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Abstract

We revisit the long-lasting debate about the meaning of the utility function used
in the standard Expected Utility (EU) model. Despite the common view that EU
forces risk aversion and diminishing marginal utility of wealth to be pegged to one
another, here we show that this is not the case. Marginal utility for money is an
input into risk attitude, but it is not its sole determinant. The attitude towards ‘pure
risk’ is also a contributing factor, and it is independent from the former. We discuss
several theoretical implications of this result, for the following topics: (i) non-neutral
risk attitudes for profit maximizing firms; (ii) risk-aversion over time lotteries in the
presence of discounting; (iii) the equity premium puzzle. We also discuss matters
of identification: (i) for firms; (ii) via proxies; (iii) via standard MLE-methods under
parametric restrictions; and (iv) cross-context elicitation in multi-dimensional settings,
and its relationship with the methods and results from the psychology literature.
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1 Introduction

The meaning of the (Bernoulli) utility function used in the standard Expected Utility
representation has long been debated, and this debate has typically been viewed as one of
preferred interpretation of the object. On one side, a classical and natural interpretation
is associated with Bernoulli ([1738] 1954): the marginal utility captures a notion of the
marginal value, i.e., of pleasure or satisfaction (in a real sense, ‘utility’) of the additional
unit. This interpretation is commonly held by economists and psychologists, and is in line
with the compelling intuition that the reason we prefer 1 billion dollars for sure to a 50-50
chance of getting 2 billion dollars or nothing is that the value of what we can buy with that
first billion is significantly higher than what we can buy with the second. In other words,
risk-aversion in Expected Utility (EU) is driven by the diminishing marginal utility (value).
On the other side, the orthodox decision theorists’ viewpoint (e.g., Friedman and Savage,
1952) cautions against this interpretation. It takes the utility function as a representation
of risk attitude, and nothing more.1

Regardless of one’s view of these interpretations, it is generally accepted that a notion
of marginal value (utility) and risk attitude are inexorably tied together in the Expected
Utility representation. In fact, this view is so well-established that it has motivated the
development of now widely-used alternatives to EU which aim to separate them. This is
summarized in Yaari (1987)’s well-known quote:

“In expected utility theory, the agent’s attitude towards risk and the agent’s
attitude towards wealth are forever bonded together.” [The reason this is
problematic is that] “at the level of fundamental principles, risk aversion and
diminishing marginal utility of wealth, which are synonymous under expected
utility theory, are horses of different colors.”

In this paper we focus on understanding how this debate can be resolved, and what
can formally be said about the meaning of the utility function as an abstract concept. Our
first result may appear striking: despite decades (if not centuries) of conventional wisdom,
it is not the case that risk aversion and diminishing marginal value of wealth are pinned
together in EU. While marginal value of wealth is certainly a factor in risk aversion, it is
not its sole determinant.

These theoretical insights emerge from a thought experiment, within which we can
define and separate ‘pure risk’ attitude from the marginal utility of money under certainty.2

In particular, the utility function u can be viewed as the composition of two functions,
u = g ◦ f , where the curvature of f represents the marginal value of wealth, while g is a

1This debate goes back to the 1950s. For a thorough historical perspective, see Moscati (2018, 2023).
2As we will discuss, there is a conceptual similarity between the logic of our thought experiment and

the properties of an ideal state space to separately identify beliefs and utility in Savage (1954). Issues of
actual identification are postponed to Section 4, where we discuss a few methods and their connection with
Tsakas (forth.)’s solution to the classical problem of identification of beliefs with state-dependent utility.
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CARA transformation, whose parameter represents the ‘pure risk’ attitude (Section 2).3

Thus, two individuals could have identical values of wealth, but different risk-attitudes
(in the standard sense of which gambles they accept), because they differ in how much
they like or dislike risk, perhaps due to different personalities. By the same token, two
individuals could have the same ‘dislike’ of risk, but value money in different ways, which
in turn implies that they will have different risk attitudes over money. Hence, despite
the well-known and common view that EU forces risk aversion and diminishing marginal
utility of wealth to be pegged to one another, this is in fact not the case. Even within
EU, horses of different colors are horses of different colors.

But it is not just that the commonly held interpretation is inaccurate and should be
revised for the sake of interpretation alone. As we show in Section 3, once expected utility
is viewed through the perspective of our approach, it also allows us to provide a solution
to classical puzzles in the literature, such as the willingness to gamble or buy insurance,
even at high wealth levels (e.g., Friedman and Savage, 1948), as well as to accommodate,
within an expected utility framework, non-neutral risk-attitudes for profit-maximizing
firms (another famous white whale of the classical literature – e.g., Yaari (1987), and
Footnote 14 below). Furthermore, in a dynamic setting, we show that our approach enables
us to reconcile, within an expected utility setting, exponential discounting in the certainty
space, with risk-aversion over time lotteries, a theme that has recently gained a great deal
of attention thanks to the seminal work of DeJarnette, Dillenberger, Gottlieb, and Ortoleva
(2020). In this context, our approach provides foundation to a model recently put forward
by Dillenberger, Gottlieb, and Ortoleva (forth.) to address this issue, albeit coming from a
different perspective. Finally, we show how the separation between diminishing marginal
utility of money and ‘pure risk’ attitude has important implications for the analysis of
saving and investment decisions, which may provide novel insights (from within expected-
utility) about Mehra and Prescott (1985)’s celebrated Equity Premium Puzzle.

The conceptual significance of the results and insights of Sections 2 and 3 stands
independent of the issue of separately identifying the two components of the utility function
in practice. Nonetheless, identifying these functions is itself a relevant exercise, both for
understanding preferences and for enabling sharper predictions. We turn to this exercise in
Section 4, and discuss three methods of identification with the corresponding datasets. We
first consider profit-maximizing firms, where the identification exercise follows naturally
from a concrete implementation of our thought experiment. We then consider individuals
more generally, and provide the formal conditions on the observable dataset under which
identification can be conducted via a proxy (i.e., a commodity that satisfies suitably defined
properties, similar to Tsakas, forth.). We also suggest an example of a proxy that can be
used in practice. Lastly, we discuss identification under specific parametric assumptions,
of the kind that is most frequent in empirical and experimental work (cf. Gill and Prowse

3A large literature has modeled explicitly the distinction between certain and risk preferences. But,
following Yaari (1987), this has not been achieved within a EU setting (e.g., Abdellaoui et al., 2007 and
references therein). Within this literature, the closest work in spirit is perhaps Schmidt and Zank (2022).
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(2012)).
Finally, in Section 5 we show that the separation between ‘pure risk’ and marginal

utility sheds light on important questions that arise in the context of risk when multiple
commodities are involved.4 In particular, we explain why risk attitude elicited in one
domain may not correlate with risk attitude elicited in other domains, and show how our
approach can solve this problem and lead to more accurate predictions across domains.
We also show how eliciting risk attitudes over multiple domains may enable a better
identification of the ‘pure risk’ parameter, lead to a stable ordering of individuals’ risk
attitudes that is portable across domains. In doing so, we also contribute to the discussion
concerning the distinction between the standard choice-based economics methodology to
elicit risk attitudes and the method often used in psychology, which involves questions
that refer to a wide range of domains and forms of behavior (e.g., Frey et al., 2017). Our
discussion formally connects the two approaches, and shows how they can be combined
more effectively to understand and predict behavior.

The concluding section discusses how this work could be further developed, both theo-
retically and in combination with neuroeconomics research (see, for instance, Glimcher and
Rustichini (2004); Camerer (2008); Rustichini (2009) for classic references, and Glimcher
and Tymula (2023) for recent work), and various directions for future research.

2 Theoretical framework

In the standard approach to risk, within the von-Neumann-Morgenstern (vNM) frame-
work, it is customary to consider preferences ≿∗ over simple lotteries over the real line,
p, q ∈ ∆(R) that satisfy the standard axioms (weak order, the Archimidean property and
the independence axiom). Letting m ∈ R denote the quantity of money, vNM’s rep-
resentation theorem ensures that there exists a utility function u∗ : R → R such that
p ≿∗ q if and only if

∑
p(m)u∗(m) ≥

∑
q(m)u∗(m), and u∗ is unique up to positive affine

transformations.

2.1 A Conceptual Yardstick

In the setting above, suppose that two onlookers (scientists) observed data on the agent’s
choices and concluded, for instance, that he is risk-averse over m, so that his utility
is concave. But suppose that they disagree on the meaning of this finding: The first
observer argues that the curvature of u∗, and hence the attitude towards risk, is merely a
consequence of the agent’s decreasing ‘marginal utility for money’. The second onlooker
instead argues that this concave function represents the agent’s dislike of risk alone, and
has nothing to do with his valuation of m. In particular, he argues that nothing can be

4For a carefully conducted analysis on risk attitude in multiple domains, see Ke and Zhang (2024),
which introduce the hierarchical expected utility representation. We view this important contribution in
this regard as complementary to that of our paper, where we remain strictly within the EU setting.
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concluded concerning what each extra unit of money yields, in utility terms.5

Given the data at their disposal, how could these onlookers settle this argument, if not
through debates over one’s own introspection? As is usually the case with economics, we
need a way of analyzing trade-offs to make further claims. In fact, the notion of ‘marginal
utility of money’ itself is inherently one of comparison: a comparison of money and some
concept of its value, however the latter is determined for the individual. That is, there
must be at least an abstract yardstick of comparison, first to make sense of this debate,
and second to settle it.6

Here we shall consider, as a pure thought experiment, which properties must such an
idealized yardstick satisfy, and what this will imply for the interpretation of the utility
function u∗. We set aside for the moment questions of measurement and identification,
which are separate from the debate at hand, and will return to them in Section 4.

2.1.1 A Yardstick under Certainty

If such a yardstick existed, call it y, it would effectively be a second commodity, besides
money, which could be traded-off against m to identify the marginal rate of substitution
(MRS) in the certainty space, and hence irrespectively from the agent’s attitude towards
risk. This MRS would effectively pin down the utility of the agent for each unit of m, in
terms of the chosen unit of measure, the yardstick.

Having elicited such an MRS, for any m ∈ R, we could identify the quantity of the
y-commodity that would make the agent indifferent between receiving m and that specific
quantity of y. Let f : R → R denote such a function, with f(m) being the yardstick-
equivalent of m elicited from these preferences.

Formally, in this setting, the agent’s preferences are defined over a richer commodity
space, which includes both m and y. That is, let the space of outcomes be Z = R2,
with typical element z = (m, y) ∈ Z, and ≿c denote a weak order, strictly increasing
in both components. For simplicity, we also maintain throughout that ≿c is continuous.
Then, for a ‘utility of money’ f(m) expressed in terms of the yardstick, and for y to
effectively have this role, it must be the case that, up to increasing transformations, the
representation of (≿c, Z) takes the form f(m) + y. That is: (m, y) ≿c (m′, y′) if and only
if f(m) + y ≥ f(m′) + y′. If not, commodity y would not be a yardstick, with respect to

5 These two archetypes illustrate two opposing views of a classical debate within the theory of individual
decision making. The first onlooker, for instance, embodies Bernoulli’s original theory (Bernoulli, [1738]
1954), which views risk-aversion as stemming from the diminishing marginal utility of riskless money.
(Bernoulli did not use the term ‘utility’, but emolumentum, cf. Moscati (2023)). Friedman, in contrast,
argued that the u∗ in vNM’s representation should best be referred to as ‘choice-generating function’,
precisely to separate it from the notion of utility under certainty (Moscati, 2018). See also Friedman and
Savage (1952). For a more recent iteration of this debate, see, for instance Rabin (2000), footnote 2.

6One could obviously dismiss this entire exercise, if they felt that the very notion of marginal utility
of money is ill-conceived and should not exist. It goes without saying that, this view notwithstanding,
such a notion is ubiquitous in economics textbooks and papers. Beyond this, however, as we will show in
Sections 3.1 and 3.2, even the typical ‘agnostic’ view of the EU representation has in fact taken a stance
on the existence of marginal utility, and implicitly derived risk attitudes from preferences under certainty
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which the utility of m is expressed.7 We therefore provide the following definition of an
ideal yardstick under certainty.

Definition 1 (Yardstick under Certainty). If the y-commodity is an ideal yardstick under
certainty, then the preferences over the certain space Z = R2, (≿c, Z), are such that there
exists a strictly increasing function f : R → R such that (m, y) ≻ (m′, y′) if and only if
f(m) + y > f(m′) + y′.

Note that even under this thought experiment, we cannot yet make any statements
concerning the utility function u∗ of the EU-representation in the baseline setting, because
f need not correspond to this function. It only captures the value of m, in units of the
yardstick y, absent risk considerations.

2.1.2 From certainty to risk

Now, let us extend the domain of preferences to a risk setting, i.e. to account for simple
lotteries p, q ∈ ∆(Z), maintaining all the standard vNM axioms, and let (≿, ∆(Z)) denote
the corresponding preference system. Again, we let δz denote the degenerate lottery over
outcome z = (m, y) ∈ Z, and write (pm, y) ∈ ∆(Z) to denote a lottery that is degenerate
over the y-component and that randomizes over m according to pm ∈ ∆(R).

First, to ensure that (≿, ∆(Z)) naturally embeds the preferences over the certain
domain, (≿c, Z), we maintain that for any (m, y) and (m′, y′), it holds that δ(m,y) ≿ δ(m′,y′)

if and only if (m, y) ≿c (m′, y′). Second, for commodity y to play the role of an ideal
yardstick, and nothing more, there should be no interaction between the level of the
yardstick and the risk preferences (i.e., preferences over lotteries over m.) This means that
the preference system must satisfy the following yardstick neutrality condition: for any
y, y′ ∈ R and for any pm, qm ∈ ∆(R), (pm, y) ≿ (qm, y) if and only if (pm, y′) ≿ (qm, y′).8

In summary, besides the standard vNM axioms, the preference system (≿c, ∆(Z)) must
satisfy the following properties:

1. A Yardstick under Certainty: there exists a f : R → R that is strictly increasing
and such that δ(m,y) ≻ δ(m′,y′) if and only if f(m) + y > f(m′) + y′.

2. Yardstick Neutrality: for any y, y′ ∈ R and for any pm, qm ∈ ∆(R), (pm, y) ≿

(qm, y) if and only if (pm, y′) ≿ (qm, y′).

The first property follows directly from Definition 1 and the fact that ≿ is an extension
of ≿c. As for Yardstick Neutrality, it ensures that the addition of the ideal y-commodity,

7While we find it more transparent to provide this property in terms of functions, it can clearly be
expressed in terms of preferences too: (m, y) ≿c (m′, y′) iff (m, y + t) ≿c (m′, y′ + t), where t ∈ R.

8This is analogous to assuming state independence, which serves to avoid an interaction in the prefer-
ences between states and outcomes. Thus, just as with state independence, where the ideal state space
to use is one that does not interact with preferences (cf. Savage, 1954), the same holds here: the ideal
yardstick does not interact with preferences over money. In Section 4.2 we will discuss how in practice
the yardstick can be replaced by a proxy commodity, selected to approach this ideal benchmark, and the
relationship with Tsakas (forth.)’s method of belief identification with state-dependent preferences.
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per se, does not alter the set of preferences over monetary lotteries that could be expressed
in the baseline (one-dimensional) setting (≿∗, ∆(R+)). This is key to ultimately be able
to draw a meaningful connection between the Bernoulli utility in the EU representation of
(≿, ∆(Z)), and the baseline u∗ obtained in the standard one-dimensional setting. In fact,
if Yardstick Neutrality did not hold, then it would mean that the baseline vNM preferences
(and, hence, their representation) would be affected by an omitted variable problem, and
their meaning would not be clear. Yardstick Neutrality therefore is both a natural and a
necessary property to hold, within the standard vNM framework.

Proposition 1. Under the maintained assumptions, u : Z → R provides an EU represen-
tation of (≿, ∆(Z)) if and only if there exists g : R → R such that u(m, y) = g(f(m) + y)
for all (m, y) ∈ Z, and which can only be one of the following functional forms (up to
positive affine transformations): either (i) g(x) = x, or (ii) g(x) = 1−e−αx

α , with α ̸= 0.

The logic of this result is simple: from the assumptions on the certain preferences, it
follows that any strictly increasing transformation of f(m) + y represents (≿c, Z). Ex-
tending these preferences to ∆(Z), with the vNM axioms, ensures that there exists a
g : R → R (unique now up to positive affine transformations) such that p ≿ q if and
only if

∑
p(m, y)g(f(m) + y) ≥

∑
q(m, y)g(f(m) + y). Then, yardstick neutrality further

ensures that preferences over monetary lotteries are invariant to y, and hence g(f(·)) is an
affine transformation of g(f(·) + y) for each y. It follows that g : R → R exhibits constant
absolute risk-aversion (CARA).

Yardstick neutrality also allows us to define preferences over monetary lotteries alone,
(≿m, ∆(R)): for any y, say that pm ≿y qm if and only if (pm, y) ≿ (qm, y), and let ≿m

coincide with the ≿y-ordering for y = 0. (Under yardstick neutrality, ≿y=≿0 for all y).
With this, we can relate the u obtained in Proposition 1, as part of the representation of
the preferences (≿, ∆(Z)), with the u∗ obtained from the representation of the standard
one-dimensional preferences, (≿∗, ∆(R)), when ≿m=≿∗. Formally:

Proposition 2. u∗ : R → R is a (strictly increasing) Bernoulli utility associated with
the EU-representation of some preference system (≿∗, ∆(R)) if and only if there exists
(≿, ∆(Z)) that satisfies the maintained axioms, with ≿m=≿∗, and a utility u : R2 → R
that represents it in the sense of Proposition 1, such that (i) u∗(m) = u(m, 0) = g(f(m))
for all m ∈ R and (ii) u∗(·) is a positive affine transformation of u(·, y) for all y.

The first part of Proposition 2 says that, under the maintained assumptions, (includ-
ing, in particular, yardstick neutrality), the set of Bernoulli utility functions generated
in the two-dimensional setting is exactly the same as that generated in the standard
(one-dimensional) setting for preferences over risk: The addition of the yardstick neither
restricts nor enlarges the set of possible Bernoulli utilities. The second part states the
implication of yardstick neutrality discussed above, now in the space of the representa-
tions: the vNM preferences over monetary lotteries are invariant to y, and hence if u
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represents (≿, ∆(Z)) in the sense of Prop. 1, then u(m, 0) (and, thus, u∗(m)) is an affine
transformation of u(m, y) for any y.

In light of this result, in the following we will simply write u(m), to refer interchange-
ably to either u∗(m) or u(m, 0), and refer to it as the Bernoulli utility function, which
by Proposition 1 is understood to be of the form u = g ◦ f , where g is a CARA trans-
formation. Then, we write g(x) = 1−e−αx

α if α ̸= 0, and g(x) = eαx otherwise, so that
α ∈ R denotes the (constant) coefficient of absolute risk aversion of g, with α = 0 for
risk-neutrality. Furthermore, for the case where f and u are twice differentiable (given
the CARA property of g, f is differentiable if and only if u is), let αu(m) = −u′′(m)

u′(m) and
αf (m) = −f ′′(m)

f ′(m) denote the Arrow-Pratt coefficients of absolute risk-aversion at m, for u

and f , respectively. Then, the following result is immediate:

Corollary 1. Under the maintained assumptions, if u is a Bernoulli utility function of
the EU-representation, and if it is differentiable, then, for each m ∈ R,

αu(m) = α · f ′(m) + αf (m). (1)

Our exercise and results may appear reminiscent of Epstein and Zin (2013), in that,
while the functional form we obtain is of course clearly distinct, it uses an enriched space.
But note that our exercise is entirely within EU, rather than a generalization of a recursive
utility setting (Kreps and Porteus, 1978). Moreover, while Epstein and Zin (2013) focus on
the separation between risk attitude and intertemporal preferences, we study instead the
connection between risk attitude and the utility over the good (money). For this reason,
our enrichment is of a different nature from the Epstein-Zin exercise.

2.2 Discussion and Extensions

We discuss next the interpretation and some implications of our results, before turning to
a discussion of some relaxations of the maintained assumptions.

2.2.1 On the Interpretation of f and g

By construction, the f function represents the value of money, m, in units of the yardstick
y, as elicited in the certainty domain, i.e. purely on the basis of preferences (≿c, Z). The
function g instead, is pinned down by the agent’s of preferences over lotteries, and hence
it is purely about risk. The u in the EU-representation, is the composition of these two
functions: u = g ◦ f . As usual, the decision maker’s risk-attitude over money is expressed
by the curvature of the u function, and its curvature therefore depends on the curvatures
of the two functions, ‘value of money’ function f and ‘pure risk function’ g. Corollary 1
formalizes this idea, providing the decomposition of the Arrow-Pratt index of risk aversion
of u in terms of the indices for g and f , respectively. The former is constant in m, due to
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the result that g is CARA, and we will refer to it as the ‘pure risk’ parameter.9

With this, risk-aversion coincides with diminishing marginal utility for money if and
only if α = 0. In this case, the agent is neutral about risk, per se, and his overall risk-
attitude (the curvature of u) is entirely due to his value for money (the curvature of f).10

At the opposite extreme, even if f is linear (as it would, for instance, in the important
special case of a profit-maximizing firm, which we discuss in the next section), the agent
could still exhibit risk aversion (or risk seeking-ness), depending on the value of α.

More broadly, if g is not linear, then there is a wedge between the curvature of u and
that of f . Take, for instance, an agent with an everywhere decreasing marginal utility for
money, who therefore exhibits a globally concave f . This agent may still be risk-loving
overall, if his ‘pure risk’ attitude is such that g is sufficiently convex. Alternatively, take
another agent, with exactly the same preferences under certainty (and, hence, the same
f), but who is averse to ‘pure’ risk. Then, his u would be more concave than what dictated
by the concavity of f alone, since it would reflect both the curvature due to the decreasing
marginal utility of money, and that of g, which only reflects the agent’s dislike for risk,
net of his preferences over money.

In summary, diminishing marginal utility for money (i.e., concavity of f) is a reason for
risk-aversion, but it need not suffice for it, nor need it be its sole determinant. The attitude
towards pure risk, as represented by the ‘pure risk’ parameter α, also contributes. Thus,
despite the well-known and common view that EU forces risk aversion and diminishing
marginal utility of wealth to be pegged to one another, this is in fact not the case. Even
within EU, horses of different colors are horses of different colors.

2.2.2 From u to f , and the St. Petersburg Paradox revisited

While questions of identification are left to Section 4, here we make the following obser-
vations concerning partial inferences that can be made. Since the function g is of CARA
form, one of the following three must hold: i) it is bounded above if α > 0, ii) it is bounded
below if α < 0, or iii) it unbounded if α = 0. This means that if u is assumed to have
a specific parametric form that is unbounded on one side or another, than we can make
partial inferences on the α parameter. Specifically: if u is unbounded below, then it must
be that α ≥ 0 so that the agent cannot be (pure) risk loving; if it is unbounded above,
then α ≤ 0 and he cannot be (pure) risk averse; if it is unbounded both above and below,
then g must be linear and he must be (pure) risk neutral.

9Interestingly, in a very different exercise that focuses on utility versus welfare, and using a distinct
set of properties, Dietrich (2025) also arrives to a CARA parameter of ‘intrinsic risk attitude.’ Outside
of Expected Utility (and, specifically, within prospect theory), the literature has followed Yaari (1987)
in distinguishing between riskless utility and risk attitude through probability weighting functions; see
Abdellaoui, Barrios, and Wakker (2007) for a discussion and literature review.

10This case corresponds to Bernoulli ([1738] 1954)’s original theory, or to the view of the first of the
’onlookers’ above, according to which risk-aversion arises because of decreasing marginal utility. The second
onlooker, in contrast, is more agnostic and does not care to explain why risk-aversion arises: the u simply
serves as a tool to make predictions, as in Friedman’s ‘choice-generating function’ (see Footnote 5).
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Let us now return to the famous St. Petersburg Paradox, which initially led Bernoulli
to the Expected Utility formulation in the first place.11 The paradox is the following:
suppose a fair coin is flipped, and if it lands heads then the game ends and the agent
receives 2 ducats (or euros), otherwise it is flipped again and if it lands heads than the
agent receives 4 ducats, and so forth (reference). It has infinite expected value, but most
individuals would not be willing to pay an infinite amount for it. In proposing an EU
formulation, Bernoulli further proposed using the functional form u(x) = log(x). However,
since it is unbounded, it has itself been criticized for allowing the emergence of a variation
of the same paradox, in which the agent would still be willing to pay an infinite amount.
The proposed solution was precisely to resort to utility functions that are bounded above
(CRRA functions with a risk attitude higher than that of the log function, as commonly
used in practice, satisfy this property).

From the viewpoint of our approach, the reason why the (adjusted) St. Petersburg
Paradox would still be an issue with an unbounded u such as the log function is precisely
that it forces g to be linear, and hence it does not allow for any aversion with respect to
‘pure risk’, and it forces f to be log. The proposed solution of a bounded above u, such
as a CRRA function with a high enough risk attitude, implies that α ≥ 0, and allows for
aversion to pure risk. It also allows for f to be bounded above, which the log u does not.

2.2.3 On Uniqueness

It is worth noting that, while the vNM u is of course unique up to positive affine transfor-
mations, and so is the g in the representation in Propositions 1 and 2. The f is instead
unique, and hence it is cardinal in the classical, Pre-Samuelsonian sense of the word (as
opposed to the notion that has become standard since von Neumann and Morgenstern
(1954); cf. Moscati, 2018). This is natural, since f represents the marginal utility of
money in terms of the yardstick: as we will further clarify in Section 4, the choice of the
yardstick pins down the units in which the MRS is expressed, and given such a choice,
the marginal utility of money is cardinal in the classical sense. In contrast, the ‘pure risk’
attitude is cardinal in the sense of being unique up to positive affine transformations.12

11A version of the paradox was initially put forward by Nicolas Bernoulli, with the version that became
‘definitive’ being proposed by Gabriel Cramer. The EU resolution was proposed by Daniel Bernoulli, who
favored the log utility representation. (Cramer’s favored square root representation suffers from the same
unboundedness issue as the log function). See Moscati (2023) for a detailed discussion.

12In his critical account of the history of expected utility theory, Moscati (2018, 2023) distinguishes the
classical notion of cardinality from von Neumann and Morgenstern’s, which he refers to as ‘scale-invariance’.
It is interesting that the uniqueness(-es) in our result reflect, in a formal sense, the two main historical
perspectives: the latter notion applies to the g function, which captures the ‘pure risk’ attitude, whereas
the f function, which in a sense formalizes Bernoulli’s rationale for risk-aversion, is cardinal in the sense
that he and other classics meant it.
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2.2.4 Multiple commodities

The logic above clearly extends to multi-dimensional settings, i.e. where preferences in the
certainty space are defined over multiple commodities.13 Specifically, let X ⊆ Rn denote
the commodity space with typical element x = (x1, ..., xn) ∈ Rn, and let (≿c, X) denote
the preferences in the certainty space. As standard, these preferences could be identified
in the usual way, with a utility representation unique up to increasing transformations.
Then, for the ideal yardstick y (which, as above, should satisfy its key defining property:
here (x, y) ≿c (x′, y′) if and only if (x, y + t) ≿c (x′, y′ + t)), the MRS between the utility
index and such y would pin down the function f : X → R, i.e. the utility under certainty.
Then, under yardstick neutrality (which is formulated exactly as above, provided that Z

is redefined as Z = X × R, one obtains results analogous to Propositions 1 and 2, so that
the overall u : X → R in the vNM representation can be written as u(x) = g(f(x)), where
g : R → R is a CARA transformation with parameter α ∈ R.

3 So What Else?

The results above shed light on several important open questions, of both conceptual and
practical significance. At a minimum, they enable us to reconcile seemingly contrasting
views that are based on insights over different domain of preferences. For instance, it
is typically argued that the marginal utility of money should become constant at suf-
ficiently high levels of wealth. Yet, even billionaires buy insurance, or others perhaps
gamble instead, in ways that would be inconsistent with a Bernoulli utility function that
is approximately linear (e.g., Friedman and Savage, 1948). As discussed, these two views
can be reconciled within our framework: depending on the α parameter, the agent could
still exhibit risk aversion (or risk seeking-ness), even if the value of wealth were perfectly
linear. Hence, insights based on observations made on the certainty space, need not co-
incide with, nor translate to, unique implications in the risky domain. There are two
conceptually distinct forces at play.

In this section we discuss a few further implications of these general observations,
specifically for three important problems: first, we discuss the possibility of accom-
modating, within the expected utility framework, non-neutral risk-attitudes for profit-
maximizing firms; second, we discuss how, in the context of intertemporal choice, the
results above speak to the issue of how to separate curvature of the ‘within period’ utility
from risk-attitude over time lotteries (DeJarnette et al., 2020; Dillenberger et al., forth.);
finally, we discuss some implications for saving and investment decisions, and for the equity
premium puzzle (Mehra and Prescott, 1985).

13In order to keep the focus on the distinction between ‘pure risk’ and certainty preferences, we do not
dwell here upon the important question of risk and risk-aversion within a multi-dimensional settings, which
has been recently studied in Ke and Zhang (2024).
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3.1 Firms and Risk

Consider first the case in which the agent is a profit-maximizing firm. The thought exercise
of the previous section becomes a simple and very concrete in this scenario: the unit of
account (say, US dollars for a US firm) is the yardstick. Hence, if m denotes its money
holdings in US dollars, the MRS between m and y under certainty in this case is the
identity function. That is, f(m) = m. It is both standard and uncontroversial that these
are the (neoclassical) firm’s preferences under certainty.

It has also been customary to jump from this uncontroversial observation about the
firm’s preferences under certainty, to the conclusion that a profit-maximizing firm under
expected utility must necessarily be risk-neutral. While this confusion seems natural
from the viewpoint of our first onlooker (according to which risk aversion stems from a
decreasing marginal utility of money), it strikes as peculiar from the viewpoint of our
second onlooker – according to which the u in the vNM representation has no connection
with the underlying preferences under certainty (cf. footnotes 5 and 10) – and which
embodies a widely held decision-theoretic view at least since Friedman and Savage (1952).
For the case of firms, the common practice clearly departs from the agnostic view of a
mere index to represent risk attitude: for firms, a stronger position has been taken that
the latter can be derived from the preferences under certainty. In fact, this view is so
deep-rooted that it has lead economists to accept a model which is clearly at odds with
the evidence that several firms do buy insurance.14

To be clear, this g(·) transformation should be applied to the standard profit function
(say, for a monopolist, π(q) = P (q) · q − C(q), where q denotes the quantity, and P (·)
and C(·) the inverse demand and cost functions, respectively). In the face of uncertainty,
the firm here would maximize E[g(π)], not necessarily E[π]. Since g(·) is an increasing
transformation, this change in the objective function has no bearing on choices under
certainty, but if α ̸= 0, it does affect choices under uncertainty (e.g., in portfolio choice
problems, if costs or revenues are stochastic from the firm’s viewpoint, etc.).

As an example, consider a monopolist facing a stochastic demand, where the price
associated with output q is equal to P (q) + ϵ or P (q) − ϵ, with equal probability. In
this case, the optimal choice for a risk-neutral firm would be the same, independent of
the magnitude of ϵ ≥ 0, and hence it would coincide with the optimal quantity under
certainty (i.e., for ϵ = 0), q∗. That a ‘real world’ monopolist would be indifferent over
any magnitude of ϵ ≥ 0, and that it would not react to it in this setting, as entailed by
risk-neutrality, seems contrary to common sense (cf., footnote 14). But, as explained, a

14Yaari (1987), for instance, took it as an extra motivation for venturing outside of expected utility, with
his ‘dual theory’ of choice under risk, with probability weighting: “Under the dual theory, maximization of
a linear function of profits can be entertained simultaneously with risk aversion. How often has the desire
to retain profit maximization led to contrived arguments about firms’ risk neutrality?” But, as discussed
above, a profit-maximizing firm must also be risk-neutral only if the g function is linear. In general, even
a profit-maximizing firm may have a pure risk parameter α ̸= 0, in which case its optimization problem in
the risky space is captured by g(m) = 1−e−αm

α
.
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profit-maximizing firm need not be risk-neutral. For any ‘pure risk’ parameter α ̸= 0, the
optimal choice in this setting would respond to the magnitude of the demand shocks.15

Overall, this discussion makes a few points. First and foremost is the observation
that a profit-maximizing firm need not be risk-neutral, even within expected utility. The
second is that in this context the yardstick (dollars) is natural and easily observed. As a
consequence, the pure risk parameter, α, is directly identified here from standard choice
data under risk. (We will return to this point in Section 4.) Lastly, if it is true that a
profit-maximizing firm need not be risk neutral, it is also true that its risk attitude can
only take the CARA form. Hence, while for individuals a CARA utility function is often
viewed as unrealistic (if perhaps convenient in applications), here it is the only appropriate
functional form, under expected utility.16

3.2 Risk Preferences over Time Lotteries

Another setting where the results in Section 2 have immediate implications is given by
intertemporal choice problems. For instance, let the multiple commodities in Section
2.2.4 consist of consumption levels in different periods. That is, the commodity space
is X = ×t=1,...R+, with typical element x = (c1, c2, ...), where ct denotes consumption in
period t. In this setting, it is standard to assume the following specification for preferences
under certainty: for any x = (c1, c2, ...), f(x) =

∑
t=1,2,... βt−1v(ct), where v(·) is the

within-period utility function, and β ∈ (0.1) the discount factor. Then, our general
representation u = g ◦ f in this case takes the following form: for any x = (c1, c2, ...) ∈ X,

u(x) = g

 ∑
t=1,2,...

βt−1v(ct)

 , (2)

where g(·) is a CARA transformation. The standard model, where risk-attitudes are en-
tirely driven by the curvature of v, once again obtains for the special case where g is linear.
However, as a number of recent influential papers have pointed out (e.g., DeJarnette et al.
(2020); Dillenberger et al. (forth.); see also Strzalecki (2024), and references therein), the
standard model has somewhat disappointing implications when it comes to risk-attitude
over time-lotteries (i.e., lotteries that pay a fixed prize at a random time). Intuitively,
due to the convexity of the exponential discounting with respect to t, the standard model
implies that the agent must be risk-seeking over time lotteries, which clashes both with
our introspection and with a substantial body of experimental evidence.

15For example, with non-decreasing marginal costs, the optimal choice q∗(α, ϵ) would be such that
q∗(0, ϵ) = q∗ under risk neutrality, but for any α > 0 (resp., α < 0) q∗(α, ϵ) would be decreasing (resp.,
increasing) in ϵ, and such that q∗(α, 0) = q∗ for any α. Moreover, for any ϵ > 0, q∗(α, ϵ) is strictly
decreasing in α, and limα→∞q∗(α, ϵ) = q− and limα→−∞q∗(α, ϵ) = q+, where q− and q+ denote the
optimal choices conditional on the realization of −ϵ and +ϵ, respectively.

16We note that since the utility function is equal to the composition of g and f , the former being CARA
in general does not imply that the overall utility is CARA, but it is when f is linear, as for the case of
firms.
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If the ‘pure risk’ parameter of the g(·) transformation is sufficiently high, however, it
is easy to see that one can retain the exponential discounting in the certainty space (for
instance, to maintain both the tractability and cogency of the standard model in terms of
saving decisions, consumption smoothing, etc.), while at the same time accommodating
risk-aversion over time lotteries. Interestingly, the functional form in eq. (2) is exactly
the same as recently put forward by Dillenberger et al. (forth.), albeit coming from a
different perspective. In this sense, our results applied to this setting provide an alternative
‘foundation’ to the arguments in Dillenberger et al. (forth.), with one added qualification,
which is that our arguments suggest that the g transformation be CARA (a restriction
that need not hold in the model of Dillenberger et al. (forth.).17

This extra property of course imposes more structure on the preferences, for instance
by entailing a specific relationship between the coefficient of risk-aversions over money-
lotteries (i.e., lotteries with random prize paid at a fixed time), across different time
periods. Specifically, letting αv(mt) = −v′′(mt)

v′(mt) , and letting αt(mt) denote the coefficient
of absolute risk-aversion over money-lotteries that pay out at time t, evaluated at period
t = 1, when the period-t money holding is mt, then the following holds:

αt(mt) = α · βt−1v′(mt) + αv(mt). (3)

Thus, an interesting implication of this model, which could be immediately obtained
from this equation, is that if both g and v are concave, then the agent becomes progres-
sively less risk-averse as the horizon of the money-lotteries is postponed (the opposite is
true if v is concave and g convex).

3.3 Investement and Savings

In this section we discuss some implications of the above findings to saving and investment
choices, and we show that they also play a role in another classical economics question,
namely the Equity Premium Puzzle (Mehra and Prescott, 1985). For simplicity, let us con-
sider the intertemporal setting above, but with two periods only, ‘today’ and ‘tomorrow’,
with corresponding consumption levels denoted by ct and ct+1. Thus, preferences in the
certainty space are such that f(x) = v(ct) + βv(ct+1), and as standard within this branch
of the literature we also assume that the within-period utility function, v : R+ → R, is
CRRA with parameter γ. Then, the overall preferences in the risky domain are

E[u(ct, ct+1)] = Et

[
g
(
v(ct) + βv(ct+1)

)]
(4)

where v is CRRA and g is CARA:

v(c) = c1−γ

1 − γ
with γ > 0; and g(z) = 1 − e−αz

α
if α ̸= 0, and g(z) = z if α = 0

17See also Apesteguia et al. (2019) for a discussion of this form, and Proposition 5 in particular for a
family of models separating risk and time in different ways).
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The standard model once again obtains with α = 0. There, the γ parameter therefore
is the sole determinant of both the agents’ savings under certainty, i.e. their ‘consumption
smoothing’ motives, and their attitudes towards risk, and hence their investment decisions
over risky asset. Standard estimations of the CRRA parameter, based on typical prefer-
ences over (within period) money lotteries, normally yield values in the range of [1, 4].
As is well-known, values of γ in this range entail substantially lower risk-premia for risky
investments than are observed empirically. This is the celebrated Equity Premium Puzzle
(Mehra and Prescott, 1985).

As we explain next, if α ̸= 0, then the expected utility model may account for larger
risk-premia, even holding constant the agents’ risk aversion over (within period) money
lotteries. The intuition is that the g function plays no role when considering risk-free
saving decisions, since it cancels out from the Euler equation associated with the optimal
saving problem. The agents’ consumption smoothing motive therefore is solely driven by
the curvature of the v function, i.e. by the γ parameter. Preferences over risky assets,
in contrast, depend on both the γ and α parameters. Hence, in the determination of the
‘equity premium’, the latter parameter only matters for the returns of the risky assets;
the returns of risk-free assets are only linked to γ.18

We illustrate this point within a simple example, similar to the monopolist facing a
stochastic demand that we discussed in Section 3.1. In particular, we consider an agent
choosing the optimal level of savings/investment, first in risk-free bonds that pay a fixed
return Rf , and then in a risky asset. The agent therefore in risk. Formally, letting y

denote current income, the agent solves the following problem:

max
s∈(0,y)

Et

[
g
(
v(ct) + βv(ct+1)

)]
subj.to: c1

t = y − s

c1
t+1 = (1 + R)s

In the first setting, the agent invests in a risk-free asset, that pays a fixed return
R = Rf > 0. In the second setting, the agent investment in a risky asset, that pays a
random interest rate R = R̃ where

R̃ =


R+ := R̄ + δ Pr = ε

2

R̄ Pr = 1 − ε

R− := R̄ − δ Pr = ε
2

Notice that here, for a fixed δ > 0, increments in risk are parametrized by the value of
18By continuity, the same logic also applies to the case where one considers the risk-premium compared

to a low-risk (though not completely riskless) asset. Intuitively, the role of the g function becomes smaller,
and eventually vanishes, as we approach the risk-free benchmark we discussed above.
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ε. In particular, increments in ε keep the mean of R̃ unchanged, E[R̃] = R̄, while taking
probability mass from the center towards the tails.

Letting cf = (cf
t , cf

t+1) and cr = (cr
t , cr

t+1) denote, respectively, the optimal consump-
tion levels in the risk-free and risk-asset problems, we let R∗(α, γ, ε, δ) denote the value of
the mean return of the risky asset, R̄, given which E[u(cf ] = E[u(cr]. Within this simple
example, one could therefore define the ‘equity premium’ as follows:

EP (α, γ, ε, δ) := R∗(α, γ, ε, δ) − Rf . (5)

Applying the formula for the AP-index of risk aversion in (6) for the current con-
sumption, ct, evaluated at the optimal level in the risk-free setting, which we normalize
to one (i.e., cf

t ≡ 1), we obtain that the overall coefficient of risk aversion in this case
is APt(cf

t ) = α + γ. Thus, to vary the individual curvatures of g and v functions, while
keeping the overall risk-attitude over (within period) money lotteries constant and within
the typical range obtained from standard estimations, it suffices to impose that the sum of
the two parameters is constant and equal to k, for some k ∈ [1, 4]: namely, α + γ = k. For
a fixed value of k (and holding ε and δ constant), the function Λ(α) := R∗(α, α − k, ε, δ)
therefore describes how the equity premium is affected by shifting some of the curva-
ture from the g to the v function, keeping constant the overall risk-attitude over money
lotteries. The following result summarizes a few key implications of our model:

Proposition 3. For any k and α ∈ [0.k], ∂Λ
∂α (α) is continuously differentiable, such that

∂Λ
∂α (α) = ∂R∗

∂α (α) − ∂R∗

∂γ (α), strictly positive at α = 0, and strictly negative at α = k.

To understand the significance of this result, recall that the standard model corre-
sponds to the case where α = 0 and γ = k (with k ∈ [1, 4], according to the standard
estimates). Hence, the result that ∂Λ

∂α (0) > 0 means that, holding constant the risk-attitude
over money lotteries, moving from the standard model to one where α > 0 increases the
equity premium entailed by the the EU model: shifting some of the curvature from the v

to the g function, holding risk-attitude constant, increases the model’s ability to account
for a higher equity premium. This effect, however, is not monotonic. At the opposite
extreme of the relevant range, the opposite is true: if all the curvature in the model is due
to the g function (if α = k, then γ = 0 and hence v is linear), then the equity premium
entailed by the model increases if some curvature is moved from g to v. The reason is that
a parameter of γ = 0 shuts down the consumption smoothing motive.

The overall behavior of the Λ function therefore is driven by a tension between ‘con-
sumption smoothing’ and the attitude towards ‘pure risk’, or in other words between
precautionary savings and hedging in the face of risk. Separately accounting for the α and
γ parameters may therefore shed new light on these classical concepts. Needless to say, a
proper quantitative assessment of the extent to which these observations may provide an
expected-utility explanation to the equity premium puzzle requires a careful empirical ex-
ercise, which is beyond the scope of this section. Nonetheless, we stress that this analysis
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is fully within the vNM framework, and hence the insights that we just discussed do not
rely on any deviation from the classical expected utility theory.

3.4 Discussion

The applications discussed in this section are only some of the theoretical implications
of our main results, but there are several others. For instance, in relation to our earlier
work on EU models of reference-dependent preferences (Alaoui and Penta, forth.), the
results presented here imply that the reversals of risk attitude that occur in each of the
representations of that paper (which include, among others, the standard S-shape utility
function with loss aversion and diminishing sensitivity, as well as Genicot and Ray (2017)’s
aspiration model and Diecidue and Van De Ven (2008)’s utility with a discontinuity), must
all be coming from the f function, or in other words they must all be due to reference-
dependence effects in the certainty domain.19 That is, unless one posits that ‘pure risk’
preferences may feature reference dependence with respect to the yardstick itself, in which
case one may want to consider a weakening of yardstick neutrality.

Also note that the separation between f and g need not apply to EU only. Aside from
its historical role and the central position it still occupies within economics, we focus on EU
because the conceptual points we raised are most transparent within it. That is because
there is ‘only u’ within EU (as opposed to other components of the representations in
other theories; see, e.g., footnote 3). But extending our approach beyond EU, for instance
in combination with other known mechanisms that may contribute to addressing the
equity premium puzzle, is clearly a promising direction for future research. Furthermore,
as discussed in Alaoui, Penta, and Troccoli-Moretti (2025), the separation we identify
between f and g may also suggest novel ways of departing from expected utility, to shed
new light on classical ‘paradoxes’ (e.g., Rabin, 2000) as well as to explain new ones (cf.
Alaoui, Penta, and Troccoli-Moretti, 2025).

These are only some examples of further theoretical implications of our results, and
there are many other directions to explore. These developments are clearly beyond the
scope of this paper, but we think they are a promising direction for future research.

4 Identification

Our theoretical exercise thus far have relied on the use of a conceptual yardstick, not
necessarily an actual one. This thought experiment serves to make the point that the ‘two
horses of different colors’ live together within expected utility. This theoretical insight is
valid independent of matters of identification. But, from the viewpoint of identification,
that thought experiment also serves as a benchmark to clarify what kind of data would be

19For an empirical analysis of such expected utility models of reference dependence, see Alaoui, Hervy,
Kariv, and Penta (2025), where we perform individual estimation of such preferences in the context of
portfolio choices of Arrow securities. Our results highlight a great deal of individual heterogeneity and
show a striking predictive power of these models.
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best suited to separately identify the value of wealth (function f) from pure risk aversion
(parameter α): if we had the yardstick readily available and agreed upon, as is the case
with actual physical yardsticks (or meter sticks) to measure distance, then it would be
straightforward to identify the parameters. But in practice, it is perhaps unclear at this
stage which commodity can attain the benchmark conditions for a yardstick, or even how
it can be verified that such a commodity fulfills the desired properties. In this section we
will discuss how this can be done, and how f and α can be identified from choice data.

4.1 Identification for firms

Consider the case of the profit-maximizing firm discussed in Section 3.1, which is both
important in itself, and useful to introduce a few conceptual points. There, the yardstick
y is the home currency (e.g., dollars), and we let m denote the quantity of money held
in a possibly different currency (e.g., euros). Then, letting d denote the exchange rate,
in the certain space the firm maximizes dm + y. Under risk, as discussed, it maximizes
either u(m, y) = 1−e−α(dm+y)

α with α ̸= 0, or dm + y (in which case we will say that α = 0
(d = 1 if m is money held in home currency).

If d is observable, then α can be identified in standard way, from choice data over
lotteries over m. But note that the firm’s overall risk attitude over m (the foreign currency)
now depends on both d and α. The overall Arrow-Pratt coefficient for m, for instance, will
be equal to αu = αd.20 This is intuitive: for instance, consider a gamble between 10 and
0 units of the foreign currency, m. In terms of the firm’s own currency, this is effectively
a gamble between $10d and $0. So, even though the function f here is linear in m, the
pure risk coefficient is unique only up to the multiplicative constant 1/d. Clearly, if d is
observable, this does not create any practical issue. Otherwise, only the product αd can
be jointly identified from lotteries over m; not α and d separately.

In the case of the firm, the availability of an obvious yardstick also allows a clean
identification for more complicated cases, too, where the firm may also have other other
objectives besides profits, such as environmental concerns, Corporate Social Responsibility,
etc. Letting x denote the variable the firm is concerned with, then the f function could be
identified from the MRS between x and money (in own currency), under certainty. In this
case, f would not necessarily be linear, but the α parameter could still be identified from
lotteries over own currency, or from lotteries over x, adapting the formula in Corollary 1
to x. Namely, αu(x) = αf ′(x) + αf (x).

20The Arrow-Pratt indices are obviously invariant to positive affine transformations of the utility func-
tion, but they are not necessarily invariant to rescaling the units of account. For instance, let m̂ = d · m
for some d > 0. Then, if u is of the CRRA family, then it holds that αu(m̂) = αu(m). But if u is of the
CARA family, then αu(m̂) = d · αu(m).
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4.2 Identification via Proxy

Turning to more general decision-makers (i.e. not necessarily profit maximizers), our first
method consists of finding (or constructing) a reliable yardstick, or a proxy for it, to
achieve identification to the extent possible. For this exercise, we return to the multiple
goods case introduced in Section 2.2.4. In particular, let x = (x1, x2), and assume that
f is (strictly) increasing in each dimension. Suppose that we are primarily interested in
good 1 (e.g., x1 represents quantity of money, as in most of the paper), while good 2 is the
‘candidate proxy’ for the yardstick. Under the maintained assumptions on the yardstick,
it must be that u(x, y) = g(f(x) + y), where g : R → R is a CARA transformation with
parameter α ∈ R, as above. Now, for good 2 to be an appropriate substitute for the
yardstick, it would need to satisfy a quasilinearity property with respect to good 1, but
also with respect to the yardstick itself:

Full Quasilinearity (FQ): Good 2 satisfies full quasilinearity if, for any x1, x2, x′
1,

x′
2, y, y′, t ∈ R, δx1,x2,y ≿ δx′

1,x′
2,y′ if and only if δx1,x2+t,y ≿ δx′

1,x′
2+t,y′ .

If this property holds, under the maintained assumptions on the yardstick, then the
f(·) function above must be such that f(x) = f1(x1) + d2x2 for some function f1 and
constant d2 > 0. Thus, the overall utility function for (x, y) must take the form u(x, y) =
g(f1(x1) + d2x2 + y). Hence, if one could find a commodity that satisfies FQ, then it
would serve as a suitable proxy for the yardstick, and be effectively equivalent to it, up to
a multiplicative constant d2 > 0 (just like the exchange rate in the firm example above).

The issue with FQ, however, is that it cannot be directly tested with data that only
involve commodities 1 and 2. But the following two implications of FQ are testable with
data that only involve commodities 1 and 2:

Proxy Neutrality (PN): Good 2 satisfies satisfies proxy neutrality if, for any x2, x′
2, y ∈

R, and for any px1 , qx1 ∈ ∆(R), (px1 , x2, y) ≿ (qx1 , x2, y) if and only if (px1 , x′
2, y) ≿

(qx1 , x′
2, y).

Proxy Quasilinearity (PQ): Good 2 satisfies satisfies partial (proxy) quasilinearity
if,δx1,x2,y ≿ δx′

1,x′
2,y iff δx1,x2+t,y ≿ δx′

1,x′
2+t,y for all x1, x2, x′

1, x′
2, y, t ∈ R.

That PN is implied by FQ follows from the representation of the u function that holds
under FQ (namely, u(x, y) = g(f1(x1) + d2x2 + y)), since g being CARA implies that the
risk attitudes on the x1 component is not affected by the level of x2 in this representation.
Interestingly, while FQ only refers to the certainty space, PN is about preferences over
lotteries over good 1. This connection from the certain to the uncertain space occurs
thanks to the yardstick, which serves as a bridge between the two (FQ connects certain
preferences over x to y, which in turn is connected to preferences over the uncertain space
via yardstick neutrality).
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PQ instead is clearly a weakening of FQ, as it characterizes the strongest implications
of FQ that are testable in the certain space with data over x1 and x2 alone. PQ has a
straightforward interpretation: under PQ, good 2 is only quasilinear with respect to good
1, not necessarily with respect to the yardstick, y.

Note that since both PN and PQ are implied by FQ, then both conditions also provide
a way of falsifying FQ indirectly, from choice over lotteries over x1 and x2. A commodity
that satisfies both PN and PQ therefore is viable, as choice data do not rule out that it
might be a suitable proxy, in the sense that they do not falsify FQ.

Now, suppose that there are multiple goods beyond x1, which could take the role of
x2 in the discussion above. Say that there is a set K = {1, ..., K} of candidate proxies,
over which preferences are increasing, each of which is a viable proxy in the sense that
it satisfies both PN and PQ. If commodity k also satisfies FQ, then we say that it is an
suitable proxy.21 As we show next, under the maintained assumptions on the yardstick,
the following holds: if FQ holds for some k∗ ∈ K, then any candidate proxy k ∈ K satisfies
FQ if and only if it satisfies PN and PQ. Putting everything together, we thus obtain the
following result:

Proposition 4 (Detecting a Proxy). Under the maintained assumptions:
1. If a suitable proxy exists, any viable proxy is suitable.
2. If no proxy is viable, then no suitable proxy exists.

Note that this means that, if a suitable proxy exists, then it can be detected by testing
FQ from choice data over x, via PN and PQ. From now on, we will assume that an ideal
proxy exists. Then, from the discussion above, if good 2 satisfies both PN and PQ, then
the representation of u(x, y) involves three distinct objects: the function f1 : R → R, the
scalar d2 > 0, and CARA parameter α ∈ R of the g function. Note, however, that such a
representation involves y as well, and hence it contains more information than what could
be gathered based on data on (x1, x2) alone. Hence, we introduce the following definition:

Definition 2. Let good 2 be a suitable proxy. Then we say that (f1, d2, α) observationally
represents ≿ if, for all px, qx ∈ ∆(R2) and y ∈ R, (px, y) ≿ (qx, y) iff Epxu(x, y) ≥
Eqxu(x, y), where the utility function u takes the form u(x, y) = g(f1(x) + d2x2 + y) with
CARA function g(·) having parameter α.

In other words, this notion of observational representation allows only for inference
on preferences from the available data on x1 and x2, without allowing the unobserved y

to be varied. As we show next, under the maintained assumptions, the three parameters
of the utility representation are identifiable from standard choice data up to a single
multiplicative constant (plus an additive one for f1), in the following sense:

21To be clear, letting xk
2 denote the quantity of good k ∈ K, we say that commodity k satisfies FQ (or

PQ or PN) if the definition of FQ (resp., PQ or PN) given above holds using quantity xk
2 in the role of x2.
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Proposition 5 (Identification via Proxy). Under the maintained assumptions, if com-
modity 2 is a viable proxy, and (f1, d2, α) and (f ′

1, d′
2, α′) both observationally represent

≿ then there exists an a > 0 and b ∈ R s.t. f ′
1 = af1 + b, d′

2 = ad2 and α′ = α/a.

In other words, we can identify the curvature of f1 and the sign of α. Such an exercise
is particularly useful for inferences on behavior and risk-attitude across domains. We will
return to this point in Section 5 below.

In the absence of a ‘natural’ commodity that can serve as a viable proxy, one could
think of constructing an artificial commodity that would plausibly satisfy properties PN
and PQ. Consider the following example:22

Example 1 (An Artificial Proxy). Take a unit mass of anonymous third parties, whose
marginal utilities are constant over some good, let’s call it Token. Then, x2 ∈ R+ could
denote the fraction of such individuals that receive a fixed amount of tokens (say, one).23

Under the assumption that the decision maker’s preferences are increasing in such a num-
ber, and that under anonymity PQ holds, then PN amounts to assuming that the value
of x2 is orthogonal to the decision maker’s preferences over lotteries of x1. □

Proposition 5 also implies that, in order to uniquely identify α, we would require at
least one data point on y. This is for similar reasons to those discussed in Section 4.1, about
firms: in this case, without such a data point, we have no way of distinguishing between
(f1, d2, α) and (af1 + b, ad2, α/a) (for a > 0) because we have no way of knowing what the
correct exchange rate between the proxy and the yardstick is. However, if we could have,
say one indifference condition involving y, then we could establish the proper exchange
rate (for example, if (x1, x2, 0) ∼c (x1, 0, y) for some x1, x2 and y, then d2 = y/x2), and
hence pin down (f1 + b, d2, α) uniquely (aside for the additive constant b), which can of
course be normalized to 0).

Alternatively, and perhaps more relevantly for empirical work, suppose that we do not
have such a data point, but instead are willing to say that there is a viable proxy that is
common to different individuals, and that its relationship with the yardstick is identical
across individuals (i.e., we are willing to assume a common normalization). Then, one
would still be able to perform interpersonal comparisons of both the α parameters and of
the f1 functions: for any choice of d2, the α parameter and f1 function would be uniquely
identified, and hence their ordering across agents would be unaffected by the particular
choice of d2, as long as it is common to all agents.

22We thank Elias Tsakas for inspiring us this example.
23Note that no randomization is involved in this setting. In particular, for x2 ∈ (0, 1), it is not the

case that a given agent receives one token with probability x2, and nothing otherwise. Rather, a fraction
x2 of the anonymous agents receive one token for sure. For x2 > 1, the interpretation is that a fraction
(x2 − ⌊x2⌋) of agents get ⌊x2⌋ + 1 tokens, and the rest get ⌊x2⌋. But this is only done to accommodate the
technical requirement that x2 lives in an unbounded space. For practical elicitation, the x2 in this example
could be taken from the unit interval, and the token could be a fixed amount of dollars (if x2 ∈ [0, 1], the
requirement that the third parties have a constant marginal utility over the amount of the token is not
needed, as PQ would be ensured by the anonymity of the receiving third parties).
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If, furthermore, one were willing to take a stance on the ‘exchange rate’ between the
proxy and the yardstick, what we would call a pegged proxy (formally, a viable proxy in
which the d2 parameter is known, or normalized to 1 if the proxy itself is taken as unit of
account), then Proposition 5 implies that both the f and α would be uniquely identified:

Corollary 2 (Identification via Peg). Under the maintained assumptions, if commodity
2 is a pegged proxy, then f1 and α are uniquely identifiable.

Lastly, we use this discussion to illustrate an additional point. Suppose that one were
concerned whether, depending on which proxy we use, the function f could be concave
with respect to one (say), but convex with respect to another, so that all the conclusions
drawn would rely on the proxy used. The discussion here illustrates that this cannot
be the case: if both proxies satisfy PN and PQ, they they can only be positive affine
transformations of one another, and hence the function can only differ by a positive affine
transformation. The shape, then, will be the same irrespective of the proxy used.

4.3 Parametric assumptions

Turning to parametric assumptions on f , suppose that we assume f to be of the CRRA
functional form, i.e. such that that f(m) = m1−γ

1−γ . Then, using Corollary 1, we have:

αu(m) = αm−γ + γm−1.

Then we could identify the α and γ parameters with the following two-step procedure:

1. In a first stage, estimate αu(m) for a set of m’s, say M = {m1, ..., mK} ⊂ R. Since
αu(m) is the local risk attitude parameter over money, at any given m, it can be
estimated using standard methods (e.g., Baillon and L’Haridon, 2019).

2. Then, using the collection of {(m, αu(m))m∈M } as the independent and dependent
variables, respectively, a maximum likelihood estimation (MLE) procedure can be
used to estimate α and γ.

Alternatively, if f is CRRA, then Proposition 1 ensures that u is as follows:

u(m; α, γ) =


m1−γ

1−γ if α = 0

1−e
−α

(
m1−γ

1−γ

)
α if α ̸= 0

.

Hence, instead of the above two-step procedure, the two parameters α and γ could
also be estimated directly, using standard MLE methods. Note that the α parameter
here is pinned down due to a parametric normalization of the CRRA function f . The γ

parameter, however, is pinned down uniquely, irrespective of this normalization.
Another important parametric setting, particularly for macroeconomics applications,

is the one equation (2), with a CRRA v function with parameter γ. In such settings,
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γ and β can be identified or calibrated using savings decisions under certainty, adapting
commonly used methods. In addition to that (or in conjunction, using an MLE procedure
to estimate all parameters simultaneously), choice data over time lotteries can be employed
to estimate the α parameter. Intuitively, let c∗ be steady state consumption, and take
c+ ≥ c∗ that can be either obtained in period t for sure, or in period t−1 with probability p

or t+1 with probability 1−p, and suppose that one identifies the ‘time lottery equivalent’,
pT L, that makes the agent indifferent between the two options. Then, given β and γ, the
specific α that leads to this indifference can be identified.24

5 Cross-domain inference and elicitation

We now return to the case of multiple commodities (domains) x = (x1, x2, .., xn) intro-
duced in Section 2.2. We discuss first how predictions of risk attitude from one domain to
another could be conducted. Next we discuss how multiple domains can be used to elicit
α, which in turn can also be used to make predictions to additional domains.

5.1 Cross-domain predictions

Suppose now that we are interested, as is common in economics and psychology, in using
risk attitudes elicited in one domain to make predictions of risk attitudes in another.

It is common to simply take the risk attitude in one domain and analyze the correlation
and predictions with the risk attitude on other domains (see e.g. Frey et al. (2017); Mata
et al. (2018); Einav et al. (2012) and Vieider et al., 2015). But note that our results
suggest caution in interpreting the meaning of these correlations. To show this formally,
suppose that preferences under certainty are linearly separable between different domains,
and maintain the same assumptions over the yardstick (quasilinearity and neutrality) as
we have done throughout. Then, in the certainty space, preferences are represented by

f(x) =
n∑

k=1
fk(xk),

for some collection (fk)k=1,...,n of functions fk : R → R. Hence, for the overall preferences
over risk, we have that u(x) = g(

∑
k fk(x)), where g is CARA with parameter α. It follows

that the Arrow-Pratt index for good k, at consumption level xk, is

αu,k(xk) = αf ′
k + αfk

(xk), (6)

where αfi
(xk) = −f ′′

k (xk)
f ′

k
(xk) . In words, for any k, the (overall) risk attitude over that good

depends both on the curvature of fk and on the common parameter α. It follows that,
with no further information, eliciting an agent’s risk attitude over a good, say k, cannot be

24That is because e−αβtv(c∗+c+;γ) = pT L · e−αβt−1v(c∗+c+;γ) + (1 − pT L) · e−αβt+1v(c∗+c+;γ).
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used to make predictions about the agent’s preferences over lotteries of some other good,
say l, unless fk and fl happen to be identical.

This is in fact consistent with well-known findings in the psychology literature, which
states that choice-based measures of risk attitudes commonly used in economics, which
typically pertain to the money domain, are often not predictive of risk attitudes in other
domains (see, e.g., Frey et al., 2017, Mata et al., 2018). In that literature, it is common to
argue that this is a weakness of the economics approach. But, as we see here, it is rather
to be expected, given the way that such analyses are often conducted.

Example 2 (A Formula 1 driver). An F.1 driver has preferences over two domains: a
financial one, and a racing one. For simplicity, say that x1 represents quantity of money,
and x2 is a measure of his success as a racer (e.g., points in Championship, holding
everything else constant). This particular driver is sufficiently wealthy that the marginal
utility of money is essentially constant, and small. Nonetheless, his financial behavior
suggests that αu,1 > 0 (e.g., he buys insurance, diversifies his investments and portfolio
holdings, etc.). Yet, on the race-track, he seems willing to take a great deal of risk, which
would suggest suggest that perhaps αu,2 < 0.

Now, suppose we ask ourselves: Is this F.1 driver risk-averse or not? One could give
different answers, and it is apparent that they would depend on which domain appears
most salient in our mind. But surely enough, taking this driver to the laboratory to
estimate his coefficient of risk aversion, αu,1 > 0, would not be of much use to predict the
amount of risk he would be willing to take on the racing track, or even to predict one’s
willingness to race in F.1 to begin with.

Our approach, however, gives a more nuanced view: If this F.1 driver is wealthy enough
that we are willing to assume his utility for money, f1, is essentially linear, we can conclude
that the evidence from his investment behavior, which suggests an overall risk-aversion
over money, must come from his ‘pure risk’ parameter α > 0. With this, the fact that he
is willing to take so much risk while racing suggests that his preferences over the ‘racing
greatness’ domain must be such that f2 is convex. Then, his risk-seeking behavior over
the racing domain, in this case, must come from an increasing marginal utility of ‘racing
greatness’, which in fact must be strong enough as to offset the fact that, when looking
at ‘pure risk’ per se (i.e., the α > 0 parameter), this F.1 driver is actually risk-averse.

This suggests that, in order to make predictions across domains, one should at least
be able to elicit (or be willing to assume) enough about α, f1, and f2. Mere risk attitudes
over one dimension have no direct bearing on risk-attitudes on other dimensions. □

To make predictions across domains, we thus propose the following method instead.
Suppose that we have conducted one of the identification exercises discussed in the sub-
sections above. Let us say that we have used Identification by Proxy method (Section
4.2), where good n is the proxy. Suppose that we have used it and data on good 1 only.
This has allowed us to elicit (f1, dn, α), up to transformation (af1 + b, adn, α/a) for a > 0.
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Now suppose that we are willing to make some assumption on the shape of f2 (e.g.,
that it is linear), or that alternatively we have used the proxy n and data on the certain
space 2 to also identify f2 (up to transformation af2, where a is the same as above). We
now have estimates for (f1, f2, dn, α), which is all that is required to make predictions on
the risk attitude of good 2, as we can now use our estimates to obtain αu,2 = αf ′

2+αf2(x2).
This exercise also shows that the estimates being up to constant a in no way interferes

with the predictions that we wish to make. This is because αu,2 = αf ′
2+αf2 = (α/a)(af ′

2)+
αaf2 , using that αaf2 = αf2 . Intuitively, since the multiplicative constant that defines the
non-uniqueness of the identification of the α parameter is the same across dimensions,
it crosses out when going from one dimension to another. The estimate of α obtained
from one domain is therefore portable to another, once combined with an estimate of the
preferences under certainty in the latter.

5.2 Cross-domain elicitation

Within the psychology literature, the typical methodology to elicit risk attitudes is based
on stated preferences, and frequently involves asking a number of questions about different
domains (see, e.g., Frey et al., 2017). It is also argued in that literature that the measures
of risk attitude elicited in this way are often more stable and more predictive than the
ones elicited from standard economics methods, despite the latter being choice-based.

Putting aside for a moment the well-known issues of stated preferences, which we will
return to at the end of this section, here we discuss how cross-domain elicitation may
effectively help in identifying the ‘pure risk’ parameter α, and the sense in which this may
lead to greater stability and predictability.

Specifically, maintain that there are n goods, and now suppose that there is a pop-
ulation of I individuals, and let xi = (xi

1., , , ., xi
n) denote the bundle of agent i, with xi

k

being i’s quantity of good k. Suppose again that i’s preferences in the certainty space
linearly separable, i.e. f i(x) =

∑n
k=1 f i

k(xi
k), for some collection (f i

k)k=1,...,n of functions
f i

k : R → R. Although not necessary for the argument that follows, let us assume for
simplicity that such preferences are linear in each good, i.e. that f i

k(xi
k) = di

k · xi
k for all

i = 1, ..., I and k = 1, ..., n. We further assume that, for each k, the preference param-
eters in this population are drawn from some distribution with some (unknown) mean
dk > 0, with a noise that is independent and identically distributed across individuals
and commodities. More precisely, for each i and k, we have di

k = dk + ϵi
k, where ϵi

k is
i’s idiosyncratic preference parameter for good k, drawn from a distribution with 0 mean
that is i.i.d. across goods and agents. Under these assumptions, i’s utility function is

ui(xi) = gi

(
n∑

k=1
(dk + ϵi

k)xi
k

)
,

where gi is CARA with ‘pure risk’ parameter αi.
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Next we show that, by eliciting individuals’ risk-attitudes over each dimension in this
setting, we can obtain a ranking of the individuals’ pure risk attitudes. To see this, note
that applying the formula for the Arrow-Pratt (AP) index with multidimensional goods
(cf. eq. 6) to this setting, for each i and good k for each component, we have:

αui,k(xi
k) = αi(dk + ϵi

k).

Hence, if the number n of dimensions is large enough, for each individual i, the expectation
of the average AP-index across dimensions is the following:

ᾱui :=
∑n

k=1 αui,k(xk)
n

=
∑n

k=1 αidk

n
+
∑n

k=1 ϵi
k

n
≃ αi∑n

k=1 dk

n
, (7)

Since the term in the summation is the same for all agents, it follows that if the number
of elicited dimensions is large enough, then the average AP-indices, (ᾱui)i=1,...,I , are fully
ranked by the individuals’ pure risk parameters, (αi)i=1,...,n. Notice that this argument
does not require knowing what the (dk)k=1,...,n’s are. The main identification assumption
is that the ϵi

k’s are i.i.d. across goods and agents.
Of course, this exercise does not map exactly to how risk indices are measured in the

psychology literature, which uses a large number of questions on stated preferences in
several domains, and creates an index based on the average of the responses. Rather, it
serves to show why eliciting risk-attitudes over multiple dimensions can lead to approxi-
mate orderings of the pure risk parameter: Since, unlike the k-specific f i

k-terms, such pure
risk parameters affect the risk attitudes across components, identifying a reliable ranking
of the αi across different individuals may yield better predictive power across domains.
Moreover, this ranking could be correlated with risk-taking behavior in domains for which
data has not been collected.

As discussed above, it is common in the psychology literature to ask subjects to state
their willingness to take risks in various domains, rather than to use choice-based measures
used in economics. While we believe that such methods are within the general spirit of the
choice-based measures we assumed in the above analysis, they would not be as precise as
carrying out the exercise discussed here. In fact, the exercise above can be seen as a hybrid
of the two methodologies, which maintains the multidimensional logic from psychology and
combines it with the choice-based economics methodology of eliciting Arrow-Pratt indices
from choice over lotteries over each dimension separately.

We take the tradeoff between the single-domain choice-based measures and multiple-
domain stated preferences to be as follows: commonly used choice-based measures are
useful because they are precise and based on behavior, but it is difficult to make predictions
from one domain to another for the reasons stated here and in the previous Section. It is
also impractical to conduct them fully across domain, simply because it may be difficult
to implement choice task over some of these relevant domains. As for multiple-domain
stated preferences, these are useful for the reasons discussed in this subsection, but suffer
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from not being based on behavior. Hence, they may not represent true preferences, and it
may often be unclear to the agent what the question is precisely asking for. Overall, to the
extent that it can be carried out, it seems to us that a choice-based measure over multiple
domains, or even a combination of the two approaches, may well be the most promising
avenue, if done in a manner consistent with the logic we discussed in this section.

In closing this section, we note that Qualitative Self-Assessments (QSAs) – which
involve a single, simple question on stated-preferences – have been increasingly used in
recent years (e.g., Dohmen et al., 2011). When it comes to risk attitudes, the discussion
above suggest caution in their use, because it is unclear whether they are eliciting the
pure risk attitude α, or the composition with the f i

k functions in any one domain, or
some average composition across domains – we simply do not know. In this sense, this
observation on the meaning of QSA methods is complementary to the analysis contained
in Chapman, Ortoleva, Snowberg, Yariv, and Camerer (2025).

6 Conclusion

The main idea in this paper has been to separate the vNM’s utility function, u, into two
components, one corresponding to preferences under certainty and the idea of a ‘marginal
utility’ of money, and the other corresponding to ‘pure risk’ attitude (cf, Section 2).
This has allowed us to derive several implications for economic theory, and to show that
beyond interpretation, not accounting for these components of the u function has had
important implications in the development of economic thought (cf. Section 3). For
instance, the natural application of expected utility theory to profit-maximizing firms has
typically assumed that firms must be risk-neutral as a consequence. But this conclusion
follows only if one abandons the typical ‘agnostic’ position of taking EU to be only a
representation (which captures a common decision theoretic view), and hence by implicitly
making stronger assumption on preferences. We have shown, in contrast, that profit-
maximizing firms need not be risk neutral, even within expected utility. Likewise, the
natural application of EU to temporal settings is not to take the expected discounted
utility (EDU) form, but rather the form discussed in Section 3.2. Interestingly, this is
precisely the form that the recent literature has examined to resolve behavioral puzzles
that the EDU form cannot accommodate (cf. DeJarnette et al., 2020; Dillenberger et al.,
forth.). As discussed in Section 3.3, the same formulation may also provide novel insights
on the celebrated equity premium puzzle (Mehra and Prescott, 1985). These are only
some of the theoretical implications of our main results, but exploring further theoretical
implications of our main results, both within EU and outside of it, is likely a promising
direction for future research (cf. Section 3.4).

Our analysis has remained close to the classical economics approach, in the sense that
all the identification methods discussed in Sections 4 and 5 involve ways of identifying some
commodity that could serve as a proxy for the yardstick, and to verify that this candidate
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proxy is appropriate based only on ‘standard’, fully choice-based datasets. But given the
extensive research in economics and neuroeconomics that focuses on other, more direct
ways to measure subjective value and some forms of satisfaction (see for instance Glimcher
and Rustichini (2004); Camerer (2008); Rustichini (2009), and Glimcher and Tymula,
2023), we believe that a promising avenue for research could employ these techniques as
well. For instance, suppose that we are willing to use auxiliary data on physical expressions
of utility (such as firing rates, dopamine levels, etc.) and that we accept one such (non-
choice based) measure as a common ‘unit of account’ for the utility index. Then, such a
measure could directly serve as a yardstick, and the f function be identified directly as in
our thought experiment from Section 2, from which the g can be identified using standard
choice data over lotteries.

Clearly, identifying which physical expression of utility is best suited to play the role of
a yardstick is inherently a neuroeconomics question, and, as such, it is obviously beyond
the scope of this paper. Nonetheless, the key properties for our conceptual yardstick still
serve as theoretical guidelines for the properties that a physical measurement should have,
in order to serve as a useful unit of measure of utility. Once such a ‘physical yardstick’ is
identified, our exercise can easily be enriched to accommodate these domains, as can the
practical identification methods discussed in this paper. This, we think, is a promising
direction to further develop, through the lens of our approach.

Appendix

Proof of Proposition 1
Under the vNM axioms and monotonocity, preferences ≿ have an EU representation,
where the utility function u(m, y) is strictly increasing in both m and y. By the property
of yardstick under certainty, δm,y ≿ δm,y iff f(m) + y ≥ f(m′) + y′, which holds iff
u(m, y) ≥ u(m′, y′) ⇔ g(f(m) + y) ≥ g(f(m′) + y′) for strictly increasing g : R → R
(note that if g is not strictly increasing, then there exists an (m, y) and (m′, y′) for which
u(m, y) > u(m′, y′) but g(f(m)+y) ≤ g(f(m′)+y′)). Since u is unique up to positive affine
transformation, it must then be that u(m, y) = g(f(m) + y), or a strictly positive affine
transformation of g. Next, by yardstick neutrality, for any pm, qm, y, y′:

∑
pm(m)g(f(m)+

y) ≥
∑

qm(m)g(f(m) + y) iff
∑

pm(m)g(f(m) + y′) ≥
∑

qm(m)g(f(m) + y′), meaning
that function g must be CARA in y. Using the standard results on CARA, g must take
the form g(x) = 1−e−αx

α for α ̸= 0, or g(x) = x, or a positive affine transformation thereof.

Proof of Proposition 2
Let u∗ : R → R denote a utility function in a EU representation of preference system (≿∗

, ∆(R)). Now, construct the preference system (≿, ∆(Z)) that is represented by u(m, y) =
g(f(m) + y) where g(x) = x and f(m) = u(m). Clearly, this utility function satisfies all
the maintained axioms, and u(m, 0) = g(f(m)) = u∗.
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In the other direction, take any preference system (≿, ∆(Z)) that satisfies the maintained
assumptions, and let ≿m be defined as in the text, i.e., pm ≿m qm iff (pm, 0) ≿ (qm, 0).
Letting u(m, y) = g(f(m) + y) represent ≿, clearly u∗(m) = u(m, 0) is strictly increasing
and represents preferences ≿∗=≿m, and furthermore the preference system (≿∗, ∆(Z))
satisfies all the vNM axioms.

Proof of Proposition 3
We prove the following statements: (1) Λα(α, ε) = R∗

α − R∗
γ ; (2) Λε(α, ε) = R∗

ε > 0;
(3) Λα(0, ε) > 0; (4) Λα(k, ε) < 0.

To prove these results, first we let R∗(α, γ, ε) be implicitly defined as the unique value
of R such that the indirect utilities from the risk-free and risky asset problems coincide:

F (R, α, γ, ε) := U2(R, α, γ, ε) − U1(Rf , α, γ) = 0,

where U1 and U2 are defined by

U1 := g (v(y − s∗
1) + βv((1 + Rf )s∗

1)) , U2 := ε

2g(A(R+δ))+(1−ε)g(A(R))+ε

2g(A(R−δ)),

with s∗
1 and s∗

2 denoting optimal savings under the risk-free and risky problems, respec-
tively, and A(x) := v(y − s∗

2) + βv((1 + x)s∗
2). Let Λ(α, ε) := R∗(α, γ, ε) with γ = k − α

for some fixed k > 1.

(1) Λα(α, ε) = R∗
α − R∗

γ. Since Λ(α, ε) = R∗(α, k − α, ε), the chain rule gives:

∂Λ
∂α

= ∂R∗

∂α
+ ∂R∗

∂γ
· ∂γ

∂α
= ∂R∗

∂α
− ∂R∗

∂γ
.

(2) ∂Λ(α,ε)
∂ε = ∂R∗

∂ε > 0. Since γ = k − α is fixed with respect to ε, we have:

∂Λ
∂ε

= ∂R∗

∂ε
= −

∂F
∂ε
∂F
∂R

,

by the Implicit Function Theorem, provided ∂F
∂R ̸= 0. Now compute:

∂F

∂ε
= 1

2g(A(R + δ)) + 1
2g(A(R − δ)) − g(A(R)).

Since A(·) is strictly increasing in R (as v′ > 0, β > 0, and s∗
2 > 0), and g is strictly

concave, Jensen’s inequality implies ∂F
∂ε < 0. For the denominator,

∂F

∂R
= (1 − ε) d

dR
g(A(R)) + ε

2

[
d

dR
g(A(R + δ)) + d

dR
g(A(R − δ))

]
,
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and each d
dRg(A(R ± δ)) = g′(A(R ± δ)) · βv′ ((1 + R ± δ)s∗

2) s∗
2 > 0, since g′ > 0, v′ > 0,

and s∗
2 > 0. Hence ∂F

∂R > 0, so
∂R∗

∂ε
= −

∂F
∂ε
∂F
∂R

> 0.

(3) ∂Λ
∂α (0.ε) > 0. From part (1), we have

∂Λ
∂α

= ∂R∗

∂α
− ∂R∗

∂γ
=

∂F
∂γ − ∂F

∂α
∂F
∂R

.

At α = 0, the aggregator becomes linear: g(z) → z and evaluated at α = 0,

∂g

∂α
(z) = −1

2z2.

Therefore:
∂U2
∂α

= −1
2E[A(R̃)2], ∂U1

∂α
= −1

2A(Rf )2,

so that
∂F

∂α
= −1

2
(
E[A2] − A(Rf )2

)
< 0,

since A(R̃) is a mean-preserving spread of A(Rf ) and z 7→ z2 is strictly convex.
Now consider ∂F

∂γ = ∂U2
∂γ − ∂U1

∂γ . At α = 0, g′(z) = 1, so:

∂Ui

∂γ
= ∂v(y − s∗

i )
∂γ

+ β
∂v((1 + Ri)s∗

i )
∂γ

.

Since vγ(c) := ∂v(c)
∂γ = c1−γ [1−(1−γ) log c]

(1−γ)2 is strictly decreasing in c, and c2
t+1 is a mean-

preserving spread of c1
t+1, we obtain

∂F

∂γ
> 0.

Hence:
∂F

∂γ
− ∂F

∂α
> 0 ⇒ ∂Λ(0, ε)

∂α
> 0.

(4) ∂Λ(k,ε)
∂α < 0.

Ui = E[ct + βct+1] ⇒ ∂Ui

∂γ
= 0 ⇒ ∂F

∂γ
= 0.

But since g remains concave for α > 0, the agent is risk-averse in the aggregator and:

∂U2
∂α

>
∂U1
∂α

⇒ ∂F

∂α
> 0.

Therefore:
∂F

∂γ
− ∂F

∂α
< 0 ⇒ ∂Λ(k, ε)

∂α
< 0.
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Proof of Proposition 4

1. Let z = (x1
2, ..., xK

2 ) ∈ RK be a vector denoting quantities of viable proxies, so that
x = (x1, z) ∈ RK+1 denote the vector with the good of interest x1 and the candidate
proxies, where ≿c are the certain preferences on RK+1. Assume that a suitable proxy
exists, and w.l.o.g.let it be proxy K. Furthermore, assume that all candidate proxies
are viable. Noting that here, preferences ≿c are defined over outcomes (x, y) ∈
RK+1 × R, we define ≿c,0 in the following manner: x ≿c,0 x′ iff (x, 0) ≿c (x′, 0).
Then ≿c,0 is clearly (strongly) monotonic and continuous. Moreover, PQ of each
viable proxy in {1, ..., K} implies that each of these goods satisfies quasilinearity in
≿c,0. Hence, by standard quasilinearity results, it must be that ≿c,0 is represented by
f1(x1) +

∑
k∈{1,...,K} dk

2xk
2 for a strictly increasing function f1 : R → R and constants

dk
2 > 0 for all k ∈ {1, ..., K} and that any other function that represents it must

have the form h(f1(x1)+
∑

k∈{1,...,K} dk
2xk

2), where h is strictly increasing. Returning
to ≿c, it must then also be that (x, 0) ≿c (x′, 0) iff f1(x1) +

∑
k∈{1,...,K} dk

2xk
2 ≥

f1(x1)+
∑

k∈{1,...,K} dk
2xk

2, and since, by the maintained assumptions on the yardstick,
(x, 0) ≿c (x′, 0) iff (x, y) ≿c (x′, y) for all y, it also follows that (x, y) ≿c (x′, y)
iff f1(x1) +

∑
k∈{1,...,K} dk

2xk
2 ≥ f1(x1) +

∑
k∈{1,...,K} dk

2xk
2, and furthermore that a

representation of ≿c must have the form h(f1(x1) +
∑

k∈{1,...,K} dk
2xk

2) + y for strictly
increasing h.

Then, under the maintained assumptions on the yardstick (which imply quasilin-
earity of the yardstick), full quasilinearity of good K, (strong) monotonicity and
continuity of ≿c, we obtain immediately from known results that (x, y) ≿c (x′, y′)
iff f−K(x1, x1

2..., xK−1
2 ) + bKxK

2 + y ≥ f−K(x′
1, x′1

2 ...., x′K−1
2 ) + bKx′K

2 + y′, where
function f−K : RK−1 → R is strictly increasing and bK > 0.

Hence, combining this last result with the necessity of the form

h

f1(x1) +
∑

k∈{1,...,K}
dk

2xk
2

+ y,

it must be that h is a positive affine function, and hence that ≿c is represented by
the form af1(x1) + a

∑
k∈{1,...,K} dix

k
2 + y + κ, where a > 0 and κ ∈ R, which in turn

means that every viable proxy satisfies FQ, and is thus a suitable proxy.

While this completes the proof that the existence of a suitable proxy implies that
every viable proxy is suitable, we also show formally here why FQ suffices for PN.
Considering now the full preferences ≿, for yardstick neutrality to hold we must have
the form u(x, y) = g(af1(x1)+a

∑
k∈{1,...,K} dkxk

2+y) for CARA g (or a positive affine
transformation of g; note that the constant e is thus included in this transformation).
It thus follows immediately that PN holds for each viable proxy k ∈ {1, ..., K}.

2. Suppose that no candidate proxy is viable, and hence every candidate proxy violates
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PQ or PN. Then, by the previous step, FQ cannot hold for any candidate proxy,
and hence none can be ideal.

Proof of Proposition 5
Returning to the notation x2 for the proxy, suppose (f1, d2, α) and (f ′

1, d′
2, α′) both observa-

tionally represent ≿. Then in the certain domain, for all x1, x2 for which (x1, 0) ∼c (0, x2),
it must be that f1(x1) = f1(0) + d2x2 and f ′

1(x1) = f ′
1(0) + d′

2x2, and hence that x2 =
f1(x1)−f1(0)

d2
= f ′

1(x1)−f ′
1(0)

d′
2

. Rearranging, we obtain f ′
1(x) = d′

2f1(x)
d2

+
(
f ′

1(0) − d′
2f(0)
d2

)
=

af1(x)+b, where a = d′
2

d2
and b = f ′

1(0)− d′
2f(0)
d2

. Hence, it must be that f ′
1(x1) = af1(x1)+b

and d′
2 = ad2, where a > 0 and b is a constant.

Now let α2 denote the Arrow Pratt coefficient of ≿ with respect to good 2, respectively.
Note that it is must be the same for any (f1, d2, α) and (f ′

1, d′
2, α′) that both observationally

represent ≿. Hence it must be that α2 = αd2 = α′d′
2, and hence that αd2 = α′ad2, so that

α′ = α
a , which completes the proof.
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