
Endogenous Stackelberg Leadership�

Eric van Dammey Sjaak Hurkensz

November 1996

Abstract

We consider a linear quantity setting duopoly game and analyze which of the

players will commit when both players have the possibility to do so. To that end,

we study a 2-stage game in which each player can either commit to a quantity in

stage 1 or wait till stage 2. We show that committing is more risky for the high

cost �rm and that, consequently, risk dominance considerations, as in Harsanyi

and Selten (1988), allow the conclusion that only the low cost �rm will choose

to commit. Hence, the low cost �rm will emerge as the endogenous Stackelberg

leader.
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1 Introduction

Ever since Von Stackelberg wrote his Marktform und Gleichgewicht in 1934, it has been

well-known that in many duopoly situations a �rm is better o� when it acts as a leader

than when it acts as a follower. Since each �rm will strive to obtain the most favorable

position for itself, the question arises which of the two duopolists will gain victory and

obtain this leadership position. Von Stackelberg concluded that in general it is not pos-

sible to answer this question theoretically (Von Stackelberg (1934, pp. 18-20)). In this

paper, we consider the special case of a linear quantity setting duopoly game and show

that in this case the role assignment may follow from risk considerations. Speci�cally,

we demonstrate that committing is less risky for a low cost �rm so that such a �rm will

emerge as the Stackelberg leader.

Our work is inspired by an idea of Thomas Schelling. Of course, Schelling is most well-

known for his general demonstration of the value of commitment, i.e. that committing is

bene�cial for a player who is the only one able to make a commitment. Schelling realized

that, as a consequence, all players in the game will attempt to commit themselves and

that a coordination problem might arise: committing is bene�cial only if the opponent

does not commit, it might be (very) costly if the opponent also commits himself. This

in turn implies that a player might decide not to commit himself since he fears that the

opponent might commit as well and since the costs associated with the resulting \Stack-

elberg war" might be too high (Schelling (1960, p. 39)). Hence, there is a fundamental

trade-o� between 
exibility and commitment. Schelling pointed out this trade-o�, but

he did not provide a formal analysis of it, he did not solve the game. Our aim in this

paper is to provide a full solution for the linear 2-person duopoly game.

We consider a quantity setting duopoly game with linear demand and constant

marginal cost. One �rm is more e�cient, i.e. has lower marginal cost, than the other.

The formal model used to analyze the trade-o� between commitment and 
exibility is

the 2-stage action commitment game from Hamilton and Slutsky (1990). The rules are
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as follows. Each duopolist has to move (i.e. to choose a quantity) in one of two periods;

choices are simultaneous, but, if one player chooses to move early while the other moves

late, the latter is informed about the �rst-mover's choice before making his decision.

Hence, moving early is pro�table if one is the only player to do so, but it is costly if the

other commits as well. This timing game has several equilibria, in particular, each of the

Stackelberg outcomes of the underlying duopoly game is an equilibrium. As Hamilton

and Slutsky pointed out, these are the only pure undominated equilibria of the game.

We select the solution of the game by using the risk-dominance concept from Harsanyi

and Selten (1988). This concept allows one to quantify the risks involved with the two

candidate solutions and, hence, it enables to resolve the trade-o�s. Risk considerations

show that committing is less risky for the �rm that has the lower marginal cost. This

safer equilibrium in which the low cost �rm moves �rst is the neutral focal point and,

adopting the risk dominance concept, the players will coordinate on it.

Some intuition for this result might be obtained by looking at the 2 � 2 game in

which each player is restricted to use one of two strategies: either to commit himself to

his Stackelberg leader quantity or to wait till the second period and then best respond

to the quantity chosen by the opponent, with players choosing their Cournot quantities

in the second period if neither player moved in the �rst period. (See Table 1 in Section

3 for the payo� matrix.) Both Stackelberg outcomes appear as strict equilibria in this

game and it is well-known that risk dominance allows a simple characterization for such

2 � 2 games: the equilibrium with the highest (Nash) product of the deviation losses is

the risk dominant one. (Harsanyi and Selten (1988, Lemma 5.4.4)). In Section 3 we show

that the equilibrium where the low cost �rm commits is risk dominant in this reduced

game. The intuition is that, if player 1 has higher marginal costs, then his reaction curve

is below the reaction curve of player 2, so that his Stackelberg and Nash quantities are

closer together, which implies that he can gain less from committing himself than player

2 can. On the other hand, player 1 incurs greater losses than player 2 does if both players

commit themselves. As a consequence, player 1 is in a weaker bargaining position to

push for his most favored outcome and he will lose the battle.
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If the risk-dominance relation between our two candidate solutions could always be

decided on the basis of the 2 � 2 game spanned by them, then our problem could be

solved by straightforward computation. Unfortunately, the problem posed in this paper

is not that simple to solve and the above mentioned characterization of risk dominance

is of limited use for the problem addressed. In our \action commitment" game, a player

has in�nitely many strategies available; the choice is not simply between committing to

the Stackelberg leader quantity and waiting. Furthermore, it is known that, in general,

the reduced 2 � 2 game spanned by the two equilibrium candidates may capture the

overall risk situation rather badly. Consequently, to �nd the solution of the game, there

is no recourse but to apply risk dominance to the overall game. Now risk dominance

is de�ned by means of the tracing procedure and the fact that this procedure is rather

complex and di�cult to handle forces us to restrict ourselves to the linear case. Even in

this most simple linear case, the computations are already rather involved, they become

very cumbersome in the more general case. Nevertheless, the main result of this paper

is that risk dominance indeed selects the equilibrium in which the low cost �rm leads.

The present paper is part of a small, but growing, literature that aims at endogenizing

the �rst mover in oligopoly models. Ours is the �rst paper in which a speci�c Stackelberg

outcome is derived from a model in which the duopolists are in symmetric positions ex

ante and in which only endogenous (strategic) uncertainty is present. Related papers

either put �rms in asymmetric positions to start with, or add exogenous uncertainty

(about production costs or market demand), or admit multiple equilibrium outcomes.

Hamilton and Slutsky (1990) consider the same game as we do and they show that the

two Stackelberg equilibria are the only pure strategy equilibria in undominated strategies.

Hence, they conclude that a Stackelberg outcome will result but they cannot tell which

one. Sadanand and Sadanand (1996) analyze the same model when �rms face demand

uncertainty, which is resolved before production in the second stage. (Also see Sadanand

and Green (1991).) There is always a symmetric (Cournot) equilibrium: both �rms move
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late when uncertainty is large and early when there is no uncertainty. In addition, both

Stackelberg outcomes can be sustained as equilibria provided that uncertainty is not

too large. Hence, to select a unique Stackelberg outcome it is necessary to assume that

uncertainty in
uences the duopolists in an asymmetric way. An interesting asymmetric

variant that Sadanand and Sadanand analyze is a large �rm versus fringe model. Since

each fringe �rm individually is too small to in
uence output, the unique equilibrium now

has the large �rm committing itself, while the small �rms remain 
exible. Spencer and

Brander (1992) study a similar duopoly model with demand uncertainty. However, they

assume that a �rm who moves early is informed about the time at which the opponent

moves, which simpli�es the analysis considerably. For example, when both �rms decide

to move early, it follows that they will produce Cournot quantities. In a symmetric set-

ting, both �rms will move early (resp. late) when uncertainty is low (resp. high), so that

in each case a Cournot outcome results. A Stackelberg outcome may result when �rms

are in asymmetric positions: when one �rm is much better informed about the exoge-

nous shock than the other, then the better informed �rm may emerge as the Stackelberg

leader. A di�erent type of asymmetry is considered in Kambhu (1984): one �rm is risk

neutral and the other is risk averse. In this case, the risk neutral �rm may arise as the

Stackelberg leader. Mailath (1993) puts the �rms in asymmetric starting positions. One

�rm is informed about demand, while the other faces uncertainty and only the informed

�rm has the option to move �rst. In the unique \intuitive" equilibrium the informed

�rm indeed acts as a Stackelberg leader, even if it could earn higher ex ante pro�ts by

choosing quantities simultaneously with the uninformed �rm.

Saloner (1987) considers a model related to the one discussed here in which also

two periods of production are allowed. Firms simultaneously choose quantities in the

�rst period; these become common knowledge and then �rms simultaneously decide how

much more to produce in the second period before the market clears. Saloner shows that

any outcome on the outer envelope of the two reaction functions lying inbetween the

two Stackelberg outcomes can be sustained as a subgame perfect equilibrium. Ellingsen

(1995) notes that only the two Stackelberg outcomes survive iterated elimination of
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(weakly) dominated strategies in this game. Pal (1991) generalizes Saloner's analysis by

allowing for cost di�erences across periods. If production is cheaper in the �rst period

(resp. much cheaper in the second period), then both �rms produce their Cournot quan-

tities in the �rst (resp. second) period. In the intermediate case, where costs fall slightly

over time, either of the two Stackelberg outcomes can be sustained as a subgame perfect

equilibrium. Hence, none of these papers can make a selection among the Stackelberg

outcomes.

The remainder of this paper is organized as follows. The underlying duopoly game as

well as the action commitment game from Hamilton and Slutsky (1990) are described in

Section 2, where also relevant notation is introduced. Section 3 describes the speci�cs

of the tracing procedure as it applies in this context and de�nes the concept of risk

dominance. The main results are derived in Section 4. Section 5 concludes. Some proofs

are relegated to the Appendix.

2 The Model

The underlying linear quantity-setting duopoly game is as follows. There are two �rms, 1

and 2. Firm i produces quantity qi at a constant marginal cost ci � 0. The market price

is linear, p = maxf0; a�q1�q2g. Firms choose quantities simultaneously and the pro�t of

�rm i is given by ui(q1; q2) = (p�ci)qi. We assume that 3ci�2cj � a (i; j 2 f1; 2g; i 62 j),

which implies that a Stackelberg follower will not be driven out of the market. We will

restrict ourselves to the case where �rm 2 is more e�cient than �rm 1, c1 > c2. We write

ai = a� ci.

The best reply of player j against the quantity qi of player i is unique and is given by

bj(qi) = maxf0; (aj � qi)=2g: (2.1)

The unique maximizer of the function qi 7! ui(qi; bj(qi)) is denoted by qLi (�rms i's

Stackelberg leader quantity). We also write qFj for the quantity that j will choose as a
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Stackelberg follower, qFj = bj(q
L
i ), and Li = ui(q

L
i ; q

F
j ) and Fi = ui(q

F
i ; q

L
j ). We write

(qN1 ; q
N
2 ) for the unique Nash equilibrium of the game and denote player i's payo� in this

equilibrium by Ni. For later reference we note that

qLi =
2ai � aj

2
; qNi =

2ai � aj

3
; qFi =

3ai � 2aj

4
; (2.2)

Li =
(2ai � aj)

2

8
; Ni =

(2ai � aj)
2

9
; Fi =

(3ai � 2aj)
2

16
: (2.3)

As is well-known

qLi > qNi > qFi ; (i = 1; 2) (2.4)

Li > Ni > Fi; (i = 1; 2) (2.5)

hence, each player has an incentive to commit himself.

To investigate which player will dare to commit himself when both players have the

opportunity to do so, we make use of the two-period action commitment game that was

proposed in Hamilton and Slutsky (1990). The rules are as follows. There are two

periods and each player has to choose a quantity in exactly one of these periods. Within

a period, choices are simultaneous, but, if a player does not choose to move in period 1,

then in period 2 this player is informed about which action his opponent chose in period

1. This game has proper subgames at t = 2 and our assumptions imply that all of these

have unique equilibria. We will analyze the reduced game, g2, that results when these

subgames are replaced by their equilibrium values. Formally, the strategy set of player

i in g2 is IR+ [ fwig and the payo� function is given by

ui(qi; qj) = (ai � qi � qj)qi (2.6)

ui(qi; wj) = (ai � qi � bj(qi))qi (2.7)
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ui(wi; qj) = (ai � qj)
2=4 (2.8)

ui(wi; wj) = (2ai � aj)
2=9 (2.9)

It is easily seen that g2 has three Nash equilibria in pure strategies: Either each player

i commits to his Nash quantity qNi in the �rst period, or one player i commits to his

Stackelberg leader quantity qLi and the other player waits till the second period. One

also notices (with Hamilton and Slutsky (1990)) that the �rst (Nash) equilibrium is in

weakly dominated strategies (committing to qNi is dominated by wi in g2), hence, one

expects that only the (Stackelberg) equilibria in which players move in di�erent periods

are viable. Below we will indeed show that the Nash equilibrium is risk dominated by

both Stackelberg equilibria (Proposition 1). It should be noted that besides these pure

equilibria, the game g2 admits several mixed equilibria as well. These mixed equilibria

will not be considered in this paper, the reason being that we want to stick as closely

as possible to the general solution procedure outlined in Harsanyi and Selten (1988), a

procedure that gives precedence to pure equilibria whenever possible.

Although mixed strategy equilibria will not be considered, we stress that mixed strate-

gies will play an important role in what follows. The reason is that, in the case at hand,

a player will typically be uncertain about whether the opponent will commit or not, and

such uncertaintly about the opponent's behavior can be expressed by a mixed strategy.

Let mj be a mixed strategy of player j in the game g2. Because of the linear-quadratic

speci�cation of the game, there are only three \characteristics" of mj that are relevant

to player i, viz. wj the probability that player j waits, �j the average quantity to which

j commits himself given that he commits himself, and �j , the variance of this quantity.

Speci�cally, it easily follows from (2.6)-(2.9) that the expected payo� of player i against

a mixed strategy mj with characteristics (wj ; �j; �j) is given by

ui(qi;mj) = (1� wj)(ai � qi � �j)qi + wj(2ai � aj � qi)qi=2 (2.10)

ui(wi;mj) = (1� wj)((ai � �j)
2=4 + �j=4) + wj(2ai � aj)

2=9 (2.11)
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Note that uncertainty concerning the quantity to which j will commit himself makes it

more attractive for player i to wait: �j contributes positively to (2.11) and it does not

play a role in (2.10). On the other hand, increasing wj or decreasing �j increases the

incentive for player i to commit himself.

3 Risk Dominance and the Tracing Procedure

The concept of risk dominance captures the intuitive idea that, when players do not

know which of two equilibria should be played, they will measure the risk involved in

playing each of these equilibria and they will coordinate expectations on the less risky

one, i.e. on the risk dominant equilibrium of the pair. The formal de�nition of risk

dominance involves the bicentric prior and the tracing procedure. The bicentric prior

describes the players' initial assessment about the situation. The tracing procedure is

a process that, starting from some given prior beliefs of the players, gradually adjusts

the players' plans and expectations until they are in equilibrium. It models the thought

process of players who, by deductive personal re
ection, try to �gure out what to play

in the situation where the initial uncertainty is represented by the given prior. Below we

describe the mechanisms of the tracing procedure as well as how, according to Harsanyi

and Selten (1988), the initial prior should be constructed.

First, however, we recall that risk dominance allows a very simple characterization

for 2 � 2 games with two Nash equilibria: the risk dominant equilibrium is that one

for which the product of the deviation losses is largest. Consequently, if risk dominance

could always be decided on the basis of the reduced game spanned by the two equilibria

under consideration (and if the resulting relation would be transitive), then the solution

could be found by straightforward computations. Unfortunately, this happy state of

a�airs does not prevail in general. The two concepts do not always generate the same

solution and it is well-known that the Nash product of the deviation losses may be a bad

description of the underlying risk situation in general. (See, Carlsson and Van Damme

(1993) for a simple example.) In our companion paper (Van Damme and Hurkens (1996))
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we show that also in duopoly games the two concepts may yield di�erent solutions. In

the present case, however, the two concepts do generate the same solutions. Since the

calculations based on the reduced game are easily performed we do these �rst.

Consider, �rst of all, the reduced game spanned by the Nash equilibrium (qN1 ; q
N
2 )

and by the Stackelberg equilibrium (qL1 ; w2) in which �rm 1 leads. In this 2 � 2 game,

w2 weakly dominates qN2 , hence, the product of the deviation losses associated with the

Nash equilibrium is zero and, in the reduced game, the Stackelberg equilibrium is risk

dominant. Exactly the same argument establishes that the Nash equilibrium is risk dom-

inated by the Stackelberg equilibrium in which �rm 2 leads. Next, consider the reduced

game where each player is restricted to either committing himself to his Stackelberg

quantity or to wait, which is given by Table 11

qL2 w2

qL1 D1;D2 L1; F2

w1 F1; L2 N1; N2

Table 1: Reduced version of the quantity commitment game.

where Li; Ni and Fi are as in (2.3) and where Di denotes player i's payo� in the case of

Stackelberg warfare

Di = (ai � aj)(2ai � aj)=4: (3.1)

At the equilibrium where i leads the product of the deviation losses is equal to

(Li �Ni)(Fj �Dj) = a2j(2ai � aj)
2=1152:

Consequently, the product of the deviation losses at (w1; q
L
2 ) is larger than the similar

product at (qL1 ; w2) if and only if

1This game has also been studied by Dowrick (1986), who concludes \that there is no obvious solution

to this game where �rms can choose their roles" (p. 259).
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a1(2a2 � a1) > a2(2a1 � a2);

which holds since a1 < a2. Hence, the product of the deviation losses is largest at the

equilibrium where the e�cient �rm 2 leads: risk considerations based on reduced game

analysis unambiguously point into the direction of the Stackelberg equilibrium where

the low cost �rm leads. As already argued, there is, however, no guarantee that this

shortcut indeed identi�es the risk dominant equilibrium of the overall game. The only

way to �nd out is by fully solving the entire game. This we do in the next section. In

the remainder of this section, we formally de�ne the concepts involved.

Let g = (S1; S2; u1; u2) be a 2-person game and let mi be a mixed strategy of player

i in g(i = 1; 2). The strategy mi represents the initial uncertainty of player j about i's

behavior. For t 2 [0; 1] we de�ne the game gt;m = (S1; S2; u
t;m
1 ; u

t;m
2 ) in which the payo�

functions are given by

u
t;m
i (si; sj) = (1 � t)ui(si;mj) + tui(si; sj): (3.2)

Hence, for t = 1, this game gt;m coincides with the original game g, while for t = 0 we

have a trivial game in which each player's payo� depends only on his own action and his

own prior beliefs. Write �m for the graph of the equilibrium correspondence, i.e.

�m = f(t; s) : t 2 [0; 1]; s is an equilibrium of gt;mg: (3.3)

It can be shown that, if g is a generic �nite game, then, for almost any prior m, this

graph �m contains a unique distinguished curve that connects the unique equilibrium

s0;m of g0;m with an equilibrium s1;m of g1;m. (See Schanuel et al. (1991) for details.)
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The equilibrium s1;m is called the linear trace of m. If players' initial beliefs are given

by m and if players' reasoning process corresponds to that as modelled by the tracing

procedure, then players' expectations will converge on the equilibrium s1;m of g.

In this paper we will apply the tracing procedure to the in�nite game g2 that was

described in the previous section. To our knowledge, ours is the �rst application of these

ideas to a game with a continuum of strategies. For such games, no generalizations of

the Schanuel et al. (1991) results have been established yet, but as we will see in the

following sections, there indeed exists a unique distinguished curve in the special case

analyzed here. Hence, the non-�niteness of the game g2 will create no special problems.

It remains to specify the players' initial beliefs when they are uncertain about which

of two equilibria of g, s or s0, should be played. Harsanyi and Selten (1988) argue as

follows. Player j, being Bayesian, will assign a subjective probability zj to i playing si

and he will assign the complementary probability z0j = 1� zj to i playing s
0

i. With these

beliefs, player j will play a best response against the strategy zjsi+z0js
0

i that he expects i

to play. Assume that j chooses all best responses with equal probability and denote the

resulting strategy of j with bj(zj). Player i does not know the beliefs zj of player j and

applying the principle of insu�cient reason he considers zj to be uniformly distributed

on [0; 1]. Writing Zj for a uniformly distributed random variable on [0; 1], player i will,

therefore, believe that he is facing the mixed strategy

mj = bj(Zj) (3.4)

and this mixed strategy mj of player j is player i's prior belief about j's behavior in

the situation at hand. Similarly, mi = bi(Zi), where Z1 and Z2 are independent, is the

prior belief of player j, and the mixed strategy pair m = (m1;m2) is called the bicentric

prior associated with the pair (s; s0). Given this bicentric prior m, we say that s risk

dominates s0 if s1;m = s, where s1;m is the linear trace of m. In case the outcome of the

tracing procedure is an equilibrium di�erent from s or s0, then neither of the equilibria
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risk dominates the other. Such a situation will, however, not occur in our 2-stage action

commitment game, provided that the costs of the �rms are di�erent.

4 Commitment and Risk Dominance

In this section, we prove our main results. Let g2 be the endogenous commitment game

from Section 2. Write Si for the pure equilibrium in which player i commits to his

Stackelberg leader quantity in period 1, Si = (qLi ; wj), and write N for the equilibrium

in which each player commits to his Cournot quantity in period 1, N = (qN1 ; q
N
2 ). We

show that both Stackelberg equilibria risk dominate the Nash equilibrium and that S2

risk dominates S1 when c2 < c1. The �rst result is quite intuitive: Committing to qNi

is a weakly dominated strategy and playing a weakly dominated strategy is risky. The

proof of this result is correspondingly easy.

Proposition 1 . In g2, the Stackelberg equilibrium Si risk dominates the Nash equilib-

rium N (i = 1; 2).

Proof. Without loss of generality, we just prove that S1 risk dominates N . We �rst

compute the bicentric prior that is relevant for this risk comparison, starting with the

prior beliefs of player 1.

Let player 2 believe that 1 plays z2S11+(1� z2)N1 = z2q
L
1 +(1� z2)q

N
1 . Obviously, if

z2 2 (0; 1), then the best response of player 2 is to wait. Hence, the prior belief of player

1 is that player 2 will wait with probability 1, m2 = w2.

Next, let player 1 believe that 2 plays z1S12+(1�z1)N2 = z1w2+(1�z1)q
N
2 . Obviously,

waiting yields player 1 the Nash payo� N1 as in (2.3), irrespective of the value of z1.

When z1 > 0 then committing to a quantity that is (slightly) above qN1 yields a strictly

higher payo�, hence, the best response is to commit to a certain quantity q1(z1). The

reader easily veri�es that q1(z1) increases with z1 and that q1(1) = qL1 . Consequently, if

m1 is the prior belief of player 2 then for the characteristics (w1; �1; �1) of m1 we have:

w1 = 0; �1 > qN1 ; �1 > 0.
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Now, let us turn to the tracing procedure. The starting point corresponds to the best

replies against the prior. Obviously, the unique best response against m2 is for player 1

to commit to qL1 , while player 2's unique best response against m1 is to wait. Hence, the

unique equilibrium at t = 0 is S1. Since S1 is an equilibrium of the original game, it is

an equilibrium for any t 2 [0; 1]. Consequently, the distinguished curve in the graph �m

is the curve f(t; S1) : t 2 [0; 1]g and S1 risk dominates N . 2

We now turn to the risk comparison of the two Stackelberg equilibria. Again we start

by computing the bicentric prior based on S1 and S2. Let player j believe that i commits

to qLi with probability z and that i waits with probability 1� z. From (2.2), (2.10) and

(2.11) we obtain

uj(qj; zq
L
i + (1� z)wi) = z(3aj � 2ai � 2qj=2) + (1� z)(2aj � ai � qj)qj=2 (4.1)

uj(wj; zq
L
i + (1� z)wi) = z(3aj � 2ai)

2=16 + (1� z)(2aj � ai)
2=9 (4.2)

Given z, the optimal commitment quantity qj(z) of player j is given by

qj(z) = (aj � ai)=2 + aj=2(1 + z); (4.3)

which results in the optimal commitment payo� equal to

[2aj � ai + z(aj � ai)]
2=8(1 + z): (4.4)

Note that q2(z) > q1(z) for all z 2 [0; 1]. The reader easily veri�es that committing yields

a higher payo� than waiting if and only if z is su�ciently small. Speci�cally, committing

is better for player j provided that z � zj where

zj =
(4aj � 2ai)

2

18a2j � (4aj � 2ai)2
(4.5)
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Note that 0 < z1 < z2, so that both players initially commit with positive probability, it

being more likely that player 2 commits. Hence, denoting the best response of player j

against zqLi + (1� z)wi by bj(z), we have

bj(z) =

8><
>:

wj if z > zj:

qj(z) if z < zj:
(4.6)

Consequently, writing mj for the prior of player i (mj being given by (3.4)) and writing

(wj; �j ; �j) for the characteristics of this prior we have

wj = 1� zj; (4:7a)

�j = (aj � ai)=2 + aj ln(1 + zj)=2zj; (4:7b)

�j = a2j=4(1 + zj)� a2j ln
2(1 + zj)=4z

2
j : (4:7c)

Straightforward computations now show that

w1 > w2; (4:8a)

�1 < �2; and (4:8b)

�1 < �2: (4:8c)

These inequalities already give some intuition for why committing is more risky for player

1: he attaches a smaller probability to the opponent waiting, he expects the opponent to

commit to a larger quantity on average, and he is more uncertain about the quantity to

which the opponent commits himself. All three aspects contribute positively to making

waiting a more attractive strategy.
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In the next Lemma we show that actually waiting is a dominant strategy for �rm 1

at the start of the tracing procedure whenever the cost di�erential is su�ciently large.

Write

�j =
ai

aj
(4.9)

for the relative cost advantage of player i (�j > 1 if and only if ci < cj). Note that zj

depends on ai; aj only through �j

zj =
(4� 2�j)

2

18 � (4 � 2�j)2
(4.10)

and that zj is a decreasing function of �j.

Lemma 1 Write m0
2 for the prior strategy of player 2 as given by (4.7). If �2 is su�-

ciently small, then u1(q1;m
0
2) < u1(w1;m

0
2) for all q1. In particular this holds if z2 �

1
2
.

Proof. We have

ui(qi;m
0
j) = zj(ai � qi � �j)qi + (1 � zj)(2ai � aj � qi)qi=2

= [ai � aj=2 + zj(aj=2 � �j)]qi � (1 + zj)q
2
i =2: (4.11)

Hence, the optimal commitment quantity against the prior is

q�i =
ai � aj=2 + zj(aj=2 � �j)

1 + zj
(4.12)

We know that any quantity qj � qNi is weakly dominated by wi for player i in g2, hence,
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such a quantity yields strictly less than wi against any nondegenerate mixed strategy of

player j. Consequently, the result follows if q�1 � qN1 . Now, the inequality q�i � qNi is

equivalent to

2ai � aj + zj(2aj � ai) � 3aj ln(1 + zj)

or

2�j � 1 + zj(2� �j) � 3 ln(1 + zj) (4.13)

A straightforward computation shows that this inequality is satis�ed when zj =
1
2
. (In

that case �j = 2�
q

3
2
.) In the relevant parameter range (zj � 1; �j �

2
3
), the derivative

of the LHS of (4.13) (with respect to �j) is larger than the derivative of the RHS of

(4.13), hence, the result follows. 2

In the next Lemma we show that, in contrast to the previous result, the most e�cient

�rm's best response to the prior is always to commit.

Lemma 2 Write m0
1 for the prior strategy of player 1 as given by (4.7). Then

u2(m
0
1; w2) < maxq2 u2(m

0
1; q2).

Proof. Substituting (4.12) into (4.11) yields the optimal payo� that player i can get by

committing himself

uci(m
0
j) =

[ai � aj=2 + zj(aj=2 � �j)]
2

2(1 + zj)

On the other hand, waiting yields

ui(wi;m
0
j) = zj[(ai � �j)

2=4 + �j=4] + (1� zj)(2ai � aj)
2=9
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so that by rearranging we obtain

uc2(m
0
1)� u2(m

0
1; w2) =

a21
4(1 + z1)

�(�1; z1) (4.14)

where

�(�; z) =
1� z

36
(2 � 8� + 8�2 + z(�7 + 10� � �2) + 18(1 � �) ln(z + 1))

�
z

4
+

ln2(1 + z)

2

and where �1 and z1 are as in (4.9) and (4.10). Note that z1 is a function of �1, so that

� (as appearing in (4.14)) can be viewed as a function of �1 only. A direct computation

shows that �(1) > 0, hence, player 2 prefers to commit when the costs are equal. In the

appendix we show that

�� � 0;�z � 0; and z� � 0 (4.15)

from which it follows that committing becomes more attractive for player 2 when his

cost advantage increases. Consequently, �rm 2 �nds it optimal to commit against the

prior for all parameter constellations. 2

The Lemmas 1 and 2 imply that the Stackelberg equilibrium with �rm 2 as leader is

the (unique) equilibrium at the start of the tracing procedure when z2 �
1
2
. It, hence, is

an equilibrium of gt for any value of t and, therefore

Corollary 1 If the di�erence in costs is su�ciently large (speci�cally, if z2 �
1
2
), then

the Stackelberg equilibrium in which the e�cient �rm leads risk dominates the other

Stackelberg equilibrium.
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In the remainder of this section, we will con�ne attention to the case where the cost

di�erence is small enough so that also for the ine�cient �rm 1 the best response to the

prior involves a commitment. So from now on z2 <
1
2
.2 The next Lemma shows that it

cannot be true that both �rms keep on committing themselves to the end of the tracing

procedure: at least one of the �rms has to switch. The Lemma thereafter will then show

that it is the weakest �rm that switches �rst, which implies that the outcome will always

be leadership of the strong �rm.

Lemma 3 Let st be the equilibrium on the path of the tracing procedure at \time" t if the

players priors are as in (4.7). Then there exists i 2 f1; 2g and t < 1 such that sti = wi.

Proof. Assume not, so that each player �nds it optimal to commit at each point reached

by the tracing path. Writing qti for the optimal commitment quantity of player i at time

t, it is easily seen that q1i = qNi for i = 1; 2, since the payo� functions at t = 1 coincide

with those of the original game. Furthermore, qti > qNi for t < 1 since any quantity less

than aNi is strictly dominated by waiting. Write uti for the payo� function at \time" t

when the prior is given by (4.7) and let

gi(t) = uti(q
t
i; q

t
j)� uti(wi; q

t
j) (4.16)

be the gain that player i realizes by committing himself. Clearly, gi(1) = 0. Furthermore,

by the envelope theorem

g0i(t) =
@

@t

h
uti(q

t
i; q

t
i) � uti(wi; q

t
i)
i
+

@

@qj

h
uti(q

t
i ; q

t
j)� uti(wi; q

t
j)
i @qtj
@t

:

For t = 1, the �rst term in this expression is equal to

2This bound is not sharp. It can be shown that committing is optimal for �rm 1 if �1 > 1:081 (or

z2 <
7

20
).
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ui(q
N
i ; q

N
j )� ui(wi; q

N
j )� ui(q

N
i ;m

0
j ) + ui(wi;m

0
j ) = ui(wi;m

0
j)� ui(q

N
i ;m

0
j) > 0:

Furthermore, the partial derivative with respect to qj is equal to

�qNi + (ai � qNj )=2 = 0

so that g0i(1) > 0 and gi(t) < 0 for some t < 1. But this contradicts our assumption that

it is optimal to commit for each player for any value of t < 1. 2

Our strategy for proving that it is the weakest �rm that switches �rst is to show that

this �rm will switch �rst even when the more e�cient �rm is more `pessimistic'. Speci�-

cally, we will show that even when the e�cient �rm believes that the other commits with

the same probability as it itself does, the ine�cient �rm will switch before. Speci�cally,

write mj for the prior strategy of player j as given by (4.6) and write �mj for the strategy

de�ned similarly, but with z1 replaced by z2. Let m = (m1;m2) and �m = ( �m1; �m2).

Hence, player 2 is more pessimistic in �m, while player 1's prior beliefs are the same in

m and �m. (Recall from (4.5) that z1 < z2.) Assume that each player �nds it optimal to

commit at t = 0 when the prior is m. Write qt;mi (qj) for the best commitment quantity

of player i at t when the opponent commits to qj at that time and denote the (unique)

pair of mutual best commitment quantities by (qt1; q
t
2). Write

gti(qi; qj) = ut;mi (qi; qj)� ut;mi (wi; qj): (4.17)

then gti(q
t
i; q

t
j) > 0 (1 = 1; 2) for t su�ciently small and (qt1; q

t
2) is the equilibrium on the

tracing path for such t. De�ne (�qt1; �q
t
2) and �gti similarly, but with m replaced by �m in the

above de�nitions. We now have
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Lemma 4 Let ti = supf� 2 [0; 1] : gti(q
t
i; q

t
j) � 0 for all t 2 [0; � ]g. Then t2 > t1.

Proof. We only provide a sketch of the proof here and relegate technical details to the

Appendix. The proof consists of comparing the tracing path (qt1; q
t
2) with the tracing

path (�qt1; �q
t
2). We �rst show that �qt2 < qt2 and �qt1 � qt1. These inequalities are intuitive:

player 2 is more pessimistic if the prior is �m, hence, he will commit to a lower quantity.

This in turn gives player 2 an incentive to commit to a higher quantity when the prior

is �m. Furthermore, if player 2 is more pessimistic, then he �nds committing himself less

attractive: �gt2 � gt2. Still, since �rm 2 has lower cost than �rm 1 has, committing is more

attractive for �rm 2 than for �rm 1 when both �rms are equally pessimistic: �gt1 < �gt2.

The result follows by combining the above observations. Formally then, in the Appendix

we establish the following inequalities:

gt1(q
t
1; q

t
2) = �gt1(q

t
1; q

t
2)

(1)

� �gt1(q
t
1; �q

t
2)

(2)

� �gt1(�q
t
1; �q

t
2)

(3)

<

�gt2(�q
t
1; �q

t
2)

(4)

� �gt2(q
t
1; �q

t
2)

(5)

� gt2(q
t
1; �q

t
2)

(6)

� gt2(q
t
1; q

t
2): (4.18)

(The �rst equality holds since player i's prior is the same in both cases; the �rst and

fourth inequality follow from the monotonicity of the quantities; the second and sixth

inequality follow from the best response properties, and the �fth inequality follows since

player 2 is more pessimistic when the prior is �m.) 2

Lemma 4 implies that at t = t1 the tracing path reaches the equilibrium (qt11 ; q
t1
2 ),

with player 1 being actually indi�erent between waiting and committing to qt11 . The

tracing path must now continue along an interval I (with t1 2 I) with equilibria of the

form (m1(t); q
I
2(t)), where player 2 commits to qI2(t) and player 1 uses a mixed strategy:

he waits with probability w(t) and commits to qI1(t) with the complementary probability

1�w(t). The two commitment quantities are determined by the optimality condition for

player 1 (qI1(t) must be the optimal commitment quantity) and the indi�erence condition

for player 1 (committing optimally yields the same payo� as waiting). The probability

of waiting, w(t), is determined by the optimality condition for player 2.
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q
W

q
C

q
I

0 t0 t1 1t !

q2

"

Figure 1: The tracing path initially follows qC, then bends backwards along qI and

�nally ends along qW at S2.

Figure 1 illustrates the argumentation: Time t is on the horizontal axis, �rm 2's

commitment quantity on the vertical axis. The Figure contains three curves. Curve qC

plots the commitment strategy of �rm 2 when �rm 1 commits for sure and play is in

equilibrium. As we established in Lemma 4, both �rms keep committing from t = 0

to t = t1, therefore the tracing path follows this curve upto t = t1. Curve qI plots

�rm 2's commitment quantity that leaves �rm 1 exactly indi�erent between committing

and waiting. The tracing path has to continue along this curve from t = t1. (In the

Appendix we establish that the curve necessarily bends backwards.) Curve qW describes

the optimal commitment quantity when �rm 1 waits with probability 1. The tracing

path follows this curve from t = t0 to t = 1. It follows that the endpoint of the tracing

path is the equilibrium where player 2 leads, hence, we have shown

Proposition 2 The Stackelberg equilibrium in which the low cost �rm leads risk domi-

nates the Stackelberg equilibrium in which the e�cient �rm follows.



22

By combining the Propositions 1 and 2 we, therefore, obtain our main result:

Theorem 1 The Stackelberg equilibrium in which the e�cient �rm leads and the inef-

�cient �rm follows is the risk dominant equilibrium of the endogenous quantity commit-

ment game.

Furthermore, as a Corollary we immediately have that the shortcut via the reduced

games, as taken in Section 3, indeed correctly identi�ed the risk dominant equilibrium of

the overall game. Finally, the Stackelberg equilibrium that is selected is the one with the

highest produced quantity (hence, the lowest price) and the highest total pro�ts. So, in

this case, the selected equilibrium is the one where both the producer and the consumer

surplus are highest.

5 Conclusion

In this paper we have endogenized the timing of the moves in the linear quantity-setting

duopoly game by means of Harsanyi and Selten's concept of risk-dominance. To our

knowledge, this is the �rst application of the (linear) tracing procedure to games where

the strategy spaces are not �nite3. We have seen that no new conceptual problems are

encountered, but that the computational complexities are quite demanding. Ex post

we could verify that these computations were not necessary: The shortcut by means

of a comparison of the Nash products of the deviation losses yields the same answer.

However, as already said, there is no guarantee for this to happen in general and in

our companion paper Van Damme and Hurkens (1996) we show that the two concepts

yield di�erent solutions in a price setting context. In that paper we analyze endogenous

3Harsanyi and Selten (1988) and G�uth and Van Damme (1991) considered discretized versions of

games with in�nite strategy sets.
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price leadership in a linear market for di�erentiated products. Again, we assume that

�rms di�er in their marginal costs and we show that the e�cient �rm is the leader in

the risk dominant equilibrium. In this case, however, that equilibrium has a smaller

Nash product than the Stackelberg equilibrium in which the ine�cient �rm leads. Quite

interestingly, if the cost di�erential is su�ciently small, the ine�cient �rm has higher

pro�ts than the e�cient �rm in the risk dominant equilibrium: It pro�ts from free riding

as a follower.

Although Von Stackelberg (1934) argued that in general it is not possible to determine

theoretically which of the duopolists will become the leader (\Es is jedoch theoretisch

nicht zu entscheiden, welcher der beiden Dyopolisten obsiegen wird", p. 20), he also

provides a numerical example for which he does determine the actual leader. The example

is given by

p = 10 �Q=100; c1 = 2; c2 = 1:5; F1 = 500; F2 = 600; (5.1)

where Fi is the (unavoidable) �xed costs of �rm i. Von Stackelberg argues that in this

case �rm 2 (which is the one with the lower marginal cost) will most likely become the

market leader since it makes less losses than �rm 1 in the case of Stackelberg warfare:

We have qL1 = 375; qL2 = 450;D1 = �593:75;D2 = �487:50. Hence, �rm 2 makes less

losses during the price war and, therefore, it can win the war of attrition. Of course,

this argument is entirely di�erent from the one developed in this paper. Von Stackelberg

also remarks that actually this outcome is quite natural and follows from the model's

assumption that the second �rm is a more modern one which has higher �xed costs,

but lower marginal cost.4 This last comment is very intriguing since, if the modern �rm

would have substantially higher �xed costs, exactly the same argument would imply that

4Von Stackelberg denotes the �rst �rm by A and the second by B and he writes \In unserem Beispiel

wird warscheinlich die Unternehmung A der Underlegene sein, weil sie den gr�o�eren Verlust erleidet. Dies

entspricht auch der Konstruktion unseres Beispiels, in welchem f�ur B ein modernerer Betrieb (h�ohere

�xe Kosten, daf�ur niedriger proportionaler Satz) angenommen wurde." (Von Stackelberg (1934, p. 66)).
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the old-fashioned �rm would become the leader.

Note that we did not provide the solution of the endogenous timing game for the

case where both �rms have the same marginal cost. The reader might conjecture that in

that case the Cournot equilibriumwould be selected, however, Lemma 3 shows that that

conjecture is wrong. If the outcome of the tracing procedure at t = 1 would be (qN1 ; q
N
2 ),

then each player would strictly prefer to wait at t < 1, but clearly (w1; w2) cannot be

an equilibrium at such t. It follows that, in the symmetric case, the outcome must be

a mixed strategy equilibrium. (It obviously must be a symmetric equilibrium as well.)

Since mixed equilibria have received almost no attention in the oligopoly literature, we

refrain from providing the explicit solution of the symmetric game. Let us note, however,

that also in the case where the costs di�er, the endogenous timing game has a variety of

mixed strategy equilibria. We did not take these into consideration since the Harsanyi

and Selten (1988) equilibrium selection theory allows us to neglect them. That theory

gives precedence to pure equilibria whenever these exist and we did consider all pure

equilibria in this paper.

In this paper we only allowed for one point in time where the players can commit

themselves, however, one can easily de�ne the game gt in which there are (t� 1)-periods

in which the players can commit themselves. (g1 = g; g2 is as in (2.6) { (2.9) and gt is

de�ned by induction for t � 3.) Knowing the solution of g2, the game gt, with t � 3,

can be solved by backward induction, i.e. by applying the subgame consistency principle

from Harsanyi and Selten (1988): No matter what the history has been, a subgame

g� has to be played according to its solution. Adopting this principle, one sees that

in g3 waiting is a dominant strategy of player 2: If he waits he can best respond if the

opponent commits, while he is guaranteed his Stackelberg leader payo� if the other waits

as well. Consequently, player 2 will wait and committing becomes a riskless strategy for

player 1. Hence, the solution of g3 is that player 1 will commit itself. In other words,

player 1 commits in order to prevent that player 2 will commit himself. We come to the

conclusion that the predicted outcome is very sensitive to the number of commitment
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periods: If t is even, the solution of gt is (w1; q
L
2 ) while, if t � 3 is odd, the solution of gt

is (qL1 ; w2). In our opinion, this lack of robustness re
ects the fact that the discrete time

model with t � 3 is not an appropriate one to model commitment possibilities. In future

work we plan to investigate the issue in continuous time, while possibly also allowing for

commitments to be built up gradually. For earlier work along this direction, we refer to

Spence (1972) and to Fudenberg and Tirole (1983).
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Appendix

In this Appendix we complete the proofs of the Lemmas 2 and 4 and Proposition 2.

PROOF OF LEMMA 2

We have to show that the inequalities (4.16) hold. Hence, we have to show that

�� � 0; �z � 0; z� � 0;

where

�(�; z) =
1� z

36

�
2 � 8� + 8�2 + z(�7 + 10� � �2) + 18(1 � �) ln(z + 1)

�

�
z

4
+

ln2(z + 1)

2
:

It is straightforward to verify that z� � 0. It is easily seen that �� � 0 if and only if

�8 + 16� + z(10� 2�) � 18 ln(z + 1) � 0:

Now, ln(1 + z) � z, z � 1=2, and � � 1, from which it follows that the above inequality

holds for all (�; z)-combinations in the relevant domain. Next, we have that

�z =
�1

36

�
2� 8� + 8�2 + z(�7 + 10� � �2) + 18(1 � �) ln(z + 1)

�

�
1

4
+

ln(z + 1)

z + 1
+

1� z

36

�
�7 + 10� � �2 + 18(1 � �)=(z + 1)

�

�z� =
�1

36
(�8 + 16� + z(10 � 2�) � 18 ln(z + 1)) +

1� z

36

�
10� 2� �

18

z + 1

�
< 0:

Hence,

�z(�; z) � �z(1; z) = �
1

4
�
z

9
+

ln(z + 1)

z + 1
< 0
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where the last inequality follows from z � 1=2.

This completes the proof of the inequalities (4.16) and, therefore, of Lemma 2. 2

PROOF OF LEMMA 4

We will prove the inequalities from (4.19) in the following order: First (1) and (4), next

(5) and �nally (3). Note that the inequalities (2) and (6) hold by de�nition: �qt1 (resp.

qt2) is the optimal commitment quantity against �qt2 (resp. q
t
1) in the game �gt (resp. gt).

Furthermore, the equality in (4.16) holds since player 1 has the same prior in g as in �g.

PROOF OF THE INEQUALITIES (1) AND (4) FROM (4.19)

Write mx
j for the mixed strategy of player j de�ned by

mx
j =

8><
>:

qj(z) as in (4.3), if z � x,

wj otherwise.

Hence, m
zj
j = mj and mzi

j = �mj. Write gt;x for the game at t when the prior is given by

mx. It is easily veri�ed that player i's optimal commitment quantity in gt;x against qj is

given by

q
t;x
i (qj) =

(1� t)[ai � aj=2 + x(aj=2 � �xj )] + t[ai � qj]

(1 � t)(1 + x) + 2t
;

where �xj is as in (4.7b) but with zj replaced by x. Substituting that expression for �xj

and rewriting yields

qt;xi (qj) =
ai + (1 � t)[xai � aj � aj ln(1 + x)]=2� tqj

1 + t+ x(1� t)

Claim 1
@q

t;x
2 (q1)

@x
< 0 if x � 1=2; q1 � qL1 and t < 1

.
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A straightforward computation shows that the derivative is negative if and only if

t < 1 and

�
a2 �

a1

1 + x

�
(1 + t+ x(1� t)) < 2a2 + (1 � t)(xa2� a1 � a1 ln(1 + x))� 2tq1;

and, as both sides of this inequality are linear in t, it su�ces to check that the inequality

holds at both endpoints. Now, at t = 0 the inequality simpli�es to

a1 ln(1 + x) < a2

which holds since a1 � a2. At t = 1, the inequality simpli�es to

q1 < a1(1 + x)

and this holds because of our restrictions on the parameters. (Recall that these restric-

tions are without loss of generality: player 1 will not commit to a quantity that is larger

than the Stackelberg leader quantity and if z2 �
1=2 then Lemma 1 applies.)

Since z1 < z2 (cf. (4.8)), Claim 1 implies that player 2's best response quantity is lower

in gt; �m than it is in gt;m. Since player 1 has the same best response correspondence in

these two games, it follows that player 2 (resp. player 1) commits to a lower (resp. higher)

quantity in gt; �m than in gt;m. (Formally, if t � min(t1; t2), then the map q2 ! q
t;m
2 q

t;m
1 (q2)

is increasing and cuts the 45�-degree line at a point lower than the one where the �rst

graph cuts the diagonal.) Hence, Claim 1 establishes that for t < 1:

qt1 < �qt1 and qt2 > �qt2:

The proof of the inequalities (1) and (4) can now be completed by showing that the gain

from committing is decreasing in the opponent's quantity. Because of the linearity of

the payo� function in t it su�ces to show that this holds for t = 1, i.e. for the original

game. Now
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@

@qj
ui(qi; qj) = �qi;

@

@qj
ui(wi; qj) = �(ai � qj)=2:

In the relevant range where both players �nd it optimal to commit themselves (t �

min(t1; t2)) we have qi � qNi for i = 1; 2, and, therefore

�qi + (ai � qj)=2 � 0;

which completes the inequalities (1) and (4).

PROOF OF INEQUALITY (5)

We have that

(1� t)�1[gt2(q1; q2)� �gt2(q1; q2)] =

=

Z z2

z1

[u2(w1; q2)� u2(q1(z); q2)]dz +

Z z2

z1

[u2(q1(z); w2)� u2(w1; w2)]dz

=

Z z2

z1

[u2(w1; q2)� u2(w1; w2)]dz +

Z z2

z1

[u2(q1(z); w2)� u2(q1(z); q2)]dz

The second integrand is clearly nonnegative. The �rst is nonnegative since q2 � qN2 .

This establishes inequality (5).

PROOF OF INEQUALITY (3)

The proof involves some straightforward, but tedious calculations. For simplicity, write

x = z2. Because of Lemma 1 and Corollary 1 we may con�ne ourselves to the case where

x < 1=2. The reader may verify, that up to a positive multiplier, �gt2(�q
t
1; �q

t
2) � �gt1(�q

t
1; �q

t
2) is

equal to 	(t; x), where
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	(t; x) = (x+ 1)(x � 2)(�2x � 1) + t(x� 1)2(4x+ 1)

+t2(�3� x� x2 + 4x3 � 2x4)=(1 + x)

+6(x2 � 1 + t(�1 + 2x� 2x2) + t2(x� 1)2 ln(1 + x)

+3(t� 1)(2 + 2x+ t(3� 2x)) ln2(1 + x)

For x � 1=2; 	(t; x) is concave in t so that the minimum is attained in t = 0 or t = 1.

Now direct substitution yields

	(0; x) = (x+ 1)(x� 2)(�2x� 1) + 6(x2 � 1) ln(1 + x)� 6(1 + x) ln2(1 + x)

Using the fact that ln(1 + x) � x, we obtain

	(0; x) � (x+ 1)(x� 2)(�2x� 1)� 6(1 � x2)x� 6(1 + x)x2

= (x+ 1)(2 � 3x � 2x2) > 0

Another direct substitution gives

(1 + x)	(1; x) = 9x� 6(1 + x) ln(1 + x)

� 3x(1� 2x) > 0;

where we again have used that ln(1 + x) � x. Consequently 	(t; x) > 0 for all t and x,

which completes the proof of inequality (3). 2

PROOF OF PROPOSITION 2

We �rst recall that in gt;m
0

the optimal commitment quantity against qj is

q
t;m0

i (qj) =
(1� t)(ai � aj=2 + zj(aj=2 � �j)) + t(ai � qj)

1 + t+ (1 � t)zj
(A.1)
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Let qC1 (t) and qC2 (t) be optimal commitment quantities against each other. Using

(A.1) (applied to qCi (t)) we can rewrite it as

q
t;m0

i (qj) =
�t(ai � qCj (t)) + qCi (t)(1 + t+ (1 � t)zi) + t(ai � qj)

1 + t+ (1 � t)zj
(A.2)

For t 2 (0; 1), let qI2(t) denote the commitment quantity of �rm 2 that leaves �rm 1

indi�erent between committing optimally (to qI1(t)) and waiting. We know from previous

analysis that �rm 1 strictly prefers committing to waiting when �rm 2 commits to qC2 (t),

for all t < t1. Moreover, the gain from committing is decreasing in the opponent's

commitment strategy. Hence, the curve qI2(t) intersects the curve qC2 (t) from above at

t = t1. (See Figure 1.)

The tracing path must continue along the curve qI2(t) for some time. We need to

establish the direction. On the tracing path it must hold that qI2(t) is the best reply

against �rm 1's strategy of waiting with probability w(t) � 0 and committing with the

remaining probability to qI1(t). It is easily established that the optimal commitment

strategy of �rm 2 is increasing in w(t) (keeping �rm 1's quantity �xed). So qI2(t) �

q
t;m0

2 (qI1(t)). Using (A.2) this is equivalent to

(1 + t+ (1 � t)z1)q
I
2(t) � �t(a2� qC1 (t)) + qC2 (t)(1 + t+ (1� t)z2) + t(a2 � qI1(t)):

Multiplying both sides by 1 + t+ (1� t)z2 and using (A.2) once more, this is equivalent

to

(1 + t+ (1� t)z2)(1 + t+ (1� t)z1)q
I
2(t) �

qC1 (t)t(1� t)(z2 � z1) + qC2 (t)((1 + t+ (1� t)z2)
2
� t2) + t2qI2(t);

which, since z2 > z1, implies that

qI2(t) � qC2 (t):

This implies that the tracing path must bend backwards. 2


