (decreasing). Next,
let gi : Θi → R be defined as gi(θi) :=

∫
Θ−i [ti(θi, s) − t̂i(θi, s)]db�θi and note that, by

construction and Def. 4, gi is differentiable in θi. Using the full rank condition, let κi :
Θ−i → R be s.t.

∫
Θ−i κi(θ−i)db

�
θi

= gi(θi) for each θi. Then, letting t′i be defined as
t′i(θi, θ−i) := t̂i(θi, θ−i) + κi(θ−i), the direct mechanism (d, t′) is both IIC and such that
Eb
�
θi [t′i(θi, θ−i)] = Eb

�
θi [ti(θi, θ−i)]. �

Proof of Proposition 5. Fix (v, d). The first inequality follows from the relaxed robust-
ness requirement. The rest of the proposition requires the construction of the two belief-
restrictions B and B′. Note that for each i, there is a function Li : M−i → R such that
∂vi
∂θi

(d (θ) , θ) is not Li-linear. For each i fix γi ∈ (0, 1), and let the belief-restrictions B be
maximal with respect to the responsive moment condition (Li, γiθi)i∈I .Prop. 1 implies that
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B-IC transfers exist, thus F (B) is non-empty and∞ > τ (B). Yet, as a consequence of Prop.
3, FSE is not possible, that is, τ (B) > 0. Next, let B′ be s.t. B′θi = {pθi} and s.t. (i) pθi
has a pdf that is continuouse and non-zero over the support ×j 6=i

[
θj , θj + (θi − θi) (lj/li)

]
,

where for each i, li := θi − θi, and (ii) for all θi, EpθiLi (θ−i) = γiθi. (Note that for each θi,
matching the fixed first moment is possible.) For B′ thus constructed, the construction in
Ex. 3 shows that a t exists which ensured FSE and is B-IC and hence B′-IC as well. �
Proof of Corollary 4. By Theorem 1, for every b ∈ ∆ (Θ−i), at each point of differen-
tiability, ∂iEbβi (mi, θ−i) = 0. In particular, this holds for all point-beliefs, and thus for all
fixed m−i, in all points of differentiability of βi (·,m−i), we have ∂iβi (mi, θ−i) = 0. Thus
for each fixed m−i, the function βi (·,m−i) can jump at most finitely many times, and on
its pieces, the derivative is 0, therefore on its pieces, it must be constant. However, if it
had a jumping point, then by the smoothness properties of vi, it would violate incentive
compatibility. Therefore βi must be constant everywhere in mi. �
Proof of Corollary 5. Let B� be a Bayesian environment with independent types. Note
that by independence the belief does not change with the type, so let b�i ∈ ∆(Θ−i) denote
agent i’s beliefs, regardless of his type. First, recall that Eb�i [βi (·, θ−i)] is a function overMi

that can jump at most finitely many times. In its points of differentiability, the derivative
is 0, thus the function is constant. If the function would jump, it would violate incentive
compatibility, hence it is a constant κi over Mi, which proves (1) of this corollary. By the
characterization in Theorem 1, (2) and (3) follow. �
Proof of Corollary 6. The proof of Corollary 5 applies to belief pi ∈ ∩θi∈Θi∆ (Θ−i). �
Proof of Corollary 7. First, we present the proof for the case when ti is differentiable.
Fix θi. By Theorem 1, βi := ti − t∗i satisfies the expected value condition, that is for each
p ∈ Bθi , Ep∂iβi = 0 and thus, since Bθi is full dimensional, ∂iβi must be constant in θ−i,
therefore Ep∂iβi = ∂iβi = 0. Consider a neighborhood Nθi s.t. p ∈ Bθ′i for all θ′i ∈ Nθi .
By the previous, ∂iβi equals a function over Θi that is 0 everywhere on Nθi . Applying
the same argument to each θi and by the continuity of βi, we have that ∃κi ∈ RM s.t.
βi (m) = κi (m−i).

Next, when ti is only p.diff., then the argument can be applied to the pieces of differen-
tiability of the corresponding functions and by incentive compatibility, one can show that
βi can not jump in mi. �
Proof of Theorem 4. Consider the payoff equation of the Proof of Theorem 3. By setting
mi = θi, the theorem follows. �
Proof of Proposition 6. By the characterization of B-IC transfers for responsive moment
conditions in the Proof of Prop. 2, we have that if B admits the moment condition (Li, fi)i∈I ,
then the transfers given by constant Hi (mi) ≡ hi such that ti = t∗i + hi (Li (m−i)− fi (s))
satisfy the first-order conditions, moreover imply the following second-order properties: for
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all i and j 6= i, and for all (m, θ)

∂2
iiUi (m, θ) = ∂2

iiU
∗
i (m, θ)− hi · f ′i (mi) ,

∂2
ijUi (m, θ) = ∂2

ijU
∗
i (m, θ) + hi · ∂jLi (m−i) .

Hence, the sufficient condition for B-IC and uniquness from Ollár and Penta (2017) implies
that if for all i

max
(θ,m)

(
∂2
iiU
∗
i (m, θ)− hi · f ′i (mi)

)
< 0 and

max
(θ,m)

∑
j 6=i
|∂2
ijU
∗
i (m, θ) + hi · ∂jLi (m−i) | < min

(θ,m)
|∂2
iiU
∗
i (m, θ)− hi · f ′i (mi) |,

then full B-Implementation follows. Next, (1) under highly sensitive moments, setting hi
to a negative number with a high enough magnitude, or (2) under symmetric canonical
substitutes, setting hi to γi/li, or (3) under symmetric canonical complements, setting hi to
γi/li ensures that both inequalities hold and Full B-Implementation attains. �
Proof of Proposition 7. Fix a B-IC t and note that such a t exists by Prop. 1. Note that
if (n−1)γ < −1, then for all i, ∂2

iiU
∗
i > 0, and thus by the characterization of B-IC transfers

under responsive moment condition in Prop. 2, following the notation from there, we must
have Hi (mi) > 0. But this implies with regards to strategic externalitites, under the given
assumption on the responsive moments, that ∂2

ijU
t
i = ∂2

ijU
∗
i +∂jLi (m−i)Hi (mi) > ∂2

ijU
∗
i (=

−γ > 0). Thus by the assumption on γ, for t, the corresponding strategic externality matrix
is such that its largest absolute eigenvalue is larger than 1, which by Lemma 1 (ii) in Ollár
and Penta (2023) (or by its generalization, Theorem 1 of Ollár and Penta, 2025) implies
that Full B-Implementation fails. �

B On Example 3: Beliefs and the Inverse Problem

Consider an agent with type θi and beliefs given such that θj |θi = γνθi + (1− γ) ηij where
νθi is U [0, θi] and, independently of this, ηij is U [0, 1]. Let us examine the solvability of∫ 1

0 αi (θj) p (θj |θi) dθj = f (θi). (For a thorough mathematical treatment on the solvability
of integral equations we recommend the book Hochstadt (1989).) The pdf of the conditional
random variable is such that:

if 1− γ > γθi,

p (θj |θi) =



1
γθi(1−γ)θj if θj ∈ (0, γθi)

1
1−γ if θj ∈ [γθi, 1− γ)
1−γ+γθi−θj
γθi(1−γ) if θj ∈ [1− γ, 1− γ + γθi)

0 otherwise

and if 1− γ < γθi
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p (θj |θi) =



1
(1−γ)γθi θj if θj ∈ (0, 1− γ)
1
γθi

if θj ∈ [1− γ, γθi)
1−γ+γθi−θj

(1−γ)γθi if θj ∈ [γθi, 1− γ + γθi)

0 otherwise

.

There are two cases to be considered: either γ ≤ 1/2 or γ > 1/2.
Part 1: If γ ≤ 1/2, then for all θi, 1 − γ > γθi. Let us look for solutions of the

form such that αi (θj) is 0 outside of θj ∈ [0, γ]. In this case, since θi < 1−γ
γ for all θi,∫ 1

0 αi (θj) p (θj |θi) dθj = f (θi) can be written as

∫ γθi

0
α (θj)

θj
(1− γ) γθi

dθj +
∫ γ

γθi

α (θj)
1

1− γ dθj = f (θi) .

Starting from this expression, in the following three lines, (1) we change variable to s :=
γθi and differentiate and simplify, (2) reorganize and differentiate for a second time, (3)
reorganize: ∫ s

0
α (θj)

−θj (1− γ)
(1− γ)2 s2

dθj = f ′
(
s

γ

) 1
γ

α (s) s = − (1− γ)
(
f ′′
(
s

γ

)
s2

γ
+ 2f ′

(
s

γ

)
s

γ

)

α (s) = − (1− γ)
(
f ′′
(
s

γ

)
s

γ
+ 2f ′

(
s

γ

) 1
γ

)
,

to, finally, introduce notation Lγ (s) := f ′′
(
s
γ

)
s
γ + 2f ′

(
s
γ

)
1
γ and change variables to get

the solution which is: for all θj ∈ [0, γ], α (θj) = − (1− γ)Lγ (θj), and 0 otherwise.29

Part 2: If γ > 1/2, then there are two cases to be considered: either 1 − γ > γθi or
1− γ ≤ γθi. Eitherways, let us look for solutions of the form such that αi (θj) is 0 outside
of [γ, 1].

Case (A): 1− γ > γθi. In this case,
∫ 1

0 αi (θj) p (θj |θi) dθj = f (θi) can be written as

∫ 1−γ+γθi

γ

1− γ + γθi − θj
(1− γ) γθi

α (θj) dθj = f (θi) .

Starting from this expression, we change variable to s := γθi and simplify and differentiate,
differentiate for a second time,

0 +
∫ 1−γ+s

γ
α (θj) dθj = (1− γ)

(
f

(
s

γ

)
s

)′
α (1− γ + s) = (1− γ)

(
f ′′
(
s

γ

)
s

γ
+ 2f ′

(
s

γ

) 1
γ

)
,

29Note that Lγ (s) =
(
f
(
s
γ

)
s
)′′.
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to, finally, change variables, use the notation Lγ and get the solution which is: for all
θj ∈ [γ, 1], α (θj) = (1− γ)Lγ (θj − (1− γ)), and 0 otherwise.

Case (B): 1− γ ≤ γθi. In this case,
∫ 1

0 αi (θj) p (θj |θi) dθj = f (θi) can be written as

∫ γθi

γ

1
γθi

α (θj) dθj +
∫ 1−γ+γθi

γθi

1− γ + γθi − θj
(1− γ) γθi

α (θj) dθj = f (θi) .

Starting from this expression, we change variable to s := γθi and simplify and differentiate,
differentiate for a second time,

α (s) + 0− α (s) +
∫ 1−γ+s

s

1
1− γα (θj) dθj =

(
f

(
s

γ

)
s

)′
α (1− γ + s)− α (s) = (1− γ)

(
f ′′
(
s

γ

)
s

γ
+ 2f ′

(
s

γ

) 1
γ

)
.

Finally, change variables, use the notation Lγ , and the assumption on the format such
that α (s) is 0 for all s < γ and get the solution which is: for all θj ∈ [γ, 1], α (θj) =
0 + (1− γ)Lγ (θj − (1− γ)), and 0 otherwise.

In summary, in Part 2, differentiating the integral equation twice implies a unique
candidate solution since the solution suggested for Case (B) is the same as in Case (A). The
candidate solution, when checked against the domain restrictions, works indeed and hence
is the solution of the integral equation. �
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