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Abstract

Professional forecasters adjust their inflation forecasts in a distinctly lumpy pattern, mak-

ing infrequent but substantial revisions. Strategic concerns play a significant role—forecasters

are more likely to adjust, and by larger amounts, when their forecasts deviate from the con-

sensus. Using a fixed-event forecasting framework, we document the impact of lumpiness

and consensus pressure on forecast adjustments. Our quantitative model, which integrates

Bayesian belief updating with forecast revision costs and strategic concerns, not only repli-

cates the observed lumpiness in survey data but also sheds light on forecasters’ apparent

overreactions to new information. This structured framework enables us to “cleanse” fore-

casts, isolating the underlying inflation beliefs that drive these forecasts.
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1 Introduction

Surveys of forecasts by households, firms, and professionals have become critical tools for un-

derstanding expectations, testing theories of belief formation, and guiding policy (Bachmann,

Topa and van der Klaauw, 2022). Yet, a puzzling feature of survey forecasts is their tendency

to “overreact” to news—forecast revisions often exceed what information changes would justify,

leading to predictable forecast errors incompatible with rational expectations. Behavioral biases

are frequently invoked to explain this overreaction (Bordalo, Gennaioli and Shleifer, 2022).

We offer a complementary perspective, arguing that much of this apparent overreaction can

be explained by two rational mechanisms: lumpiness in forecast revisions and strategic pressures.

Suppose forecasters face fixed costs when adjusting their predictions, whether due to a desire to

signal stability, the effort required to process new information or the implicit costs of disclosing

private information. In such cases, they would revise their forecasts infrequently, resulting in

periods of inaction followed by substantial updates. Furthermore, if forecasters operate in envi-

ronments where reputational concerns matter, they may be reluctant to diverge significantly from

the consensus, further reducing the frequency of revisions. Our empirical and quantitative analysis

shows that fixed costs and strategic pressures amplify the appearance of overreaction.

To explore how these mechanisms manifest in practice, we study inflation forecasts made

by professional forecasters. Using high-frequency data from Bloomberg’s Economic Forecasts

(ECFC) survey, which tracks monthly U.S. inflation expectations within a fixed-event framework

(Nordhaus, 1987; Patton and Timmermann, 2011), we document three key empirical patterns.

First, forecasts are lumpy : forecasters often remain inactive for extended periods, even when new

information becomes available, before making discrete, substantial updates. Second, forecasts are

strategic: revisions are influenced by the distance to the consensus, with forecasters closer to the

consensus revising less frequently and, when they do, aligning more closely with it. Third, forecasts

exhibit overreaction: revisions are often larger than what fundamentals alone would justify.

Motivated by these patterns, we develop a forecasting model with three core elements: (1)

Bayesian belief updating that generates accurate predictions, (2) fixed revision costs that pro-

mote forecast stability, and (3) strategic complementarities that encourage alignment with the

consensus. Fixed costs create an inaction region, where forecasters delay revisions until the ex-

pected benefit outweighs the cost. Strategic complementarities amplify this effect by introducing

a trade-off between prioritizing private accuracy and maintaining reputational alignment with the

consensus. The model’s parameters, which capture the relative weight of accuracy, stability, and

strategic motives, are calibrated to match cross-sectional moments of forecast revisions in the

survey data, including the frequency, size, and hazard rate.

The calibrated model successfully replicates the empirical patterns and provides a novel expla-

nation for overreaction. Large revisions accumulate the effects of both new and prior information,

amplifying the perceived overreaction in observed data. Inspired by these results, we propose a
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two-stage procedure to refine survey forecasts as measures of true beliefs. The first stage isolates

active adjustments by focusing on non-zero revisions. The second stage removes the influence

of the consensus through a regression-based adjustment. This procedure reduces the measured

overreaction, providing a more accurate signal of the underlying beliefs and enhancing survey

forecasts’ interpretive and predictive value.

Overreaction may arise due to psychological biases, but our framework demonstrates how struc-

tural frictions can amplify it. For instance, Bordalo, Gennaioli, Ma and Shleifer (2020) attribute

overreaction to diagnostic expectations, where recent information is given disproportionate weight

in forecasts. Similarly, Broer and Kohlhas (2022) highlights how overconfidence in private signals

can exaggerate overreaction. Our framework provides an alternative explanation by showing how

adjustment costs and strategic pressures lead to lumpy behavior, which biases estimates upward.

These findings complement work on measurement error (Juodis and Kučinskas, 2023) and infor-

mation frictions (Valchev and Gemmi, 2023), emphasizing the importance of both structural and

behavioral factors in understanding forecast dynamics.

Our analysis further uncovers evidence of forecasters’ preference for stability by exploiting the

overlap between short- and long-term forecasts. Specifically, we observe that even when long-

term forecasts are updated in response to new information, short-term forecasts often remain

unchanged. This behavior suggests that forecasters actively maintain stability in their predictions

despite the persistence of inflation processes that would typically warrant adjustments. These

findings strongly support the role of fixed costs in driving forecast lumpiness.

In addition, we highlight significant heterogeneity in the strength of strategic concerns and pref-

erences for stability across different types of forecasters—banks, financial institutions, consulting

firms, universities, and research centers. This variation allows us to examine how institutional

incentives influence forecast behavior. For example, forecasters in financial institutions may face

stronger reputational pressures than those in academia, affecting their propensity to revise fore-

casts. These results complement studies on model heterogeneity (Giacomini, Skreta and Turen,

2020) and attention heterogeneity (Boccanfuso and Neri, 2024), providing a richer understanding

of how professional forecasters’ reports are shaped by their environments and incentives.

Contributions We contribute to the literature on forecasting and macroeconomic expectations

through multiple perspectives. Our empirical analysis complements evidence on professionals’

lumpy inflation forecasts in the Eurozone (Andrade and Le Bihan, 2013) and Brazil (Gaglianone,

Giacomini, Issler and Skreta, 2022), and firms’ lumpy sales and price forecasts (Born, Enders,

Müller and Niemann, 2023). Our findings on strategic forecasting provide evidence of reputa-

tional concerns as professionals revise forecasts closer to the consensus (Marinovic, Ottaviani and

Sørensen, 2013). This relates to evidence of strategic complementarities in price-setting behavior

(Karadi, Schoenle and Wursten, 2024). Finally, our results on forecast overreaction complement

evidence from surveys (Bordalo, Gennaioli, Ma and Shleifer, 2020; Broer and Kohlhas, 2022;
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Valchev and Gemmi, 2023) and experimental data (Afrouzi, Kwon, Landier, Ma and Thesmar,

2023). We emphasize the importance of focusing on updaters and correcting their correlation with

the consensus to better isolate the true structural level of overreaction in agents’ beliefs.

Our focus on forecast updaters—forecasts with non-zero revisions—naturally connects to the

literature on “resetters.” The “reset inflation” measures introduced by Bils, Klenow and Malin

(2012) and Blanco and Cravino (2020) isolate the effects of monetary shocks and real exchange rate

dynamics by focusing on updated prices. Similarly, Bandeira, Castillo-Mart́ınez and Wang (2024)

proposes a “frictionless inflation” measure designed to eliminate lumpiness in price data. Afrouzi,

Flynn and Yang (2024) further demonstrate that price adjusters, as the most informed agents,

provide sufficient statistics for understanding price dynamics through their “reset uncertainty”.

Together, these studies underscore the importance of active adjustments, reinforcing the rationale

for our two-stage procedure to refine forecasts.

Our theoretical model draws inspiration from the menu cost literature in price-setting (Barro,

1972; Golosov and Lucas, 2007). As with firms that adjust prices infrequently due to fixed costs,

forecasters revise their predictions intermittently, balancing revision costs against the benefits of

an accurate prediction. Another central feature of our model is the incorporation of strategic

incentives, inspired by Ottaviani and Sørensen (2006), which show that forecasters may adjust

their predictions not only based on private information but also to align with the forecasts of

others due to reputational and professional considerations. By merging these works of literature,

our framework generates a two-dimensional inaction region where inflation and consensus beliefs

act as substitutes, akin to a multi-product price-setting model (Midrigan, 2011; Álvarez and Lippi,

2014). Additionally, it features strategic complementarities modeled as a mean-field game (Lasry

and Lions, 2007; Alvarez, Lippi and Souganidis, 2023).

By introducing a fixed revision cost to account for observed forecast lumpiness, we comple-

ment existing theories in which agents adjust beliefs infrequently due to the costs associated

with acquiring or processing information. These include sticky information (Mankiw and Reis,

2002; Reis, 2006a,b), rational inattention (Sims, 2003; Maćkowiak, Matějka and Wiederholt, 2023;

Turen, 2023), observation costs (Alvarez, Lippi and Paciello, 2011, 2016), or communication costs

(Bec, Boucekkine and Jardet, 2023). We emphasize that forecasts, rather than underlying beliefs,

exhibit lumpiness, and provide suggestive evidence of this distinction in the model and the data.

Finally, a key innovation is using a restricted perceptions equilibrium (RPE) to address the

computational challenges in solving heterogeneous agent models (Moll, 2024). Our model’s rational

expectations equilibrium is infeasible, including aggregate inflation shocks, ex-post heterogeneity

due to private signals, lumpy adjustments, and strategic concerns. The whole distribution of

forecasts matters in determining current and future consensus. Our approach, inspired by the

internally rational framework of Marcet and Nicolini (2003) and Adam and Marcet (2011), assumes

forecasters treat the consensus as following a simple random walk, bypassing the need to model

higher-order beliefs explicitly while preserving key empirical features.
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2 The Anatomy of Inflation Forecasts

We begin by describing the data sources and the fixed-event forecasting framework. We document

the evolution of forecast revisions and errors along the forecasting horizon, and we show that

forecast revisions are lumpy, strategic, and overreactive.

2.1 Inflation

We construct annual inflation in the United States using the Consumer Price Index (CPI). For

any year t, we let cpij be the CPI measured j months before the end of year and we let cpit =
1
12

∑11
j=0 cpij be the average CPI in year t. The annual inflation rate πt in year t is calculated as

(1) πt = log(cpit)− log(cpit−1).

Following Giacomini, Skreta and Turen (2020), we approximate the annual inflation rate using

the sum of year-on-year monthly inflation rates, xm,t, as follows:1

(2) πt ∼=
12∑
m=1

xm,t, with xm,t =
log(cpim,t)− log(cpim−12,t)

12
, ∀m = 1, . . . , 12

Figure I plots the series of annual inflation πt (solid black line) and year-on-year monthly inflation

xm,t (in red dots) for the sample period. The annual inflation range is significant, varying from

−0.3% in 2009 to 4.7% in 2022.

2.2 Survey Forecasts

We analyze year-on-year CPI inflation forecasts from the Economic Forecasts (ECFC) survey of

professional forecasters conducted by Bloomberg. This survey is comparable to other surveys of

professional forecasters regarding the number of participants and their institutional background.

There are four main types of forecasters: banks, financial institutions, consulting firms, and uni-

versities and research centers. One of the most appealing features of the Bloomberg survey is that

the most recent forecasts of any other forecaster, the date when each prediction was last updated,

and the consensus forecast (the mean forecast) are visible to users of the Bloomberg terminal in

real-time, making it ideal for studying strategic considerations.2

Sample Our sample covers 2010-2019.3 For each year, we consider survey participants who fore-

cast inflation for all 12 months before the final figure (end-of-year inflation) is officially published.

1See Appendix A.1 for the derivation and conditions under which this approximation holds.
2Giacomini, Skreta and Turen (2020) compares the Bloomberg and other professional forecasters’ surveys.
3We focus on low-volatility years 2010-2019. In Baley and Turen (2024), we analyze the Great Recession,

2008-2009, and the COVID-19 pandemic, 2020-21, years in which the inflation process was more volatile.
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Figure I – US Annual Inflation and Year-On-Year Monthly Inflation
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Notes: CPI inflation rates in the US for 2008-2022. Annual inflation rates πt are
shown in a solid black line; year-on-year monthly inflation rates xm,t are in red dots.

We remove forecasters who fail to provide at least one annual inflation revision. This criteria

leaves approximately 100 forecasters per year. The panel dataset contains the history of forecast

updates for all forecasters over a 12-month horizon each year.4

Incentives This survey is not anonymous. Tracing the entire time series of predictions for any

institution across years is possible. As discussed by Croushore (1997), we anticipate that forecast-

ers face reputational concerns given this feature. One typical concern of these financial analysts’

surveys is whether the reported forecasts drive the posterior trading behavior of forecasters. Using

predictions also collected from Bloomberg surveys, Bahaj, Czech, Ding and Reis (2023) provides

empirical evidence that supports this claim. Thus, the ultimate investment decisions of these

analysts are indeed linked with their reported predictions and, therefore, with their incentives to

provide accurate forecasts.

2.3 Fixed-Event Forecasting

Inflation forecasts We denote the inflation forecast f ih of forecaster i = 1, . . . , N at horizon

h = 12, . . . , 1 each year. To save on notation, we do not explicitly add a year reference. We count

the horizon backward so that the index h indicates that the forecast was produced h months before

the end of each corresponding year (the fixed event). Forecasts are measured in percentage points

and reported up to one decimal point.

4Although we have information on the precise dates when a forecast was revised, we analyze at a monthly
frequency as there are only very few weekly updates. In particular, we use the forecast available on the terminal
on the last day of the month to construct our monthly panel data.
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Figure II – Fixed-event forecasting
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Notes: The figure illustrates how fixed-event forecasts work. The fixed event is the
end-of-year inflation π. All forecasts f ih refer to the fixed event. Bloomberg allows
for multiple revisions within any month, so there is no restriction on the amount of
revisions that a participant can do. Although the survey is not anonymous, we remove
the names of the institutions to disclose their actual forecasts.

The fixed event is the end-of-year inflation π. All forecasts f ih refer to the fixed event. Monthly

inflation rates xh are usually published between the month’s second and third week during the

next month. Figure II illustrates the fixed-event forecasting framework for a given year. The gray

dash line accounts for the ultimate value of π during that year. Each month, participants can

provide a prediction f ih for the end-of-year inflation while entertaining the possibility of keeping

the prediction constant through time.

Given the fixed-event scheme, the forecast consists of two terms: a “sunk” component given

by the sum of past realizations
∑12

j=h+1 xj and a projection component P ih that reflects the “true”

forecasting activity for the remaining horizons until the end of year h, . . . , 1:

f ih =
12∑

j=h+1

xj︸ ︷︷ ︸
past realizations

+ P ih︸︷︷︸
projection

+ h = 12, . . . , 1.

2.4 Forecasts Revisions and Errors

Forecast revisions At any given year, we define the forecast revision at horizon h, denoted by

∆f ih, as the one-period difference between the forecast in two consecutive horizons:

(3) ∆f ih ≡ f ih − f ih+1.
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Since forecasts are in percentages, revisions are measured in percentage points. Table I reports

summary statistics of forecast revisions averaged across years, forecasters, and horizons. The

average revision is close to zero, E[∆f ] = −0.01, which suggests a symmetric environment in which

positive and negative revisions, on average, cancel out. The average revision size (in absolute value,

excluding zeros) equals E[abs(∆f)|∆f 6= 0] = 0.25. There are, on average, five forecast revisions

per year, which means forecasts are inactive for 1.6 months on average. The adjustment frequency

is 0.43, and downward revisions (0.23) are slightly more likely than upward revisions (0.19).

Table I – Summary Statistics of Forecast Revisions and Errors

Average revision E[∆f ] −0.01
Size non-zero revisions E[abs(∆f)|∆f 6= 0] 0.25

Avg. number of revisions count[∆f 6= 0] 5.06
Months of inaction E[τ ] 1.60
Adjustment frequency Pr[∆f 6= 0] 0.43

Upward Pr[∆f > 0] 0.19
Downward Pr[∆f < 0] 0.23

Average error E[e] −0.05
Mean squared error E[e2] 0.26

Observations N 9,256

Notes: The stylized facts are computed using Bloomberg data from 2010-2019. Cross-
sectional statistics are averaged across years and horizons.

Forecast errors At any given year, we define the ex-post forecast error eih of individual i at

horizon h as the difference between the actual end-of-year inflation π and the forecast f ih.

(4) eih ≡ π − f ih

The bottom block of Table I provides summary statistics on individual and aggregate forecast

errors, averaged across years and horizons. Individuals make small errors on average E[e] = −0.05

but tend to overpredict inflation, as reflected in the negative error eih.

2.5 Term Structure of Revisions and Errors

Next, we examine the “term structure” of forecast revisions and errors—how they evolve along

the forecasting horizon h. Figure IIIa shows that the magnitude of revisions becomes smaller

as the horizon h shrinks. Figure IIIb shows the term structure of forecast errors. The average

squared forecast errors decrease with the horizon. As expected, as the fixed event (end of the year)

approaches, more information is accumulated, making the prediction more precise. Despite the

monotonic decrease, the forecast error does not converge to zero, even at h = 1. We interpret this

as a tell-tale sign that forecast accuracy is not the only driving force behind forecasters’ behavior.
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Figure III – Term Structure of Forecast Revisions and Errors

(a) Size of Non-Zero Revision (b) Mean Squared Error

Notes: Results computed using Bloomberg data from 2010-2019. Panel (a) plots the absolute value of non-zero
revisions E[|∆f |adjust]. Panel (b) plots the mean squared forecast error E[(π − f ih)2].

“Naive” benchmark We compare the Bloomberg forecasts with a “naive” random walk bench-

mark to isolate mechanical drivers of the term structure of revisions and errors. In this case, the

projection is given by Ph = hxh+1. The random-walk projection implies forecast revisions ∆f rwh
and forecast errors erwh that evolve with the horizon according to

∆f rwh = (h+ 1)∆xh+1,(5)

erwh =
h∑
j=1

xj − hxh+1.(6)

The previous figure shows the random-walk case as a dashed black line. We see that the size of

revisions and forecast errors drop faster under the random walk than the Bloomberg forecasts.

This behavior again suggests that forecasts may reflect motives other than accuracy. Building on

this, we explore two potential explanations: forecast lumpiness and strategic concerns.

2.6 Forecasts are Lumpy

The first potential explanation for why average revisions and squared errors remain large even

at short horizons is that forecasts are lumpy; they remain unchanged for some periods and then

undergo a large adjustment. To explore this possibility, we study the frequency of revisions and

the revision hazard.

Figure IVa shows the unconditional probability of updating a forecast within the fixed-event

scheme across the horizon. Forecasts are updated infrequently as described by Table I. On average,

only 43% of forecasters choose to update their predictions throughout the year. The share of

updaters also drops as the fixed event approaches. The increasing inaction is puzzling as relevant
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Figure IV – Term Structure of Forecast Revisions

(a) Revision Frequency (b) Hazard Rate

Notes: Results computed using Bloomberg data from 2010-2019. The left panel shows the frequency of non-zero
revisions Pr[∆f 6= 0]. The right panel shows the hazard rate of forecast revision h(age).

information accumulates, which could be used to improve the accuracy of the prediction further.

We consider the hazard rate of revisions to see the forecast lumpiness from a different but

related angle. The hazard rate is a dynamic cross-sectional moment that helps study learning,

assess learning speeds, and discriminate across models. It equals the probability of a revision

conditional on the forecast’s “age”, that is, conditional on the time elapsed since the last revision:

h(age) = Pr[∆f 6= 0|age]. Figure IVb plots the estimated hazard that controls for observed

heterogeneity, conditioning on forecaster and year-fixed effects. The hazard is downward slopping,

implying that a recent or “young” forecast is more likely to be revised than an “old” forecast. For

instance, the probability of adjusting a newly set forecast is 0.5; it drops below 0.3 for six-month-

old forecasts and reaches 0.1 for eleven-month-old forecasts.5

Together, the adjustment frequency and hazard point towards infrequent forecast revisions.

2.7 Forecasts are Strategic

A second reason why forecast revisions and errors remain large is strategic considerations. Fore-

casters may care about what the “average” forecaster reports and, thus, may be reluctant to change

a forecast that is close to the average, even if that means entertaining a significant forecast error

or making large adjustments in the future to compensate for their past mistakes. To assess the

role of the consensus forecast in shaping individual forecasting decisions, we adopt the empirical

strategy from Karadi, Schoenle and Wursten (2024) that tests for strategic complementarities in

the context of firms’ price-setting decisions.

5Appendix A.4 shows the adjustment hazard conditional on the number of revisions. The age dependence of
forecast updating (i.e., the slope of the hazard rate) changes with the number of revisions.
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Consensus forecast To study the potential role of strategic concerns, we define the consensus

forecast as the average forecast across the N participants at each horizon h:

(7) Fh ≡
1

N

N∑
i=1

f ih.

Let cih be the consensus gap, defined as the individual i’s forecast at horizon h + 1 minus the

consensus at horizon h:

(8) cih ≡ f ih+1 − Fh.

Forecasters observe the consensus in real-time through the Bloomberg terminal; thus, it is in

their information set. We examine how the consensus gap cih affects the probability of updating a

prediction—the extensive margin—and the size of the revision—the intensive margin. We consider

equally sized bins for gaps cih, indexed by b ∈ [B] with B = 15, and compute the revision frequency

and magnitude in each bin. The two extreme bins include cih below −1.3% or above 1.3%.

Extensive margin First, we run a linear probability model for the probability of revision against

bin dummies 1(cih(b)) that equal one if cih falls inside bin b:

(9) Pr[∆f it,h 6= 0] = β0 +
B∑
b=1

βj1(cit,h(b)) + αi + αt + αh + εit,h.

Estimating different coefficients for each bin captures possible non-linearities in the relationship

between the extensive margin of revisions and consensus gaps. We run separate regressions for

upward and downward forecast revisions to account for potential asymmetries in the dependence

on the consensus. We include forecaster (αi), year (αt), and horizon (αh) fixed effects. The year-

horizon fixed effects embed inflation realizations, allowing us to disentangle strategic concerns

from the correlation between the consensus and actual inflation. Moreover, coefficients are robust

when including the cumulative inflation in year t up to horizon h as a control.

Figure Va plots the estimated coefficients associated with each dummy, showing the effect

of the consensus gap on the probability of revision relative to the omitted category (the middle

bin [−0.1%, 0.1%]). Two interesting features arise. First, as the relative distance between the

forecasts and either gap increases, the probability of a revision increases; however, the likelihood

of revising upward or downward depends on the sign of the gap. When gaps are above zero,

the probability of doing a positive revision (f ih > f ih+1) drops while the likelihood of revising

downwards (f ih < f ih+1) significantly increases. Likewise, when gaps are negative, the likelihood of

revising upward substantially increases, and revising downward decreases. Second, the extensive

margin reaction appears asymmetric; the updating probability reacts differently depending on
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Figure V – Consensus Triggers Revisions

(a) Revisions triggered by consensus gap (b) Revisions close consensus gap

Notes: The estimation relies on forecast data from Bloomberg between 2010-2019. The left panel shows the
estimated coefficients of regression (9) where the dependent variable corresponds to a dummy variable taking
the value of one if the forecasts was revised upwards (downwards) and zero, otherwise. The right panel repeats
the estimation but using the magnitude of revisions (conditioning on updaters) instead. Standard errors are
robust and clustered by time, horizon and forecaster.

whether the forecast is below or above the focal point. Thus, the evidence suggests that distance

to the consensus is relevant as it triggers forecast revisions.

Intensive margin Conditioning on agent revisions, we now study the determinants behind the

magnitude of revisions as a function of the consensus gap. We run a similar specification to

equation (9), taking the magnitude of revisions ∆f as the dependent variable. As before, we

control for forecaster and year-horizon fixed effects. Figure Vb plots the average revision against

the consensus gap cih. Revisions, on average, close the gap: Positive deviations call for negative

revisions, and negative deviations call for positive revisions. The strong negative correlation

implies that larger deviations call for larger revisions.

2.8 Forecasts Exhibit Overreaction

Evidence of forecast overreaction comes from analyzing forecast error predictability at the indi-

vidual level. Our preferred test, following Broer and Kohlhas (2022) and Valchev and Gemmi

(2023), extends the work by Bordalo, Gennaioli, Ma and Shleifer (2020) by adding the consensus

as a regressor. We chose this specification as it connects naturally to our empirical evidence by

stressing the role of strategic concerns.
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Test specification and interpretation Let πt − f it,h be the individual ex-post forecast error

at horizon h about annual inflation (known at time t), let f it,h − f it,h+1 be the forecast revision

between consecutive horizons, and let Ft,h − f it,h+1 be the gap to the consensus. Relying on the

panel structure, we consider the following OLS regression with forecaster fixed effects αi:

(10) πt − f it,h︸ ︷︷ ︸
error

= γh0︸︷︷︸
bias

+ γh1 (f it,h − f it,h+1)︸ ︷︷ ︸
revision

+ γh2 (Ft,h − f it,h+1)︸ ︷︷ ︸
consensus

+ αi + εit,h

The key assumption is that the forecasters’ information set contains the revision and the consensus.

Thus, the rational expectations Bayesian benchmark implies that individual forecast errors are

unpredictable: γh0 = γh1 = γh2 = 0. Deviations from rational expectations—Bayesian updating—

would result in coefficients that differ from zero. In that case, coefficients are interpreted in the

following way. If γh1 > 0, it indicates that, on average, forecasters underreact to their information

as a positive revision correlates with the forecast being below the actual realization. In contrast,

if γh1 < 0 indicates that the average forecasters overreact to his information as a positive revision

correlates with the forecast being higher than the actual realization. Analogously, the sign of γh2

reflects how distance to the consensus affects forecast errors.

Overreaction to information Using our survey data, we run regression (10). Relative to the

literature, which typically runs this regression at a fixed horizon h, we obtain different coefficients

for all twelve horizons. The point estimates of the coefficients and their confidence intervals are

plotted in Figure VI, where standard errors are robust and clustered by time and forecaster. Panel

(a) shows the coefficient on forecast revisions γ1, which is negative at all horizons, with an average

value of −0.76. Panel (b) shows the coefficient on the consensus gap γ2, which is positive at all

horizons, with an average value of 1.05. According to the standard interpretation, forecasters in the

Bloomberg survey show overreaction to information and underreaction to the consensus. These

results are consistent with studies using other surveys of professional forecasters. We compare

the estimated coefficients reported by Valchev and Gemmi (2023) using the quarterly Survey of

Professional Forecasters (SPF), available at horizons h = 9 and h = 6 (shown as stars).

2.9 Taking Stock and Robustness

To summarize, forecasts are lumpy: they exhibit significant periods of inaction followed by large

adjustments. Forecast errors and revision size fall with the forecasting horizon but at a slower

pace than a naive random walk forecast would. Also, forecasts are strategic: the distance to the

consensus forecast (the average prediction among participants) matters for revisions’ extensive

and intensive margins. Finally, consistent with existing evidence, forecasters overreact to private

information and underreact to the consensus. We conclude this empirical section by discussing

several robustness exercises supporting our stylized facts.
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Figure VI – Forecast Rationality Tests

(a) Coefficient on Revisions (γh1 ) (b) Coefficient on Consensus (γh2 )

Notes: Results computed using Bloomberg data from 2010-2019. The figures show the estimated coefficients in
equation (10). Standard errors are robust and clustered by time and forecaster.

Rounding Participants in the Bloomberg survey report their forecasts up to one decimal point.

Could rounding artificially generate inaction and mask the underlying level of lumpiness? To assess

rounding’s role, in Appendix A.5, we use another survey of professionals, Consensus Economics,

where participants can report their inflation forecasts up to three decimal points, thus allowing

us to construct counterfactual revision frequencies with various levels of rounding. We show that

rounding naturally decreases the adjustment frequency (e.g., a revision below two decimal points

gets lost when rounding to one decimal point). Still, it does not significantly alter the lumpy

behavior in inflation forecasts across the term structure and the decaying pattern of the extensive

and intensive margin of forecast revision along the horizon.

Longer horizons Participants in the Bloomberg survey often report forecasts for the end-of-

year inflation in year t at longer horizons h > 12. In Appendix A.6, we study the evolution

of adjustment frequency, adjustment size, and forecast errors eighteen months before the release

h = 18, 17, . . . , 1. Regarding lumpiness, the adjustment probability remains relatively stable,

around 45% on average between eighteen to thirteen months ahead. However, the magnitude of

revisions is, on average, lower relative to its within-the-year counterpart. We interpret this as

implying the absence of relevant public information outside the target year, leading forecasters

to attenuate their revisions’ magnitude. In Section 6, we exploit the overlap between long and

short-horizon forecasts to provide suggestive evidence of a preference for forecast stability.
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3 A Structural Model of Lumpy Forecasts

We develop a horizon-dependent fixed-event Bayesian forecasting model with private information,

frequent information revelation, fixed revision costs, and strategic concerns.

3.1 Forecasting Problem

Many forecasters, indexed by i ∈ N , generate forecasts of end-of-year inflation π. End-of-year

inflation inflation π equals the sum of within-year monthly inflations xh, namely π ≡∑12
h=1 xh.

Payoffs At each horizon h, forecaster i chooses a forecast f ih based on their information set I ih.
Changing a forecast entails paying a fixed revision cost κ > 0 measured in utility units. For a

given initial forecast f i13, forecasts minimize the yearly sum of monthly quadratic losses:

(11) min
{f ih}

1
h=12

E

[
1∑

h=12

(f ih − π)2︸ ︷︷ ︸
accuracy

+ r (f ih − Fh)
2︸ ︷︷ ︸

strategic

+ κ1{f ih 6=f ih+1}︸ ︷︷ ︸
stability

∣∣∣I i0
]
.

The first term in the payoff function is the distance between the forecast and the actual end-

of-year inflation, reflecting losses from the lack of accuracy.

The second term is the distance between the forecast and the consensus (the average) Fh =

N−1
∑N

i=1 f
i
h, multiplied by the parameter r that measures the strength of strategic concerns.6 If

r > 0, there is strategic complementarity, as the payoff increases when the forecast is close to the

consensus. If r < 0, there is strategic substitutability, as the payoff increases when the forecast is

far from the consensus.

The third term is the fixed cost κ > 0 paid for any forecast revision, capturing preference

for forecast stability. Section 3.5 calibrates r and κ using the microdata, and Section 6 provides

further suggestive evidence and alternative interpretations of the mechanisms they represent.

Inflation process Forecasters believe monthly inflation follows an autoregressive process:

(12) xh = cx + φxxh+1 + εxh, εxh ∼ N (0, σ2
x),

where cx is a constant, φx is the persistence parameter, and εxh is an iid normally distributed noise

with volatility σ2
x. The parameters cx, φx and σ2

x are common knowledge.

6We borrow the term “strategic” from the literature on global games (Morris and Shin, 2002) or mean-field
games (Lasry and Lions, 2007), in which small agents consider the distance between their action and the average
actions of others. We do not consider Cournot-style strategic games with finite and large agents.
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Public signal At the beginning of each horizon h, previous monthly inflation xh+1 is revealed,

reflecting the official release from the statistical agency. Previous inflation and the AR(1) assump-

tion imply a public signal about current monthly inflation:

(13) xARh ≡ E[xh|xh+1] = cx + φxxh+1.

The variance of the public signal is σ2
x = Var[xh|xh+1] = Var[εxh].

Private signal Following Patton and Timmermann (2010), at the beginning of each horizon,

each forecaster receives an unbiased private signal x̃ih about what inflation in that month will be

(recall that the actual monthly inflation is only released at the end of the month):

(14) x̃ih = xh + ζ ih, ζ ih
iid∼ N (0, σ2

ζ ).

The idiosyncratic signal noise σ2
ζ reflects the heterogeneity in beliefs, private information, or models

across agents. We do not explicitly include public (correlated) noise in this signal because the

AR(1) signal plays this role.7

Information dynamics At the end of the period, and after f ih is decided, monthly inflation

xh and the consensus forecast Fh are observed by everyone. These timing assumptions eliminate

a fixed point between individual choices and the consensus, as in a beauty contest (Morris and

Shin, 2002), greatly simplifying the model solution with revision costs. Therefore, the individual

information set I ih at the time of choosing the forecast is

(15) I ih = x̃ih ∪ Ih = x̃ih ∪ {xh+1, xh+2, . . . , Fh+1, Fh+2, . . .}.

We denote the public information set at horizon h as Ih ≡ {(xj, Fj) : j ≥ h + 1}, which includes

releases of past inflation and past consensus.

3.2 Belief Formation

Proposition 1 writes the sequential problem in (11) as a function of inflation and consensus beliefs,

using the law of iterated expectations and conditioning payoffs on horizon-specific information.8

Proposition 1. Let π̂ih ≡ E[π|I ih] and Σπ
h ≡ E[(π̂ih−π)2|I ih] be the conditional mean and variance

of end-of-year inflation beliefs. Let F̂h ≡ E[Fh|I ih] and ΣF ≡ E[(F̂h − Fh)2|I ih] be the conditional

mean and variance of consensus beliefs. Then, for given initial forecasts f i13, forecasters solve the

7Valchev and Gemmi (2023) explicitly introduce correlated noise.
8All proofs appear in Appendix C.
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Figure VII – Model Timeline

h+ 1h− 1 Horizon h

Observed at h

State at h

xh+1 xAR
h

AR(1)
x̃ih

Private Signal

xh
Actual
monthly
inflation

x̂ih
Monthly
inflation belief

AR(1){x12, x11, ..., xh+2}

History of
monthly inflations

Fh+1

A
gg
re
ga
ti
on

F̂h π̂i
h

Consensus
belief

End-of-year
inflation belief

RPE

f ih+1 State
Past forecast

Revise or not

Fh
Actual
consensus

f ih

A
gg
re
ga
ti
on

Notes: The figure illustrates the timeline of information revelation, belief formation, and forecast revisions for
three contiguous horizons h+ 1, h, h− 1.

following problem:

(16) min
{f ih}

1
h=12

1∑
h=12

Σh + (f ih − π̂ih)2 + r(f ih − F̂h)2 + κ1{f ih 6=f ih+1},

where Σh ≡ Σπ
h + rΣF is a weighted sum of inflation and consensus uncertainty. Thus, Σh

accounts for the unforecastable part of the process at each horizon h.

Next, we characterize individual beliefs about end-of-year inflation π̂ih and the consensus F̂h.

To guide the characterization, Figure VII shows how information becomes available and how these

two beliefs are formed.

Consensus Beliefs The consensus is the average forecast Fh = N−1
∑N

i=1 f
i
h. However, since

the consensus is observed with delay (e.g., at horizon h, Fh+1 is observed), forecasters must form

expectations about the contemporaneous consensus when choosing their forecasts. Forecasters

entertain random walk beliefs:

(17) Fh = Fh+1 + εFh , εFh ∼ N (0, σ2
F ),
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where volatility σ2
F is common knowledge. Given this assumption, the common horizon-specific

consensus beliefs are Fh|I ih ∼ N (Fh+1, σ
2
F ). Our equilibrium definition below specifies the consis-

tency of these beliefs.

Monthly Inflation Beliefs Forecasters combine the public signal xARh in (13) and their private

signal x̃ih in (14) to construct an individual monthly inflation belief x̂ih:

(18) x̂ih ≡ E[xh|I ih] =
σ−2
x xARh + σ−2

ζ x̃ih

σ−2
x + σ−2

ζ

= (1− α)xARh + αx̃ih,

where we define the Bayesian weight on the private signal as α ≡ σ−2
ζ /(σ−2

x + σ−2
ζ ). The weight α

increases in the precision of the private signal σ−2
ζ and decreases in the precision of inflation σ−2

x .

End-of-Year Inflation Beliefs At each horizon, forecasters form end-of-year inflation beliefs

π|I ih ∼ N (π̂ih,Σ
π
h) by projecting their monthly beliefs using the AR(1) structure. These beliefs are

normal. Forecasters combine past “official” releases {xj}j>h with their individual monthly beliefs

x̂ih to obtain the conditional mean π̂ih:

(19) π̂ih = h

(
cx

1− φx

)
+

1− φhx
1− φx

(
x̂ih −

cx
1− φx

)
︸ ︷︷ ︸

AR(1) projection using h info

+
12∑

j=h+1

xj︸ ︷︷ ︸
realized, j>h

, h = 12, . . . , 1.

The first part of the expression (19) uses the AR(1) statistical model to project the monthly belief

x̂ih into the future. The second part equals the sum of the true monthly inflation values released to

date. The conditional variance Σπ
h ≡ E[(π − π̂ih)2] is a function of the AR(1) parameters {φx, σ2

x}
and signal noise σ2

ζ ; it decreases with the horizon and is independent of agents’ identity:

Σπ
h = [(1− α)2σ2

x + α2σ2
ζ ]

(
1− φhx
1− φx

)2

(20)

+
σ2
x

(1− φx)2

[
(h− 1)− 2φx(1− φh−1

x )

1− φx
+
φ2
x(1− φ2(h−1)

x )

1− φ2
x

]
.

The first term of Σπ
h corresponds to the uncertainty driven by the AR(1) projection and the

noisy signal (weighted by α) for the current release of monthly inflation. Likewise, the second

part of (20) reflects the accumulated uncertainty caused by the remaining (h− 1) unforecastable

shocks that will hit the process until the release date.
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Average Beliefs Given the public releases of monthly past values, the AR(1) assumption implies

a public signal zh about yearly inflation, given by:

(21) zh = h

(
cx

1− φx

)
+
φx(1− φhx)

1− φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj, h = 12, . . . , 1.

It is useful to establish a relationship between individual beliefs π̂ih in (19) under the information

set I ih and public beliefs zh in (21) under the information set Ih. The following relationship links

individual and common beliefs:

(22) π̂ih = zh + νih, with νih ∼ N
(

0,

(
1− φhx
1− φx

)2

α2(σ2
x + σ2

ζ )

)
.

where α is the updating weight defined in (18).

Learning from the consensus? We assume that forecasters do not use past consensus real-

izations as inflation signals; solely, the strategic concern drives the relationship between forecasts

and the consensus. Since monthly inflation and consensus realizations become public after one

period, private information is short-lived.9 Thus, lagged monthly inflation is a superior signal to

the lagged consensus. The consensus at h+1 aggregates private information about xh+1, but once

xh+1 gets observed, the information in the consensus becomes outdated.

If, instead, private information was long-lived (e.g., actual monthly inflation was never re-

leased), then the consensus would contain helpful information. However, the problem becomes

untractable as it enters the domain of higher-order beliefs and involves forecasting the forecasts

of others (Townsend, 1983).

3.3 Equilibrium

We now define our notion of equilibrium. We focus on a restricted perceptions equilibrium (RPE),

representing a slight deviation from rational expectations (Evans and Honkapohja, 1993). We posit

that forecasters believe the consensus follows a random walk, and ex-post, they cannot distinguish

the actual consensus process from a random walk. Forecasters are internally rational (Marcet

and Nicolini, 2003), as they use an “internally consistent” learning model. This equilibrium

concept delivers enormous tractability by eliminating the fixed point between the consensus and

the aggregation of individual forecasts.10

9Our truncation of the information is a particular case of the algorithms developed for solving a class of dynamic
models with higher-order expectations by Nimark (2008, 2014), or the assumption that shocks become common
knowledge after a finite yet arbitrarily large delay, as in Hellwig and Venkateswaran (2009).

10The RPE has been used in signal extraction models like ours, in which agents observe a noisy signal about an
underlying state variable, by Evans and Honkapohja (1993), Marcet and Nicolini (2003), and Molavi (2019).

19



Definition 1. A restricted perceptions equilibrium (RPE) consists of:

(i) perceived consensus process {F̂h} given by a function g parametrized by (δ, σF )

(23) F̂h = g(F̂h+1, δ) + εF̂h , εF̂h ∼ N (0, σ2
F )

(ii) inflation beliefs {π̂ih} and forecasts {f ih} for all agents i and horizons h

such that:

1. given inflation beliefs {π̂ih} in (19) and the perceived consensus process {F̂h} in (23), forecasts

{f ih} are optimal and solve the forecasting problem (16);

2. parameters (δ, σ2
F ) are such that the forecast errors arising from predicting the actual con-

sensus using the perceived law of motion, i.e., εFh ≡ Fh − g(Fh+1, δ), satisfy: Cov[εFh , ε
F
j ] = 0

∀h 6= j and Var[εFh ] = σ2
F .

In the restricted perceptions equilibrium, the actual consensus process given by the aggregation

of individual forecasts, Fh = N−1
∑N

i=1 f
i
h, differs from the prediction. However, in this equilibrium

concept, agents are assumed to use the δ, σF that best predicts future prices given (23).

3.4 Optimal Forecasting Policy

Proposition 2 writes the problem in recursive form as a stopping-time problem using the principle

of optimality. The individual state includes the past forecast, the mean and variance of inflation

beliefs, and the mean and variance of consensus beliefs. It is equivalent to working with posterior

beliefs instead of the signals. The aggregate state includes past realizations of monthly inflation

and consensus. Because total uncertainty evolves deterministically and is shared across agents,

we include it in the aggregate state. We thus index value function with the horizon h to account

for the aggregate state.

Proposition 2. The value of a forecaster i at horizon h with state (π̂ih, F̂h, f
i
h+1) equals

(24) Vh(π̂ih, F̂h, f ih+1) = min{ VIh(π̂ih, F̂h, f
i
h+1)︸ ︷︷ ︸

inaction

, VAh (π̂ih, F̂h)︸ ︷︷ ︸
action

}

where the value of inaction VIh and the value of action VAh are, respectively,

VIh(π̂ih, F̂h, f
i
h+1) = Σh + (f ih+1 − π̂ih)2 + r(f ih+1 − F̂h)

2 + E[Vh−1(π̂ih−1, F̂h−1, f
i
h+1)|I ih]

VAh (π̂ih, F̂h) = κ + Σh + min
f ih

{
(f ih − π̂ih)2 + r(f ih − F̂h)2 + E[Vh−1(π̂ih−1, F̂h−1, f

i
h)|I ih]

}
subject to the evolution of inflation beliefs in (19) and (20), and consensus beliefs in (23).
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Figure VIII – Forecast Revision Policy: Inaction and Reset

(a) Inaction Region and Reset Forecast f ih
∗

(b) Width of Inaction Region
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Notes: Panel (a) illustrates the reset forecast policy f ih
∗

and inaction region Rh for h = 6 given a current
forecast f ih = 2. We also show two examples of beliefs, one inside and one outside the inaction region. Panel
(b) plots the inaction region width (the segment on the 45-degree line) for different horizons.

Inaction region and reset forecast The optimal policy consists of a horizon-specific 3-

dimensional inaction region Rh given by the set of states for which the value of inaction (keeping

the current forecast) is greater or equal to the value of action (revising the forecast)

(25) Rh ≡ {(π̂ih, F̂h, f ih+1) : VIh(π̂ih, F̂h, f
i
h+1) ≥ VAh (π̂ih, F̂h)},

and a reset forecast f ih
∗
(π̂ih, F̂h) where the forecast is set when revising. Thus, given the current

forecast, it remains unchanged if beliefs lie inside the inaction region and resets at any horizon h

when those beliefs fall outside it. Revisions are then given by

∆fh =

0 if f ih+1 ∈ Rh

f ih
∗ − f ih+1 if f ih+1 /∈ Rh.

(26)

Panel (a) in Figure VIII shows the forecast revision policy at horizon h = 6. We plot it in two

dimensions by fixing the current forecast at f i6 = 2 and varying inflation beliefs π̂ih in the x-axis

and consensus beliefs F̂h in the y-axis. Panel (b) plots the width of the inaction region measured

on the 45-degree line, against the forecasting horizon. We use the parametrization in Table II.

The inaction region is the negatively sloped dark band centered around the current forecast.

Outside the band, the lines correspond to the reset forecast f i6
∗
(π̂i6, F̂6). For example, given the

current forecast f i6 = 2, the beliefs (π̂i6, F̂6) = (2.5, 1.5) fall inside R6 and the forecast remains

inactive; instead, the beliefs (π̂i6, F̂6) = (1.5, 2) fall outside R6 and the forecast is reset to f i6
∗

= 1.7,

revising it by ∆f i6 = 1.7− 2 = −0.3.
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Several features of the optimal forecasting policy are worth explaining.

First, the negative slope in the inaction region arises because the two beliefs are “substitutes”

in that a smaller distance to the consensus belief may compensate for a greater distance from the

inflation belief, or vice versa. This band-type inaction region contrasts with the circular inaction

regions typical in multiproduct menu cost pricing models (Midrigan, 2011; Álvarez and Lippi,

2014). The reason is that, in those models, the gaps between current and optimal prices are

independent, and different instruments (the price of each good) are available to target different

variables (the optimal price of each good). Instead, in our setup, one instrument (the forecast f ih)

targets two variables (inflation and consensus beliefs).

A second feature is that the width of the inaction region shrinks with the horizon.11 At long

horizons, belief uncertainty is at its highest level; forecasters anticipate that their belief would hit

the band very often and thus optimally widen the band to minimize adjustment cost payments.

This is known as an option effect. As belief uncertainty falls, the option effect is smaller, and

the band shrinks. A shrinking inaction region implies that adjustment size falls with the horizon.

Still, the impact on the adjustment frequency is nuanced because frequency depends on the option

effect and the volatility effect. The price-setting model with idiosyncratic cost uncertainty and

learning in Baley and Blanco (2019) features a similar decreasing inaction region.

Finally, the frictions shape the inaction region in different ways. The strength of strategic

concerns determines the slope of the inaction region. The inaction region would be vertical (only

the inflation belief matters) if r = 0, horizontal if r →∞, and negative with r > 0. The inaction

region widens with the revision cost κ and private noise σ2
ζ , as standard in Ss-type models.12

3.5 Calibration and Solution

Externally set parameters Frequency is monthly. We feed the AR(1) parameters estimated

directly from the data. By relying on the available information to forecasters in real time, we

estimate the AR(1) process parameters using a rolling window over the sample years. For the year-

on-year monthly inflation process we estimate the parameters (cx, φx, σx) = (0.013, 0.932, 0.036).

These values imply an unconditional annual inflation of µπ = 12cx/(1 − φx) = 2.23 with annual

volatility σ2
π = σ2

x

∑12
h=1(1− φhx)2/(1− φ2

x) = 0.49.13

Internally calibrated parameters Using the simulated method of moments (SMM), we esti-

mate values for the three remaining parameters by matching the cross-sectional moments across

years: the fixed revision cost κ, the strength of strategic concerns r, and the private noise σζ .

11We see a widening of the inaction region at h = 1 arising from the finite-horizon nature of the problem.
12Appendix E for comparative statics on the optional forecast policy for different values of the fixed cost κ,

strategic concerns r, and private noise σ2
ζ .

13The inflation process estimation details appear in Appendix B. The monthly process is highly persistent φ =
0.932 because it refers to year-on-year monthly inflation, not between consecutive months, whose autoregressive
coefficient typically ranges between 0.5 and 0.7.
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Table II – Internally calibrated parameters

Parameter Value Moment Data Model
κ Revision cost 0.06 Pr[∆f 6= 0] 0.43 0.40
r Strategic concerns 0.73 E[abs(∆f)|adjust] 0.25 0.19
σζ Signal noise 0.03 Hazard Slope −0.04 −0.04
σF Consensus volatility 0.13 Internal Consistency — —

We target three moments: the frequency of revisions Pr[∆f 6= 0] = 0.43, the average absolute

value of revisions E[abs(∆f)||adjust] = 0.25 and the slope of the hazard rate between horizons

12 and 6 equal to −0.04. The hazard’s slope informs idiosyncratic signal noise. Learning is slow

when signals are very noisy, and the hazard rate declines slowly. In contrast, learning is faster

when signals are less noisy, and the hazard rate declines faster.14

Internal consistency of consensus beliefs Forecasters in our model assume a random walk

process for the consensus in (17). We thus have an additional parameter to set, the perceived

volatility of the consensus process σF . Under internal rationality, the consensus’s perceived and

actual probability distributions should coincide. This assumption imposes structure and disciplines

the value of σF . Starting with a guess for the volatility of the consensus process σ2
F , we compute

individual decision rules for each horizon h using backward induction. We then simulate the model,

calculate the volatility of the realized consensus, and iterate on σ2
F to ensure belief consistency.15

As further validation, we run a Dickey-Fuller test and cannot reject the null of a random walk

when considering a sample of 10 years or less.

Estimated Parameters Table II shows the baseline parameterization, the moments in the data,

and the model fit. The calibrated parameters are as follows. First, the fixed adjustment cost of

κ = 0.05 implies a preference for forecast stability. Second, the positive value for r = 0.41 signals

strategic complementarities. Lastly, the private noise σζ = 0.04 is as significant as the volatility

of the inflation process, σx = 0.036. Given their relative precision, the weight on private signals

equals α = 0.56. Finally, setting σF = 0.11 delivers consistent consensus beliefs.16

4 The Model in Action

This section explores various dimensions of the forecasting model.

14The idea that signal noise modulates the slope of the adjustment hazard underlies the calibration of information
frictions in price-setting models by Alvarez, Lippi and Paciello (2011), Baley and Blanco (2019) and Argente and
Yeh (2022) and labor market models by Borovicková (2016) and Baley, Figueiredo and Ulbricht (2022).

15Appendix D explains the solution algorithm and other computational details.
16Appendix F presents the details on the consistency of consensus beliefs.

23



Figure IX – Forecaster-level dyamics

(a) Beliefs and forecasts
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Notes: The figure illustrates the beliefs, forecasts, revisions, and uncertainty dynamics of one forecaster for one
year. Panel (a) shows the evolution of forecasts f ih and beliefs (π̂ih, F̂

i
h), and the end-of-year inflation. Panel (b)

shows the magnitude of revisions (intensive margin) and the periods of inaction (extensive margin). Panel (c)
shows the evolution of total uncertainty split between belief and consensus uncertainty.

4.1 Individual Dynamics

To explain the model’s workings, Figure IX illustrates how one agent’s beliefs, forecasts, revisions,

and uncertainty evolve during one year. The first panel shows the agent’s inflation beliefs π̂ih (green

line) and consensus beliefs F̂ i
h (dash green line). Beliefs change from period to period but forecasts

f ih (blue line) exhibit lumpy behavior, remaining fixed for some periods, followed by revisions that

bring the forecasts closer to a linear combination of the two beliefs. Towards the year’s end, the

inflation belief meets actual inflation (π = 3.77), but the forecast is not.

The second panel shows the extensive margin of adjustment (gray areas), marking the periods

of inaction between horizons 8 and 5 and 3 and 1. It also indicates the intensive margin of

adjustment given by the revision size ∆f (dark line), which shrinks with the horizon.

The third panel shows total uncertainty (solid pink line), equal to the weighted sum of condi-

tional variance of inflation beliefs Σπ
h, continuously decreasing and reaching zero at h = 1, and the

conditional variance of consensus beliefs rσ2
F , which is constant. While belief uncertainty domi-

nates most of the prediction period, consensus uncertainty dominates in the last three periods.

4.2 Aggregate Dynamics

Next, we examine the dynamics of aggregate forecasts and aggregate beliefs. Figure Xa plots the

realized value for the end-of-year inflation π = 3.77 (horizontal dash black line). We also show the
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Figure X – Aggregate dynamics

(a) Aggregate time series
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Notes: Model simulation for 100 forecasters with baseline parameterization. Sample pools together forecasters,
years, and horizons.

average belief Π̂h ≡ N−1
∑N

i=1 π̂
i
h (green solid line), the consensus forecast Fh ≡ N−1

∑N
i=1 f̂

i
h (blue

solid line) and 100 individual forecasts f ih (gray lines). The two aggregate series approximate the

actual end-of-year inflation π as information becomes available throughout the year. The average

belief converges to actual inflation, but the consensus does not. In this example, the consensus

remains below actual inflation. Importantly, average beliefs are more volatile than the consensus,

meaning the micro-level lumpiness does not fully wash out in the aggregate.

To highlight the difference between forecasts and beliefs, Figure Xb shows the distribution of

non-zero forecast revisions ∆f ih in the data and the model, as well as inflation belief revisions ∆π̂ih
recovered from the model, pooled across all years and horizons. Both distributions are centered

around zero. The belief distribution is unimodal, but the forecast distribution is bimodal, as in

the data, resulting from the adjustment cost κ.

4.3 Untargeted Term Structures

We assess the model’s capacity to generate the term structure of cross-sectional statistics. Figure

XI shows the term structure of the revisions frequency, size, and hazard rate. While we only

targeted average values (the dashed lines), the model matches the empirical patterns along the

forecasting period. In particular, the model can quantitatively match the downward slopping

patterns of the frequency of revisions (extensive margin, Figure XIa) and the size of non-zero

revisions (intensive margin, Figure XIb). In addition, the model accurately matches the hazard’s

level despite only targeting its slope.
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Figure XI – Cross-sectional statistics across horizons

(a) Frequency of revisions (b) Size of revisions (c) Hazard rate

Notes: Cross-sectional moments obtained from the model’s simulation under the benchmark calibration.

The downward-sloping hazard is a feature of Bayesian learning models with fixed adjustment

costs in actions, arising from a shrinking inaction region and decreasing uncertainty, with uncer-

tainty falling faster (Baley and Veldkamp, 2025). Its slope serves as a discrimination device across

models of inaction. To see this, consider two alternative models. First, consider a model in which

forecasters do not face revision costs but instead are “inattentive” and revise forecasts with a con-

stant probability at random dates as in Andrade and Le Bihan (2013). In that model, the hazard

rate is flat as the likelihood of revision is the same across all forecast ages (akin to the Calvo (1983)

model). Alternatively, consider a model with revision costs but without learning (uncertainty is

constant). In that model, the hazard rate is increasing over the forecast’s age, as a recently set

forecast is at the center of the inaction region, and it takes time for each to reach either border of

action. Therefore, combining learning and fixed revision costs delivers a decreasing hazard.

4.4 Other Untargeted Moments

We provide further evidence of the model’s ability to replicate untargeted moments. Panel (a)

in Figure XII shows mean squared forecast errors E[(π − f ih)
2], which are closely matched on

average (0.15 in the model and 0.23 in the data) and in the horizon profile. Panel (b) shows the

distribution of the final revision date. To compute it, we find forecasters’ average fraction (across

years) that provides their final revision at horizon h. In the data, on average, 40% of participants

do their last revision four months before the release date. The model matches the same qualitative

pattern, suggesting that our theory can characterize the marginal benefits of waiting for an extra

release of information relative to the revision costs throughout the horizons.
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Figure XII – Untargetted Forecast Errors and Final Revision Date

(a) Mean Squared Error
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Notes: Cross-sectional moments obtained from the model’s simulation under the benchmark calibration.

Figure XIII shows the untargeted model’s performance regarding the consensus gap. Panel (a)

examines how the consensus gap cih impacts the extensive margin of adjustment. The patterns are

qualitatively consistent with the data. The model also quantitatively replicates the reductions in

revision probability. Still, the increases in revision probability are more responsive in the model.17

Panel (b) examines how the consensus gap cih impacts the intensive margin of adjustment. In this

case, the model qualitatively matches the magnitude of adjustments in the data. Quantitatively,

we also observe a slightly larger responsiveness in the model.

4.5 On the Role of Each Friction

We finish this section by exploring the role of fixed costs and strategic concerns in delivering

empirical patterns. We shut down κ and r, one at a time, and recalibrate the model through the

SMM procedure to match a subset of moments. The results are shown in Table III. Estimated

parameters are shown in the first four rows, and targets are in the last three. Targeted moments

are marked with stars. Columns (1) and (2) repeat the information in Table II with the data

targets and the baseline calibration for reference.

Column (3) shows the results when shutting down the fixed costs (κ = 0), and only strategic

concerns are present. Without fixed costs, forecasters continuously revise; thus, we cannot match

the adjustment frequency and hazard slope. We estimate r to match the average size of non-

zero revisions. Interestingly, we find a negative value of r = −0.43, indicating that strategic

diversification is necessary to match the size of adjustments. In other words, including fixed costs

shifts the data’s implications for r from positive (complements) to negative (substitutes).

17Introducing free adjustment opportunities in the spirit of the CalvoPlus model, which combines state and
time-dependent adjustment, or a generalized hazard model could bring the consensus response closer to data.
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Figure XIII – Untargetted Extensive and Intensive Margins

(a) Extensive Margin (b) Intensive Margin

Notes: Estimated coefficients are obtained by running equation (9), using the model’s simulation under the
benchmark calibration.

Column (4) shows the results when shutting down strategic complementarities (r = 0), and we

set κ and σ2
η to match the intensive margin and the hazard’s slope. Two main drawbacks appear

in this case. First, the model is less effective in matching the data-implied probability of revisions

relative to our baseline specification. Second, and most importantly, the model cannot reconcile

the downward-slopping pattern of the hazard rate. The hazard rate is almost flat in this case.

The fact that the probability of revisions becomes less “age-dependent” is a direct implication of

removing the strategic concerns. Empirically, an “older” forecast is less likely to be revised than

a recently updated prediction. Intuitively, this makes the consensus forecast more persistent as a

function of age. When agents stop carrying about the relative distance between their predictions

and the consensus, the updating probability becomes less sensible to age. This is precisely the

result we get in this case. Further, untargeted moments and the intuition for these two alternative

cases are discussed in Appendix G.

Table III – Shutting down frictions

(1) Data (2) Baseline (3) Only strategic (4) Only fixed costs
(κ = 0) (r = 0)

Parameters
κ 0.06 0.00 0.07
r 0.75 −0.43 0.00
σ2
ζ 0.09 0.03 0.09

σ2
F 0.12 0.23 0.18

Targets
Frequency 0.43 0.40∗ 1.00 0.38∗

Size 0.25 0.19∗ 0.25∗ 0.30∗

Hazard Slope −0.04 −0.04∗ ∞ −0.01∗

Notes: In the table, ∗ denotes a targeted moment.
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Figure XIV – Forecast Rationality Tests

(a) Coefficient on Revisions (γh1 ) (b) Coefficient on Consensus (γh2 )

Notes: The figures show the estimated coefficients after running equation (10) using both the survey data from
Bloomberg 2010-2019 (red line and starts) and the simulated data from the model (blue line).

5 Overreaction to Information

This section examines the potential role of lumpy and strategic forecasts in amplifying overreaction.

Lumpy forecasts overreact Using model-generated forecasts, we run regression (10), repeated

here for convenience:

(27) πt − f it,h = γh0 + γh1 (f it,h − f it,h+1) + γh2 (Ft,h − f it,h+1) + αi + εit,h

Figure XIV shows the results. As in the data, simulated forecasts feature (i) over-reaction to

private information, γ1 < 0 in Panel (a), and (ii) under-reaction to the consensus, γ2 > 0 in Panel

(b). These patterns hold across all horizons. Crucially, these results are untargeted; therefore,

they also provide an additional layer of validation of our model for lumpy forecasters.

Intuition The measured overreaction to information arises directly from lumpy behavior, char-

acterized by the coexistence of large and zero revisions. While information accumulates contin-

uously, expanding the agent’s information set, the reported forecast remains unchanged unless it

exceeds the inaction region. When adjustments occur, they incorporate both current and previ-

ously accumulated information, resulting in substantial revisions. This creates a pattern where

large revisions coexist with many zero revisions at each horizon, reducing the overall variance of

revisions. This reduced variance mechanically inflates the estimated coefficient γ1, which captures

the covariance of revisions and forecast errors relative to the variance of revisions. As lumpi-

ness amplifies this effect, the econometrician may interpret it as a significant overreaction, with

predictions appearing to overshoot their forecast.
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Cleansing procedure To refine survey forecasts as measures of true underlying beliefs, we

propose a two-stage procedure to cleanse individual forecasts in the Bloomberg survey from lumpy

and strategic behavior. In the first stage, we isolate active adjustments by focusing exclusively

on non-zero revisions. In the second stage, we remove the influence of the consensus using a

regression-based adjustment. This approach effectively adds a preprocessing step to the standard

overreaction test, where forecast errors are regressed on forecast revisions. By conditioning on

updates and using our cleansed forecasts, this method provides a more accurate representation

of the underlying belief dynamics. Since beliefs are not directly observable in the data, we use

overreaction tests as a lens to examine them.

5.1 Stage I: Eliminate Lumpiness

We re-run regression (10) in the data but conditioning on updaters, i.e., ∆f ih 6= 0. These “reset”

forecasts account for the latest release of information and all the information accumulated since

the last time they were revised. Therefore, forecast revisions are a much more accurate proxy for

the amount of acquired information once we condition on updates.

The results of the overreaction test, conditioned on updaters ∆f ih 6= 0 at each horizon, are

illustrated by the black dashed line in Figure XV. The estimated coefficients γh1 shift closer to

zero—the Bayesian rational expectation benchmark—when focusing solely on updates. A similar

pattern emerges from the consensus-related coefficients, γh2 . While the evidence continues to

indicate overreaction and underreaction, our analysis demonstrates that failing to account for

lumpy behavior can obscure its underlying level. This oversight can lead to biased estimates of

structural parameters in models attempting to replicate and explain such dynamics.

5.2 Stage II: Eliminate Strategic Concerns

After leveraging the relevance of lumpy behavior, we focus on the potential role that strategic

concerns play in deviating (recently updated) expectations. Inspired by our theoretical model, we

introduce a second stage to account for this feature, which builds on an auxiliary reduced form

regression to pin down the parameter r using data alone.

Recover r from an OLS regression In the model, conditional on resetting the forecast, the

first-order condition requires forecasts to be a convex combination of inflation and consensus beliefs

plus a term reflecting the change in the continuation value:

(28) f ih
∗

=
1

1 + r
(π̂ih + rF̂ i

h) +
∂E[Vh]
∂f ih

=
1

1 + r
(zh + rFh+1 + vih),

where in the second equality, we have substituted the relationship between individual and average

forecasts in (22), the random-walk consensus beliefs, and joined all idiosyncratic terms (including
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Figure XV – Forecast Rationality: Updaters and Cleansed

(a) Coefficient on Revisions (γh1 ) (b) Coefficient on Consensus (γh2 )

Notes: The figures show the estimated coefficients after running equation (10) using survey data. All forecasters
(solid red line), updaters (dashed black line), and cleansed (dotted pink line). The point estimates are plotted
along with the corresponding confidence intervals for every possible horizon. Regressions include individual
fixed effects, and the standard errors are robust and clustered by time and forecaster.

the continuation value) in a fixed effect term vih. From this expression, we propose the following

OLS regression to back out a data-implied value for strategic concerns r:

(29) f ih,t = β0︸︷︷︸
0.47 (0.28)

+ β1︸︷︷︸
0.28 (0.06)

zh,t + β2︸︷︷︸
0.44 (0.11)

Fh+1,t + αh + αy + αi + εi,h,t

To estimate it, we proxy zh with the corresponding AR(1) projection using the available

monthly releases of inflation at each horizon. As the estimation relies on the level of predicted

inflation, we include forecasters, horizon, and year-fixed effects. In our theory, the r parameter is

independent of agents and horizons, so we estimate polling all observations and horizons.18 The

parameter r can be recovered from β1 or β2. However, β1 is more likely to be biased due to

measurement error, model misspecification, or any omitted relevant variable that was part of the

forecaster’s i information set at horizon h. Thus, we chose to recover r through β2 since we have

a direct and observed measure of Fh+1 in the data.19

Our preferred estimate is r̂ = 0.79. It is reassuring that the data-implied r closely resembles

the SMM-implied value of 0.73 in Table II, further validating the calibration of our model.

18Detailed estimates appear in Appendix H. We run various specifications. We add macro controls conditioning
to account for potential omitted variables, including first and second lags of annualized inflation, the growth of
industrial production, and the three-month treasury yields. The estimated r remains stable across specifications.

19We see this as an advantage of our proposed procedure, as in almost all surveys of professional forecasters,
participants can observe the lagged consensus through the survey’s reports or newsletters. Hence, while we run our
proposed test using the Bloomberg survey where the consensus forecast is available to all participants in real-time,
this does not prevent any researcher from running the proposed first stage using any other expectations survey as
long as the previous consensus is available at the time agents are asked to provide new forecasts.
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Cleansing for strategic concerns Given the first-order condition in (28), and using the esti-

mated value for r̂, we back-out a proxy for agent’s beliefs “cleansed” from strategic concerns

(30) f̃ ih = (1 + r̂)f ih − r̂Fh+1.

With the beliefs proxy f̃ ih we run the alternative specification:

(31) πt − f̃ ih = γh0 + γh1 (f̃ ih − f̃ ih+1) + αi + εit,h

The pink dash line in Panel (a) of Figure XV illustrates the results.

This analysis yields two key insights. First, the estimates of γh1 move closer to the ratio-

nal expectations benchmark of zero when using our belief proxies and conditioning on updates.

Specifically, the average value of γh1 goes from −0.76 (all data) to −0.68 (updates) and further

to −0.29 (updates and cleansed), representing a 58% reduction in the magnitude of overreaction.

This circles back to the fact that failure to account for both lumpy behavior and strategic motives

in a professional survey may amplify the underlying level of overreaction. Second, while the esti-

mated coefficient decreases, the level of overreaction remains significantly different from zero. This

suggests that, even after removing strategic and lumpy behavior, agents still overshoot acquired

information, aligning with previous findings (Bordalo, Gennaioli and Shleifer, 2022).

5.3 Additional Metrics

We close the analysis by studying the differences between (A) raw forecasts, (B) reset forecasts,

and (C) cleansed forecasts in the data, with (D) forecasts and (E) beliefs in the model. Table IV

showcases metrics such as volatility and autocorrelations of these variables.

Forecast volatility (line 1) increases from 0.6 to 0.8 when lumpy behavior (column B) and strate-

gic considerations (column C) are removed. Reported forecasts typically incorporate a weighted

consensus, which is highly persistent. Once strategic considerations are accounted for, individual

forecasts become more volatile, reflecting agents’ evolving perceptions of the annual inflation pro-

cess as new information emerges. This pattern aligns with the model, where beliefs are slightly

more volatile than forecasts.

Two key patterns emerge regarding the autocorrelations of forecasts (line 2.1) and forecast er-

rors (line 2.2). First, lumpiness amplifies the autocorrelation of forecasts (0.81) compared to cases

where we condition only on updates (0.54). This is expected, as lumpy behavior causes forecast-

ers to maintain the same predictions over time, increasing the persistence of individual forecast

processes. Second, the autocorrelation of cleansed forecasts increases slightly (0.62) relative to the

updating correction, reflecting the influence of the consensus process. Removing the variability of

the consensus smooths out short-term fluctuations, resulting in more correlated residual forecasts

over time. The model aligns with the observed drop in autocorrelation for both forecasts and
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Table IV – Forecast Statistics

Forecast Data Model
(A) Raw (B) Updaters (C) Cleansed (D) Forecasts (E) Beliefs

f f |∆f 6= 0 f̃ |∆f 6= 0 f π̂

(1) Volatility 0.60 0.64 0.80 0.92 0.95
(2) Autocorrelation

(2.1) Forecasts 0.81 0.54 0.62 0.75 0.60
(2.2) Errors 0.81 0.51 0.65 0.75 0.60
(2.3) Revisions −0.08 −0.19 −0.19 −0.05 −0.15

Notes: Bloomberg data for years 2010-2019. The model is solved under the benchmark calibration.

errors, and the autocorrelations of beliefs closely match their cleansed counterparts.

Regarding the autocorrelation of revisions (line 2.3), we notice that while it is negative, it

remains close to zero across all forecasts. The magnitude increases when we condition on revised

forecasts, which is consistent with the underlying inflation process being driftless.20 Additionally,

due to lumpiness, the coexistence of zero and non-zero forecast revisions results in low overall

correlation. In a fixed-event forecast scheme, revisions serve as a proxy for the information set.

The negative correlation observed in columns B and C suggests that upward revisions are often

followed by downward revisions, consistent with a stationary inflation process where uncertainty

decreases over time as more information becomes available (illustrated in Figure II). Finally, the

model accurately replicates the autocorrelation of revisions, whether computed from forecasts or

beliefs, further validating its consistency with the data.

6 Supportive Evidence and Interpretations

We conclude the paper by providing supporting evidence for the frictions central to our analysis

and their implications for forecasting behavior.

6.1 Fixed Revisions Costs

Fixed costs and the resulting inaction in forecast revisions may arise from various sources. These

could include the costs associated with acquiring and processing information or the opportunity

cost of logging into the forecasting system. Another explanation is that forecasters may prefer to

signal commitment to their predictions, favoring stability over frequent adjustments. For example,

forecasters might refrain from revising their predictions when they believe a monthly inflation

release reflects only transitory shocks that will dissipate in subsequent data. We favor this latter

explanation and provide suggestive evidence of a preference for forecast stability.

20A non-stationary inflation process would mechanically generate persistent revisions.
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Figure XVI – Inaction in the short vs. long run
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Notes: The figure relies on data from Bloomberg between 2010-2019. In this case,
we rely on predictions reported up to 18 months before the release of end-of-year
inflation. The figure illustrates the preference for forecast stability.

We construct a statistic that measures the overlap of short—and long-term revisions to pro-

vide suggestive evidence of forecasters’ preference for forecast stability. Besides the within-year

forecasts used in our main analysis, the sample contains longer-term forecasts from 18 months to

13 months ahead.21 These long-term forecasts for year t + 1 overlap with short-term forecasts

for year t. Given the overlap for any given year, we compute the probability that a short-term

forecast remains inactive (i.e., f ih = f ih+1 for h = 6, . . . 1) conditional on a long-term forecast being

revised (i.e., f ih 6= f ih+1 for h = 18, . . . 13). If a long-term forecast gets revised, it signals that some

relevant information has been received, which causes the participant to log into the Bloomberg

terminal to revise such prediction. If there is persistence in the inflation process, that information

should also affect short-term forecasts. To the extent that this overlap probability is lower than

one, it suggests that forecasters actively decide to maintain their short-term forecasts unchanged.

Figure XVI plots this statistic. Given that the corresponding long-term forecast was changed,

the probability of keeping a 6-month ahead forecast unchanged is 0.2. This probability increases

as the horizon shrinks. We take this as suggestive evidence for forecast stability.

Forecast stability in other contexts In corporate finance, firms often rely on lumpy forecasts

to signal stability and enhance credibility with investors. For example, firms may discontinue quar-

terly earnings guidance or strategically time and present financial disclosures to minimize earnings

volatility and manage market expectations (Chen, Matsumoto and Rajgopal, 2011; Barton and

Simko, 2002). Surveys of CFOs further emphasize the importance of maintaining stable forecasts

to build trust among stakeholders (Graham, Harvey and Rajgopal, 2005).

21See Appendix A.6 for cross-sectional statistics for long-term forecasts.
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Table V – Cross-sectional moments by forecaster type

All Financial Inst. Banks Consulting Universities

Moment Data Model Data Model Data Model Data Model Data Model

Pr[∆f 6= 0] 0.43 0.40 0.45 0.44 0.38 0.37 0.47 0.47 0.34 0.32
E[∆f |adjust] 0.25 0.19 0.25 0.18 0.26 0.23 0.27 0.18 0.29 0.27
Hazard Slope -0.04 -0.04 -0.05 -0.05 -0.02 -0.02 -0.05 -0.05 -0.01 -0.01

Observations 12,355 5,366 2,567 2,982 1,440

Notes: Own calculations based on Bloomberg data between 2010-2019. For each specification we re-calibrate
the model to match the specific targeted moments for each of the subgroups.

Beyond economics, forecast lumpiness or anchoring is frequently motivated by a desire to

maintain consistency and credibility. In meteorology, forecasters adopt a lumpy approach to

updating weather predictions to preserve the credibility of their projections. Frequent back-and-

forth adjustments can undermine trust and create confusion among users (Griffiths, Marzocca and

Michaelides, 2019; Murphy and Winkler, 1987; Mullen and Buizza, 1993; Stewart and Lusk, 1994).

Our findings provide a deeper understanding of how these principles extend to professional

economic forecasting.

6.2 Strategic Motives and Heterogeneity

Finally, we analyze the behavior of different forecaster types to provide evidence of strategic mo-

tives. The survey categorizes forecasters into four groups: (i) financial institutions, (ii) banks, (iii)

consulting companies, and (iv) universities and research centers. Table V highlights substantial

heterogeneity in average cross-sectional moments. The most notable differences emerge between

consulting firms and universities; for example, consulting firms adjust their forecasts 30% more

frequently than universities.

To account for these differences, we recalibrate the model to match type-specific moments.

The variations in the cross-sectional moments of forecast revisions and errors suggest potential

differences in fixed costs (κ), strategic concerns (r), private signal noise (σζ), and the internally-

rational consensus volatility (σF ). Given the observed heterogeneity, we calibrate four distinct

versions of the model, each tailored to match the moments specific to a forecaster type. The results

of these recalibrations are presented in Table VI. We normalize values for financial institutions at

unity to ease the comparison.

Through the lens of the calibrated models, universities face higher revision costs and the

lowest strategic concerns among the four types. These differences underscore the importance of

considering forecast heterogeneity across forecaster types when analyzing survey data. Our findings

highlight that forecasters’ ex-ante heterogeneity, shaped by revision costs, strategic concerns, and

private signal noise, is critical in understanding professional forecasting behavior.
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Table VI – Calibration by forecaster type, relative to financial institutions

Parameter Financial Inst. Banks Consulting Universities

κ 1.00 (0.06) 1.08 0.94 1.29
r 1.00 (0.81) 0.62 0.89 0.50
σζ 1.00 (0.04) 1.16 1.14 2.28
σF 1.00 (0.10) 1.13 1.08 1.33

Notes: Calibration that targets the group-specific moments reported in Table V. The last line reports the RPE-
implied consensus volatility σF . Estimated parameters for banks, consulting companies, and universities are
expressed relative to those estimated for financial institutions (reported in parenthesis)

7 Final Thoughts

Professional forecasters revise their predictions in a lumpy manner, influenced by both new infor-

mation and strategic considerations. To capture this behavior, we develop a horizon-dependent

forecasting model that integrates preferences for stability and strategic concerns, successfully repli-

cating the observed data patterns. Importantly, while forecasters often appear to overreact to

private information, our cleansing method reveals that much of this overreaction diminishes when

accounting for these frictions, providing a clearer lens into their underlying beliefs.

Our findings have significant implications for the design and interpretation of expectations

surveys. Forecasters’ incentives, such as preferences for stability or reputational concerns, can

distort the measurement of beliefs, particularly when updates are infrequent or strategically mo-

tivated. For instance, evidence from the Brazilian FOCUS survey (Gaglianone, Giacomini, Issler

and Skreta, 2022) shows that forecast accuracy and update frequency increase significantly around

contests rewarding precision, while Ottaviani and Sørensen (2006) highlight how competitive en-

vironments influence the differentiation of forecasts. These insights suggest that better-designed

incentives could promote more accurate and frequent updates, enhancing the reliability of survey-

based measures of expectations.

In related work (Baley and Turen, 2024), we examine how lumpy forecasts respond to monetary

policy and information shocks, offering a framework to understand their impact on macroeconomic

expectations. This work underscores the importance of accounting for frictions in belief formation,

highlighting how such shocks can influence learning patterns and potentially cause deviations in

expectations from announced policy targets. Our findings shed light on the broader implications

for central bank communication strategies and the alignment of beliefs with policy objectives.
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A Data

A.1 Inflation definitions

We show how to approximate yearly inflation through year-on-year monthly inflation. As intro-
duced in Section 2.1, let cpit = 1

12

∑12
h=1 cpit,h be the average cpi in year t. Then, the annual

inflation equals:

πt = log(cpit)− log(cpit−1)(A.1)

= log

(
1

12

12∑
h=1

cpit,h

)
− log

(
1

12

12∑
h=1

cpit−1,h

)

≈Jensen 1

12

12∑
h=1

log (cpit,h)−
1

12

12∑
h=1

log (cpit−1,h)

=
1

12

12∑
h=1

(log (cpit,h)− log (cpit−1,h))

=
1

12

12∑
h=1

(log (cpih)− log (cpih+12))

=
12∑
h=1

1

12
(log (cpih)− log (cpih+12))︸ ︷︷ ︸

xh

=
12∑
h=1

xh

This last condition is what we show in Section 2.1. From this, it is important to stress when is the
sum of year-on-year monthly inflation a good approximation of annual inflation? Let us consider
a second-order Taylor approximation of log(p) around E[p], which yields:

log(p) ≈ log(E[p]) +
1

p̄
(p− E[p]) − 1

2E[p]2
(p− E[p])2(A.2)

Applying expectations on both sides (note that E[p] is a constant):

E[log(p)] ≈ log(E[p]) − Var[p]
2E[p]2

= log(E[p]) − CV2[p]

2
(A.3)

Applying the decomposition to annual inflation, letting p, p′ be the CPI in consecutive years, we
obtain:

(A.4) π = log(E[p])− log(E[p′]) = E[log(p)− log(p′)]︸ ︷︷ ︸
average year-on-year inflation E[x]

+
CV2[p]− CV2[p′]

2︸ ︷︷ ︸
differences in within-year dispersion

Hence, for similar within-year price dispersion (CV2[p] ≈ CV2[p′]) for two consecutive years,
then π ≈ E[x].
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A.2 Inflation summary statistics

Table A.1 shows the mean and the variance of yearly inflation for all years in our sample, separated
between normal (2010-2019), Turbulent (2008-2009 & 2020-2021) and Pandemic years (2020-2021).
years. We focus our analysis on normal and pandemic years, mostly since the observed inflation
dynamics were very different between the Great Recession and the COVID-19 pandemic. While
in the former episode, the US experienced a deflation (in fact, inflation was -0.3% in 2009), in the
latter, during the COVID-19 pandemic, inflation spiked up to 4.7% during 2021. Given this fact
and since these two episodes are also wide apart, we focus only on these two groups of years.

Table A.1 – Summary Statistics of Inflation

All Normal Turbulent Pandemic

Average E[π] 1.896 1.795 2.175 2.95
Volatility Var[π] 1.621 0.622 4.267 2.478

Years 14 10 4 2

Notes: The CPI Index for the US is extracted from FRED. In this
case we labelled the years 2010-2019 as Normal years, 2008-09 and
2020-21 as Turbulent years, and 2020-2021 as the Pandemic years.

A.3 Cross-sectional statistics by year

Figure A.1 – Adjustment Frequency and Size by Horizon and Year
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(c) Forecast errors
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Notes: This figure reports the evolution of the extensive, intensive and the MSFE across years (gray lines),
along with the average across years (solid black line). The data comes from Bloomberg between 2010 and 2019.
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A.4 Hazard rates by number of revisions

In this section, we compute the hazard rates given the number of revisions the forecasters have
made in the past. In this sense, we explore whether the age-dependence of updating probabilities
changes as a function of the revision being the first, second, third, and so forth. This is shown in
Figure A.2.

Figure A.2 – Hazard Rates by revisions

(a) Hazard Rate: 1st, 2nd and 3rd Rev.
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(b) Hazard Rate: 4th, 5th and 6th Rev.
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Notes: Own calculations using Bloomberg data between 2010 and 2019. For each case, we compute the prob-
ability of a forecast revisions as function of age, i.e., the hazard rate, conditioning on the number of revisions
made, over the term structure.

Independently of the revision, the decaying pattern of the hazard rates remains across spec-
ifications. While the probability of an immediate revision right at age one is roughly the same
across the number of revisions (between 45% and 50%), we notice that the likelihood drops as
more revisions accumulate throughout the year. Although the relations are not monotonic, in
most cases, the age probabilities are not statistically different across groups except for the first
revision hazard.

We interpret the decaying probability of the number of revisions as an implication of the fixed-
event scheme. Mechanically, as more revisions accumulate, the probability of doing additional
revisions drops as there are only a few remaining horizons before the target variable is finally
released. Overall, the fact that the adjustment decisions drop with the age of the forecast is also
consistent with the decaying pattern of the average frequency of revisions over the term structure.
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A.5 Extensive and Intensive Margin - Consensus Economics Survey

In this Section, we examine the robustness of our results using the Consensus Economics Survey
of Professional Forecasters. Again, we focus on individual expectations at the monthly frequency
for end-of-year inflation between 1995 and 2016 in the US. We have repeated the analysis as in our
baseline data through the years. One of the key differences between Consensus and the Bloomberg
survey is that in the former, participants can report predictions up to 3 decimal points. Thus, we
will contrast the extensive and intensive margin dynamics using the raw forecasts (No Rounding)
with the projections rounded up to the first decimal point (Rounding). Figure A.3 shows the
evolution of the adjustment probability.

Figure A.3 – Extensive Margin - Consensus Economics Survey
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Notes: Own calculations based on inflation expectations collected from Consensus Economics Survey of Pro-
fessional Forecasters during 1995 and 2016.

As noticed, even when we rely on three decimal predictions, the evidence still supports lumpy
behavior in inflation forecasts. During the last months before the variable was released, we also
observed a drop in the frequency of non-rounded forecast revisions, consistent with our data. When
we round the predictions up to the first decimal, the evolution of extensive margin resembles the
dynamics of the Bloomberg data. Figure A.4 reports the evolution of the magnitude of revisions
across the horizons. Again, there are no significant differences relative to our original results.

Figure A.4 – Intensive Margin - Consensus Economics Survey
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Notes: Own calculations based on inflation expectations collected from Consensus Economics Survey of Pro-
fessional Forecasters during 1995 and 2016.
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A.6 Cross-sectional statistics at long horizons

Figure A.5 below shows the cross-sectional statistics after extending the forecast horizon to 18
months ahead. As discussed, although there is information about inflation between eighteen and
thirteen months ahead, it is only twelve to one month ahead when there is relevant information
about monthly inflation. While the frequency of revisions remains relatively similar to the updating
probability between twelve and nine months ahead, the magnitude of revisions drops significantly
when we are out of the target year. We interpret this reduction as implying the absence of
relevant information in these longer terms. Consistent with this last intuition, the forecast error
rises abruptly at longer horizons.

Figure A.5 – Long-term forecasts
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Notes: The first row of the figure shows the extensive and intensive margins of forecast revisions. The second
row shows the variance and the MSFE of forecasts. The figure plots the evolution of these variables for a
forecast horizon of eighteen months. The data comes from Bloomberg between 2010 and 2019.
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A.7 Cross-sectional statistics by forecaster type

Figure A.6 shows the term structure of adjustment frequency, size, and hazard rate for each of
the four groups. These term structures are broadly consistent with the general patterns observed
for the average moments, with universities being the group that adjusts less often but for more
significant amounts across horizons, while consulting firms do the opposite. The hazard rates
for forecasters belonging to either “Financial & Investment” or “Economic Consulting” are the
steepest relative to the other two groups. Hence, although they decrease, the updating probability
is less sensible to the age of both Banks and Universities.

Figure A.6 – Term Structure of Revisions and Errors: By Forecaster Type
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Notes: The figure shows the evolution of the extensive and intensive margin of forecast revisions and the hazard
rate for each of the four subgroups of survey participants. The data comes from Bloomberg between 2010 and
2019.

Figure A.7 – Forecast Errors by Groups
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Notes: The figure shows the evolution of the MSFE for each of the four subgroups of survey participants. The
data comes from Bloomberg between 2010 and 2019.

8



B Estimate of inflation process

Let the monthly inflation rate xh follow an AR(1) process:

(B.5) xh = cx + φxxh+1 + εxh, εxh ∼ N (0, σ2
x),

where cx is a constant, φx is the persistence parameter, and εxh is an iid normally distributed noise
with volatility σ2

x.
Through OLS, we estimate the three parameters (cx, φx, σ

2
x) = (0.013, 0.932, 0.036) using the

monthly inflation rate from the CPI for 2010-2019. Figure B.8 plots the resulting estimates and
95% confidence intervals.

Figure B.8 – Rolling Estimates for Inflation Parameters
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Notes: Estimated results using official monthly inflation rate from the CPI between 2008-2021. The externally
set parameters are given by the simple average across the studied sample 2010-2019.

We include the more Great recession 2008-2009 and the COVID pandemic 2020-2021 as a
comparison. Regarding our range of years, it is clear that the parameters are fairly stable with
respect to the more turbulent years counterpart.
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C Proofs

C.1 Inflation process

Demeaned monthly inflation We begin with the AR(1) process for monthly inflation:

(C.1) xh = cx + φxxh+1 + εxh, εxh ∼ N (0, σ2
x).

This process has unconditional mean of cx
1−φx and unconditional variance of σ2

x

1−φ2x
. For any h, we

can rewrite (C.1) as deviations from the unconditional mean:

(C.2) xh −
cx

1− φx
= φx

(
xh+1 −

cx
1− φx

)
+ εxh.

Annual inflation Annual inflation π is approximately equal to the sum of the twelve realizations
of monthly inflation xh within each target year π =

∑12
h=1 xh. See appendix A.1. Without loss of

generality, we can derive π as a function of the initial value of monthly inflation x12:

x1 =
cx

1− φx
+ φ11

x

(
x12 −

cx
1− φx

)
+

10∑
j=0

φjxε
x
j+1

. . .

x10 =
cx

1− φx
+ φ2

x

(
x12 −

cx
1− φx

)
+ φxε

x
11 + εx10

x11 =
cx

1− φx
+ φx

(
x12 −

cx
1− φx

)
+ εx11,

Summing up the monthly values x1, x2, . . . , x12 we get an expression for annual inflation at horizon
h = 12:

π = 12

(
cx

1− φx

)
+

1− φ12
x

1− φx

(
x12 −

cx
1− φx

)
+

11∑
j=1

1− φjx
1− φx

εxj .(C.3)

Similarly, for any h within the year, we can derive an expression for π. Importantly, as h shrinks
(as we get closer to the release date), we start summing the actual lagged values of inflation
starting at h = 12 until h while we project the remaining months of the year using the last piece
of available information xh. In particular, annual inflation at any given horizon h = 12, 11, . . . , 1
can be written as follows:

π = h

(
cx

1− φx

)
+

(1− φhx)
1− φx

(
xh −

cx
1− φx

)
+

12∑
i=h+1

xj +
h−1∑
j=1

1− φjx
1− φx

εxj ,(C.4)
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where
∑12

i=h+1 xj = 0 for i = 12. If h = 1 then π =
∑12

h=1 xh. The unconditional mean and
variance of end-of-year inflation are:

E[π] =
12cx

1− φx
(C.5)

Var[π] = σ2
x

h−1∑
j=1

(
1− φjx
1− φx

)2

.(C.6)

To compute annual inflation from the perspective of h = 13, we use the fact that

(C.7) x12 −
cx

1− φx
= φx

(
x13 −

cx
1− φx

)
+ εx12.

Thus, when summing up the monthly values x1, x2, . . . , x12, we get

π = 12

(
cx

1− φx

)
+ φx

1− φ12
x

1− φx

(
x13 −

cx
1− φx

)
+

12∑
j=1

1− φjx
1− φx

εxj .(C.8)

C.2 End-of-year inflation beliefs

At each horizon, forecasters form end-of-year inflation beliefs π|I ih ∼ N (π̂ih,Σ
π
h) by projecting their

monthly beliefs using the AR(1) structure. In turn, the monthly beliefs are constructed using the
AR(1) one-period ahead prediction and the private signal x̃ih = xh+ζih. In addition, the historical
values of lagged monthly inflation are observed without noise. Thus, the forecasters information
set at each horizon I ih = {x̃ih, xh+1, xh+2, . . . }.

Conditional mean Taking the conditional expectation of equation (C.4), given information up
to horizon h, delivers the conditional mean π̂ih ≡ E[π|I it ]:

(C.9) π̂ih = h

(
cx

1− φx

)
+

1− φhx
1− φx

(
x̂ih −

cx
1− φx

)
+

12∑
i=h+1

xj for h = 12, . . . , 1

which corresponds to equation (19) in the text.

Conditional variance To compute the conditional variance, we first define forecast errors as
the difference between end-of-year inflation π in (C.4) and the conditional mean εih ≡ π − π̂ih in
(C.9):

εih = π − π̂ih =
1− φhx
1− φx

((1− α)εxh + αζih) +
h−1∑
j=1

1− φjx
1− φx

εxj ∀h(C.10)
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Where α ≡ σ−2
ζ

σ−2
x +σ−2

ζ

as discussed in the main text. Squaring and taking expectations, we obtain

the variance of the forecast error Σπ
h ≡ E[(εih)

2] at each horizon h:

Σπ
h =

(
1− φhx
1− φx

)2

((1− α)2σ2
x + α2σ2

ζ ) +
σ2
x

(1− φx)2

h−1∑
j=1

(1− φjx)2 ∀h(C.11)

where we used that shocks are i.i.d εxh
iid∼ N (0, σ2

x), ζ
i
h

iid∼ N (0, σ2
ζ ), ηh

iid∼ N (0, σ2
η) and uncorrelated

E[ζ ih, ηh] = 0. We simplify the last term with the sum as follows:

h−1∑
j=1

(1− φjx)2 = (1− φx)2 + (1− φ2
x)

2 + . . . + (1− φh−1)2

= 1 − 2φx + φ2
x + 1 − 2φ2

x + φ4
x + . . . + 1 − 2φh−1 + φ2(h−1)

= (h− 1)− 2(φx + φ2
x + · · ·+ φh−1

x ) + (φ2
x + φ4

x + . . .+ φ2(h−1))

= (h− 1)− 2φx(1− φh−1
x )

1− φx
+
φ2
x(1− φ2(h−1)

x )

1− φ2
x

Substituting back into (C.11), we obtain the expression for the signal variance in
(C.12)

Σπ
h = [(1− α)2σ2

x + α2σ2
ζ ]

(
1− φh
1− φ

)2

+
σ2
x

(1− φ)2

[
(h− 1)− 2φ(1− φh−1)

1− φ +
φ2(1− φ2(h−1))

1− φ2

]
.

The conditional variance is common across forecasters; thus, we denote it as Σz,h.

C.3 Relationship between individual vs. aggregate beliefs

To construct individual belief about yearly inflation π̂ih in (19), forecasters combines the past
release xh+1 with their noisy private signal x̃ih to generate a monthly belief x̂ih, which is then
projected to obtain the yearly forecast

(C.13) π̂ih = h

(
cx

1− φx

)
+

1− φhx
1− φx

(
x̂ih −

cx
1− φx

)
+

12∑
j=h+1

xj.

In contrast, the public belief about yearly inflation zh in (21) only projects the past release xh+1

to obtain the yearly forecast (note the extra φx in the second term of the expression reflecting the
timing of the information):

(C.14) zh = h

(
cx

1− φx

)
+

φx(1− φhx)
1− φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj.

Next, we establish a useful relationship between the private and public beliefs about yearly
inflation. Starting from (C.13), we substitute the expression for x̂ih = (1 − α)xARh + αx̃ih. Then,
we substitute xARh = E[xh|Ih] = cx + φxxh+1 and the noisy signal x̃ih = xh + ζ ih. We also use

xh = xARh + εxh. Lastly, we define the noise term νih ≡ 1−φhx
1−φxα(εxh + ζ ih), which includes idiosyncratic

signal noise and the one-period ahead forecasting error arising from the different timing in the use
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of information.

π̂ih = h

(
cx

1− φx

)
+

1− φhx
1− φx

(
xARh −

cx
1− φx

+ α(xh − xARh ) + αζ ih

)
+

12∑
j=h+1

xj(C.15)

= h

(
cx

1− φx

)
+

1− φhx
1− φx

(
φx

(
xh+1 −

cx
1− φx

)
+ α(εxh + ζ ih)

)
+

12∑
j=h+1

xj

= h

(
cx

1− φx

)
+

1− φhx
1− φx

(
φx

(
xh+1 −

cx
1− φx

))
+

12∑
j=h+1

xj︸ ︷︷ ︸
zh

+
1− φhx
1− φx

α(εxh + ζ ih)︸ ︷︷ ︸
νih

= zh + νih, where νiη ∼ N
(

0,

[
1− φhx
1− φx

]2

α2(σ2
x + σ2

ζ )

)
.

where α is the weight on private signals: α ≡ σ−2
ζ /(σ−2

x + σ−2
ζ ). We can further simplify the noise

term since:

α2(σ2
x + σ2

ζ ) =

(
σ−2
ζ

σ−2
x + σ−2

ζ

)2

(σ2
x + σ2

ζ ) =

( 1
σ2
ζ

1
σ2
x

+ 1
σ2
ζ

)2

(σ2
x + σ2

ζ )(C.16)

=

 1
σ2
ζ

σ2
ζ+σ2

x

σ2
ζσ

2
x


2

(σ2
x + σ2

ζ ) =

(
σ2
x

σ2
ζ + σ2

x

)2

(σ2
x + σ2

ζ ) =
σ4
x

σ2
ζ + σ2

x

(C.17)

Therefore, individual beliefs are decomposed as:

(C.18) π̂ih = zh + νih, where νiη ∼ N
(

0,

[
1− φhx
1− φx

]2
σ4
x

σ2
ζ + σ2

x

)
.

When signal noise is very large (σ2
ζ → ∞), the idiosyncratic component of beliefs has zero dis-

persion because private signals are ignored. When signal noise is tiny (σ2
ζ → 0), the idiosyncratic

component of beliefs has dispersion equal to σ2
x. Beliefs become perfectly correlated, and the

remaining noise comes from projecting xh+1 instead of xh.

C.4 Martingale property of beliefs

We show that beliefs follow a martingale, that is, the expectation of future belief at h− 1 equals
the current belief at h, i.e., E[π̂ih−1|I ih] = π̂ih. First, we use the relationship between public and
private beliefs in (C.15) to set the expectation of future individual noise ν to zero.

(C.19) E[π̂ih−1|I ih] = E[zh−1 + νih−1|I ih] = E[zh−1|I ih].

13



Second, we show that the expected public belief equals current public belief. Substituting in the
expression for zh−1 in (21) and applying the expectation conditional on I ih, we get:

E[zh−1|I ih] = (h− 1)
cx

1− φx
+

φx(1− φh−1
x )

1− φx

(
x̂ih −

cx
1− φx

)
+ x̂ih +

12∑
j=h+1

xj.

In the last sum, we separate x̂ih ≡ E[xh|I ih] that is not yet released from the rest of known values
for h = 12, ..., h+ 1. Finally, we rearrange the expression to recover the expression for individual
beliefs π̂ih plus three summands that cancel out:

E[zh−1|I ih] = h
cx

1− φx
+

1− φhx
1− φx

(
x̂ih −

cx
1− φx

)
+

12∑
j=h+1

xj︸ ︷︷ ︸
= π̂ih

− cx
1− φx

− 1− φx
1− φx

(
x̂ih −

cx
1− φx

)
+ x̂ih︸ ︷︷ ︸

= 0

.

We conclude that E[zh−1|I ih] = π̂ih. As data on monthly inflation arrives, forecasters add the
new observations to their dataset and update their estimates. Belief changes tend to be very
persistent, even if the shocks that caused the beliefs to change are transitory. As a result, any
changes in beliefs induced by new information are approximately permanent (Kozlowski, Veldkamp
and Venkateswaran, 2020a,b).

C.5 Proof of Proposition 1

First, using the law of iterated expectations, we condition payoffs on the horizon-specific informa-
tion sets:

E

[
1∑

h=12

E[(f ih − π)2|I ih] + r E[(f ih − Fh)2|I ih] + κ1{f ih 6=f ih+1}
∣∣∣I i0
]

Second, we add and subtract beliefs π̂ih ≡ E[π|I ih] and F̂ i
h ≡ E[Fh|I ih] and open the squares:

E

[
1∑

h=12

E[(f ih − π̂ih + π̂ih − π)2|I ih] + r E[(f ih − F̂ i
h + F̂ i

h − Fh)2|I ih] + κ1{f ih 6=f ih+1}
∣∣∣I i0
]

= E

[
1∑

h=12

E[(f ih − π̂ih)2|I ih] + E[(π̂ih − π)2|I ih] + 2E[(f ih − π̂ih)(π̂ih − π)|I ih]
∣∣∣I i0
]

+ rE

[
1∑

h=12

E[(f ih − F̂ i
h)

2|I ih] + E[(F̂ i
h − Fh)2|I ih] + 2E[(f ih − F̂ i

h)(F̂
i
h − Fh)|I ih]

∣∣∣I i0
]

+ κE

[
1∑

h=12

1{f ih 6=f ih+1}
∣∣∣I i0
]
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Third, we rewrite using conditional variances Σπ
h ≡ E[(π̂ih − π)2|I ih] and ΣF

h ≡ E[(F̂ i
h − Fh)2|I ih]

and the fact that beliefs are unbiased E[(π̂ih − π)|I ih] = E[(F̂ i
h − Fh)|I ih] = 0:

1∑
h=12

Σπ
h + rΣF

h + (f ih − π̂ih)2 + r(f ih − F̂ i
h)

2 + κ1{f ih 6=f ih+1}.

C.6 Proof of Proposition 2

Given the stationarity of the problem and the stochastic processes, we apply the Principle of
Optimality to the sequential problem and express it as a sequence of stopping-time problems. Let
τ be the stopping data associated with the optimal decision given the state (π̂ih, F̂

i
h). The stopping

time problem is given by:
As it is standard, the solution to the stopping time problem is characterized by solving the

following problem. Let (π̂ih, F̂h, f
i
h+1) be the state of the forecaster i at horizon h. Then the value

Vh(π̂ih, F̂h, f ih+1) is given by

(C.20) Vh(π̂ih, F̂h, f ih+1) = min{ VIh(π̂ih, F̂h, f
i
h+1)︸ ︷︷ ︸

inaction

, VAh (π̂ih, F̂h)︸ ︷︷ ︸
action

}

where the value of inaction VIh and the value of action VAh are, respectively,

VIh(π̂ih, F̂h, f
i
h+1) = Σh + (f ih+1 − π̂ih)2 + r(f ih+1 − F̂h)

2 + E[Vh−1(π̂ih−1, F̂h−1, f
i
h+1)|I ih]

VAh (π̂ih, F̂h) = κ + Σh + min
f ih

{
(f ih − π̂ih)2 + r(f ih − F̂h)2 + E[Vh−1(π̂ih−1, F̂h−1, f

i
h)|I ih]

}
subject to the evolution of inflation beliefs in (19) and (20), and consensus beliefs in (17).
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D Computational strategy

Solving the problem requires computing expectations of future beliefs. Since all random variables
are normal, this amounts to knowing the first two moments of these distributions. Next, we
characterize these moments. Afterward, we use these moments to compute expectations.

D.1 Initial forecast

At the beginning of each year, we assume initial forecasts equal the 13-months ahead belief, which
is optimal without frictions (κ = r = 0):

(D.21) f i13 = π̂i13 = z13 + νi13, νi13 ∼ N (0, σ2
13)

where z13 is constructed using the projection formula in (21)

z13 = 12

(
cx

1− φx

)
+ φx

1− φ12
x

1− φx

(
x̂13 −

cx
1− φx

)
(D.22)

and the monthly belief equals x̂i13 = α[cx + φxx14] + (1− α)x̃i13.

D.2 Distributions of expected beliefs

The law of motion of individual states implies the following values at h− 1:

π̂ih−1 =

(
Σz,h−1

σ2
o + Σz,h−1

)
µo +

(
1− Σz,h−1

σ2
o + Σz,h−1

)
π̂iπ̂ih−1(D.23)

F̂h−1 = cF + φFFh(D.24)

Expected consensus beliefs The mean and variance of the distribution of expected consensus
beliefs at h− 1, from the perspective of horizon h (with knowledge up to Fh+1), are:

E[F̂h−1|I ih] = cF + φFE[Fh|I ih] = cF (1 + φF ) + φ2
FFh+1(D.25)

Var[F̂ i
h−1|I ih] = φ2

FVar[Fh|I ih] = φ2
Fσ

2
F(D.26)

Expected inflation beliefs The mean and variance of the distribution of expected inflation
beliefs at h− 1, from the perspective of horizon h, are:

E[π̂ih−1|I ih] =

(
Σz,h−1

σ2
o + Σz,h−1

)
µo +

(
1− Σz,h−1

σ2
o + Σz,h−1

)
E[π̂ih−1|I ih](D.27)

Var[π̂ih−1|I ih] =

(
σ2
oΣz,h−1

σ2
o + Σz,h−1

)2

Var[π̂ih−1|I ih](D.28)

Now we compute the mean E[π̂ih−1|I ih] and variance Var[π̂ih−1|I ih] of the idiosyncratic signal from
the perspective of horizon h—inputs into the formulas above.
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Expected signals We evaluate the formula for π̂ih in (C.18) at h−1, and separate the observation
xh from the sum yields:

(D.29) π̂ih−1 = (h− 1)

(
cx

1− φx

)
+

1− φh−1
x

1− φx

(
x̃ih−1 −

cx
1− φx

)
+ xh +

12∑
j=h+1

xj.

Then, we take the expectation conditional on I ih:

(D.30) E[π̂ih−1|I ih] = (h− 1)

(
cx

1− φx

)
+

1− φh−1
x

1− φx

(
E[x̃ih−1|I ih]−

cx
1− φx

)
+ E[xh|I ih] +

12∑
j=h+1

xj

Next, we use the fact that E[x̃ih−1|I ih] = E[xh−1|I ih] (because public and private noise have zero
mean) and E[xh−1|I ih] = cx+φxE[xh|I ih] (by the AR(1) assumption). Substituting into the previous
expression:

E[π̂ih−1|I ih] = (h− 1)

(
cx

1− φx

)
+

1− φh−1
x

1− φx

(
cx + φxE[xh|I ih]−

cx
1− φx

)
+ E[xh|I ih] +

12∑
j=h+1

xj

Rearranging, we obtain:

E[π̂ih−1|I ih] = h

(
cx

1− φx

)
+ φx

1− φh−1
x

1− φx

(
E[xh|I ih]− cx

1− φx

)
+ E[xh|I ih]−

cx
1− φx

+
12∑

j=h+1

xj

Lastly, we substitute the AR(1) assumption E[xh|I ih] = cx + φxxh+1:

(D.31) E[π̂ih−1|I ih] = h

(
cx

1− φx

)
+ φ2

x

1− φh−1
x

(1− φx)2
xh+1 + φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj.

For the variance, we apply the variance operator to (D.29) and note that the terms in the sum
disappear because they are known at h. Thus we are left with two terms.

Var[π̂ih−1|I ih] =

(
1− φh−1

x

1− φx

)2

Var[x̃ih−1|I ih] + Var[xh|I ih]

=

(
1− φh−1

x

1− φx

)2 (
φ2
xVar[xh|I ih] + σ2

x + σ2
ζ + σ2

η

)
+ Var[xh|I ih]

=

(
1− φh−1

x

1− φx

)2 (
φ2
xσ

2
x + σ2

x + σ2
ζ + σ2

η

)
+ σ2

x

where we use Var[xh|I ih] = σ2
x and the structure of the signal and the AR(1) assumption to write

(D.32) x̃ih−1 = xih−1 + ζ ih−1 + ηh−1 = cx + φxxh + εxh−1 + ζ ih−1 + ηh−1.
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D.3 Computing expectations

We approximate the expected continuation value of the value of action and inaction derived in
Proposition 2 as follows

(D.33) E[Vh−1(π̂ih−1, F̂h−1, f
i
h+1)|I ih] =

∑
π̂ih−1

∑
F̂h−1

Vh−1(π̂ih−1, F̂h−1, f
i
h+1)ω(π̂i)ω(F̂ )

where weights {ω(π̂i), ω(F̂ )} are constructed with Gaussian quadrature over grids for π̂i and F̂ .
Integration weights ωF̂ are such that F̂h−1|I ih ∼ N (E[F̂h−1|I ih],Var[F̂ i

h−1|I ih]) with

E[F̂h−1|I ih] = Fh+1

Var[F̂ i
h−1|I ih] = σ2

F

Integration weights ωπ̂i are such that π̂ih−1|I ih ∼ N
(
E[π̂ih−1|I ih],Var[π̂ih−1|I ih]

)
, with

E[π̂ih−1|I ih] = h

(
cx

1− φx

)
+ φ2

x

1− φh−1
x

(1− φx)2
xh+1 + φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj

Var[π̂ih−1|I ih] = σ2
x +

(
1− φh−1

x

1− φx

)2 (
φ2
xσ

2
x + σ2

x + σ2
ζ

)
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E Comparative statics

We show how parameters affect the optimal forecasting policy.

Preference for stability κ A higher fixed revision cost makes the inaction band wider.

(a) small κ

1.5 2 2.5

1.5

2

2.5

(b) large κ

1.5 2 2.5

1.5

2

2.5

Strategic concerns r Strategic concerns shape the slope of the inaction region.

(a) r = 0

1.5 2 2.5

1.5

2

2.5

(b) large r

1.5 2 2.5

1.5

2

2.5
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Idiosyncratic noise σ2
ζ More noise increases the option effect, widening the inaction region.

(a) small σ2
ζ

1.5 2 2.5

1.5

2

2.5

(b) large σ2
ζ

1.5 2 2.5

1.5

2

2.5

Horizon h As the horizon shrinks, uncertainty falls and thus it is a similar effect to σ2
ζ .

(a) h = 12

1.5 2 2.5

1.5

2

2.5

(b) h = 1
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F Consistency of consensus process

In this section, we further validate the consistency of the consensus’s assumed random walk.
According to the estimation, the perceived law of motion for consensus is Fh = Fh+1 + εFh with
εFh ∼ N (0, 0.112). Thus, the perceived process is

(F.34) F̂t = F̂t−1 + εF̂t , εFh ∼ N (0, 0.112)

The actual law of motion is

(F.35) Fh = −0.03 + 1.01Fh+1 + εFh , εFh ∼ N (0, 0.112).

Figure F.13 – Consensus belief consistency

(a) Time series

50 100 150 200

1

2

3

4

(b) Perceived vs. Actual Consensus

Notes: The figure shows the evolution of the consensus forecasts F and the beliefs F̂ over time. The time series
is constructed using our proposed model using the benchmark calibration.

Dickey-Fuller test We run a Dickey-Fuller test on the simulated series of the actual consensus
process F to test the null hypothesis that a unit root is present. The estimate of interest is ρ in
the expression

(F.36) Ft+1 = α + ρFt + εt+1.

The estimation uses Nyears randomly drawn from the model. Figure F.14 shows the average
estimate and the 95% confidence interval obtained by bootstrap when Nyears ∈ {1, ..., 10} are
employed in the estimation.

Given the test, we can not reject the null that the consensus process Ft+1 follows a unit root
process.
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Figure F.14 – Dickey-Fuller Tests

Notes: Average estimate of ρ and the 95% confidence interval obtained by bootstrap when Nyears ∈ {1, ..., 10}.

G On the role of fixed costs and strategic concerns

We explore two alternative model versions of the model to assess the role of fixed costs κ and
strategic concerns r. In each panel of Figure G.15, we plot four lines: data (red), benchmark
(blue), zero fixed costs κ = 0 (dashed pink), and zero strategic concerns r = 0 (dotted blue). In
each alternative, we re-estimate the model’s parameters to fit a subset of the target moments.

Figure G.15 – Cross-sectional moments across model configurations

(a) Frequency of revisions (b) Size of revisions (c) Hazard Rate

Notes: Bloomberg data for normal years = 2010-2019. Benchmark calibration uses parameters from Table II:
κ = 0.083, r = 0.263, σζ = 0.098. No fixed costs: sets κ = 0 and re-estimates parameters. No strategic concerns:
sets r = 0 and re-estimates parameters.
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As expected, the model with zero fixed costs implies a frequency of revisions equal to one for
all horizons and thus fails dramatically in replicating the observed empirical patterns. Similarly,
as shown in Figure G.15c, the hazard rate concentrates all the probability at age zero in this case.
Likewise, as agents constantly revise their predictions, the distribution of final revisions is always
at zero, as depicted by Figure G.16b. Finally, while the intensive margin and the mean square
error resemble the baseline model and the data, the absence of the stability cost makes the model
sensible to the consensus gap regarding the positive and negative relative probability.

Figure G.16 – Untargeted Moments

(a) Mean Squared Error (b) Distribution of Final Revision

Notes: Bloomberg data for normal years = 2010-2019. Benchmark calibration uses parameters from Table II:
κ = 0.083, r = 0.263, σζ = 0.098. No fixed costs: sets κ = 0 and re-estimates parameters. No strategic concerns:
sets r = 0 and re-estimates parameters.

The model with no strategic concerns only marginally decreases the frequency of revisions
relative to the baseline model and, consequently, slightly increases the size of revisions. What is
interesting is the behavior of the hazard rate. As discussed in the data, the hazard rate is downward
sloping, meaning that an “older” forecast is much less likely to be revised than a recently revised
one. Intuitively, this means that the consensus forecast becomes more persistent as a function
of age. Therefore, when we remove the concern for being close to the average, the updating
probability becomes less “age-dependent”, delivering a flatter hazard rate, which is precisely what
Figure G.15c shows.22

22This result holds even after we specifically target such slope as described by Table III.
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Figure G.17 – Untargeted Moments - Extensive and Intensive Margins

(a) Only fixed cost (b) Only Strategic

(c) Intensive Margin

Notes: Bloomberg data for normal years = 2010-2019. Benchmark calibration uses parameters from Table II:
κ = 0.083, r = 0.263, σζ = 0.098. No fixed costs: sets κ = 0 and re-estimates parameters. No strategic concerns:
sets r = 0 and re-estimates parameters.

H Cleansing forecasts in the data

Here we present the results of our auxiliary regression to back-out the data-implied parameter r.
The results are shown in Table H.2.

As noticed, it is relevant to estimate the regression conditioning on updaters only as a further
validation of our calibrated theory. As shown in column (2) of Table H.2, when we condition on
updaters, r = 0.79, entirely in line with our estimated parameters. The precision of the estimation
improves significantly when we account for updates only. The estimated r remains relatively stable
when we add further macro controls such as the lagged inflation rate, industrial production, and
the 3-month T-Bill rate. In all the estimations we included forecasters, horizon, and year-fixed
effects. The standard errors are robust and clustered by forecaster and time, while the reputation
concern parameter r̂ was estimated through β̂2 using the Delta-Method.
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Table H.2 – Individual forecast determinants

All Updaters

β1 0.1998 0.2807 0.2668
(.0444) (.0646) (.0566)

β2 0.5791 0.4411 0.4846
(.1070) (.1113) (.0888)

Constant 0.4033 0.4798 0.5215
( .2036) (.2765) (.2868)

Macro Controls × × X
Horizon, Year FE X X X
Forecasters FE X X X
N 9,562 3,898 3,898
R2 0.7674 0.8398 0.8501

r̂ = β̂2/(1− β̂2) 1.3760 0.7891 0.9401
(.6041) (.3561) (.3343)

Notes: The table shows the estimated coefficients from equation (29). The
first column includes all observation, while the second and third columns
conditions on non-zero revisions. We include forecasters, horizon, and year-
fixed effects. Standard errors are robust and clustered by forecaster and
time.The r̂ is estimated through β̂2 using the Delta-Method.
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