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Abstract. We introduce the Random Preference Model (RPM), a non-parametric and flexible discrete choice model. RPM is a

rank-based stochastic choice model where choice options have multi-attribute representations. It takes preference orderings as the

main primitive and models choices directly based on a distribution over partial or complete preference orderings over a finite set

of alternatives. This enables it to capture context-dependent behaviors while maintaining adherence to the regularity axiom. In

its output, it provides a full distribution over the entire preference parameter space, accounting for inferential uncertainty due to

limited data. Each ranking is associated with a subspace of utility functions and assigned a probability mass based on the expected

log-likelihood of those functions in explaining the observed choices. We propose a two-stage estimation method that separates

the estimation of ranking-level probabilities from the inference of preference parameters variation for a given ranking, employing

Monte Carlo integration with subspace-based sampling. To address the factorial complexity of the ranking space, we introduce

scalable approximation strategies: restricting the support of RPM to a randomly sampled or orthogonal basis subset of rankings

and using partial permutations (top-: lists). We demonstrate that RPM can effectively recover underlying preferences, even in the

presence of data inconsistencies. The experimental evaluation based on real data confirms RPM variants consistently outperform

multinomial logit (MNL) in both in-sample fit and holdout predictions across different training sizes, with support-restricted and

basis-based variants achieving the best results under data scarcity. Overall, our findings demonstrate RPM’s flexibility, robustness,

and practical relevance for both predictive and explanatory modeling.
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1. Introduction

Modeling preferences from observed choices is a pivotal theme in many disciplines and plays a

central role in mainstream economics (Samuelson 1938, Richter 1966, Afriat 1967, McFadden

2001, Chambers and Echenique 2016), decision theory (Fishburn 1970), operations research (Ben-

Akiva and Lerman 1985, Train 2009, Farias et al. 2013), marketing (Louviere et al. 2000, Toubia

et al. 2003), and psychology (Lichtenstein and Slovic 2006, Bettman et al. 1998), with wide-

ranging applications in welfare analysis, policy design, healthcare, product development, pricing,

and transportation (de Bekker-Grob et al. 2012, Hensher 1994, Ben-Akiva and Bierlaire 1999,

Miller et al. 2011). Traditional approaches model preferences by assigning real-valued scores –

commonly called utilities – to alternatives. These models begin with a utility function, shaped by
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distributional and functional form assumptions, andmap utility vectors to choice probabilities (Luce

1959, Feng et al. 2017). Representative models include attraction models (Bell et al. 1975, Gallego

et al. 2015), random utility models (RUMs) (McFadden 1973, Train 2009), exponomial choice

models (Alptekinoğlu and Semple 2016, Aouad et al. 2023), and process-based models such as

elimination by aspects (Tversky 1972), preference trees (Tversky and Sattath 1979), and Markov

chain choice models (Blanchet et al. 2016, Feldman and Topaloglu 2017, Désir et al. 2024).

While these utility-based frameworks have been highly influential, they face critical limitations.

Epistemically, they define preferences as summaries of observed behavior, thus embedding context

effects implicitly rather than modeling them directly. This can obscure systematic deviations from

rational choice axioms, such as trade-off contrast effects (Simonson and Tversky 1992), extremeness

aversion (Simonson and Tversky 1992), or salience-driven behavior (Bordalo et al. 2013). Tech-

nically, the parametric assumptions underpinning utility models risk misspecification and reduce

flexibility in high-dimensional or heterogeneous choice environments (Abdellaoui 2000, Bleichrodt

and Pinto 2000, Ghaderi and Kadziński 2021).

Rank-based choice models provide a compelling alternative. These nonparametric approaches

characterize decision-makers (DMs) through partial or complete preference orderings over a finite

set of alternatives (Farias et al. 2013, van Ryzin and Vulcano 2015, 2017, Bertsimas and Mišić

2019, Sturt 2025). In contrast to utility-based models, they adopt preference orderings as the

fundamental primitive, directly generating choice behavior. This methodological shift enables rank-

based models to flexibly capture behaviors that violate standard axioms such as independence from

irrelevant alternatives (IIA) (Luce 1959) or order-independence (Simonson and Tversky 1992), and

to represent empirically observed phenomena like the attraction effect, asymmetric dominance, and

compromise effects (Huber et al. 1982, Tversky and Simonson 1993, Kivetz et al. 2004) without

relying on parametric assumptions.

Although the theoretical foundations of rank-based models date back decades (Block and

Marschak 1959, Falmagne 1978, McFadden and Richter 1990), their appeal has grown in recent

years due to their intuitive structure, modeling flexibility, and empirical realism (Farias et al. 2013,

Jagabathula 2014, Bertsimas and Mišic 2015). These models subsume broad classes of RUMs but

avoid the rigidity and specification risks of traditional methods. Nonetheless, their adoption has

been hindered by the combinatorial complexity of the preference space and the computational cost

of estimation (van Ryzin and Vulcano 2017, Aouad et al. 2021).
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In this paper, we develop a general operational framework for rank-based choice models that

extends their applicability to contexts where alternatives are described by multiple attributes. This

is particularly relevant for analyzing consumer substitution patterns in domains such as product

design, pricing, and conjoint analysis (Toubia et al. 2007, Louviere et al. 2011). Our model supports

a wide range of outputs, including detailed measures of inferential uncertainty, making it suitable

not only for predictive tasks, such as revenue forecasting and assortment optimization, but also

for explanatory and normative purposes in marketing, economics, and social choice (Baldiga and

Green 2013).

The proposed approach builds upon the random preference literature (Block andMarschak 1959,

Barberá and Pattanaik 1986, Falmagne 1978, Fishburn and Falmagne 1989), incorporating recent

developments in distributionally robust, nonparametric inference (Srinivasan and Shocker 1973,

Farias et al. 2013, Ghaderi et al. 2017, Ghaderi 2017, Farias et al. 2020, Ghaderi and Kadziński

2021). It captures two distinct sources of uncertainty: inferential uncertainty due to limited or noisy

data, and behavioral stochasticity arising from cognitive processes such as inattention, inertia, or

contingent reasoning (Samuelson andZeckhauser 1988, Salant andRubinstein 2008,Kadziński et al.

2020).While these uncertainties differ in interpretation, they are often empirically indistinguishable,

and a probabilistic framework provides a unified treatment for both.

To address the computational challenges associated with rank-based modeling, we introduce

a suite of approximation strategies that enable users to trade off model fidelity and estimation com-

plexity. We empirically evaluate our model using both synthetic and real-world data, demonstrating

its practical accuracy, robustness, and interpretability.

2. Primitives
Let - be a finite set, where each element G ∈ - represents a choice option, possibly including a

no-choice option. Denote by X the collection of all nonempty subsets of - , where each ( ∈ X
represents a choice set, i.e., a menu or choice task.1 In each choice task, the DM, when faced with

a menu ( ∈ X, selects an alternative 2((), where 2 is a choice function, i.e., a function from X to

- satisfying 2(() ∈ (.
The standard model of choice proceeds by positing a binary relation that represents the DM’s

preferences, reflects an inherent decision-making capacity, or serves as a mathematical construct

approximating observed behavior under an as if argument. This binary relation is typically assumed

1We consider menus of size at least two, since choices from singletons are trivial.
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to be complete and transitive – properties that together define a rational preference relation. A

rational preference relation induces a ranking over - , which in turn determines the choice function

2 for any menu ( ∈ X.
Let P denote the set of all complete, transitive, and asymmetric binary relations on - . Then,

|P | = |- |!. A substantial body of economic theory focuses on identifying conditions – such as

the Weak Axiom of Revealed Preference – that allow the construction of a rational preference

relation % ∈ P that determines outcomes of the choice function 2. When such a relation exists,

2 is said to be rationalized. However, the axioms that lead to a rational preference relation are

rarely satisfied in real-world data, where individuals often make inconsistent choices from identical

menus (Agranov and Ortoleva 2017), or where choice data are observed at the population level in

the form of choice shares of options within a menu across individuals. Modeling such data requires

a joint probability distribution over - ×X, representing a stochastic choice function (SCF), which

extends the deterministic function 2.

The randomness of such SCFs admits multiple interpretations. At the population level, it can

represent taste heterogeneity among individuals. At the individual level, choices may appear obser-

vationally stochastic due to limited information or inferential uncertainty from the analyst’s perspec-

tive, measurement errors, or intrinsically stochastic behavior arising from cognitive factors such

as inattention, inertia, or intentional randomization—as modeled in perturbed utility frameworks.

While interpretations vary across domains, the formalism and operationalization of SCFs remain

consistent.

Definition 1 (Stochastic Choice Function). A stochastic choice function is a mapping d :

- ×X→ [0,1] such that d(G, () = 0 for all G ∉ (, and ∑
G∈( d(G, () = 1.

SCFs are natural modeling tools for observed choice behavior and are amenable to empirical

validation. A stochastic choice model (SCM) is a parameterized representation of an SCF, where

different parameterizations lead to distinct choice models. For example, suppose there exists a

real-valued function E : -→R such that

d(G, () = E(G)∑
H∈( E(H)

for all (G, () ∈ - ×X.

This yields thewell-knownLuce choicemodel (Luce 1959). If E(G) ∈ R++ andwe apply a logarithmic

transformation D(G) = ln E(G), the model becomes the logit model (McFadden 1973, 2001). Note

that the positivity assumption (E(G) > 0) implies that d(G, () > 0, an assumption not empirically
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testable, regardless of data volume. An SCF is said to have a Luce representation if such a positive

function E exists.

For binary menus, if there exists a real function D and a strictly increasing function q such that

d(G, {G, H}) = q(D(G) − D(H)), the SCF is said to follow a Fechnerian model. Specific choices of q,

such as the logistic or Gaussian CDF, yield the binary logit and probit models, respectively.

A more general class of SCMs is captured by the random utility model (RUM). It posits a random

vector *̃ over alternatives such that

d(G, () = P
{
*̃G =max

H∈(
*̃H

}
,

where P is a probability measure. Defining D(G) = E[*̃G] and YG = *̃G − D(G), and assuming

positivity, the model can be expressed as:

d(G, () = P
{
YG ≥max

H∈(
(D(H) − D(G) + YH)

}
,

a formulation known as the discrete choice model (Ben-Akiva and Lerman 1985). Varying the

joint distribution of the YG’s yields various SCMs (Train 2009). For example, assuming inde-

pendent YG following an Extreme Value Type-I distribution recovers the multinomial logit model

(MNL) (McFadden 1973, 2001). Relaxing the independence assumption and introducing a block

covariance structure yields the nested logit model (Ben-Akiva 1973). For binary menus with iden-

tically distributed YG , the RUM reduces to a Fechnerian model.

Each of the above SCMs imposes specific conditions on the SCF they aim to represent. For

instance, the Luce model assumes both positivity and the Luce independence property. In fact,

an SCF has a Luce representation if and only if it satisfies these two conditions. Characterizing

choice models through properties of the SCF has the advantage of yielding assumptions that are, in

principle, directly testable using observed choice data. However, verifying such assumptions often

requires extensive data, particularly observations across the full range of menus in X. As a result,
they may not be refutable with limited or sparse data.

Moreover, in real-world applications where there is a sufficient variation in the menus presented,

these assumptions are rarely satisfied. For instance, there is overwhelming evidence of violations of

the independence assumption (Huber et al. 1982, Tversky and Simonson 1993). Consequently, the

analyst’s task becomes selecting a choice model that best approximates the DM’s preferences. Still,

understanding the theoretical properties of SCMs in an idealized setting – where the full SCF is

known – can guide the selection of an appropriate model. For this reason, we briefly review some of
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the most commonly used assumptions in mainstream SCMs before presenting the technical details

of our proposed model.

Axiom 1 (Luce Independence) For any G, H ∈ ( ⊂ ) ∈ X, it holds that d(G,()
d(H,() =

d(G,))
d(H,)) .

The Luce independence assumption, also known as the IIA assumption, asserts that the odds of

choosing G over H are invariant to the presence of other alternatives. A weaker version of IIA is

order independence, requiring that the ordinal ranking of two options remains unchanged across

menus:

Axiom 2 (Order Independence) For any G, H ∈ ( ⊂ ) ∈ X,

d(G, () − d(H, () ≥ 0 ⇐⇒ d(G,)) − d(H,)) ≥ 0.

For binary menus, both the Luce and logit models are special cases of Fechnerian models. When

|- | ≤ 3, Block andMarschak (1959) showed that the following condition is necessary and sufficient

for RUM representability:

Axiom 3 (Regularity) For any G ∈ ( ⊂ ) ∈ X, d(G, () ≥ d(G,)).

Regularity, also called monotonicity, ensures that adding alternatives to a menu does not increase

the choice probability of an existing option. It is a central axiom in economic choice theory and

is often a necessary condition even in models allowing boundedly rational behavior. However, for

|- | > 3, regularity is necessary but not sufficient for RUM representability. For example, when

|- | = 4, Block and Marschak (1959) identified the need for an additional axiom:

Axiom 4 (Supermodularity) For any three disjoint sets (,),+ ∈ X and G ∈ (,

d(G,) ∪ () − d(G,) ∪ ( ∪+) ≤ d(G, () − d(G, ( ∪+).

This axiom implies diminishing marginal losses in choice probability as menus expand (Strzalecki

2017). Together, regularity and supermodularity define decreasing and convex properties of d(G, ()
across partially ordered menus. In other words, supermodularity and regularity define properties of

d(G, () when viewed as a function of all partially ordered menus containing G. Regularity assumes

that this function is decreasing. Supermodularity assumes that it is convex. When menus are binary,

an alternative condition is sufficient:
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Axiom 5 (Triangle Inequality) For any G, H, I ∈ - ,

d(G, {G, I}) ≤ d(G, {G, H}) + d(H, {H, I}).

The triangle inequality is both necessary and sufficient for RUM representability when menus

are binary and |- | < 6 (Block and Marschak 1959, Fishburn 1992), but insufficient when |- | ≥
6 (McFadden and Richter 1970). In general, for arbitrary menu sizes, RUM representability requires

nonnegative Block-Marschak polynomials (Barberá and Pattanaik 1986, Falmagne 1978). However,

verifying this condition empirically is infeasible with limited data.

3. Random Preference Model
This section introduces the random preference model (RPM). While it satisfies regularity – a foun-

dational axiom in economic theory – it relaxes stronger assumptions such as positivity and Luce

independence. We demonstrate that RPM effectively captures context-dependent behaviors, includ-

ing the asymmetric dominance and compromise effect, and accommodates violations of the IIA and

order independence. This challenges the widespread belief that effects like asymmetric dominance

necessarily imply violations of regularity.We argue that regularity is violated only in extreme cases,

which are rarely encountered in practice (Frederick et al. 2014). The regularity-consistent structure

of RPM, combined with its flexibility in modeling moderate context effects, makes it a compelling

and practically useful choice model.

The RPM defines a probability distribution over P, the set of all complete, transitive, and

asymmetric binary relations on - . Let Δ(P) denote the |- |-dimensional simplex of all probability

distributions over P. From the analyst’s perspective, each probability in this vector represents the

likelihood that a given preference relation governs the observed choice behavior.

Definition 2 (Random Preference Model). Arandompreferencemodel is a pair (`,P), where
P is the set of complete, transitive, and asymmetric binary relations over the set of choice options

- , and ` ∈ Δ(P) is a probability distribution over the elements of P.
We now consider how the RPM describes choice behaviors. For an observed choice (G, (), define:

&(G, () = {% ∈ P : G%H for all H ∈ (, H ≠ G}, (1)

where G%H means (G, H) ∈ %, i.e., G is preferred to H under preference %, or equivalently, G precedes
H in the ranking induced by %.

Lemma 1. For any ( ∈ X, `
(
&(G, ()

)
≥ 0 and ∑

G∈( `
(
&(G, ()

)
= 1.



Ghaderi et al.: Random Preference Model
8

Proof sketch. For any ( ∈ X, the sets &(G, () form a partition of P. First, for G ≠ I ∈ (, we
have &(G, () ∩&(I, () = ∅, because if % ∈ &(G, () ∩&(I, (), then G%I and I%G, contradicting the

asymmetry of %. Second, since every % ∈ P ranks all elements in (, it has a uniquemaximal element

in ( due to completeness, transitivity, and asymmetry (Rubinstein 2012). Thus,
⋃
G∈(&(G, () = P,

and since ` is a probability measure over P, the result follows.
We say that an SCF d is induced by an RPM ` – denoted d` – if there exists ` ∈ Δ(P) such that:

d(G, () = `
(
&(G, ()

)
. (2)

That is, the probability of choosing G from ( equals the total probability assigned to all preference

relations in P that rank G above all other elements in (. Equivalently, d` (G, () =
∑
%∈P `(%) ×

I[G%H for all H ∈ ( \ {G}], where I is the indicator function.
Every RPM induces a unique SCF, but the converse does not generally hold. An SCF may

admit multiple distinct RPM representations, even with disjoint supports (Fishburn 1998). This

identification issue is common in stochastic choice modeling. Nonetheless, when the goal is to

identify amodal preference or representative agent – often desirable due to convexity considerations

– RPM offers advantages over utility-based representations. Full identification of an RPM requires

domain restrictions (Turansick 2022, Apesteguia et al. 2017). While preference relations may be

recoverable under suitable assumptions (Chambers et al. 2018), identifying utility functions is

generally much more difficult. Since utility is ordinal, its distribution cannot be identified from

finite choice data; at best, we can hope to recover a distribution over preferences (Strzalecki 2017).

The following result alleviates identification concerns for prediction tasks:

Theorem 1 (Falmagne (1978)). If ` and `′ are two RPMs that represent the same SCF d, then

the probability of any alternative G ∈ - being ranked in position : is the same under both ` and `′.

In real-world applicationswith noisy or limited data, no single RPMorRUMcan perfectly explain

observed choices. The analyst’s objective, therefore, becomes finding a model that adequately

approximates the underlying preferences. In this regard, RPM has notable advantages over utility-

based models. Its nonparametric structure and inherent flexibility make it well-suited for capturing

a wide range of boundedly rational behaviors, including violations of IIA, order independence, and

context-dependent effects such as the compromise effect and trade-off contrast. We illustrate these

phenomena using a simple running example before presenting the multiattribute extension of RPM.

For binary menus, we abbreviate d(G, {G, H}) as d(G, H).
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Random Preference Model Random Utility Model

Figure 1 The system of binary choice probabilities in Example 1.

Example 1. Consider the choice set - = {G, H, I} and the following system of binary choice
probabilities: d(G, H) = 0.65, d(H, I) = 0.25, and d(I, G) = 0.45. The probability d(G, {G, H, I}) is
unknown. The structure of the binary choice probabilities is illustrated in Figure 1.
Table 1 enumerates all six possible complete rankings over the elements of - . Each vector
(`1, . . . , `6) defines an RPM, where `= = `(%=) represents the probability mass assigned to rank-
ing %=. For instance, consider the distribution ` = (0,0.40,0.15,0.10,0.25,0.10), which is fully
consistent with the observed system of binary choice probabilities. To verify this, observe that:

d` (G, H) = `1 + `2 + `5 = 0+ 0.40+ 0.25 = 0.65,

which matches the given value of d(G, H). Similar calculations confirm the consistency for the
other two binary menus. For the ternary menu {G, H, I}, we have d` (G, {G, H, I}) = 0.40. Note that
this does not violate the regularity axiom, as d` (G, {G, H, I}) is less than both d(G, H) = 0.65 and
d(G, I) = 1− d(I, G) = 0.55. In fact, any SCF induced by an RPM satisfies regularity, as stated by
the following lemma.

Lemma 2. Any SCF d induced by an RPM ` satisfies regularity. That is,

d` (G, () ≤min
)⊂(
G∈)

d` (G,))·

The following discussion highlights three key behavioral phenomena – Luce independence, the
compromise effect, and order dependence – and demonstrates how the RPM relates to each.

Table 1 The population of rankings in Example 1.

P %1 %2 %3 %4 %5 %6

` `1 `2 `3 `4 `5 `6

Rankings:

x x y y z z

y z x z x y

z y z x y x
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• Luce Independence: In the example, we observe that the ratio of choice probabilities between

alternatives G and H varies across different menus, i.e.:

d` (G, H)
d` (H, G)

=
0.65
0.35

>
d` (G, {G, H, I})
d` (H, {G, H, I})

=
0.40
0.25

,

demonstrating that RPM does not satisfy IIA. In utility-based choice models, the nested logit

model is one of the most widely used approaches for capturing violations of IIA (Ben-Akiva 1973,

McFadden 1977). However, implementing nested logit requires the analyst to specify a nesting

structure – a task that is subjective, often cumbersome, and computationally complex due to its

combinatorial nature (Aboutaleb et al. 2020). Kohli and Jedidi (2017) showed that nested logit is

a special case of the probabilistic model known as Elimination by Aspects (EBA) (Tversky 1972).

Notably, RPM subsumes EBA (Bertsimas and Mišić 2019), and therefore also subsumes nested

logit. Consequently, RPM is capable of modeling non-IIA choice data without requiring any nesting

assumptions.

• Compromise Effect: The compromise effect arises from a cognitive phenomenon known as

trade-off contrast, in which DM’s choices are influenced by the presence of other options that imply

different exchange rates between attributes such as quality and price. This contrast does not require

any option to dominate another. However, when a menu includes an asymmetrically dominated

decoy, the market share of the dominating option relative to its competitor tends to increase (Huber

et al. 1982, Simonson and Tversky 1992). In such cases, the mere presence of a dominated decoy

makes one option appear more attractive than another.

To quantify the compromise effect, one may adopt the metric proposed by Simonson and Tversky

(1992) and Kivetz et al. (2004). Specifically, the effect of adding an option I to the menu {G, H} on
the choice probability of H is measured by:

�I (H; G) =
d(H, {G, H, I})

d(H, {G, H, I}) + d(G, {G, H, I}) − d(H, G),

capturing the change in the relative popularity of H compared to G due to the presence of I. If both

�I (H; G) and �G (H; I) are positive, one can conclude that H is a compromise option in the {G, H, I}
menu. In the case of asymmetric dominance, if H is clearly superior to I but G is not, hence I being

a decoy to H, then Simonson and Tversky (1992) predicts that �I (H; G) > 0, violating independence
and potentially order independence axioms. However, it does not necessarily violate regularity, as

we discuss later in this section.
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The compromise effect is both a widely used strategy in menu design and a highly debated form
of context-dependent preference (Kivetz et al. 2004). Frederick et al. (2014), through a series of 38
studies, failed to replicate the effect under various conditions and suggested that it may be confined
to laboratory settings and stylized products with numeric attributes. In contrast, Wu and Cosguner
(2020) found the effect to be empirically significant, conditional on the DM detecting the decoy –
though detection rates were low. Simonson (2014) responded to these critiques by noting that the
effect is often not observed when stronger choice drivers are at play, but it does tend to manifest,
especially when price is among the attributes. Taken together, the literature suggests that while the
compromise effect is robust, its magnitude is often more modest than originally claimed in popular
accounts such as (Ariely 2008), which reported an increase in market share from 32% to 84% due
to a decoy.

In our example, the change in the relative popularity of H compared to G or I due to the
presence of, respectively, I or G can be quantified as: �I (H) = 0.25

0.25+0.40 − 0.35 = 0.035 > 0 and
�G (H) = 0.25

0.25+0.35 − 0.25 = 0.167 > 0, indicating a discernible compromise effect for the RPM, with
H being perceived as the middle option between G and I.
A common misconception in economics, marketing, and operations (Frederick et al. 2014,

Strzalecki 2017, Berbeglia and Venkataraman 2023) is that the compromise effect necessarily
violates the regularity axiom – the principle that adding alternatives should not increase the
probability of choosing an existing option. However, as our example shows, this is not necessarily
the case. The decoy’s role is to enhance the relative appeal of one option without necessarily
increasing its absolute share. Violations of regularity occur only under extreme conditions, such as
when the decoy is never chosen (a case deemed uninteresting by Huber et al. 1982) or when shifts
in relative share are excessively large (Simonson and Tversky 1992). Empirical studies suggest such
violations are rare in practice (Frederick et al. 2014). Thus, RPM is capable of capturing realistic
compromise effects while preserving regularity.
• Order-Dependent Preferences: The RPM shares the flexibility of models such as preference

trees designed to accommodate violations of order independence (Kohli and Jedidi 2017). To illus-
trate, consider the RPMdefined by ` = (`1, . . . , `6) = (0,0.30,0.25,0,0.35,0.10). This distribution
is fully consistent with the binary choice system in Example 1, i.e., d` ≡ d for binary menus. For the
two menus ( = {G, I} and ) = {G, H, I}, we observe: d(G, () − d(I, () = 0.55− 0.45 = 0.10 > 0, but
d(G,)) − d(I,)) = 0.30 − 0.45 = −0.15 < 0, which violates the order independence axiom. From
this, we conclude:

Lemma 3. The RPM can capture choice data when order independence does not hold.
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3.1. RPM: The Sweet Spot Between Rank- and Utility-Based Choice Models

Similar to the approaches of Barberá and Pattanaik (1986) and McFadden and Richter (1990), our

RPM framework directly models preferences via a probability distribution over the set of strict

linear orderings (rankings) of alternatives, rather than positing an underlying utility function. When

the choice set - is finite, the RPM representation is equivalent to the RUM in terms of the induced

choice probabilities (Block and Marschak 1959, McFadden 2001).

Theorem 2 (Block and Marschak (1959)). An SCF d is RPM-representable if and only if it is

RUM-representable.

This equivalence holds in the absence of structural assumptions on either representation. Although

RPM and RUM yield the same SCF, their underlying parameters – and hence their interpretations

– differ fundamentally. The RPM representation offers a simplified and transparent framework, as

only ordinal information (i.e., the ranking of alternatives) is relevant to observed choices (Barberá

and Pattanaik 1986). Since the two approaches are inherently different in the way they arrive at an

SCF, differences in representations are consequential for empirical modeling and policy analysis,

especially in settings where model parameters themselves are objects of interest, such as decision

analysis and discrete choice applications involving alternatives evaluated in terms of multiple

attribute (Fishburn 1970, McFadden 1974, Keeney and Raiffa 1993, Kadziński et al. 2012, Ghaderi

and Kadziński 2021, Allen and Rehbeck 2023).

While RUM describes choices using a distribution over the utility space, and rank-based models

describe choices based on a distribution over rankings, RPMdescribes choices based on a probability

distribution over rankings where the probability of a given ranking is related to a distribution over

the subspace of utility functions consisting of all utility functions compatible with this ranking.

Hence, RPM relates RUM with rank-based choice models. On the one hand, preferences are

modeled through rankings. On the other hand, given a ranking, RPM constructs an empirical

distribution over the entire space of utility functions that represent it. This construction relates

the ranking distribution to utility representations via a notion of expected log-likelihood, which

is proportional to the ranking probability. Thus, for each ranking, we define a distribution over

the compatible utility subspace such that the expected log-likelihood induced by that distribution

aligns with the observed ranking probability. This mechanism enables utility-based inference while

preserving the rank-based foundation of the model. Furthermore, discarding distributions over the

utility subspaces, our framework also aligns with rank-based choice models, which are prominent
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Figure 2 Relationship between preferences, choices, and utilities in RPM versus conventional RUM.

in the assortment optimization and revenue management literature, where alternatives are treated

as nominal objects without a multi-attribute description.

Moreover, RPM and RUM differ in their epistemological underpinnings (Hausman 2011). RPM

does not treat preferences as summaries of satisfaction or utility; rather, it considers preferences and

rankings as primitive elements of behavior, which are reflected in satisfaction levels and represented

by utility functions. In contrast, RUM typically takes utility as primitive, with preferences and

choice behavior derived therefrom. These foundational differences also affect identifiability: RPM

identifies preferences directly, while RUM identifies utilities as behavioral summaries.

In line with this perspective, we treat preferences as the primary construct generating choices,

and utility functions as representational tools for these preferences. This stands in contrast to models

that begin with utility as primitive and define choice probabilities directly from utility compar-

isons, thereby reducing preferences to mere summaries of choice behavior. Figure 2 illustrates this

conceptual distinction.

In the next section, we outline the construction of RPM, how probabilities over rankings are

constructed, and how the probability for each ranking is related to an empirically constructed

distribution over the compatible utility subspace. Specifically, for each ranking, we construct a

distribution over the corresponding utility subspace, such that the expected log-likelihood within

each subspace matches the associated ranking probability in a structured and coherent manner. The

structure arises from partitioning the utility space according to rankings – each subspace containing

utility functions that represent a specific ranking. The coherence is ensured by enforcing that the

expected log-likelihood within each subspace is consistent with the ranking’s probability. This

construction bridges the interpretive strengths of both RPM and RUM and facilitates utility-based

inference grounded in ordinal choice behavior.

3.2. Construction of Random Preference Model

LetU denote the space of utility functions. A utility function D ∈U is characterized by a parameter

vector ) ∈ Θ, and is said to represent a preference relation % ∈ P if D(G; )) > D(H; )) whenever
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G%H. For a given preference relation % ∈ P, define the subspace Θ% ⊆ Θ as the set of parameters

corresponding to utility functionsU% ⊆U that represent %.

Remark 1. The collection of preference relations P partitions the parameter space Θ. That is,⋃
%∈P Θ

% =Θ, and for any two distinct preference relations %<, %= ∈ P, we have Θ%< ∩Θ%= = ∅.
Remark 2. For any preference relation % ∈ P, the subspace Θ% is convex regardless of the

functional form of the utility functions. Specifically, if ) , )′ ∈ Θ%, then any convex combination

C) + (1− C))′ ∈Θ% for all C ∈ [0,1].
We assert that the ability of a preference % ∈ P to explain the observed choice data is proportional

to the collective ability of the utility functions D ∈ U% in doing so. For a ) ∈ Θ%, we define its

explanatory power with respect to the observed dataset D = {(G, ()} as follows:

V()) = 1
|D|

∑
(G,()∈D

log
( 4D(G;))∑

H∈( 4D(H;))
)
. (3)

Here, V()) corresponds to the expected log-likelihood by which ) chooses G from ( for a randomly

selected choice data (G, (). A higher value of V()) indicates stronger discriminatory power in

distinguishing the chosen alternative from the unchosen ones in menu (, under a fixed preference

relation % 2. We link the probability mass assigned to each preference % to the expected value

of this log-likelihood-based discrimination measure. Specifically, let 5 be an unknown probability

distribution over the space of parameters Θ. Then, q = E 5 |%
[
V())

]
, where 5 |% = 5 () |%) 5 |% =

5 () | %) denotes a conditional probability given a specific ranking. Hence, we define

q =

∫
)∈Θ%

V()) 5 () |%)3) (4)

and therefore

`(%) = 4fq∑
= 4

fq=
, (5)

wheref ≥ 0 is a concentration parameter that governs the sharpness of the distribution `. Intuitively,

f captures the explanatory strength of the variables involved in the utility specification. Therefore,

it can serve as an objective measure to test their relevance. Larger values of f indicate greater

explanatory power, while f = 0 yields a uniform distribution over preference orders %.

Using the same framework, we define the conditional distribution over the subspace Θ%. Specif-

ically, the probability density of a utility function D(·; )) ∈ U% is defined as:

5 () |%) = 4_V())∫
Θ% 4

_V())3)
, (6)

2Utilities are always scaled in a [0,1] interval.
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where _ ≥ 0 is a concentration parameter for the distribution over each Θ% that may vary across

preference relations % ∈ P. Substituting (6) into (4) yields:

q =

∫
Θ% V())4_V())3)∫
Θ% 4

_V())3)
. (7)

Computing the value of q involves integration over a potentially high-dimensional parameter space

and a function V()) that lacks a closed-form expression. Nonetheless, q can be approximated as a

function of _ by sampling fromΘ%. In fact, it is possible to estimate q without directly estimating _

by decomposing the estimation process into two stages – a procedure we describe in the next section.

4. Estimation of Random Preference Model

To estimate the parameters of the RPM from observed choice data, we consider a maximum

likelihood and a distance-based estimation framework. Regardless of the estimation process, it is

important to note that the parameter q, defined in 4, corresponds to the expected log likelihood of

the compatible utility subspace, even with the distance-based estimation.

Let {(GC , (C)})C=1 denote a finite collection of observed choices. The corresponding likelihood

function is defined as:

L(f, {q=}=, {_=}=) =
)∏
C=1

`

(
&(GC , (C)

)
. (8)

This likelihood function is generally nonlinear and nonconvex, making direct optimization compu-

tationally demanding. However, we demonstrate that the likelihood can be decomposed by isolating

the _ parameters via bounding the q terms. This facilitates a two-stage estimation procedure: we

first solve for (f, q) under bounded constraints and subsequently recover _ by solving a system of

linear equations.

Lemma 4. For any % ∈ P, ED=8(Θ%)
[
V())

]
≤ q ≤max)∈Θ% V()).

Proof The derivative of q with respect to _ is given by:

3q

3_
=
3

3_

(∫
Θ% V())4_V()) 3)∫
Θ% 4

_V()) 3)

)
.

Applying the quotient rule, we obtain:

3q

3_
=

(∫
Θ% V ())24_V ()) 3)

) (∫
Θ% 4_V ()) 3)

)
−

(∫
Θ% V ())4_V ()) 3)

)2(∫
Θ% 4_V ()) 3)

)2 .
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But this is the variance of V()) under the distribution 5 () |%):

3q

3_
=

∫
Θ% V())24_V()) 3)∫

Θ% 4
_V()) 3)

−
(∫
Θ% V())4_V()) 3)∫
Θ% 4

_V()) 3)

)2
Under the distribution 5 () |%) in Eq. (6), the first term is the expected value of squared V()) and

the second term is the squared expected value of V()), that is:

3q

3_
= E 5 [V())2] −

(
E 5 [V())]

)2
=Var 5 [V())] ≥ 0

The non-negativity of 3q

3_
follows from the non-negativity of variance. Thus, the lower and upper

bounds for q are obtained, respectively, by setting _ = 0 and _→∞. For _ = 0, it is easy to verify

that the distribution 5 () |%) collapses to a uniform distribution. On the other hand, when _→∞,

the distribution concentrates on the largest V()) value. This is because 4_(V())−V∗) → 0 for any

V()) < V∗ =<0G)∈Θ% V()), and therefore lim_→∞ q =max)∈Θ% V()). QED

Lemma 4 implies that the lower bound of q arises under a uniform distribution overΘ% (i.e., _ = 0),

while the upper bound corresponds to the maximum value of V()) over Θ%. Notably, both bounds

are independent of _. We therefore formulate the following constrained optimization problem:

max
f≥0,5

L(f, {q=}=) =
∑
<∈&(GC ,(C )
C=1,···)

log( 4fq<∑
= 4

fq=
)

B.C. ;= ≤ q= ≤ D=
(9)

where ;= and D= are the lower and upper bounds determined by Lemma 4.

Proposition 1. If f∗, {q∗=}, {_∗=} solve the full likelihood problem (8), then f∗, {q∗=} also solve

the constrained problem (9). Conversely, if f∗, {q∗=} solve (9), then for each q∗= there exists a unique

_= satisfying (7) that recovers the optimal solution to (8). In other words, f∗, {q∗=} are the optimal

solutions to the maximum likelihood problem (8).

This proposition establishes a one-to-one relationship between the solutions to the constrained

optimization problem (9) and to the maximum likelihood problem (8) in the (f,5) space. For each

point in this space, there exists a unique , maximizing the likelihood. This motivates the two-stage

estimation strategy to obtain the maximum likelihood estimation for f,5,, parameters.

Theorem 3. The parameters f∗, {_∗=} solve the two-stage procedure in Algorithm (1) if and only

if they solve the original maximum likelihood problem (8).
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Algorithm 1 The two-stage procedure for estimating f,5,, by decomposing the likelihood prob-

lem (8)
1: procedure TwoStageSolution

Input: {(GC , (C)}C=1,2,··· ,)
Output: f, _= for every %= ∈ P
2: ;=← ED=8(Θ%= ) [V())] ⊲ Expected value w.r.t a uniform distribution over Θ%=

3: D=←<0G)∈Θ%= V())
4: Solve (9) for f and q=, for all %= ∈ P
5: f∗ and q∗=← solution from the previous step

6: for all %= ∈ P do

7: Find _= by solving q∗= =
∫
Θ%=

V())4_=V ())3)∫
Θ%=

4_=V ())3)

8: _∗=← solution

9: end for

10: Return f∗, _∗= for all %= ∈ P
11: end procedure

This result follows from Lemma 4 and the strict monotonicity of the mapping from _ to q in (7).
Bounding q in Step 4 of Algorithm (1) ensures that the feasible regions of both problems coincide.
Moreover, the monotonicity of q in _ in (7) guarantees the existence of a unique _ in Step 7.
To implement this approach, all integrals in Algorithm (1) are approximated via Monte Carlo
sampling from the parameter spaceΘ. Because subspacesΘ% can differ significantly in volume, we
ensure uniform representation (i.e., an equal number of samples from each subspace) by identifying
the centroid of each Θ% and initiating a random walk from it with an adaptive step size parameter.
The centroid is obtained by solving the following linear program:

max
)∈Θ%

a

D(G; )) − D(H; )) ≥ a, ∀D ∈U,∀(G, H) ∈ %.
(10)

This max-min LP identifies the innermost point of Θ%, i.e., vector ) – and hence function D ∈ U
compatible with % when ordering the elements of - based on their utilities – maximally distant
from its defining hyperplanes. 3 We use Algorithm (2) to perform a random walk from the centroid
to obtain a desired number of samples from Θ%:

3Our formulation is related to prior work on estimating preference parameters under uniform priors (Srinivasan and Shocker 1973,
Jacquet-Lagreze and Siskos 1982, Toubia et al. 2003). As discussed by Toubia et al. (2003), the innermost point minimizes some
expected error in estimating preference parameters if we assume a uniform distribution over the parameter space.
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Algorithm 2 Sampling from Θ% subspaces.
1: procedure UniformSampling

Input: :B: the number of samples from each subspace Θ% ⊂ Θ, X0: the sampling initial step

size, U ∈ (0,1): the adaptive step size parameter, n : a small number determining the smallest

admissible step size.

Output: (0<?;4% = {): }:=1,2,··· ,:B where ): ∈Θ%, for each % ∈ P
2: for all %= ∈ P do

3: :← 0, A4 942C← 0, X = X0
4: Solve (10) to obtain )∗ and a∗ ⊲ Finding centroid of Θ%

5: if a∗ > 0 then )1← \∗, (0<?;4%← )1, and :← : + 1
6: else Eliminate %= from P and go to step 2

7: end if

8: while : < :B and A4 942C < 100 do

9: Compute ) = ): + Xr where r is a random unit vector

10: if ) ∈Θ% then ):+1← ) , (0<?;4%=
← (0<?;4%=

∪ ):+1, :← : + 1, A4 942C← 0
11: else A4 942C← A4 942C + 1
12: if A4 942C > 100 then X = UX

13: if X < n then X = X0, A4 942C← 0
14: end if

15: end if

16: Go back to step 9

17: end if

18: end while

19: end for

20: end procedure

The procedure described in Algorithm (2) initiates a random walk from the centroid of each

subspaceΘ% and collects a predetermined number of samples, denoted by :B. Given that the volumes

of differentΘ% subspaces can vary substantially, Steps 17 to 22 in the algorithm dynamically adjust

the step size X to ensure efficient exploration. Specifically, if the number of consecutively rejected

samples – i.e., proposals that fall outside Θ% – exceeds a threshold (set to 100), the step size X is
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reduced by a factor U (e.g., 0.75). To avoid oversampling a narrow region of Θ%, the algorithm

resets X to its initial value X0 (set to 0.05) when it becomes too small.

A key advantage of this approach is that it ensures an equal number of samples from each Θ%,

thereby guaranteeing equal representation of each ranking % in the numerical procedure described

in Algorithm (1). Furthermore, because the sampling process constitutes a Markov chain, the

random walk over Θ% converges to a uniform distribution over the subspace as :B increases. This

property is essential, as uniform sampling over the unpartitioned space Θ would not yield the same

representational balance.

To further reduce computational cost and sample autocorrelation while maintaining accuracy,

our implementation utilizes a thinning strategy (Brooks et al. 2011), by selecting one point from

every batch of 10 sampled points. Using the outputs from Algorithm (2), Algorithm (1) can be

employed to estimate the parameters f and _=, as well as the full distribution 5 over Θ and the

induced distribution ` ∈ Δ(P).

The sampling process over the partitioned space × is the most computationally intensive com-

ponent of our estimation method. However, it is performed only once. Once the sample set {)} is

collected and stored, future computations – including model updates in response to new data or

different preference structures % – require only recomputation of 5 via Eq. (7).

Before presenting the numerical results, we describe a distance-based estimation procedure as

an alternative to the maximum likelihood method. Unlike the likelihood-based approach, which

requires choice observations at the choice task level, the distance-based method can be applied even

when such data are available only at the aggregate level as a choice share of options in each menu.

4.1. Distance-Based Estimation

Recall that we consider using data for model estimation that consists of pairs (GC , (C) that represent

the choice of GC from menu (C . Define the matrix � such that each element 0C= equals 1 if the

ranking %= is compatible with choosing GC from the menu (C – that is, if GC%=H for all H ∈ (C \ {GC}.

Let the column vector - denote a probability distribution over the set of rankings, where the =-th

element `= equals `(%=). Then, the inner product of the C-th row of �, denoted by aC , and the vector

- yields the predicted choice probability of GC from (C , i.e., aC- = d` (GC , (C) by construction.
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The objective of the distance-based estimation approach is to identify a probability vector - that

produces predicted choice probabilities d` as close as possible to the observed choice shares d.

This is achieved by solving the following constrained optimization problem:

min
-≥0,f≥0,5,z

3 (d`, d) = ‖z − 1‖22
B.C. �- − z = 0

- − 4f5

1ᵀ4f5 = 0

5− u ≤ 0

l − 5 ≤ 0

(11)

where z denotes the vector of choice probabilities induced by `, 1 represents the vector of observed

choice shares, and l and u are the lower and upper bounds on 5 as defined in Lemma 4. The first

constraint ensures that z corresponds to the choice probabilities generated by d`, and the next three

constraints impose the RPM structure described in Section 3.2.

Note that the matrix � encapsulates all the available information from the observed choice data,

as it maps observed choices to the space of rankings. For this reason, we refer to � as the information

matrix. This matrix is typically high-dimensional, with the number of columns growing factorially

with the size of - , i.e.,$ ( |- |!), which renders the estimation problem computationally challenging.

To address this challenge, we introduce two approximation strategies that reduce computational

complexity at the cost of estimation accuracy. The first approach restricts the support of the RPM

by constructing ` over a subset of P rather than the full permutation set. The other approach limits

each ranking to its top-: elements, effectively working with partial permutations.

4.2. Restricted-Support RPM

Let us refine our notation by definingP0 as the set of all complete, transitive, and asymmetric binary

relations on - , and let P ⊆ P0. When P is a proper subset of P0, the pair (`,P) constitutes an RPM
with restricted support. By controlling the size of P, one can effectively manage the computational

complexity of the optimization problems (9) and (11). Notably, both these optimization formulations

and their corresponding solution methods – Algorithms (1) and (2) — can be applied without

modification under this restriction.

We consider two approaches for constructing P. The first involves random sampling from P0,
where the sample size mediates the trade-off between computational efficiency and approximation

accuracy. This procedure is equivalent to sampling from the column space of the information

matrix � as defined in Section 4.1. Importantly, the sampling process begins by partitioning the
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preference space such that each partition consists of rankings where a specific alternative occupies

the top rank. One ranking is initially sampled from each partition, after which additional rankings

are sampled uniformly at random from P0 until the desired sample size is reached. This adjustment

ensures that d(G, () is not inadvertently set to zero, which would otherwise result in a degenerate

likelihood function.

The second approach constructs P by identifying a basis for the column space of the matrix �.

The rationale is that since the vector of predicted choice shares d` ≡ �- is a linear combination of

the columns of �, then, if a column a= can be written as a convex combination of other columns,

i.e., a= =
∑�
9=1 C 9 a 9 with

∑
9 C 9 = 1, its contribution to d` is likewise a linear combination of their

respective contributions with the same weighting factors C1, C2, · · · , C� . In this case, if %= ∈&(G, (),

removing %= from P redistributes its probability mass `= across the basis rankings according to

the weights C 9 , 9 = 1, · · · , �. Specifically, for a pair (G, () and its corresponding row vector a in �,

we have d` (G, () =
∑|P |
:=1 0:`: . Since 0= =

∑
9 C 90 9 , each coefficient 0 9 will effectively receive an

increment of C 9`=, thereby reallocating a share C 9`= of the removed probability mass to ` 9 . As the

resulting matrix � constructed from the restricted support P is full-rank, the corresponding RPM

(`,P) remains identifiable.

Nonetheless, a limitation of this approach is that the predicted choice shares d` cannot always

be fully recovered when P is restricted to rankings associated with a linearly independent subset of

columns of �. This occurs because the probability mass assigned to a ranking % 9 , corresponding

to a column 0 9 in the basis, may implicitly contain contributions from dependent rankings that

are not necessarily compatible with the choice situation (G, (). Despite this limitation, the method

offers a compelling approximation strategy, as it reduces problem size by eliminating redundant

information. In particular, it reduces the number of columns in � from $ ( |- |!) to $ ()), where )

is the length of the vector of observed choice shares 1. Since typically ) � |- |!, and in the worst

case ) =$ (2|- |), this reduction can yield substantial computational gains.

Finally, to construct the restricted support RPM via the column basis method, it is not necessary

to compute or store the full information matrix �, which would be infeasible for large |P |. Instead,

candidate rankings are evaluated sequentially. For each candidate, the corresponding column of �

is computed and appended to the current matrix if and only if it increases the rank. In this way, the

support set P is incrementally built to ensure linear independence among the associated columns.
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4.3. Partial-Permutation RPM

The approximation approach described in this section modifies the elements of P such that they no

longer represent complete, transitive, and asymmetric binary relations on - . Instead, the elements

are partial permutations, obtained by restricting the depth of each ranking. Consequently, the size

of P is altered. When only the top-: alternatives in each ranking are considered, the cardinality

of P becomes |P | = |- | × (|- | − 1) × · · · × (|- | − : + 1). The underlying intuition is that, when

facing a choice problem, the DMs are indifferent among all remaining options if none of their top

: preferences are available. This idea bears conceptual resemblance to the notion of a rank cut-off

discussed in Bai et al. (2024).

When P is composed of partial permutations, the matrix � is no longer binary. This is because,

for a pair of alternatives G, H ∈ (, a partial permutation may be indeterminate in revealing a strict

preference relation. As a result, it is not always immediately clear whether a given partial ranking %

is compatible with an observed choice instance (G, (). To determine the value of the entry 0= in the

row vector a of matrix � corresponding to the pair (G, (), we consider the following three cases:
• If G is present in %=, and all elements of ( \ {G} are either ranked below G or do not appear in

%=, then 0= = 1.

• If G is not present in %= and at least one element of ( \ {G} is present, or if G appears in %= and
at least one element of ( \ {G} is ranked above G, then 0= = 0.

• If none of the elements in ( are present in %=, then 0= = 1/|( |.
The final case reflects a situation in which the customer type represented by %= chooses uniformly

at random from the set (, due to none of the alternatives in ( being among her top : ranked options.

5. Prototype Analysis
Consider a dataset consisting of ) = 100 binary choices among |- | = 5 alternatives, each described
by " = 4 attributes, with each attribute taking one of ! = 4 possible levels. The choice data

are generated using randomly constructed options and simulated utility functions. Each option

is represented by a vector x 9 = (G1 9 , . . . , G4 9 ), where each component denotes the level of the

corresponding attribute. Utilities are computed using a simulated utility function of the form

* 9 =

4∑
<=1

F<D< 9 + n,

which comprises two components: a weighted sum of marginal utilities and a stochastic noise

term. The marginal utility functions D< 9 are independently generated and scaled to lie within the
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Figure 3 Summary of the generated choice data in the illustrative example. Circles represent options, and for each binary

menu {G, H}, the label over the arrow from G to H includes the fraction of times G is chosen from the menu, and

the number in parentheses shows the number of times the menu is observed.

interval [0,1]. The weights w = (F1, . . . , F4) are drawn from a random distribution such that
F< ∈ (0,1) and

∑4
<=1F< = 1, ensuring a convex combination of the marginal utilities. Here, D< 9

represents the marginal utility of option 9 with respect to attribute <, based on its assigned level
and the corresponding randomly generated utility function. The stochastic component n ∼N(0, B2)
introduces randomness into the utility, with a mean of 0 and standard deviation B. Given that utilities
are normalized within unit intervals, we set B = 0.2, corresponding to a moderate to high noise level.
In our illustrative example, this noise level led to approximately 24% of observed choices being
inconsistent with the simulated underlying utility values. Descriptions of the options, simulated
weight vectors, and resulting utility values are presented in Table 2. A summary of the generated
choice data is provided in Figure 3.

Table 2 Descriptions of the simulated options, simulated weights, and ground truth utility values in the illustrative

example.

attribute 1 attribute 2 attribute 3 attribute 4
utilities

weights 0.4648 0.2991 0.0542 0.1818

option 1 0 3 3 2 0.3828

option 2 1 1 1 2 0.3221

option 3 2 0 1 3 0.2761

option 4 2 2 0 3 0.5320

option 5 3 0 0 2 0.4942

We first estimate the RPM (`,P0) with full support using both the maximum-likelihood and
distance-based methods.We then present the results for the restricted support RPM for both settings
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Table 3 Performance metrics for all seven RPM variants, including attribute weights and their ranges, mean absolute

error of the attribute weight estimates, and the log likelihood. Results for the restricted support with random sampling

include means and standard deviations across 20 independent replications.

attribute 1 attribute 2 attribute 3 attribute 4 MAE Log-likelihoodTrue weights 0.465 0.299 0.054 0.182

Full support 0.455
(0.242, 0.589)

0.315
(0.079, 0.411)

0.084
(0.012, 0.308)

0.146
(0.024, 0.522) 0.023 -44.7

Restricted support
random with |P | = |P0 |/3

0.429
(0.211, 0.567)

0.311
(0.082, 0.430)

0.099
(0.017, 0.333)

0.162
(0.023, 0.540) 0.028 -45.8

(std = 0.96)
Restricted support
information matrix basis (MLE)

0.427
(0.208, 560)

0.263
(0.091, 0.440)

0.125
(0.024, 0.325)

0.186
(0.019, 0.538) 0.037 -52.3

Restricted support
information matrix basis (min distance)

0.455
(0.285, 0.710)

0.315
(0.042, 0.313)

0.084
(0.018, 0.310)

0.146
(0.020, 0.516) 0.023 -52.6

Top-k (k=2) 0.407
(0.152, 0.649)

0.305
(0.041, 0.528)

0.119
(0.011, 0.407)

0.169
(0.011, 0.605) 0.035 -44.8

Restricted-support
random and top-k ( k=2, |P | = 10)

0.405
(0.157, 0.630)

0.269
(0.037, 0.500)

0.133
(0.013, 0.396)

0.192
(0.012, 0.597) 0.045 -53.1

(std = 4.03)
Restricted-support
information matrix basis and top-k (k=2)

0.399
(0.153, 0.649)

0.292
(0.035, 0.528)

0.132
(0.011, 0.428)

0.178
(0.010, 0.599) 0.039 -48.8

Table 4 Performance metrics for all seven RPM variants, including estimated choice probabilities across all menus,

choice probabilities conditioned on menus consistent/inconsistent with ground-truth preferences, and recovered

preference rankings. Results for the restricted support with random sampling include means and standard deviations

across 20 independent replications.

Market share recovery Underlying preference recovery
all menus consistent choices inconsistent choices E`

(
g (%, %∗)

)
g (%A4? , %∗)

Full support 0.703 0.818 0.340 0.583 1.000
Restricted support
random with |P | = |P0 |/3

0.686
(std = 0.009)

0.791
(std = 0.017)

0.352
(std = 0.023)

0.497
(std = 0.063)

0.840
(std = 0.179)

Restricted support
information matrix basis (MLE) 0.664 0.780 0.296 0.494 0.800

Restricted support
information matrix basis (min distance) 0.674 0.794 0.292 0.517 0.800

Top-k (k=2) 0.664 0.762 0.354 0.446 1.000
Restricted-support
random and top-k ( k=2, |P | = 10)

0.623
(std = 0.033)

0.706
(std = 0.056)

0.378
(std = 0.051)

-0.188
(std = 0.233)

-0.327
(std = 0.413)

Restricted-support
information matrix basis and top-k (k=2) 0.670 0.776 0.333 -0.301 -0.600*

whereP ⊂ P0 is constructed via random sampling from the preference spaceP0, and via identifying
the basis for column space of the information matrix �. In both cases, we estimate the restricted-

support RPM using the maximum-likelihood and distance-based methods. Next, we present the

results for the partial-permutation RPMwith : = 3, that is, when only top-3 options in each ranking

are considered. Finally, combining the two approximation strategies, we present the results for

partial-permutation RPM with restricted support based on random sampling and the information

matrix column basis. Summary statistics for all seven RPM variants are provided in Tables 3 and 4.

We begin by presenting the results of our stylized example for the RPM with full support,

estimated via maximum likelihood. The average estimated choice probability across the ) = 100

observed (menu, choice) pairs is 0.703; higher values indicate a better fit to the data. Some observed
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choices are inconsistent with the ground-truth simulated preferences due to the inclusion of a

stochastic error component. The average estimated choice probability among consistent choices is

0.818,while for inconsistent choices it is only 0.340, highlighting theRPM’s ability to accommodate

noise in observed behavior.

To evaluate how well the estimated RPM recovers the underlying preference structure, we com-

pared the estimated distribution over the set of rankings with the ground-truth ranking %∗, which

is consistent with the true utility values of the alternatives. We assessed this comparison using two

metrics. First, we computed the expected Kendall’s tau correlation between the estimated RPM and

the true ranking, i.e.:

E`

(
g(%, %∗)

)
=

∑
=

`(%=)g(%=, %∗), (12)

and obtained an expected correlation of 0.583 (p-value = 0.117) for the estimated RPM. This

implies that a ranking randomly drawn from P, according to the distribution `, matches the true

underlying ranking with an expected Kendall’s tau correlation of 0.583 under the noisy conditions

of our illustrative example.4

Second, in settings involving heterogeneous agents with potentially conflicting preferences –

such as those studied in social choice theory – it is often desirable to identify a representative

ranking that best aggregates the preferences of the population. To this end, we adopt the assent-

maximizing welfare function introduced by Baldiga and Green (2013), which generalizes the

well-known Kemeny rule:

%A4? = argmax
%

∑
=

`(%=)g(%, %=). (13)

We then compare the representative preference %rep with the ground-truth ranking %∗ using

Kendall’s tau correlation. In our illustrative example, we obtain a perfect correlation of 1.0 (p-value

= 0.006) 5, indicating that the assent-maximizing ranking is identical to the true underlying ranking

presented in the last column of Table 2. It is worth noting that the representative preference derived

from Eq. (13) may fall outside the RPM support in the case of restricted support RPM.

Moreover, the RPM framework enables the construction of a probability distribution over each

component of ) – the partworths – aswell as over any function thereof, such as attributeweights. This

4Note that Kendall’s tau ranges from −1 to 1.
5 To compute p-values for the Kendall’s tau correlations, we used an exact permutation test, which is feasible due to the small
number of possible rankings (#!). We enumerated all possible rankings and computed their Kendall’s tau correlation with the
ground truth ranking. The p-value was then defined as the fraction of rankings whose correlation coefficient with the ground-truth
ranking exceeds the observed correlation coefficient.
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is accomplished by evaluating the conditional probability, as defined in Eq. (6), for each sampled

point ) ∈ Θ%, where Θ% is a preference subspace obtained using Algorithm (2). Each sample is

weighted according to the estimated probability mass `(%). Specifically, for any component \ 9 of

the utility parameter vector ) and a given quantile @:

P(\ 9 ≤ q) =
∑
=

ˆ̀(%=)
∑

):∈%=:\ 9:≤@ 4
_̂=V(): )∑

):∈%=
4_̂=V(): )

. (14)

Note that Algorithm (2) is specifically designed to approximate uniform sampling from the sub-

spaces ofΘ%. As a result, Eq. (14) provides an approximation of the cumulative distribution function

obtained by combining the conditional probability in Eq. (6) with the probability in Eq. (5). The

accuracy of this approximation improves with larger sample sizes :B in the sampling algorithm.

Since the inferred probabilities over the parameters are derived from sampled points in the param-

eter space, it is also possible to compute bounds on the corresponding cumulative distribution

functions. This is done by identifying the smallest and largest sampled values of each parameter

within a subspace and determining whether a given quantile falls below, within, or above this range.

Consequently, we can characterize the entire range of possible cumulative distributions for each

parameter (i.e., partworth) or for any function of these parameters (e.g., attribute weights). Figure 4

illustrates the cumulative probability distributions and their corresponding lower and upper bounds

for the attribute weights in our illustrative example.

The estimated probability distributions enable the computation of expected values, along with their

corresponding lower and upper bounds, for parameters of interest. These bounds are obtained by

evaluating the upper and lower cumulative probability distributions, respectively. Figure 5 presents

the true attribute weights (i.e., the ground truth derived from the simulated data), their estimated

expected values under the full-support RPM, and the associated lower and upper bounds. The

mean absolute difference between the estimated expected weights and their true values is 0.023,

demonstrating the RPM’s effectiveness in recovering attribute weights in our illustrative example.

As a benchmark, we computed the mean absolute difference for the MNL estimates, which yielded

a value of 0.255, nearly an order of magnitude larger than that of the RPM, even though MNL

correctly recovered the ground truth ranking. Furthermore, the mean absolute difference between

the RPM-estimated market shares and the observed market shares – shown in Figure 1 – is 0.036,

with individual differences ranging from 0 to 0.075. The results for the distance-based estimation

were nearly identical; thus, we omit their presentation for brevity.
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Figure 4 (Color online) Cumulative probability distributions and their minimum and maximum bounds for the attribute

weights in the illustrative example. Vertical red dashed lines indicate the true attribute weights.

Figure 5 (Color online) The expected value, minimum, andmaximum bounds of attribute weights for maximum likelihood

estimated RPM with full support. Vertical dashed lines indicate the true attribute weights.

We next present the results of our illustrative example for the restricted-support RPM, using two

approaches for constructing the support set P: (i) random sampling from the full permutation space

P0, and (ii) identifying a basis for the column space of the information matrix �. In the random

sampling approach, we select a restricted support of size |P | = |P0 |/3 from the full preference space

P0. To mitigate potential dependence on a specific sample configuration, we repeat this procedure
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20 times. All results reported for the restricted-support RPM with random sampling are averaged

over these 20 repetitions.

We observe that the log-likelihood decreases from −44.7 in the full-support RPM to −45.8

(standard deviation = 0.96) in the restricted-support RPM with random sampling. This decline is

expected, given that the full-support RPM subsumes the restricted version and involves a larger

parameter space. Nonetheless, the relatively small difference in log-likelihood, despite a substan-

tially reduced support size, is notable and suggests that restricting the support can be an effective

means of controlling model complexity. The average estimated choice probability is 0.686 (stan-

dard deviation = 0.009). For observed choices consistent with the ground truth, this value is 0.791

(standard deviation = 0.017), and for inconsistent choices, it is 0.352 (standard deviation = 0.023).

While these figures indicate a modest reduction in performance relative to the full-support RPM,

the differences are negligible.

When constructing P based on the basis of the column space of the information matrix, the

support size is reduced to |P | = 11, which is nearly four times smaller than the random sampling

case and nearly eleven times smaller than the full-support RPM. Maximum likelihood estimation

for this restricted-support RPM yields a log-likelihood of −52.3, which is lower than in the previous

cases. However, the model still performs well in terms of attribute weight estimation, market share

recovery, and preference recovery. Furthermore, in this configuration, the distance-based estima-

tion method yields tighter bounds on the attribute weights compared to the maximum likelihood

approach.

Notably, the partial permutation approximation with : = 2 significantly simplifies the model

while achieving performance comparable to the restricted-support RPM, except in estimating the

bounds on attribute weights. The results for the partial permutation RPM indicate greater inferential

uncertainty, as reflected in wider bounds on the attribute weights.

Finally, combining the two approximation strategies – restricted support and partial permutations

– did not substantially degrade performance. For example, this configuration yielded a mean

attribute weight estimation error of 0.039 and a log-likelihood of −48.8, compared to 0.023

and −44.7, respectively, for the full-support RPM. However, this was the only setting in which

the estimated representative preferences were not positively correlated with the true underlying

preference.
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For comparison, we also estimated an MNL model using the same data. The MNL yielded a

log-likelihood of −50.2 and a mean absolute error of 0.255 for the estimated weights—substantially

larger than the error for any RPM variant6, and correctly recovered the underlying true ranking.

6. Empirical Analysis

For our empirical analysis, we used the dataset from Rooderkerk et al. (2011), derived from a

carefully designed choice-based conjoint experiment. In each choice task, participants selected

one option from a menu comprising three hypothetical digital cameras, each characterized by two

attributes: picture quality (measured in megapixels) and optical zoom. Both attributes varied across

five levels. The experiment was constructed to ensure the absence of dominated alternatives in any

menu. Additionally, some menus were intentionally designed to include asymmetrically dominated

options, aimed at eliciting context-dependent preferences that enhance the attractiveness of a target

option. The resulting dataset contains 1,915 choice observations across 30 unique menus, involving

a total of 18 distinct digital cameras.

We randomly partitioned the 30 menus into training and test sets. The training set included only

the choice data from menus assigned to the training condition, while the test set comprises the

remaining menus. We considered two training set sizes: a smaller set consisting of 12 menus (40%

of the data) and a larger set containing 24 menus (80%).

For each training set, we first estimated an MNL model to serve as a benchmark and then

derived models from the various RPM specifications. Specifically, we considered two approaches

for constructing the support of the RPM. The first involves random sampling of partial rankings

from the set of all possible partial permutations, with the number of sampled rankings varied across

conditions. The other approach identifies a set of partial rankings whose corresponding columns

span the column space of the information matrix; we refer to this as the orthogonal basis method.

For random sampling, we employed a Markov chain sampling procedure that iteratively swaps the

positions of two alternatives in a ranking, using a step size of 10 to promote diversity among the

sampled rankings. In both methods, we ensured that no dominated alternative was ranked above its

dominant counterpart.

6 This is more than five times the largest MAE among the seven RPM variants. The MNL estimated weights are F =

(0.080,0.419,0.444,0.057). Despite the fact that the data-generating process was a probit-based random utility model with i.i.d.
errors – closely resembling logit – the MNL model did not outperform the RPM in market share recovery in this particulare xample
with limited data. Specifically, the estimated choice probabilities were 0.670, 0.790, and 0.286 for all menus, consistent choices, and
inconsistent choices, respectively. These results suggest the RPM’s ability to recover market share patterns accurately, even when
the data are generated from a distinct stochastic process.
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We fixed the ranking depth at : = 5 and applied the distance-based estimation method. For this
depth, the orthogonal basis method yields 19 distinct partial rankings. Under the random sampling
approach, we experimented with support sizes of 10, 20, and 30 sampled rankings. To assess the
effect of ranking depth, we repeated the orthogonal basis analysis with : = 7 under both training
set sizes. This configuration produces 30 partial rankings – matching the largest support size used
in the random sampling condition. For comparability, we also perform random sampling with 30
rankings at : = 7. For each configuration, we repeated the procedure 20 times, drawing random
splits of the 30 distinct menus into training and test sets, and estimating both RPM andMNLmodels
on identical data partitions.

We evaluated model performance separately on the training and test sets using two key metrics,
(i) the mean absolute error (MAE) between predicted and observed choice probabilities across
menus, and (ii) in-sample and out-of-sample (holdout) hit rates. The hit rate is defined as the
proportion of choice tasks in which the alternative with the highest predicted choice probability
matches the observed choice. In cases of ties in predicted probabilities, we break the tie using the
Jaccard similarity index, equivalent to random selection among tied alternatives. MAE is calculated
over the 30 menus (divided between training and test sets), capturing each model’s accuracy in
predicting market shares. In contrast, hit rates are computed over all 1,915 individual choice
observations and therefore account for the frequency with which menus appear in the dataset. Our
resulted are presented in Table 5.

Table 5 Mean RPM Hit Rates and MAE Values by RPM Type and Training Size.

Train Size RPM Type In-sample Holdout

Hit Rate (%) MAE Hit Rate (%) MAE

Small

orthogonal basis and top5 51.9 0.194 50.5 0.213
orthogonal basis and top7 65.4 0.182 61.9 0.224
random with |P | = 10 and top5 57.1 0.184 46.2 0.227
random with |P | = 20 and top5 64.6 0.170 54.4 0.210
random with |P | = 30 and top5 63.7 0.173 48.1 0.208
random with |P | = 30 and top7 64.9 0.163 55.6 0.210

MNL 44.7 0.350 41.5 0.357

Large

orthogonal basis and top5 55.8 0.198 49.0 0.202
orthogonal basis and top7 66.5 0.200 63.3 0.204
random with |P | = 10 and top5 49.9 0.204 51.7 0.211
random with |P | = 20 and top5 59.0 0.185 56.9 0.196
random with |P | = 30 and top5 65.6 0.171 58.1 0.197
random with |P | = 30 and top7 62.6 0.177 62.8 0.185

MNL 43.6 0.349 44.3 0.346

RPM methods exhibit significantly superior performance compared to the benchmark MNL
model in both in-sample and holdout evaluations.Across both small and large training set conditions,
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RPM achieves hit rates that are approximately 20% higher than those of the MNL (in absolute

terms). In terms of predictive accuracy, as measured by MAE, RPM models reduce error by nearly

50% relative to MNL in both evaluation settings, indicating a substantial improvement.

Among the RPM variants, the orthogonal basis method consistently yields the highest prediction

accuracy, achieving the best in-sample and holdout hit rates across both training set sizes. This

advantage is particularly pronounced in the small training set condition, where this RPM variant

outperforms the random sampling approach by amore noticeablemargin.When comparingmethods

with identical support size and ranking depth (: = 7), the difference in holdout hit rate between

the basis method and the random sampling method with 30 rankings is negligible under the large

training set condition (0.5% difference; ?-value = 0.922), but becomes more substantial under

the small training set condition (exceeding 6%; ?-value = 0.051). Figure 6 summarizes the hit

rate differences between the RPM variants and the MNL benchmark across training set sizes and

evaluation conditions.

Regarding the accuracy of estimated choice probabilities, d, the random sampling method with

30 rankings of depth : = 5 or : = 7 yields the lowest MAE. This method outperforms the orthogonal

basis approach in terms of MAE, particularly when the training set is small. However, as the

training set size increases, the performance gap between the two RPM variants diminishes, with

both methods exhibiting comparable accuracy. These trends are illustrated in Figure 7.

An important exogenous parameter in the RPM top-: method is the ranking depth : . To evaluate

how the random sampling and orthogonal basis methods respond to variations in this parameter, we

compared the two RPM variants incorporating the orthogonal basis and random sampling methods.

When : = 5, the orthogonal basis method yields 19 distinct rankings, whereas increasing the depth

to : = 7 expands the set to 30 rankings. For a consistent comparison, we selected the random

sampling method with 30 rankings, which previously demonstrated the strongest performance

among the random sampling variants.

The results, depicted in Figure 8, indicate that increasing the ranking depth : generally improves

hit rate performance for both RPM variants.7 However, the performance gains are more pronounced

for the orthogonal basis method, as evidenced by the steeper improvement in hit rates. Regarding

MAE, both methods exhibit similar sensitivity to : for in-sample predictions. In contrast, for

holdoutMAE, increasing the ranking depth yields greater benefits for the random samplingmethod,

suggesting that deeper rankings enhance generalization performance in this setting.

7An exception occurs in the in-sample hit rate for the random sampling method under the large training condition, where a larger :
slightly reduces performance.
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Figure 6 (Color online) Mean hit rate difference between RPM and MNL in training (gray) and test (blue) sets for small

(left) and large (right) training sets, and for different RPM types. The vertical lines represent bootstrap standard

errors with 1000 replications.

Finally, we report the RPM computation times separately for Monte Carlo sampling in Algo-

rithm (2) and the solutionmethod in Algorithm (1), where step 4 solves the constrained optimization

problem (11), as well as the computation time for MNL. Our results, presented in Table 6, show

that the solution time for MNL is considerably smaller than that of RPM when the training set size

is small, but there is no noticeable difference for a large training set size. Moreover, the solution

time for RPM increases less sharply with the training set size compared to that of MNL. For

RPM, both the time required to solve the constrained optimization problem and the time for Monte

Carlo sampling increase with the ranking depth : and with the RPM support size. However, the

computational bottleneck in RPM estimation lies in sampling from the parameter subspaces.
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Figure 7 (Color online) Mean absolute error (MAE) difference between RPM andMNL in training (gray) and test (blue) sets

for small (left) and large (right) training sets, and for different RPM types. The vertical lines represent bootstrap

standard errors with 1000 replications.

Table 6 Average Computation Time (in seconds) by RPM Type and Training Size.

Train Size RPM Type RPM Sampling Solve Time

Small

orthogonal basis and top5 297.706 3.499
orthogonal basis and top7 541.685 7.561
random with |P | = 10 and top5 164.067 1.775
random with |P | = 20 and top5 348.961 4.484
random with |P | = 30 and top5 521.106 8.202
random with |P | = 30 and top7 482.192 6.127

MNL 1.998

Large

orthogonal basis and top5 602.714 3.798
orthogonal basis and top7 1011.348 6.986
random with |P | = 10 and top5 306.710 1.491
random with |P | = 20 and top5 677.872 4.726
random with |P | = 30 and top5 922.781 6.919
random with |P | = 30 and top7 961.865 6.841

MNL 6.984
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Figure 8 (Color online) The average hit rate (top row) and MAE (bottom row) in the training (left column) and test set

(right column) for RPM based on random sampling with 30 rankings (blue line) and the information matrix

column basis method (red line) for two different levels of parameter : (ranking depth). In each graph, the results

are presented for the small training (left) and large training set (right) conditions. The vertical lines represent

bootstrap standard errors with 1000 replications.

7. Simulation Study
To better understand the RPM performance, we conducted a computational experiment using

synthetic data generated under various configurations of the setting parameters. For data generation,

we employed a random lexicographic model (Tversky 1972, Kohli and Jedidi 2007), a flexible

non-compensatory choice model capable of capturing violations of the IIA and various forms of

context-dependent preferences, such as the decoy and compromise effects. Moreover, this model

closely reflects the decision-making processes observed in many real-world application domains.

To generate the choice data, we first draw attribute weights from a Dirichlet distribution,

(U1, . . . , U") ∼Dir(1"), where 1" denotes an "-dimensional vector of ones. As variation in the

Dirichlet-distributed vector (U1, . . . , U") varies, one or a few attributes tend to become asymmet-

rically dominant, thereby varying context effects in the generated choice data following a random
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lexicographic rule. For each choice task (, attribute priorities are generated according to the fol-

lowing rule:

Priority< = log(U<) − log(− log(@<)), (15)

where @< ∼Uniform(0,1). The resulting ordered priority values determine the sequence in which

alternatives are screened for that particular choice task (. A new priority sequence is generated

independently for each choice task by drawing a new uniform random number @<, for each attribute

<, and applying Eq. (15).

In each iteration of our simulation study, we randomly generated 25 menus. Each option in

the menus is randomly generated based on " = 4 or 6 attributes, each with five levels. Menus

are constructed to ensure the absence of dominated alternatives in each menu. For each menu,

we randomly generated 40 choice tasks according to the random lexicographic model described

above. Therefore, we generated a total of 1000 choice data in each replication. We then randomly

partitioned the menus into the training and test sets. The training set included only the choice data

frommenus assigned to the training condition. We considered training sets of the size 15 and 20 out

of the 25 menus. For each setting, we estimate different variants of RPM using the top-k method

with : = 5 or 7, and employing either the orthogonal basis or the random sampling method. In the

random sampling method, the RPM support size is always restricted to |P | = 50. For each setting,

we repeated the process 50 times.

Our results for hit rate and MAE performances are presented in Table 7 and Figure 9 and 10,

respectively. Moreover, Table 8 reports the average percentage improvement in RPM compared to

the baseline MNL, and their bootstrap 95% confidence intervals. Our results confirm findings from

the empirical analysis in the previous section.
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Table 7 Mean Model Performance by Number of Attributes and Training Size.

Num. Att. Train Size Model Type In-sample Holdout

Hit Rate (%) MAE Hit Rate (%) MAE

Few

Small

orthogonal basis and top5 68.0 0.157 60.7 0.183
orthogonal basis and top7 57.6 0.193 55.3 0.204
random and top5 68.0 0.152 57.8 0.185
random and top7 56.6 0.208 55.8 0.219

MNL 50.9 0.293 50.3 0.300

Large

orthogonal basis and top5 67.8 0.146 61.1 0.178
orthogonal basis and top7 58.9 0.190 58.9 0.205
random and top5 65.9 0.158 61.8 0.186
random and top7 56.1 0.193 56.7 0.205

MNL 55.9 0.267 51.9 0.280

Many

Small

orthogonal basis and top5 69.9 0.133 60.5 0.158
orthogonal basis and top7 60.6 0.163 53.2 0.173
random and top5 67.7 0.146 58.0 0.177
random and top7 62.8 0.169 58.5 0.186

MNL 61.8 0.201 55.5 0.222

Large

orthogonal basis and top5 70.0 0.144 69.0 0.162
orthogonal basis and top7 62.8 0.155 63.3 0.159
random and top5 65.4 0.144 58.3 0.167
random and top7 62.4 0.161 54.7 0.175

MNL 60.8 0.202 56.0 0.227

Moreover, we compared the total number of rankings in each RPM type with the number of

rankings that obtained a nonzero probability value. Our results, presented in Figure 11, show a

substantial difference between these two, suggesting that RPM holds a strongly sparsity property.

In other words, RPM tends to produce results that are parsimonious. This built-in regularization

property is likely a key factor in the model’s good performance in holdout predictions.

8. Conclusions
We introduced the Random Preference Model, a flexible, nonparametric, and tractable model of

stochastic choice that unifies inferential uncertainty (from limited data) with behavioral randomness

(from cognitive factors or aggregate data). Unlike conventional utility-based models that rely on

strong parametric assumptions, the RPM describes choices directly as probability distributions

over rankings. This provides the model with the flexibility to accommodate context-dependent

choice behaviors, such as the compromise effect and violations of independence from irrelevant

alternatives, while preserving core axioms like regularity.

While RUM describes choices using a distribution over the utility space, and rank-based models

describe choices based on a distribution over rankings, RPMdescribes choices based on a probability

distribution over rankings where the probability of a given ranking is related to a distribution over
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Table 8 Summary of Mean Percentage Improvement (RPM over MNL) and 95% Bootstrap Confidence Intervals with

1000 replications, in the computational experiment.
Training Size Num Att RPM Type Metric Data Set Mean Improvement (%) 95% CI Lower 95% CI Upper
15 menus 4 orthogonal basis and top5 Hit Rate Test 92.4 43.5 138.0
15 menus 4 orthogonal basis and top5 Hit Rate Train 92.3 36.8 133.0
15 menus 4 orthogonal basis and top5 MAE Test 27.8 16.3 41.1
15 menus 4 orthogonal basis and top5 MAE Train 38.0 28.2 47.5
15 menus 4 orthogonal basis and top7 Hit Rate Test 46.2 5.5 76.4
15 menus 4 orthogonal basis and top7 Hit Rate Train 57.1 5.2 96.4
15 menus 4 orthogonal basis and top7 MAE Test 18.6 5.3 35.2
15 menus 4 orthogonal basis and top7 MAE Train 17.2 2.0 35.3
15 menus 4 random and top5 Hit Rate Test 18.3 -3.3 36.9
15 menus 4 random and top5 Hit Rate Train 91.3 18.6 145.7
15 menus 4 random and top5 MAE Test 25.7 18.1 32.8
15 menus 4 random and top5 MAE Train 38.6 30.8 46.7
15 menus 4 random and top7 Hit Rate Test 85.2 18.9 138.5
15 menus 4 random and top7 Hit Rate Train 34.3 8.4 58.0
15 menus 4 random and top7 MAE Test 16.7 4.3 32.3
15 menus 4 random and top7 MAE Train 15.0 2.9 28.7
15 menus 6 orthogonal basis and top5 Hit Rate Test 22.3 1.9 43.0
15 menus 6 orthogonal basis and top5 Hit Rate Train 25.5 3.9 45.4
15 menus 6 orthogonal basis and top5 MAE Test 17.8 9.3 27.0
15 menus 6 orthogonal basis and top5 MAE Train 17.5 5.9 30.7
15 menus 6 orthogonal basis and top7 Hit Rate Test 17.9 -13.4 42.8
15 menus 6 orthogonal basis and top7 Hit Rate Train 37.6 -11.4 73.6
15 menus 6 orthogonal basis and top7 MAE Test 1.0 -15.2 19.3
15 menus 6 orthogonal basis and top7 MAE Train 1.6 -12.5 17.8
15 menus 6 random and top5 Hit Rate Test 48.4 5.6 81.0
15 menus 6 random and top5 Hit Rate Train 35.5 0.9 63.0
15 menus 6 random and top5 MAE Test 8.2 -2.1 18.9
15 menus 6 random and top5 MAE Train 6.3 -10.1 27.6
15 menus 6 random and top7 Hit Rate Test 35.9 9.9 62.2
15 menus 6 random and top7 Hit Rate Train 31.5 -1.7 60.1
15 menus 6 random and top7 MAE Test 2.9 -8.6 15.2
15 menus 6 random and top7 MAE Train 9.6 -1.4 21.1
20 menus 4 orthogonal basis and top5 Hit Rate Test 46.3 15.3 71.7
20 menus 4 orthogonal basis and top5 Hit Rate Train 98 28.6 150.6
20 menus 4 orthogonal basis and top5 MAE Test 22.8 7.9 41.8
20 menus 4 orthogonal basis and top5 MAE Train 36.4 25 48.0
20 menus 4 orthogonal basis and top7 Hit Rate Test 14.3 -6.9 35.3
20 menus 4 orthogonal basis and top7 Hit Rate Train 36.2 0.7 65.0
20 menus 4 orthogonal basis and top7 MAE Test 12.5 -2.2 30.8
20 menus 4 orthogonal basis and top7 MAE Train 14.7 3.2 27.1
20 menus 4 random and top5 Hit Rate Test 41.1 11.6 66.7
20 menus 4 random and top5 Hit Rate Train 45.6 7.2 76.1
20 menus 4 random and top5 MAE Test 16.3 3.2 31.6
20 menus 4 random and top5 MAE Train 26.4 14.4 41.2
20 menus 4 random and top7 Hit Rate Test 15.9 -11.9 39.3
20 menus 4 random and top7 Hit Rate Train 22.8 2.3 42.8
20 menus 4 random and top7 MAE Test 17.3 5.6 29.4
20 menus 4 random and top7 MAE Train 15.7 4.1 28.1
20 menus 6 orthogonal basis and top5 Hit Rate Test 24.9 -1.0 44.5
20 menus 6 orthogonal basis and top5 Hit Rate Train 23.9 4.7 40.0
20 menus 6 orthogonal basis and top5 MAE Test 8.5 -3.8 21.1
20 menus 6 orthogonal basis and top5 MAE Train 6.9 -5.8 19.5
20 menus 6 orthogonal basis and top7 Hit Rate Test 33.9 3.5 58.6
20 menus 6 orthogonal basis and top7 Hit Rate Train 32 7.6 52.7
20 menus 6 orthogonal basis and top7 MAE Test 20.8 7.8 33.1
20 menus 6 orthogonal basis and top7 MAE Train 17.6 6.4 28.5
20 menus 6 random and top5 Hit Rate Test 26.3 4.3 48.9
20 menus 6 random and top5 Hit Rate Train 23.3 1.3 42.1
20 menus 6 random and top5 MAE Test 4.5 -12.0 23.3
20 menus 6 random and top5 MAE Train 16.1 6.3 27.0
20 menus 6 random and top7 Hit Rate Test 31.2 -11.3 65.8
20 menus 6 random and top7 Hit Rate Train 18.4 -6.7 37.3
20 menus 6 random and top7 MAE Test 2.5 -12.6 18.8
20 menus 6 random and top7 MAE Train 3.7 -8.4 17.9



Ghaderi et al.: Random Preference Model
38

Figure 9 (Color online) Mean hit rate difference between RPM and MNL in training (gray) and test (blue) sets for small

(top) and large (bottom) training sets with few (left) and many (right) attributes, and for different RPM types, in

the computational experiment. The vertical lines represent bootstrap standard errors with 1000 replications.

the subspace of utility functions consisting of all utility functions compatible with this ranking.

A nested distribution over utility parameters within each ranking further captures intra-ranking

variation. Thus, for each ranking, we construct an empirical distribution over the compatible utility

subspace such that the expected log likelihood obtained by that distribution aligns with the observed

ranking probability. This construction relates the ranking distribution to utility representations,

enabling utility-based inference while preserving the rank-based foundation of the model.

To estimate the model, we propose a two-stage procedure: first, estimating the ranking probabil-

ities and global concentration parameter using a constrained optimization problem that ensures the

existence of a utility representation; second, identifying within-ranking concentration parameters

through integration over parameter subspaces and recovering distributions over utility subspaces.

Monte Carlo sampling, initiated from the centroid of each subspace, is used to approximate these

integrals. To manage the factorial complexity of the ranking space, we introduced two approxi-
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Figure 10 (Color online) Mean absolute error (MAE) difference between RPM and MNL in training (gray) and test (blue)

sets for small (top) and large (bottom) training sets with few (left) and many (right) attributes, and for different

RPM types, in the computational experiment. The vertical lines represent bootstrap standard errors with 1000

replications.

mation methods: restricting support to a subset of rankings (via sampling or linear independence)

and limiting rankings to top-k alternatives (partial permutations). These strategies enable scalable

estimation without substantial loss of performance.

We illustrated the RPM’s ability to recover underlying preferences and predict choice behavior

under stochastic noise in the prototype study. Even when the observed data included inconsistencies

with the true utility-generating process, the full-support RPM demonstrated strong performance

in estimating choice probabilities and identifying representative preferences. It successfully recon-

structed attribute weights with high accuracy and showed a clear advantage over standard models

such as the multinomial logit. Approximate variants of the method – those using restricted support

or partial permutations – achieved comparable predictive performance with significantly reduced

computational requirements. While these simplifications introduced some loss in precision, the

core structure of preferences and key model parameters remained well-recovered.
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Figure 11 The average ranking population (grey) and the number of rankings with non-zero probability (black) for small

(top) and large (bottom) training sets with few (left) and many (right) attributes, and for different RPM types,

in the computational experiment.

In the empirical study using real-world conjoint data, RPM-based models consistently outper-

formed the MNL benchmark across various training set sizes. RPM achieved superior predictive

accuracy, both in estimating choice probabilities and in identifying the most frequently chosen

options. Among the RPM variants, models constructed using a basis of the information matrix

offered the best predictive performance, especially when training data was limited. Random sam-

pling methods also performed well, particularly when ranking depth was sufficient and the number

of sampled rankings was large. The results showed that increasing the ranking depth improved pre-

diction accuracy across RPM types, with the basis method benefiting more from deeper rankings.

In terms of estimation error, the RPM approaches performed similarly as training data increased.

While RPM methods required greater computational effort than MNL, the estimation remained

tractable and scalable.
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While this paper lays the operational foundation for RPM, further research is needed to enhance

its theoretical depth, computational scalability, and practical applicability. First, our findings indi-

cate that the partial permutation approximation, which limits rankings to the top-: alternatives,

substantially simplifies the RPM without sacrificing predictive accuracy. This result motivates a

deeper theoretical investigation into when a stochastic choice function admits a partial permutation

representation for a given : < # . To date, this remains a largely unexplored area in stochastic choice

theory. Future work should also explore how the choice of : interacts with problem characteristics

– such as the number of alternatives, attribute dimensionality, or the level of stochastic noise –

to influence model performance and generalization. Moreover, treating the ranking depth : as an

unknown hyperparameter and estimating it within a Bayesian framework is also promising. This

would allow the model to adaptively balance expressiveness and complexity based on the observed

data.

Second, the computational bottleneck in RPM estimation lies in sampling from the parameter

subspaces Θ%. Scalability may be improved by imposing additional structure on the preference

distribution. One favorable direction is the development of a unimodal RPM, where the probability

of each ranking decays with its distance from an unknown modal ranking. This formulation reduces

estimation to identifying the modal ranking and a concentration parameter, offering a more parsi-

monious representation. The model reflects the behavioral intuition that a decision maker typically

relies on a dominant preference order, occasionally deviating toward nearby preference orderings.

Third, when the number of alternatives is large, a key challenge lies in constructing a restricted

support set P that maintains model fidelity while reducing computational complexity. While this

paper explores random sampling and column space basismethods, an alternative is to embed support

construction within the estimation process itself. For example, auxiliary binary variables G8 9A can be

introduced to encode ranking relationships (e.g., whether item 8 is ranked above item 9 in ranking A).

These variables, subject to transitivity and consistency constraints, would enable the model to

directly construct feasible rankings during estimation. Though this approach introduces a mixed-

integer optimization problem, recent advances in discrete optimization and column generation, e.g.,

van Ryzin and Vulcano 2015, offer promising computational tools for this task.
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