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Abstract

How should we evaluate and compare the performances of policy institutions? We
propose to evaluate institutions based on their reaction function, i.e., on how well they
reacted to the different shocks that hit the economy. We show that reaction function
evaluation is possible with only two sufficient statistics (i) the impulse responses of the
policy objectives to non-policy shocks, which capture what an institution did on average
to counteract these shocks, and (ii) the impulse responses of the policy objectives to
policy shocks, which capture what an institution could have done to counteract the
shocks. A regression of (i) on (ii) —a regression in impulse response space— allows
to compute the distance to the optimal reaction function, and thereby evaluate and
rank institutions. We use our methodology to evaluate US monetary policy; from the
Gold standard period, the early Fed years and the Great Depression, to the post World
War II period, and the post-Volcker regime. We find no material improvement in the
reaction function over the first 100 years, and it is only in the last 30 years that we
estimate large and uniform improvements in the conduct of monetary policy.
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1 Introduction

How should we evaluate and compare the performance of policy institutions? How should

we evaluate and compare policy makers after their term in office? These questions are of

central importance to the good functioning of democratic and accountable institutions, but

there is little consensus on a method for evaluating and comparing performance.

A naive approach could consist in measuring performance based on realized macroeco-

nomic outcomes. For instance, we could assess a central banker based on average inflation

and unemployment outcomes over her term. Unfortunately, that approach suffers from three

types of confounding factors: (i) different policy makers may face different initial conditions,

e.g. a central banker can inherit a strong or weak economy from her predecessor, (ii) dif-

ferent policy makers may face different economic disturbances, e.g., a central banker may

experience a financial crisis or an energy price shock that will affect her ability to stabilize

inflation and unemployment, and (iii) different policy makers may live in different economic

environments, e.g., a steeper or flatter Phillips curve will affect a central banker’s ability to

control inflation.

This triplet of confounding factors coming from different initial conditions, different dis-

turbances and different economic environments severely limits our ability to evaluate policy

makers based on realized outcomes.

To make progress it is instructive to consider an ideal, yet infeasible, approach for com-

paring policy makers: an experimental approach. Consider setting up a laboratory, in which

different policy makers are given the same mandate —minimizing a loss function involving

some policy objectives— and are subjected to the same initial conditions and the same eco-

nomic environment. The different policy makers are then exposed to the same sequence of

shocks, and they each make decisions that aim to achieve the mandate. Afterward, we can

compare performance from the realized losses and conclude which policy maker performed

better. Such comparison would be on equal grounds as the only source of variation would

come from the policy makers’ reaction functions, i.e., from the different ways each policy

maker reacted to the same of sequence shocks.

In this paper, we propose an empirical method that aims to mimic this ideal “reaction

function comparison” experiment while making minimal structural assumptions on the un-

derlying economic model and the underlying policy rule. Our approach exploits a simple

idea: while different policy makers are never exposed to the same sequences of non-policy

shocks, they are often exposed to the same types of shocks; for instance energy price shocks,

financial shocks, war shocks, or even pandemic shocks. By comparing how well different

policy makers performed in response to such common shocks, we can approach the ideal

empirical setting sketched above: assessing and comparing performance from the different
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ways each policy maker reacted to the same types of shocks.

Geometrically speaking, our strategy amounts to projecting realized macroeconomic out-

comes on a space spanned by well chosen non-policy shocks (common to the policy makers

under comparison) and to study policy performance in that space. In fact, in that subspace

policy evaluation reduces to a simple optimization problem that only involves two well-

known (and estimable) sufficient statistics: (i) the impulse responses of the policy objectives

to non-policy shocks, and (ii) the same impulse responses but to policy shocks.

The first set of impulse responses —the impulse responses to a specific non-policy shock—

capture the average effects of that non-policy shock under the policy maker’s reaction func-

tion and allow to compute a conditional loss; a loss conditional on that non-policy shock.

For instance, with a quadratic loss function the conditional loss is simply the sum-of-squares

of that impulse response. While it is tempting to assess and compare performance based on

that impulse response alone, this is not enough since other factors beyond a policy maker’s

reaction function could generate a lower conditional loss, i.e., a more stable impulse response.

For instance, a different economic environment could make the economy more stable inde-

pendently of the policy makers’ reaction function. To assess how well a policy maker reacted

to that specific non-policy shock, we need to know the outcome of a policy rule counterfac-

tual: how a different reaction would have affected the economy. That counterfactual can be

recovered by the second set of impulse responses —the impulse responses to policy shocks—,

which allow to compute how a different reaction function would have affected the conditional

loss —what the policy maker could have done to counteract the non-policy shock—.

We show that for a large class of models and quadratic loss functions the distance to

the optimal reaction, or Optimal Reaction Adjustment (ORA), can be computed from a

simple regression in “impulse response space”: a regression of the impulse responses to the

non-policy shock on the impulse responses to policy shocks.

The ORA measures by how much more or less a policy maker should have responded to

a given non-policy shock, and it provides a direct measure of policy performance conditional

a specific type of non-policy shock. Overall policy performance can then be assessed by

measuring the ORAs for different types of non-policy shocks.

While environments can be different across policy makers, the ORA statistic “controls”

for the economic environment, capturing the distance to an optimal reaction function given

the economic environment. We can thus use the ORAs to compare policy makers or policy

institutions across time (say the Fed in 1930s vs the Fed in the 2000s) or across space (say

the Fed vs the ECB).

With the ORA depending only on impulse responses to shocks, the evaluation and com-

parison of policy makers reduces to a well-known econometric task: the estimation of struc-

tural impulse responses, and this realization opens a number of important avenues for policy
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evaluation, as one can draw on a large macro-econometric literature to evaluate policy insti-

tutions. See e.g., Ramey (2016) for a recent discussion of structural shock identification and

Stock and Watson (2016), Kilian and Lütkepohl (2017) and Li, Plagborg-Møller and Wolf

(2022) for recent work on impulse response estimation methods.

We then apply our methodology to study the performance of US monetary policy over

the past 150 years. Our method allows us to address and revisit many important questions

regarding the conduct of monetary policy over the past 150 years: (i) Did the founding of

the Federal Reserve in 1913 led to superior macro outcomes than during the passive Gold

standard period (e.g., Bordo and Kydland, 1995)? Or did the founding of Fed led to worse

performance? (ii) While many people would agree that monetary policy was superior during

the 2007-2009 financial crisis than during the 1929-1933 financial crisis (e.g., Wheelock et al.,

2010), can we confirm and quantify this improvement? In other words, did Bernanke fulfill

his promise to Milton Friedman when he said that the Fed “won’t do it again”, i.e., won’t

repeat the mistakes of the Great Depression (Bernanke, 2002)? (iii) More generally, did

monetary policy improve since the Great Depression? Is the Great Moderation post Volcker

a sign of good policy or simply the outcome of good luck? (e.g., Clarida, Gaĺı and Gertler,

2000; Gaĺı and Gambetti, 2009)?

To assess and compare monetary policy performance across historical periods, we evaluate

how monetary policy responded to five types of non-policy shocks: (i) financial shocks, (ii)

government spending shocks, (iii) energy price shocks, (iv) inflation expectation shocks and

(v) productivity shocks, and we evaluate US monetary policy over four distinct periods:

(a) 1879-1912 covering the Gold standard period until the founding of the Federal Reserve,

(b) 1913-1941 covering the early Fed years to the US entering World War II, (c) 1954-

1984 covering the post World War II period until the beginning of the Great Moderation,

and (d) 1990-2019 covering the Great Moderation period, the financial crisis and up to

the COVID crisis. In each case, we leverage on a large empirical literature on structural

shocks identification to identify banking panics (Reinhart and Rogoff, 2009), energy price

shocks (Hamilton, 2003), government spending shocks (Ramey and Zubairy, 2018), TFP

shocks (Gali, 1999), inflation expectation shocks (Leduc, Sill and Stark, 2007) and monetary

shocks (Friedman and Schwartz, 1963; Romer and Romer, 1989, 2004b; Gürkaynak, Sack

and Swanson, 2005). The identification of monetary shocks is more challenging (and less

developed) for the Gold Standard period, and we propose a new identification strategy based

on large gold mine discoveries.

Evaluating and comparing policy makers requires to take a stand on a set of objectives,

i.e., on a loss function. In our empirical application, we consider a quadratic loss function

with equal weights on inflation and unemployment.1 Given that loss function, our main

1Our approach can accommodate other loss functions, for instance different loss functions across time
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results are as follows: (i) we estimate large and uniform improvements in the conduct of

monetary policy, but only in the last 30 years, (ii) we cannot reject that the Fed’s reaction

to recent financial shocks (notably the 2007-2008 financial crisis) was appropriate, in contrast

to the “highly” sub-optimal reaction of the Fed during the Great Depression, (iii) despite

much larger realized losses in the 1920s-1930s, the performance of the early Fed is no worse

than the performance of the passive Gold Standard, and (iv) the Fed’s reaction function

during the 1960s-1970s is almost as sub-optimal as the reaction function of the early Fed.

Related literature

An early contribution is Fair (1978) who highlights the distortions stemming from different

initial conditions and economic environments. His solution was to adopt optimal control

methods to compare policy makers through the lens of a fully specified model. Modern

versions of this approach include (e.g. Galı, López-Salido and Vallés, 2003; Gali and Gertler,

2007; Blanchard and Gaĺı, 2007). Unfortunately, specifying the correct model for (i) the

policy rule and (ii) the macroeconomic non-policy block is a very difficult task (e.g., Svensson,

2003; Mishkin, 2010). A less structural approach has studied monetary performance through

the lens of estimated policy rules —requiring only the specification of a policy rule—.2 In

particular, a number of studies compared the Fed in the pre- and post-Volcker periods by

assessing whether the Taylor principle was satisfied. However, beyond the Taylor principle,

that approach can say little about the optimality of reaction functions, and thus can only

provide a coarse evaluation of reaction functions.

In the context of fiscal policy Blinder and Watson (2016) improve on the naive approach

of policy evaluation —measuring performance based on unconditional realized outcomes—

by projecting out specific macro shocks, i.e., by trying to control for good (or bad) luck. In

contrast, our approach projects on the space spanned by specific non-policy shocks and study

performance in that space: comparing policy makers by studying how well they reacted to

the same type of shock.

Closer to our work, the literature has proposed reduced-form methods to study policy

rule counterfactuals (e.g., Sims and Zha, 2006; Bernanke et al., 1997; Leeper and Zha, 2003),

though these approaches are not fully robust to the Lucas critique. Instead, our approach

builds on recent work showing that robustness to the Lucas critique is possible in a large class

of macroeconomic models (McKay and Wolf, 2023). When the coefficients of the non-policy

block are independent of the coefficients of the policy block, it is possible to reproduce

any policy rule counterfactual with an appropriate combination of policy news shocks at

periods, or even micro-founded welfare-based loss functions.
2See Judd and Rudebusch (1998); Taylor (1999); Clarida, Gaĺı and Gertler (2000); Orphanides (2003);

Boivin (2005); Coibion and Gorodnichenko (2011) for policy rules estimates.
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different horizons. The information requirement for such impulse-based rule counterfactuals

is typically very large however —requiring the identification of all policy news shocks—, and

the counterfactual effects can often only be approximated. Our work exploits a little studied

yet attractive class of policy rule counterfactuals —counterfactual reactions to non-policy

shocks—, which are simple to compute exactly; requiring only one policy shock at a time.

Last, our paper relates to the sufficient statistics approach for macroeconomic policy

proposed in Barnichon and Mesters (2023). Different from our focus on reaction function

evaluation, Barnichon and Mesters (2023) focus on the time t optimal policy problem —how

to set the policy path today given the state of the economy—, instead of the unconditional

policy problem that we consider here —how to set up the policy rule to minimize the

unconditional loss—. Barnichon and Mesters (2023) show that the characterization of the

time t optimal policy path can be reduced to the estimation of two sufficient statistics (i)

forecasts for the policy objectives conditional on some baseline policy choice, (ii) the impulse

responses of the policy objectives to policy shocks. However, these two statistics are not

sufficient to evaluate the optimality of the underlying policy rule. The present paper shows

that a sufficient statistics approach to rule evaluation is possible, but it requires a different

set of statistics, and notably additional identifying restrictions: the identification of (at least

some) non-policy shocks.

Our historical evaluation of monetary policy relates to monumental narrative studies

of monetary policy, from Friedman and Schwartz (1963) seminal work to the more recent

work of Meltzer (2003; 2009a; 2009b). Our study builds on this narrative evidence in that

much our shock identification draws on the narrative identification approach pioneered by

Friedman and Schwartz (1963) and Romer and Romer (1989). While our historical study is

necessarily less thorough than these historical accounts, we show that it is possible to use

narrative qualitative accounts to make objective and quantitative statements about historical

policy performance.

The remainder of this paper is organized as follows. The next section illustrates our

method for a simple New Keynesian model. Section 3 presents the general environment.

Section 4 provide the results for evaluating and ranking policy makers. The results from the

empirical study for monetary policy are discussed in Section 5. Section 6 concludes.

2 Illustrative example

Before formally describing our general framework, we first illustrate how it is possible to

evaluate and compare policy makers’ reaction functions without having access to the under-

lying economic model nor the policy rule. To describe the economy, we take a baseline New

Keynesian (NK) model, which allows us to highlight the main mechanisms of our approach
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and relate to the broad NK literature (e.g. Gaĺı, 2015).

The log-linearized Phillips curve and intertemporal (IS) curve of the baseline New-

Keynesian model are given by

πt = Etπt+1 + κxt + ξt , (1)

xt = Etxt+1 −
1

σ
(it − Etπt+1) , (2)

with πt the inflation gap, xt the output gap, it the nominal interest rate set by the central

bank and ξt a cost-push shock.

The policy maker sets the interest rate by responding to the economy according to

it = ϕππt + ϕξξt + ϵt , (3)

where ϕ = (ϕπ, ϕξ) is a vector of reaction coefficients —for short, the “reaction function”—,

which captures the systematic response of the central bank, and ϵt is a policy shock. We

impose that the structural shocks are serially and mutually uncorrelated.3

For ϕπ > 1 we can solve the model and express the endogenous variables Yt = (πt, xt)
′ as

functions of the exogenous shocks:

Yt = Γξt +Rϵt , with Γ =

[
1−κϕξ/σ

1+κϕπ/σ
−ϕπ/σ−ϕξ/σ

1+κϕπ/σ

]
, R =

[
−κ/σ

1+κϕπ/σ
−1/σ

1+κϕπ/σ

]
. (4)

The vectors Γ and R capture the impulse responses of the policy objectives to the structural

shocks ξt and ϵt. Note that Γ and R depend on both ϕ —the policy rule coefficients— as

well as the parameters of the macro block (1)-(2).

In this example we will measure the performance of the central bank using the loss

function

Lt =
1

2
Y

′

t Yt . (5)

Given this loss function, an optimal reaction function is defined as any ϕ = (ϕπ, ϕξ)

that minimizes the expected loss given the underlying structure of the economy, i.e., given

equations (1)-(2). Formally, let Φ = {ϕ ∈ R2 : ϕπ > 1}, the set of optimal reaction functions

is given by

Φopt =

{
ϕ : ϕ ∈ argmin

ϕ∈Φ
ELt s.t. (1)− (3) with ϵt = 0

}
,

which is non-empty (e.g., Gaĺı, 2015, page 133).

3In the web appendix, we show that this assumption is without loss of generality, as our approach can be
re-written to accommodate more general (notably serially correlated) exogenous processes for ξt and ϵt.
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Reaction function evaluation

We will now illustrate how the impulse responses R and Γ are sufficient statistics to evaluate

a policy maker’s reaction function.

Let ϕ0 = (ϕ0
π, ϕ

0
ξ) ∈ Φ denote the reaction function chosen by the central bank. To

evaluate ϕ0, we consider a thought experiment where ϕ0
ξ —the reaction coefficient to the

cost-push shock— is adjusted by some amount τ . The adjusted policy rule becomes

it = ϕ0
ππt + (ϕ0

ξ + τ)ξt + ϵt . (6)

Following the same steps that led to (4), we can solve the model under that modified policy

rule and express the endogenous variables as a function of exogenous shocks to get

Yt = (Γ0 +R0τ)ξt +Rϵt , (7)

where Γ0 ≡ Γ(ϕ0) and R0 ≡ R(ϕ0) denote the impulse responses to the structural shocks

under the rule ϕ0 and are defined as in (4).

From expression (7), we can see that Γ0 + R0τ is the impulse response to cost-push

shocks after the reaction function adjustment τ . In other words, the adjustment τ modifies

the impulse response to cost-push shocks from Γ0 to Γ0+R0τ , which means that the impulse

response R0 contains all the information needed to compute the effect of an adjustment to

the rule coefficient ϕξ. This insight, which holds more generally in a large class of dynamic

models (see Section 4) is at the heart of our sufficient statistics approach to evaluating

reaction function from structural impulse responses.

To evaluate the reaction function, the idea is then to compute whether it is possible to

adjust ϕ0
ξ and lower the loss function. Mathematically, we will look for a τ ∗ that can best

lower the loss function, that is

τ ∗ = argmin
τ

ELt s.t. Yt = (Γ0 +R0τ)ξt +Rϵt

= argmin
τ

(Γ0 +R0τ)′(Γ0 +R0τ) , (8)

where the second equality uses that the structural shocks have mean zero and are uncorre-

lated. A closed form solution for τ ∗ is given by

τ ∗ = −(R0′R0)−1R0′Γ0 . (9)

We refer to the statistic τ ∗ as the Optimal Reaction Adjustment, or ORA, as it measures

how much more (or less) the policy maker should have responded to the cost-push shock in
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order to minimize the loss function. Specifically, τ ∗ has the property that4

(ϕ0
π, ϕ

0
ξ + τ ∗) ∈ Φopt . (10)

In words, adjusting the reaction function ϕ0 by τ ∗ makes the reaction function optimal.

A number of points are worth noting.

First, to evaluate a reaction function it is not necessary to know the model nor the policy

rule, as the impulse responses to policy and non-policy shocks (R0 and Γ0) are sufficient

to evaluate a reaction function. If the reaction function ϕ0 was optimal, there should not

exist any alternative reaction to ξt that can reduce loss, and the optimal adjustment τ ∗ —a

function of the impulse responses Γ0 and R0 alone— should be zero. Further, because a τ ∗

adjustment makes the reaction function optimal, τ ∗ is a measure of policy performance, as

it measures the distance to the optimal reaction coefficient ϕ∗
ξ .

Second, the formula for the ORA has a geometric interpretation. If Γ0 is orthogonal to

R0, the ORA τ ∗ is zero and the reaction coefficient ϕξ is optimal. Intuitively, Γ0 (the impulse

response to a cost-push shock) captures what the policy maker did on average to counteract

cost-push shocks —how cost-push shocks affected the economy under the prevailing policy

rule—, while R0 (the impulse response to a monetary shock) captures what the policy maker

could have done to counteract cost-push shocks —how adjusting the reaction coefficient ϕξ

by τ could have better stabilized the effect of cost-push shocks by transforming Γ0 into

Γ0 + τR0—. If Γ0 and R0 are orthogonal, there is nothing more that the policy maker

could have done to stabilize Γ0: the reaction function was optimal. Conversely, if the

reaction coefficient ϕ0
ξ was not optimal, a regression in impulse response space —regressing

one impulse response on another— can determine the optimal reaction to cost-push shocks.

Indeed, it is easy to see that the ORA τ ∗ is the coefficient of a regression of Γ0 on −R0:

the goal of the ORA is to use the impulse responses to a monetary shock in order to best

stabilize the impulse response to the cost-push shock. This is equivalent to best fitting the

vector Γ0 with the vector −R0.

Third, note how the ORA τ ∗ assesses the reaction function in one specific “direction”

—the systematic policy response ϕξ to cost-push shocks—. The ORA is not focused on

4To see this, compute

ϕ0
ξ + τ∗ = ϕ0

ξ − (R0′R0)−1R0′Γ0

= ϕ0
ξ −

−κ/σ(1− κϕ0
ξ/σ)− 1/σ(−ϕ0

π/σ − ϕ0
ξ/σ)

κ2/σ2 + 1/σ2

=
κ/σ − ϕ0

π/σ
2

κ2/σ2 + 1/σ2
=

κσ − ϕ0
π

κ2 + 1
,

and the adjusted reaction function is optimal as (ϕ0
π,

κσ−ϕ0
π

κ2+1 ) ∈ Φopt, see e.g., Gaĺı (2015, p133, eq. (10)).
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evaluating the reaction coefficient to endogenous variables, such as the optimality of the

reaction coefficient ϕπ. Evaluating the reaction to endogenous variables is generally more

difficult, but an insight underlying our approach is that this is also not necessary. In this

example cost-push shocks are the only non-policy shocks, and optimally responding to cost-

push shocks is sufficient to characterize the entire optimal reaction function: (ϕ0
π, ϕ

0
ξ + τ ∗) ∈

Φopt. In the general treatment of Section 4 where we allow for arbitrary many types of

non-policy shocks, fully characterizing the optimal reaction function will require the impulse

responses to all the different non-policy shocks. When this is not possible, focusing on a

subset of these non-policy shocks will still allow to assess optimality in specific “directions”:

how well a policy maker responded to specific disturbances.

Finally, it may seem surprising to be able to assess a reaction function without specifying

or estimating any policy rule. This reason this is possible, and the insight underlying our

approach, is that the effects of any reaction function are encoded in the impulse responses

Γ0 and R0, see (4) with Γ and R depending on ϕπ and ϕξ. Thus, even if we do not know the

specific form of some past policy rule, that reaction function left a footprint on the effects

of policy and non-policy shocks, and that footprint is sufficient to evaluate the reaction

function. This is the essence of our sufficient statistics approach.

Comparing reaction functions

The ORA statistic can be used to compare the reaction functions of different policy makers,

i.e., to compare the performances of policy makers after their term. To avoid excessive

notation at this stage, consider comparing two policy makers that used reaction functions ϕ0

and ϕ1, respectively, and let the (possibly different) economic environment that they faced

be captured by the parameter vectors θ0 and θ1, respectively, which include all coefficients

in the Phillips and IS curves.

For each policy maker j we compute the ORA statistic:

τ ∗j = −(Rj′Rj)−1Rj′Γj for j = 0, 1 ,

where Rj ≡ R(ϕj, θj) and Γj ≡ Γ(ϕj, θj); making the dependence on θj explicit, see (4).

Since the ORA measures the distance to the optimal reaction given the economic envi-

ronment, we can use the ORA to rank policy makers who served in different environments.

For instance, if |τ ∗1 | < |τ ∗0 |, we would rank policy maker 1 above policy maker 0: faced with

the same exogenous disturbance, policy maker 1 reacted better than policy maker 0. Natu-

rally, for this reaction function comparison to work, the researcher must be able to identify

the same types of non-policy shocks across policy makers.

The key insight is that while environments can be different across policy makers (and
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thus the optimal reaction function can be different), the ORA statistics “control” for the

economic environment: τ ∗0 and τ ∗1 measure how well each policy maker reacted to a unit

cost-push shock given their economic environments θ0 and θ1 (respectively). By comparing

these distances, we can compare policy makers (or more generally policy institutions) who

were facing different initial conditions, different shock realizations and different economic

environments during their term in office.

In sum, this example illustrates how we can (i) evaluate and (ii) compare policy makers

based on their reaction function without specifying an explicit reaction function nor a specific

structural macro model. Instead, the only requirement is to estimate two sufficient statistics:

the impulse responses Γ and R over a policy maker’s term. The next sections show that

these findings continue to hold for a general linear macro model and discuss the econometric

implementation.

3 Environment

We describe a general stationary macro environment for a single policy maker (or institution)

who faces an infinite horizon economy. To describe the economy we distinguish between two

types of observable variables: policy instruments pt ∈ RMp and non-policy variables yt ∈ RMy .

The policy instruments are different from the other variables as they are under the direct

control of the policy maker.

To describe a forward looking economy we use a sequence space representation (e.g.,

Auclert et al., 2021). Let P = (p′0, p
′
1, . . .)

′ and Y = (y′0, y
′
1, . . .)

′ denote the paths for the

policy instruments and non-policy variables. Working under perfect foresight, we consider a

generic model for the paths of the endogenous variables

AyyY −AypP = ByξΞ

AppP−ApyY = BpξΞ+ ϵ
, (11)

where ϵ = (ϵ′0, ϵ
′
1, . . .)

′ and Ξ = (ξ′0, ξ
′
1, · · · )′ are sequences of policy and non-policy shocks,

respectively. The first equation captures the non-policy block of the economy, while the

second equation captures the policy rule.

We normalize all elements of Ξ and ϵ to have mean zero and unit variance. Also,

we assume that they are serially and mutually uncorrelated, consistent with the common

definition of structural shocks (e.g. Bernanke, 1986; Ramey, 2016).5 The structural maps

5Note that if the elements of Ξ or ϵ are not serially uncorrelated it is always possible to redefine Byξ,Bpξ

and App such that the equation residuals —the shocks— are uncorrelated. For example if var(Ξ) = Σ, then

redefine ByξΞ = B̃yξΞ̃ with B̃yξ = ByξΣ
1/2 and Ξ̃ = Σ−1/2Ξ such that Ξ̃ is serially uncorrelated. The same

can be done for BpξΞ.
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A.. and B.. are conformable and may depend on underlying structural parameters. We

conveniently split them in two parts: the economic environment θ = {Ayy,Ayp,Byξ} which

the policy maker takes as given, and the reaction function ϕ = {App,Apy,Bpξ}, which is

under the control of the policy maker. We impose that ϕ and θ are independent in the sense

that ∂θi/∂ϕj = 0 for all entries i, j, i.e. changing the reaction function does not directly

change the coefficients θ and all effects of ϕ on Y go via the policy path P.

We denote by Φ the set of all reaction functions ϕ for which the model (11) implies a

unique equilibrium, that is all ϕ for which

A =

(
Ayy Ayp

Apy App

)
is invertible.

Many structural models found in the literature can be written in the form of (11); prominent

examples include New Keynesian models and heterogeneous agents models, see McKay and

Wolf (2023) for a more in depth discussion.

For any ϕ ∈ Φ we can write the expected path of the non-policy variables as a linear

function of the policy and non-policy shocks:

Lemma 1. Given the generic model (11) with ϕ ∈ Φ, we have

Y = Γ(ϕ)Ξ+R(ϕ)ϵ . (12)

The maps Γ(ϕ) and R(ϕ) capture the causal effects of the structural shocks Ξ and ϵ on

the non-policy variables. Note the similarity between (12) and (4), as the illustrative static

NK model is a special case with only contemporaneous shocks. Clearly, the maps Γ(ϕ) and

R(ϕ) in (12) also depend on the environment as summarized by θ, but since θ is not under

the control of the policy maker we omit this from the notation.

Lemma 1 implies that the identification of the impulse responses requires observing some

part of the future shocks in Ξ and ϵ. Our perfect foresight notation masks this requirement,

but it is useful to clarify that in practice this requires the identification of news shocks. To

see this, note that we can decompose ξt and ϵt as
6

ξt =
t∑

j=0

Ejξt − Ej−1ξt︸ ︷︷ ︸
ξt,j

and ϵt =
t∑

j=0

Ejϵt − Ej−1ϵt︸ ︷︷ ︸
ϵt,j

, (13)

where Ej(·) = E(·|Fj), with Fj the information set available at time j. The increment

ξt,j ≡ Ejξt − Ej−1ξt is the component of ξt that is released at time j ≤ t. In other words ξt,j

6As is common in the optimal policy literature, we impose E−1ξt = 0 and E−1ϵt = 0, for all t = 0, 1, . . ..
Alternatively, one could let the sums run from −∞ until t.
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is a news shock released at j ≤ t, and (13) decomposes the shock ξt —a shock realized at

time t— as a sum of news shocks ξt,j revealed all the way until time t with ξt =
∑t

j=0 ξt,j.

Similarly for ϵt,j. By construction the news shocks are serially uncorrelated.

Thus, to identify the impulse responses in (12), we require observing proxies for the news

shocks in ξ0 = (ξ0,0, ξ1,0, ξ2,0, . . .)
′ and ϵ0 = (ϵ0,0, ϵ1,0, ϵ2,0, . . .)

′.7 For notational convenience

we drop the zero subscript and work under perfect foresight.

Evaluation criteria

We consider a researcher who is interested in evaluating a policy maker based on her success

at stabilizing some subset of the non-policy variables yt around some desired targets y∗ for

some time periods t = 0, 1, 2, . . .. For ease of notation we will set the targets to zero, though

we could also think of yt as defined in deviation from the desired targets. In general, we will

see that the target values y∗ are not needed to rank/assess reaction functions.

We measure performance using the unconditional loss function

L =
1

2
EY′WY , (14)

where W is a diagonal matrix, with non-negative entries, which selects and weights the

specific variables and horizons that are of interest to the researcher. The loss (14) is the

researcher’s evaluation criterion for scoring policy maker performance —an input into our

framework—, and it may or may not correspond to the preferences of society or the policy

maker.

The actions of the policy maker are summarized by the reaction function ϕ. We define a

reaction function to be optimal if it minimizes the loss function (14) when ϵ = 0.8 Formally,

the set of optimal reaction functions is given by

Φopt =

{
ϕ : ϕ ∈ argmin

ϕ∈Φ
L s.t (11) with ϵ = 0

}
. (15)

The definition implies that we only consider optimal reaction functions that lie in Φ; the set

of reaction functions which imply a unique equilibrium.

7Note that in practice our approach will not require the identification of all news shocks. In fact, it will
not even require all news shocks to even exist; our methodology can be applied using as little as one policy
and one non-policy shock.

8In other words, we will be evaluating policy makers based on how well they reacted to exogenous
disturbances, in line with the thought experiment discussed in the introduction. An alternative (which we
do not pursue here) would be to evaluate policy makers based on their idiosyncratic exogenous mistakes;
i.e., based on the policy shocks.
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4 Measuring reaction function optimality

We propose to evaluate a policy maker after her term by measuring the distance between

her reaction function, denoted by ϕ0, and the set of optimal reaction functions Φopt. We

postulate that each policy maker faces an economy that can be represented by the generic

model (11) where the parameters θ and ϕ may vary across policy makers. We first develop

the methodology for evaluating the reaction function of a single policy maker in population.

Subsequently we formalize how the methodology can be used to rank the performance of

multiple policy makers.

Following the same steps as the simple example of Section 2, we propose to measure

the distance between ϕ0 and Φopt by considering a thought experiment where we adjust the

policy maker’s reaction coefficients for non-policy shocks. Specifically, consider augmenting

the policy rule under ϕ0 as follows

A0
ppP−A0

pyY = (B0
pξ + T )Ξ+ ϵ , (16)

where T adjusts the response to the non-policy shocks.9 Each element of T corresponds

to a different rule counterfactual, in which we modify how one element of the policy path

responds to one of the non-policy shocks.

The following lemma establishes how a rule adjustment T affects the equilibrium alloca-

tion

Lemma 2. Consider the generic model (11) with ϕ0 ∈ Φ and the modified policy rule (16).

1. We have

Y = (Γ0 +R0T )Ξ+R0ϵ , (17)

where Γ0 ≡ Γ(ϕ0) and R0 ≡ R(ϕ0).

2. Given an element τij of T , we have

∂Γ0
j

∂τij
= R0

i ,
∂Γ0

k

∂τij
= 0 for i, j, k = 0, 1, ... , k ̸= j . (18)

where Γ0
j and R0

i are (respectively) the jth and ith columns of Γ0 and R0.

9To help understand the elements of T in this sequence-space representation, imagine that there is only
one policy instrument and one type of non-policy shock: an oil price shock. The upper-left element of T
(τ00) is an adjustment to the contemporaneous response of the policy instrument to a contemporaneous oil
shock. The element τ01 is an adjustment to the contemporaneous response of the policy instrument to a
news shock announced today but affecting oil prices next period, the element τ10 is an adjustment to the
response of the policy instrument next period to a contemporaneous oil shock, and so on.
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The reaction adjustment T affects the equilibrium by changing the impulse responses to

non-policy shocks from Γ0 to Γ0 +R0T , so that knowledge of the impulse response matrix

R0 is sufficient to compute the policy rule counterfactuals embedded in the T adjustments.

This property echoes the general result of McKay and Wolf (2023), who show that it is

possible to reproduce any policy rule counterfactual with an appropriate combination of

policy news shocks at different horizons.10 The information requirement for such impulse-

based rule counterfactuals is typically very large however —requiring the identification of

all policy news shocks—, and the counterfactual effects can only be approximated, often

without bounds on the approximation error (McKay and Wolf, 2023). Lemma 2 shows that

there exists a class of rule counterfactuals —counterfactual reactions to non-policy shocks—,

which can be constructed exactly with modest information requirements. Indeed, as shown

by (18) the rule counterfactual embedded in τij leaves all impulse responses unaffected except

for one —the impulse response Γ0
j— and the effect of that rule adjustment on Γ0

j is linear

and given by the impulse response R0
i . Constructing the counterfactual thus only requires

the identification of one type of policy shock at a time. This property will be key to be able

to assess and compare policy makers in practice.

4.1 The ORA statistic

The Optimal Reaction Adjustment (ORA) is defined as the T that minimizes the loss func-

tion.

T ∗ = argmin
T

L s.t. Y = (Γ0 +R0T )Ξ+R0ϵ , (19)

The ORA determines how the reaction coefficients in front of the non-policy shocks Ξ should

have been adjusted to minimize the loss.

Since the setting is linear-quadratic a closed form solution for T ∗ is given by

T ∗ = −(R0′WR0)−1R0′WΓ0 , (20)

which exists provided that the inverse exists. The expression shows that the ORA is equal

to the (weighted) least-square regression of the selected non-policy impulse responses Γ0 on

the selected policy impulse responses R0.11

We have the following result:

10The derived counterfactual is robust to the Lucas critique provided that the coefficients of the macro
block (here θ) are invariant to changes in the coefficients of the policy rule (here, ϕ). This property holds in
most modern macro models as in our generic model (11).

11The weighting matrix W is merely a selection tool used to select the non-policy variables that are of
interest to the researcher.
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Proposition 1. Given the generic model (11), with Φ non-empty, we have that ϕ∗ ∈ Φopt

where ϕ∗ = {A0
pp,A0

py,B0
pξ + T ∗} .

The proposition states that it is possible to fully characterize the optimal reaction func-

tion from Bpξ alone, and it is not necessary to optimize with respect to the maps App and Apy

(as long as the invertibility requirement for A is satisfied). In other words, the class of policy

rule counterfactuals embodied in (16) —counterfactual reactions to non-policy shocks— is

sufficient to fully characterize the optimal policy rule, and our focus on that sub-class of rule

counterfactuals is without loss of generality for policy rule evaluation.

4.2 Subset optimal reaction adjustments

So far we showed that the optimal reaction function can be recovered from the impulse

responses to policy and non-policy shocks. In practice however we may not be able to

identify all shocks, and hence the impulse responses to all policy and non-policy shocks.

Fortunately, the class of rule counterfactuals that we consider—counterfactual reactions

to non-policy shocks— allows us to split the optimal policy rule problem into orthogonal

problems that can be solved separately; each sub-problem focusing on the optimal reaction

of one element of the policy path in response to one type of non-policy shock. In this

section we provide a policy rule evaluation statistic that requires only a subset of all impulse

responses. This property will allow to operationalize our approach with limited information

requirements.

To set this up, let ϵa denote any subset of ϵ which can be identified. Similarly, let Ξb

denote a subset of Ξ. Our subset approach consists in adjusting a subset of the coefficients

of the policy rule with

A0
papP−A0

payY = (B0
paξb

+ Tab)Ξb + B0
paξ−b

Ξ−b + ϵa , (21)

where Tab adjusts the ϕ0 response to the non-policy shocks Ξb and Ξ−b denotes all other

non-policy shocks. Note that all other equations of the policy block, i.e. those corresponding

to ϵ−a, are unchanged and only the equations corresponding to ϵa are adjusted by Tab.

Following the same steps as above we can define the subset ORA as the Tab that minimizes

the expected loss function.

T ∗
ab = argmin

Tab
L s.t. Y = (Γ0

b +R0
aTab)Ξb + Γ0

−bΞ−b +R0ϵ , (22)

The ORA determines how the reaction coefficients in front of the non-policy shocks Ξb should

have been adjusted to minimize the unconditional loss. A closed form solution for the subset
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ORA is given by

T ∗
ab = −(R0′

a WR0
a)

−1R0′

a WΓ0
b , (23)

which exists provided that the inverse exists. The subset ORA has the following properties:

Proposition 2. Consider the generic model (11) with Φ non-empty.

1. We have

B0
paξb

+ T ∗
ab = argmin

Bpaξb

EL .

2. For ϕ∗
ab = {A0

pp,A0
py,B0

paξb
+ T ∗

ab,B0
−pa−ξb

}, we have that L(ϕ∗
ab) ≤ L(ϕ0) for all ϕ0 ∈ Φ.

The first part of Proposition 2 states that it is possible to split the optimal policy rule

problem into smaller orthogonal problems, which can be solved exactly from a subset of

identified impulse responses. For instance, consider a researcher interested in evaluating

how a central bank is using its contemporaneous policy rate in reaction to contemporaneous

oil price shocks. If we denote by τij the corresponding rule adjustment, the only requirements

to compute τ ∗ij (and thereby compute the optimal reaction to oil price shocks) are two sets

of impulse responses: the impulse responses to a contemporaneous policy shock and the

impulse response to an oil price shock.

Geometrically, each rule counterfactual embedded in τij amounts to projecting the opti-

mal policy problem on a space spanned by one type of non-policy shocks. Since non-policy

shocks are orthogonal, the projection spaces corresponding to different non-policy shocks

are all orthogonal, meaning that our approach effectively splits the optimal policy problem

into orthogonal problems. The two important realizations underlying our approach are (i)

each sub-problem is much easier to solve —requiring the identification of only one policy

and non-policy shock at a time— (Proposition 2, part 1), and (ii) the entire policy problem

can be reconstructed through this approach: in the limit where we can identify all shocks,

the projection steps span the entire optimal policy problem (Proposition 1).12

12Specifically, the ORA has a two-step geometric interpretation. In a first step we project Y on specific
non-policy shocks, which gives under ϕ0

E[YΞ′
b] = Γ0

b +R0
aTab .

This step effectively isolates the economy’s response to a subset of non-policy shocks, thereby removing the
confounding effects of the other shocks (Ξ−b and ϵt). In the second step we solve the policy problem in that
projected space —in “impulse response space”—, i.e. we solve

T ∗
ab = argmin

Tab

(Γ0
b +R0

aTab)′W(Γ0
b +R0

aTab) ,

which effectively finds a rule adjustment that best stabilizes the impulse responses to the non-policy shocks
Ξb. In the web-appendix we discuss a few additional interpretations for the ORA statistic.
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The second part of Proposition 2 states that subset ORA adjustment will improve the

policy rule, but it may not deliver the optimal rule, as the subset ORA only assesses the

policy rule in specific directions. Loosely speaking, the larger the number of directions —the

larger are the “subsets” a and b—, and the more “exhaustive” the evaluation will be. In the

limiting case where all policy and non-policy shocks can be identified, the ORA adjustment

delivers the optimal reaction function (Proposition 1 applies) and the policy evaluation is

“exhaustive”.

4.3 Comparing policy institutions with ORAs

Having established the ORA’s properties, we now discuss how the ORA can be used to com-

pare policy institutions or policy makers. As examples we can think of evaluating different

central banks chairs based on their ability to control inflation and output gaps, or different

presidents of a country based on their ability to keep output close to potential. More gener-

ally, we can compare policy makers from the same institution across different time periods

or policy maker from comparable institutions in different countries.

Suppose that there are p policy makers that the researcher aims to compare. Each

policy maker operates an economy that can be described by the general model (11), but the

parameters θ and ϕ that govern the model may vary across policy makers, say θj and ϕj, for

j = 0, . . . , p, where ϕj denote the reaction function chosen by policy maker j.13

Since the ORA measures the distance to an optimal reaction function, we can use the

ORA to compare policy makers. Effectively, this will amount to comparing policy makers

from the way they responded to common shocks that hit during their term, in line with the

thought experiment sketched in the introduction. Going back to our oil shock example, the

idea will be to compare central bankers from the way they each used their contemporaneous

policy rate in response to oil shocks. This will require estimating, for each policy maker, the

impulses responses to shocks to the contemporaneous policy rate and impulse responses to

oil shocks.

In general, the subset ORA statistics for each policy maker are given by:14

T j∗
ab = −(Rj′

a WRj
a)

−1Rj′

a WΓj
b , j = 0, . . . , p ,

where Rj
a and Γj

b are the impulse responses with respect to the policy and non-policy shocks

under the reaction function ϕj and the economic environment θj.

13While we treat the parameters as fixed within the term of each policy maker, an extension with time-
varying parameters can be easily constructed at the expense of more notation.

14The weighting by W implements the preferences of the researcher over the different objectives or ranking
criteria.
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Note that the impulse responsesRj
a = Ra(ϕ

j, θj) and Γj
b = Γb(ϕ

j, θj) depend on the policy

rule parameters and the economic environment, which can and will vary across policy makers.

The point of the ORA is to precisely take this variation into account, computing each policy

maker’s optimal reaction function given the economic environment. That said, to ensure

that the ORAs are comparable we need to ensure that the impulse responses correspond to

the same policy and non-policy shocks, i.e. ϵa and Ξb must be of the “type” a and b across

policy makers: the ORAs must measure the optimality of the same policy instrument in

response to the same exogenous disturbance. This requirement is important, yet it is no

different from numerous earlier works on time-varying impulse responses (e.g. Cogley and

Sargent, 2005; Primiceri, 2005) or country-specific impulse responses (e.g. Ilzetzki, Mendoza

and Végh, 2013). All such studies rely on the assumption that it is possible to identify the

same shocks across time or space.

Note that each element of T j∗
ab is informative about a specific dimension of policy. For

instance, the first element of the ORA could compare how well policy makers used their policy

rate following an oil shock, the second element how well policy makers used their policy rate

following a financial shock, etc... To obtain a summary ranking, we can aggregate the entries

of T j∗
ab , i.e.

tj∗ab = ∥T j∗
ab ∥ , (24)

where any desired norm ∥ · ∥ can be used. We can then rank policy makers based on tj∗ab, for

j = 0, . . . , p, where the smallest value corresponds to the best performing policy maker.

4.4 Computing ORA statistics

An attractive feature of the ORA is that it can be readily computed from standard economet-

ric methods. The sufficient statistics underlying the ORA —impulse responses to structural

shocks— are well studied statistics, and we can draw on a large macro-econometric literature

precisely devoted to the estimation of these statistics, from the identification of structural

shocks (e.g., Ramey, 2016) to the estimation of impulse responses (e.g., Li, Plagborg-Møller

and Wolf, 2022).

To make this clear, consider the equilibrium representation (12) under some rule ϕ

Y = ΓbΞb + Γ−bΞ−b +Raϵa +R−aϵ−a ,

where the entries of Ra and Γb are equal to projection of the variables Y on the subset shocks

ϵa or Ξb. For convenience we assume that the researcher is interested in a finite number

of variables such that W has a finite number of non-zero diagonal elements and we let Yw

be the finite collection of selected elements of W1/2Y. Further, let Rw
a and Γw

b denote the
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subset causal effects corresponding to the selected rows of W1/2Ra and W1/2Γb.

To compute the subset impulse responses we rely on a sample of realizations of the

outcome variables Yw during the policy makers term, i.e. {Yw
t , t = ts, . . . , te} with ts the

starting period and te the ending period. The subset causal effects can be estimated by

considering

Yw
t = Γw

b Ξb,t +Rw
a ϵa,t +Vw

t , t = ts, . . . , te, (25)

where Ξb,t and ϵa,t are the subset of news shocks that are realized at time t and Vw
t includes

all other structural shocks, both policy and non-policy inputs that are not included in the

selections a and b, respectively, as well as initial conditions and future errors.

We can recognize (25) as a system of stacked local projections (Jordà, 2005). This

implies that given (i) an appropriate identification strategy and (ii) an accompanying es-

timation method, we can estimate the impulse responses Rw
a and Γw

b . Any identification

strategy — short run, long run, sign, external instruments, etc — can be used, based on

which an appropriate estimation method — OLS or IV, with or without shrinkage, etc — can

be selected, see Ramey (2016) and Stock and Watson (2018) for different options. Moreover,

since local projections and structural VARs estimate the same impulse responses in popu-

lation (Plagborg-Møller and Wolf, 2021), SVAR methods (e.g., Kilian and Lütkepohl, 2017)

can also be adopted for estimating the impulse responses Γw
b and Rw

a . Given such estimates

we compute the ORA noting that T ∗
ab = −(R′

aWRa)
−1R′

aWΓb = −(Rw′
a Rw

a )
−1Rw′

a Γw
b .

Here we will not discuss any specific approach but instead directly postulate that the

researcher is able to obtain estimates, say R̂w
a and Γ̂w

b , of which the distribution can be

approximated by

vec

([
R̂w

a

Γ̂w
b

]
−

[
Rw

a

Γw
b

])
a∼ F ,

where F is some known distribution function that can be estimated consistently by F̂ . Such

approximation can be obtained for many impulse response estimators using either frequentist

(asymptotic and bootstrap) or Bayesian methods.

Using the approximating distribution F̂ , we can simulate draws for Rw
a and Γw

b , and

compute T ∗
ab = −(Rw′

a Rw
a )

−1Rw′
a Γw

b for each draw. Given the sequence of draws we can

construct a confidence set for T ∗
ab, or any of its individual entries at any desired level of

confidence.

4.5 ORA-based counterfactuals

The ORA statistic measures directly how the reaction to the identified non-policy shocks

should be adjusted. The key benefit is that this metric is comparable across policy makers.

The price to pay for such invariance is that the statistic does not have a simple economic
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interpretation in terms of percentage points adjustments to the policy instrument or im-

provements in the loss function.15

That said, the ORA statistics can be used for computing such counterfactuals.

First, one can compute the adjusted (i.e., “ORA-improved”) impulse responses to non-

policy shocks —Γw
b + Rw

a T ∗
ab—, which measure how the average responses to the different

non-policy shock could have been adjusted. In practice, we recommend to report both Γw
b

and Γw
b +Rw

a T ∗
ab to highlight how the ORA would have changed the dynamic effects of the

non-policy shocks.

Second, one can compute ORA-adjusted historical paths for the variables of interest.

Using series of identified non-policy shocks, we can use the ORA-adjusted impulse responses

to quantify how much of the historical variation in Yw
t could have been avoided with a

different (i.e., ORA-improved) reaction function, or equivalently how much of the variation

in Yw
t was due to a sub-optimal reaction function and thus “unnecessary”.16 Specifically,

given the identified non-policy shocks Ξb,t, we can compute

∆Yw
t = Rw

a T ∗
abΞb,t and ∆Pw

t = Rw
p,aT ∗

abΞb,t , for t = ts, . . . , te , (26)

where ∆Yw
t and ∆Pw

t are the ORA historical adjustments to the policy objectives and the

policy instruments (respectively), and where Rw
p,a are the impulse responses of the policy

instruments to the subset of policy news shocks.

With these ORA-adjusted paths in hand, we can also compute how much of the realized

loss could have been avoided with a different reaction function:

∆Lt = (∆Yw
t )

′(∆Yw
t ) . (27)

We stress that the magnitudes of these counterfactuals ∆Yw
t , ∆Pw

t and ∆Lt cannot be

used to compare policy makers across periods. The reason is that if the economic environ-

ments are different across periods (as is most likely the case), a given Optimal Reaction

Adjustment can have different effects on the endogenous variables: a given optimization

failure may have smaller or large effects on welfare depending on the economic environment

as well as the other parameters of the policy rule. In other words, while the ORAs are com-

parable across periods —depending only on how well the policy maker reacted to a specific

non-policy shock—, the counterfactuals ∆Yw
t and ∆Pw

t are not, because they are affected

by other factors outside the policy maker’s control.

15The ORA is an adjustment to the policy rule coefficients in front of non-policy shocks, but since the
policy rule also includes responses the endogenous variables (and thus feedback loops), the ORA adjustment
will generally not translate into a one-for-one change in the policy rate.

16If we only have a subset of all non-policy shocks, this exercise will provide a lower bound on the additional
variation caused by a sub-optimal reaction function.
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5 Evaluating US monetary policy, 1879-2019

In this section we use our methodology to evaluate the conduct of monetary policy in the US

over the 1879-2019 period. We consider four distinct periods: (i) the Gold Standard period

1879-1912 before the creation of the Federal Reserve, (ii) the early Fed years 1913-1941, (iii)

the post World War II period 1954-1984 and (iv) the post-Volcker period 1990-2019.

During the Gold Standard period, there was no active monetary policy (the Federal Re-

serve did not exist yet), and we use this period as a benchmark to see what a fictional policy

institution could have done in this period. The Gold Standard monetary regime is now

generally considered a sub-optimal regime with excessive fluctuations in inflation and unem-

ployment (e.g. Friedman and Schwartz, 1963). In that context, this passive monetary policy

period is instructive as a benchmark against which we can compare later Fed performances.

The early Fed period starts with the founding of the Fed in 1913 and ends with the US

entering the second world war. The post-war period starts in 1951 with the Fed regaining

some independence after the Treasury-Fed accord (e.g. Romer and Romer, 2004a).17 The

post Volcker period covers the Great Moderation period and ends right before the pandemic.

We evaluate the Fed as a policy institution based on the loss function

L =
1

2
E

H∑
h=0

βh(π2
t+h + λu2

t+h) , (28)

where πt denotes the inflation gap, ut the unemployment rate gap, β the discount factor

and λ the preference parameter. While the targets π∗ and u∗ are irrelevant to rank/assess

reaction functions,18 we posit that π∗ = 2 and u∗ = 5 in order to compute realized losses in

the naive approach that we describe next.

Our baseline choice for the loss function sets β = λ = 1, and we take H = 30 quarters,

a horizon large enough to ensure that the impulse responses have time to mean-revert. The

data are quarterly, inflation is measured as year-on-year inflation based on the output deflator

from Balke and Gordon (1986), and the unemployment rate before 1948 is taken from the

NBER Macrohistory database over 1929-1948 and extended back to 1876 by interpolating

the annual series from Weir (1992) and Vernon (1994).

17We exclude the period covering World War II until the Treasury-Fed accord of 1951, as the Fed was
financing the war effort and had no independence.

18The ORA only depends on impulse responses, which are path deviations following an innovation, and
as such do not depend on the constant terms in Y.

22



5.1 Naive approach

To provide a benchmark for our results, we first take a naive approach where we evaluate

the Fed based on realized outcomes for inflation and unemployment, as shown in Figure 1.

Table 1 report realized losses for inflation and unemployment (Lx =
∑te

j=ts
x2
j for x = π, u)

as well as the total realized loss (Lπ + Lu).

The Early Fed period comes out as the worse period by far, with losses almost an order

of magnitude larger than the other period. This is driven by the Great Depression; not

only the large increase in unemployment but also the large movements in inflation, from

the high inflation of the early 20s to the large deflation of the early 30s. In comparison,

the passive Gold Standard period appears much more successful, suffering only from high

inflation volatility. In fact, losses during the Gold Standard period are of similar magnitudes

to the losses realized during the Post World War II, being on a par in terms of unemployment

losses. The only period with clear superior outcomes is the Post Volcker Period, also referred

to as the Great Moderation, with both stable inflation and unemployment and thus low losses

throughout.

A naive interpretation of these macroeconomic outcomes could suggest that (i) monetary

policy was superior during the Post Volcker period, and (ii) the founding of the Fed in 1913

caused worse outcomes than the passive Gold Standard. Unfortunately, we cannot make

such causal claims, as many co-founding factors outside the Fed control could explain these

macroeconomic outcomes. For instance, the poor inflation and unemployment realizations

over 1913-1941 could have been caused by bad luck (an unfortunate sequence of shocks),

adverse initial conditions or by a difficult economic environment. Similarly, the good perfor-

mance of the economy in the Post Volcker period could be the outcome of good luck instead

of good policy.

To assess policy performance we instead turn to the ORA methodology proposed in this

paper.

5.2 Econometric implementation for ORA

To evaluate policy performance, we will assess how well the monetary authorities adjusted

the contemporaneous policy rate in response to five separate non-policy shocks: financial

shocks, government spending shocks, energy price shocks, inflation expectation shocks and

TFP shocks.

This requires identifying six structural shocks: (i) shocks to the contemporaneous policy

rule —the traditional monetary shock—, and (ii) the five non-policy shocks listed above, as

we describe below.

To estimate the corresponding impulse responses, we rely on a Bayesian structural vector

23



autoregressive model (SVAR) that includes a proxy for the policy shock, the non-policy

shock, the outcome variables πt and ut, the growth rate of the monetary base, the policy

rate, as well as possibly additional control variables wt. During the 1879-1912 Gold Standard

period where there is no policy institution, we take the 3-months treasury rate as the “policy

rate” that a fictitious central bank could have controlled. For the 1913-1941 early Fed period,

we use the fed discount rate as the policy rate. To capture the policy stance during the post

WWII periods, we use the fed funds rate as the policy rate. The specific additional variables

wt and instruments zt are discussed in detail below. The historical monetary data are taken

from Balke and Gordon (1986).

The SVAR is specified for yt = (zξt , πt, ut, z
ϵ
t , pt, w

′
t)

′, where zξt is an instrument (or proxy)

for the contemporaneous non-policy shock, zϵt is an instrument for the conventional contem-

poraneous monetary policy shock and wt denotes additional control variables. We order the

non-policy proxy first. As in Romer and Romer (2004b), we order the monetary proxy after

unemployment and inflation (and before the federal funds rate), imposing the additional re-

striction that monetary policy does not affect inflation and unemployment within the period.

We have

A0yt = A1yt−1 + . . .+ Apyt−p + et , (29)

where A0, . . . , Ap are the coefficient matrices.

We estimate the reduced form of the SVAR model using standard Bayesian methods,

which shrink the reduced form VAR coefficients using a Minnesota style prior. The prior

variance hyper-parameters follow the recommendations in Canova (2007).

We normalize all shocks such that they have unit variance which can be implemented

in practice by computing the conventional one standard deviation impulse responses. This

scaling ensures comparability of the shocks across periods.

With the draws of the parameters from the posterior density we can compute the im-

pulse responses to a policy shock ϵt (denoted by R0
0) as the ratio of the response of yt+h =

(πt+h, ut+h) over the response of pt to the shock corresponding to zϵt . The impulse re-

sponses to non-policy shock ξt are denoted by Γ0
0. We report the subset ORA statistic

τ ∗0 = −(R0′
0 WR0

0)
−1R0′

0 Γ
0
0 and the ORA adjusted impulse responses Γ∗

0 ≡ Γ0
0 +R0

0τ
∗
0 .

5.3 Shock identification

For each period, we identify a monetary policy shock and five non-policy shocks: financial

shocks, government spending shocks, energy price shocks, inflation expectation shocks and

TFP shocks.
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5.3.1 Monetary policy shocks

Since we want to compare policy makers based on their contemporaneous policy response

to exogenous shocks, we need to identify contemporaneous shocks to the policy rate, that

is shocks ϵt,t. We consider two approaches for identifying such shocks. As our baseline we

use the state of the art in the literature for each period, and as robustness we use a sign

restriction identification.

Post Volcker regime For the Post Volcker period we use the high-frequency identification

(HFI) approach, pioneered by Kuttner (2001) and Gürkaynak, Sack and Swanson (2005),

and we use surprises in fed funds futures prices around FOMC announcement as proxies for

monetary shocks. To isolate innovations to the contemporaneous policy rate, we use surprises

to fed funds futures at a short horizon, here 3-months ahead fed funds futures (FF4), which

(with quarterly data) ensures that the identified shock does not include news shocks to the

future path of policy. While innovations to the contemporaneous policy rate could a priori

include anticipated news shocks —forward-guidance was used extensively after 2007—, fed

funds futures as of time t are based on the time t information set and thus already includes

news shocks that were announced before time t. As a result, HFI surprises to FF4 fed isolate

contemporaneous shocks to the policy rate (i.e., our object of interest ϵt,t).

Post World War II regime For the Post World War II period we use the Romer and

Romer (2004b) identified monetary policy shocks as instruments. Since there was no use

of forward guidance before 1990 —Fed policymakers’ views on the future policy path was

“closely guarded” before 1990 (Rudebusch and Williams, 2008)—, we can consider that the

Romer and Romer (2004b) monetary shocks capture solely contemporaneous policy shocks

(ϵt,t) and not news shocks to policy.19

Early Fed regime During the Early Fed period we use the Friedman and Schwartz (1963)

dates extended by Romer and Romer (1989) as instruments to identify monetary policy

shocks. We include five episodes —1920Q1, 1931Q3, 1933Q1, 1937Q1 and 1941Q3— where

movements in money were “unusual given economic developments” (Romer and Romer,

1989). In the words of Romer and Romer (1989), these “unusual movements arose, in

Friedman and Schwartz’s view, from a conjunction of economic events, monetary institutions

and the doctrines and beliefs of the time and of particular individuals determining policy”.

Since the concept of forward guidance in policy did not exist, we consider that the Friedman

19Technically speaking, the Romer and Romer (2004b) approach identifies the monetary policy shock
ϵt =

∑t
j=0 ϵt,j . Without forward guidance, we have ϵt,j = 0 for j < t such that ϵt = ϵt,t.
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and Schwartz’s dates capture solely contemporaneous policy shocks (ϵt,t) and not news shocks

to policy.20.

Pre Fed regime For the Pre Fed Gold Standard period, there is no clear baseline identifi-

cation approach to identify monetary shocks, and we propose a new approach that exploits a

unique feature of the Gold Standard. Under a Gold Standard, the monetary base depends on

the amount of gold in circulation, which can itself vary for exogenous reasons related to the

random nature of gold discoveries or development of new extraction techniques (e.g., Barsky

and De Long, 1991). As such, we use unanticipated large gold mine discoveries (discoveries

that led to gold rushes) as an instrument for movements in the monetary base. To the extent

that the timing of the discovery is unrelated to the state of the business cycle, gold mine

discovery will be a valid instrument. Mirroring Gold discovery, we will also use peak mine

extraction —the moment when one of these large mines reached peak production—. The

appendix provides more details on the construction of our instrument.

Alternative identification scheme One limitation of using the “state of the art” iden-

tification scheme in each period is that we rely on a different methodology to identify ϵt,t

over each period. Since each methodology has different strengths and weaknesses, this could

affect the results and the ORA comparison across periods.21 To guard ourselves against

this possibility, we will also use an identification of monetary shock that is consistent across

regimes, which will ensure that the monetary shocks are identified in the exact same way

across regimes. Specifically, we use sign restrictions, another popular method to identify

monetary shocks (e.g., Uhlig, 2005). This approach has the benefit that the same identifica-

tion scheme can be implemented over the entire sampling period. With the VAR including

inflation, unemployment, the policy rate and the growth rate of the monetary base, we im-

pose the following sign restrictions: a positive monetary shock raises the short-term rate in

impact, lowers money growth on impact, and lowers inflation and raises unemployment after

a year. Other than that, the responses are unconstrained.22

20The narrative accounts underlying these dates support this view, as all dates refer to changes in monetary
variables within the quarter (Romer and Romer, 1989)

21For instance, exogeneity and relevance may differ across instrumental variables, see e.g., Barnichon and
Mesters (2020) for a discussion of the different strengths and limits of the Romer and Romer (2004b) and
the Gürkaynak, Sack and Swanson (2005) shock proxies.

22One potential drawback of the sign-restriction approach is that the identified monetary shocks may not
isolate contemporaneous monetary shocks ϵt,t. Since the VAR uses a limited set of observed macro variables
to control for agents’ information set, the VAR residuals —and thus our resulted identified monetary shocks—
may mix contemporaneous shocks (ϵt,t) with news shocks revealed before time t (ϵt,t−j , j > 0) but not entirely
captured by the VAR. While this is unlikely to be a problem before 1990 (see earlier discussions), it could
be one in the post Volcker period where forward guidance was actively used. As robustness check, we thus
expanded the VAR information set by adding SPF forecasts for the 3-month treasury bill rates to control
for news shocks revealed before time t. Results were very similar.
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5.3.2 Non-policy shocks

We now describe the identification of our five types of non-policy shocks. We again rely on

standard identification methods in the literature, and we assume that these identification

schemes identify the same shocks across periods.23

Financial shocks As financial shocks we use narratively identified bank panics. Each

included panic was triggered by either a run on a particular trust fund or by foreign de-

velopments. The dates for the banking panics are taken from Reinhart and Rogoff (2009),

Schularick and Taylor (2012) and Romer and Romer (2017). To capture the severity of the

bank run, each non-zero entry is rescaled by the change in the BAA-AAA spread at the

time of the run, similar to the re-scaling of Bernanke et al. (1997) and Romer and Romer

(2017).24

Government spending shocks For government spending shocks we use the news shocks

to defense spending as constructed in Ramey and Zubairy (2018).

Productivity shocks To identify productivity shocks we use the identification scheme of

Gali (1999) and Barnichon (2010): we estimate bi-variate VARs with log output per hour

and unemployment over each policy regime, and we impose long-run identifying restrictions,

specifically that only productivity shocks can have permanent effects on productivity. The

quarterly time series for output per hour is taken from Petrosky-Nadeau and Zhang (2021)

and starts in 1890.

Energy shocks To identify energy shocks, we extend the approach of Hamilton (1996) and

Hamilton (2003) by identifying energy shocks as instances when energy price rises above its

3-year maximum or falls below its 3-year minimum. Since coal was the primary US energy

source until World War II and oil only became the pre-dominant energy source after World

War II, we measure energy price prices from the wholesale price index for fuel and lighting,

available over 1890-2019.

Inflation expectation shocks An important feature of a successful central bank is the

anchoring of inflation expectations. In this context, we aim to measure how well the Fed

23The same assumption is implicit in earlier work exploiting the same five non-policy shocks, see Jordà,
Schularick and Taylor (2013); Romer and Romer (2017), Ramey and Zubairy (2018), Blanchard and Gaĺı
(2007), Leduc, Sill and Stark (2007) and Gaĺı and Gambetti (2009).

24Using bank runs as 0-1 dummies does not change conclusions drastically though it makes the estimates
a bit less precise. Since the time series for AAA yields only start in 1919, we backcasted AAA yields before
1919 with yields on 10-year maturity government bonds from the Macro History database (Jordà et al.,
2019).
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has been responding to innovations to inflation expectations —a clear example being the

de-anchoring of inflation expectations in the 1970s (Reis, 2021). To do so, we aim to identify

inflation expectation shocks .

As measure of inflation expectations, we rely on the Livingston survey that has been

continuously run over 1946-2019,25 and includes a question about 8-months ahead inflation

expectations. Prior to World War II, there are no systematic inflation expectation survey,

so we instead rely on Cecchetti (1992)’s measure of 6-months ahead inflation expectations

for the Early Fed period.26

To identify innovations to inflation expectations, we proceed similarly to Leduc, Sill

and Stark (2007) and project inflation expectations on a set of controls that include past

values of inflation expectation, inflation, unemployment, lags of the 3-month and 10-year

treasury rates. In addition, we also project on current and past values of the other identified

non-policy shocks: financial, government spending, energy price and TFP. The idea of this

exercise is to capture movements in inflation expectations that cannot be explained by the

other shocks, i.e., that go above and beyond the typical effect of the non-policy shocks on

inflation expectations.

5.4 Results

Table 2 shows the baseline ORA statistics computed over the four periods for our five non-

policy shocks. Recall that the ORA is an adjustment to the coefficient Bpξ in the policy

rule,27 so that a negative ORA indicates that the policy rate was too high, either because

the policy rate increased too much or because it did not decline enough following a non-policy

shock.

In the main text, we focus on the main lessons of our exercise, leaving a more in-depth

presentation of our results for the appendix. Our main results are as follows: (i) we estimate

large and uniform improvements in the conduct of monetary policy, but only in the last 30

years, (ii) we cannot reject that the Fed’s reaction to recent financial shocks (notably the

2007-2008 financial crisis) was appropriate, in contrast to the “highly” sub-optimal reaction

of the Fed during the Great Depression, (iii) despite much larger realized losses in the 1920s-

1930s, the performance of the early Fed is no worse than the performance of the passive Gold

25The Livingston survey is conducted with a pool of professional forecasters from non-financial businesses,
investment banking firms, commercial banks, academic institutions, government, and insurance companies,
see Leduc, Sill and Stark (2007).

26Cecchetti (1992)’s measure of inflation expectations relies on Mishkin (1981)’s insight that the ex-
ante real interest rate can be recovered from a projection of the ex-post real interest rate on the time t
information set. The difference between the ex-ante and ex-post real interest rate provides a measure of
inflation expectations.

27For instance, an ORA of 0.5 means that in response to a 1 standard deviation non-policy shock, the
reaction coefficient should have been 0.5 point larger.
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Standard, and (iv) the Fed reaction function during the 1960s-1970s is almost as sub-optimal

as the reaction function of the 1920s-1930s Fed, though the nature of the main non-policy

shocks is different.

Improved policy in the Post Volcker period

Overall, we estimate strong improvements in the conduct of monetary policy, but only in

the last 30 years, i.e., roughly after Volcker’s dis-inflation program.

For the first 100 years of our study, we find no material improvement in the reaction

function, with similar deviations from optimality over the first three periods. Comparing the

rows of Table 2 for the three periods before Volcker, we can see ORAs of similar magnitudes

with the average absolute ORA —a summary measure of performance per period (Table 2,

right column)— hovering around 0.6 for 100 years.

It is only in the last 30 years that we estimate superior performances. In the post Volcker

period, the ORAs are substantially smaller (and non-significant) than in the other periods,

with an average absolute ORA of 0.2. In fact, the Post Volcker ORA statistics are smaller

across all non-policy shocks, meaning that policy performance improves in all dimensions,

from the responses to supply-type shocks like energy price shocks and TFP shocks to the

responses to demand-type shocks like government spending shocks and financial shocks.28

We will now focus in more details on the reaction to financial shocks, contrasting the Post

Volcker Fed with the Early Fed of the 1920s-1930s.

Responding to financial shocks

In a 2002 speech in honor of Milton Friedman 90th birthday, (then) Fed governor Bernanke

famously said: “Regarding the Great Depression. You’re right, we did it. We’re very sorry.

But thanks to you, we won’t do it again.” (Bernanke, 2002). In an irony of history, the

speech was made a full five years before the 2007-2008 financial crisis; a crisis that saw an

unprecedented Fed response (see e.g., Bernanke, 2013) with Bernanke as Fed chairman.

Our results strikingly confirm Bernanke’s quote, both his historical claim as well as his

prophecy: the “poor” reaction function of the early Fed led to massive welfare losses, while

the “good” reaction function of the Post Volcker Fed ensured little welfare losses coming

from a sub-optimal reaction function.

To see this, we can first contrast the financial ORAs —the ORAs for financial shocks—

estimated for the Early Fed period and for the Post Volcker period. With τ ∗ = −1.2

28Importantly, the non-significance of the Post Volcker ORAs is not due to imprecisely estimated impulse
responses. As we show in the Appendix, the Post Volcker impulse responses are estimated with reasonable
precisions and the point estimates are sensible. The ORAs are small, because the impulse responses to
non-policy shocks are (almost) orthogonal to the impulse responses to policy shocks.
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(statistically significant), the Fed reaction to banking panics was too tight —a result echoing

previous findings in the literature (e.g., Friedman and Schwartz, 1963; Hamilton, 1987)—. In

contrast, the estimated ORA for the post Volcker Fed is four times smaller with τ ∗ = −0.3

and not statistically significant, indicating that the post Volcker Fed period reacted much

more appropriately and pointing to large improvements in the Fed’s reaction to financial

shocks.29

To better appreciate this improvement, Figures 2 and 3 display the impulse responses

underlying the financial ORAs estimated for 1913-1941 and 1990-2019. The top rows show

the impulse responses of inflation, unemployment and the interest rate to a monetary policy

shock, while the bottom rows show the responses of the same variables to a financial shock.30

For the Early Fed period, notice how the Fed raised the discount rate in response to

financial shocks. Combined with the decline in inflation caused by the financial shock, this

means that the real policy rate increased substantially and monetary policy was contrac-

tionary, confirming earlier work on the monetary factors behind the Great Depression (e.g.,

Friedman and Schwartz, 1963; Hamilton, 1987). The ORA corrects this sub-optimal reac-

tion function and turns the table on monetary policy by running an expansionary policy.31

To see that, Figure 2 (dashed green line) reports the ORA adjusted impulse responses —

Γ∗
0 = Γ0

0 + R0
0τ

∗
0—, which depict how the ORA adjustment translates into different policy

path responses to non-policy shocks and “improved” (i.e., more stable) impulse responses

of inflation and unemployment. The ORA leads to a major adjustment to the policy path

—the policy rate now goes down substantially on impact—, and the paths of inflation and

unemployment are consequently much more stable. In contrast, for the Post Volcker pe-

riod (Figure 3) the policy rate goes down following a financial shock (black line, lower-right

panel), and the ORA only slightly adjusts the response of the policy rate (green line), leading

to modest adjustments to the responses of inflation and unemployment.

As we saw in Section 4.5, we can also use the ORAs to quantify how much of the

historical variation in inflation or unemployment was “unnecessary”, being the outcome of

a suboptimal reaction function. Figure 5 depicts the results of this exercise, showing the

historical ORA adjustments to the policy rate (∆Pt) and to inflation and unemployment

29That said, a point estimate at −0.3 indicates that the Fed should have lowered the fed funds rate more
in response to financial shocks (according to the posterior mean). This could indicate that the presence of
the zero lower bound may have limited somewhat the Fed’s ability to best react to the 2007-2008 financial
crisis.

30For both periods, a higher policy rate raises unemployment and lowers inflation, while a financial shock
lowers inflation and raises unemployment. That said, the inflation response is more muted in the post-Volcker
period, consistent with the anchoring of inflation expectations post Volcker or more generally with different
economies across historical periods.

31Recall that the ORA is the outcome of a regression of the responses to a non-policy shock on the
responses to a policy shock: a regression of the inflation and unemployment impulse responses in the bottom
row on the corresponding impulse responses in the top row.
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(∆Yt) over each period. The corresponding gains in welfare (27) —the welfare losses that

could have been avoided with a different reaction function— are listed in Table 3.

Figure 5 (second column) shows that the suboptimal reaction function of the early Fed

translated into large welfare losses. For instance, during the Great Depression the ORA

adjustment term amounts to as much as 10 ppt of unemployment and 15 ppt of inflation.32

In units of welfare losses, this represents 35 points extra welfare loss due to sub-optimal

policy (Table 3). In contrast, the welfare losses that can be attributed to the Post Volcker

Fed are small. The Post Volcker ORA adjustment terms are small except in the early phase

of the Great Recession, where the ORA calls for an additional 0.5 ppt drop in the fed funds

rate in 2009, an adjustment that would have avoided about 0.5 ppt of unemployment (at

some mild inflation cost). Overall, this represents only 0.7 point extra welfare loss due to

sub-optimal policy (Table 3), an order of magnitude smaller than the welfare loss attributed

to the early Fed.

The early Fed vs the passive Gold Standard

In contrast to the suggestive evidence of the naive approach (Table 1), the passive Gold

Standard is not markedly superior to the early Fed. In other words, the founding of the

Fed did not deteriorate performance relative to the passive monetary regime of the Gold

Standard. Instead, performances were just as “bad” before and after the founding of the

Fed.

Comparing the ORA before and after the founding of the Fed (Table 2, first two rows),

we observe similar deviations from optimality. During the passive Gold Standard, monetary

policy is (unsurprisingly) too passive in the face of adverse shocks: be it bank runs or military

buildups.33 Comparing ORAs across two the periods, we can see that (i) the excessive

passivity simply continued after the founding of the Fed —the ORAs are similar across the

two periods—, and (ii) the excessive passivity of the early Fed is not limited to financial

distress, and it also extends to other shocks, here government spending shocks.34

32The ORA would have erased the discount rate hikes observed in 1931 —hikes often been blamed for
turning the initial recession caused by the 1929 stock-market crash into a full blown depression (e.g., Hamil-
ton, 1987)— and ultimately lowered the discount rate all the way to almost (but still above) zero in 1932.
This would have avoided as much as 10 percentage points in unemployment —as much as half of the rise in
unemployment over 1930-1932— as well as the deflation.

33To give a few noteworthy “misses” of the passive Gold Standard, the ORAs call for lower interest rates
(about 3/4 ppt) in the aftermaths of the 1893 and 1907 bank runs, as well as higher interest rates in response
to higher military spending following the war against Spain in 1898, and the navy build-up of 1902-1904. See
Figure 5 and the Appendix for more details, notably the impulse responses underlying the ORAs estimated
for 1879-1913.

34In particular, we find that the Fed’s delayed reaction to the large increase in military spending in 1917
is responsible for some of the inflation outburst of 1919-1920 (see also Romer, 1992). See the Appendix for
more details.
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The Great Inflation

US monetary policy during the 1970s has generally been considered poor (e.g., Romer and

Romer, 2004a), in particular not responding more than one-to-one with changes in inflation

(Clarida, Gaĺı and Gertler, 2000) and violating the so-called Taylor principle. However,

beyond that Taylor principle, it has been difficult to quantify how “poor” monetary policy

had been. The ORAs displayed in Table 2 can help address this limitation.

Overall, Fed performance during the 60s-70s is on a par with the poor performance of

the early Fed, with ORAs of similar magnitudes, though the nature of the underlying shocks

is different. Post World War II, the Fed reaction was too weak following all the different

supply-type shocks that we identified: energy price shocks, TFP shocks as well as inflation

expectation shocks. In fact, the reaction to inflation expectation shocks over the 60s-70s

displays the largest deviation from optimality over the entire 150 year of monetary history

with τ ∗ = 1.2, even slightly larger (in absolute value) than the Fed’s poor reaction to bank

runs during the Great Depression.

To better appreciate these sub-optimal reactions, Figure 4 plots the impulse responses

underlying the ORAs for inflation expectation shocks (similar results hold for energy or

TFP shocks, see the appendix). In response to an inflation expectation shock, inflation rises

progressively, but the policy rate does not respond, leading to negative real interest rates and

further increasing inflation. The (large) ORA adjustment restores the Taylor principle: after

the ORA, the policy rate rises strongly following an inflation expectation shock (lower-right

panel, Figure 4) and stems the rise in inflation (at the cost of higher unemployment).

We can again use these counterfactuals to assess how much of the realized welfare losses

were caused by these sub-optimal reactions, i.e., could have been avoided with a different re-

action function. Figure 5 (third column) shows large ORA adjustment terms with substantial

adjustments to the fed funds rate in response to the oil price shocks and inflation expectation

shocks of the 1970s. For instance, about 5 ppt of inflation could have been avoided by 1980

(at the cost of extra unemployment). Overall, this represents about 3 points of welfare loss

that can be attributed to the Fed, almost as large as the entire loss experienced during the

Post Volcker period.

Robustness and caveats

In the appendix, we show robustness to our identification of monetary shocks, and we also

consider robustness to the definition of the different monetary periods. Overall, our results

are consistent with our baseline estimates, with ORAs of similar magnitudes and levels of

statistical significance.

As final comments, we note two important caveats. First, our analysis takes as starting
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point a loss function with equal weights on inflation and unemployment and studies whether

different reaction functions could have achieved lower losses, thereby attributing some of

the variation in inflation and unemployment to sub-optimal policies. Different loss functions

might justify past reaction functions, and it is not our objective to argue in favor of one loss

function vs another.

Second, we do not take a stand on the reasons for past sub-optimal reaction functions. A

better understanding of the functioning of the economy (Friedman and Schwartz, 1963), bet-

ter and more timely data (Romer, 1986; Orphanides, 2001), better forecasting (Dominguez,

Fair and Shapiro, 1988) and better causal inference methods (Romer and Romer, 1989) could

all be part of the improvements in policy over the last 30 years. Parsing out these different

reasons is an important question for future research.

6 Conclusion

In this paper, we propose to evaluate makers based on how well they reacted to the exogenous

shocks that they faced during their term. We show how such a reaction function evaluation

is possible with minimal assumptions on the underlying structural economic model. We

introduce a new statistic, the ORA, which measures the distance to the optimal reaction

function and can be computed from two sets of sufficient statistics: (i) the impulse responses

of the policy objectives to non-policy shocks, and (ii) the same impulse responses to pol-

icy shocks. Importantly, explicit knowledge of the policy maker’s reaction function is not

necessary, because the effect of an (unspecified) reaction function is already encoded in the

impulse responses to shocks, which are estimable.

We apply this methodology to evaluate US monetary policy over the past 150 years; from

the Gold standard period to the post-Volcker regime. We find no material improvement in

the reaction function over the first 100 years, and it is only in the last 30 years that we

estimate large and uniform improvements in the conduct of monetary policy.

Going forward, the methodology could be applied to many other important evaluation

questions; not only in the context of monetary policy (e.g., comparing central banks such as

the Fed vs the ECB during the Great Recession), but also in the context of fiscal policy (e.g.,

comparing the performance of US presidents, Blinder and Watson, 2016), health policy (e.g.,

comparing governments’ policy responses to COVID), or climate change mitigation policy.

We leave these questions for future research.
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Jordà, Òscar, Moritz Schularick, and Alan M Taylor. 2013. “When credit bites
back.” Journal of Money, Credit and Banking, 45(s2): 3–28.

Judd, John P, and Glenn D Rudebusch. 1998. “Taylor’s Rule and the Fed:
1970-1997.” Economic Review-Federal Reserve Bank of San Francisco, 3–16.

Kilian, Lutz, and Helmut Lütkepohl. 2017. Structural Vector Autoregressive Analysis.
Cambridge University Press.

Kuttner, Kenneth N. 2001. “Monetary Policy Surprises and Interest Rates: Evidence
from the Fed Funds Futures Market.” Journal of Monetary Economics, 47(3): 523–544.

Leduc, Sylvain, Keith Sill, and Tom Stark. 2007. “Self-fulfilling expectations and the
inflation of the 1970s: Evidence from the Livingston Survey.” Journal of Monetary
economics, 54(2): 433–459.

Leeper, Eric M., and Tao Zha. 2003. “Modest policy interventions.” Journal of
Monetary Economics, 50(8): 1673–1700.

Li, Dake, Mikkel Plagborg-Møller, and Christian K. Wolf. 2022. “Local
Projections vs. VARs: Lessons From Thousands of DGPs.” Working paper.

McKay, Alisdair, and Christian Wolf. 2023. “What Can Time-Series Regressions Tell
Us About Policy Counterfactuals?” Econometrica. forthcoming.

Meltzer, Allan H. 2003. A history of the Federal Reserve, Volume 1: 1913-1951.
University of Chicago Press.

Meltzer, Allan H. 2009a. “A History of the Federal Reserve, Volume 2, Books 1,
1951-1969.”

Meltzer, Allan H. 2009b. “A History of the Federal Reserve, Volume 2, Books 2,
1970-1986.”

Mishkin, Frederic S. 1981. “The real interest rate: An empirical investigation.” Vol. 15,
151–200, Elsevier.

36



Mishkin, Frederic S. 2010. “Will Monetary Policy Become More of a Science?” In The
Science and Practice of Monetary Policy Today. , ed. Wieland V., 81–103. Springer,
Berlin.

Orphanides, Athanasios. 2001. “Monetary policy rules based on real-time data.”
American Economic Review, 91(4): 964–985.

Orphanides, Athanasios. 2003. “Historical monetary policy analysis and the Taylor
rule.” Journal of monetary economics, 50(5): 983–1022.

Petrosky-Nadeau, Nicolas, and Lu Zhang. 2021. “Unemployment crises.” Journal of
Monetary Economics, 117: 335–353.

Plagborg-Møller, Mikkel, and Christian K. Wolf. 2021. “Local Projections and
VARs Estimate the Same Impulse Responses.” Econometrica, 89(2): 955–980.

Primiceri, Giorgio. E. 2005. “Time Varying Structural Vector Autoregressions and
Monetary Policy.” The Review of Economic Studies, 72: 821–852.

Ramey, Valerie. 2016. “Macroeconomic Shocks and Their Propagation.” In Handbook of
Macroeconomics. , ed. J. B. Taylor and H. Uhlig. Amsterdam, North Holland:Elsevier.

Ramey, Valerie A., and Sarah Zubairy. 2018. “Government Spending Multipliers in
Good Times and in Bad: Evidence from U.S. Historical Data.” Journal of Political
Economy, 126.

Reinhart, Carmen M, and Kenneth S Rogoff. 2009. “This time is different.” In This
Time Is Different. princeton university press.

Reis, Ricardo. 2021. “Losing the Inflation Anchor.” Brookings papers on economic
activity, 2021(2): 307–379.

Romer, Christina D. 1986. “Is the Stabilization of the Postwar Economy a Figment of
the Data?” The American Economic Review, 76(3): 314–334.

Romer, Christina D. 1992. “What ended the great depression?” The Journal of
Economic History, 52(4): 757–784.

Romer, Christina D, and David H Romer. 1989. “Does monetary policy matter? A
new test in the spirit of Friedman and Schwartz.” NBER macroeconomics annual,
4: 121–170.

Romer, Christina D, and David H Romer. 2004a. “Choosing the Federal Reserve
chair: lessons from history.” Journal of Economic Perspectives, 18(1): 129–162.

Romer, Christina D., and David H. Romer. 2004b. “A New Measure of Monetary
Shocks: Derivation and Implications.” American Economic Review, 94: 1055–1084.

Romer, Christina D., and David H. Romer. 2017. “New Evidence on the Aftermath
of Financial Crises in Advanced Countries.” American Economic Review,
107(10): 3072–3118.

37



Rudebusch, Glenn D, and John C Williams. 2008. “Revealing the secrets of the
temple: The value of publishing central bank interest rate projections.” In Asset Prices
and Monetary Policy. 247–289. University of Chicago Press.

Schularick, Moritz, and Alan M Taylor. 2012. “Credit booms gone bust: Monetary
policy, leverage cycles, and financial crises, 1870-2008.” American Economic Review,
102(2): 1029–61.

Sims, Christopher A, and Tao Zha. 2006. “Does monetary policy generate
recessions?” Macroeconomic Dynamics, 10(2): 231–272.

Stock, James H., and Mark W. Watson. 2016. “Chapter 8 - Dynamic Factor Models,
Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in
Macroeconomics.” In . Vol. 2 of Handbook of Macroeconomics, , ed. John B. Taylor and
Harald Uhlig, 415 – 525. Elsevier.

Stock, James H., and Mark W. Watson. 2018. “Identification and Estimation of
Dynamic Causal Effects in Macroeconomics Using External Instruments.” The Economic
Journal, 128(610): 917–948.

Svensson, Lars EO. 2003. “What is wrong with Taylor rules? Using judgment in
monetary policy through targeting rules.” Journal of Economic Literature,
41(2): 426–477.

Taylor, John B. 1999. “A historical analysis of monetary policy rules.” In Monetary
policy rules. 319–348. University of Chicago Press.

Uhlig, Harald. 2005. “What are the Effects of Monetary Policy on Output? Results from
an Agnostic Identification Procedure.” Journal of Monetary Economics, 52(2): 381–419.

Vernon, J.R. 1994. “Unemployment rates in postbellum America: 1869–1899.” Journal of
Macroeconomics, 16(4): 701–714.

Weir, David R. 1992. “A century of US unemployment, 1890-1990: revised estimates and
evidence for stabilization.” Research in Economic History, 14(1): 301–46.

Wheelock, David C, et al. 2010. “Lessons learned? Comparing the Federal Reserve’s
responses to the crises of 1929-1933 and 2007-2009.” Federal Reserve Bank of St. Louis
Review, 92(Mar): 89–108.

38



Appendix A: Details and Proofs

Proof of Lemma 1. Define

A =

[
Ayy Ayp

Apy App

]
, Bξ =

[
Byξ

Bpξ

]
, J =

[
0
I

]
and Z =

[
Y
P

]
. (30)

The model (11) is equivalent to
AZ = BξΞ+ Jϵ .

For any ϕ ∈ Φ we have that there exists unique equilibrium representation. This implies
that A is invertible and we obtain

Z = A−1Bξ︸ ︷︷ ︸
=D1

Ξ+A−1J︸ ︷︷ ︸
=D2

ϵ .

The block structure of D1 and D2 is given by

D1 =

[
Γ(ϕ)
Γp(ϕ)

]
and D1 =

[
R(ϕ)
Rp(ϕ)

]
,

where the maps Γ(ϕ) and R(ϕ) appear in the first position as they capture the effects of the
shocks on Y. The other maps capture the effects of the shocks on P. Explicit expression
can be obtained by by noting that A being invertible implies that App and Ayy−AypA−1

pp Apy

are invertible as Ayy is generally not invertible. We have

Γ(ϕ) = D(Byξ +AypA−1
pp Bpξ) and R(ϕ) = DAypA−1

pp ,

with D = (Ayy −AypA−1
pp Ayp)

−1.

Proof of Lemma 2. Given some ϕ ∈ Φ we can follow the same steps as the proof of Lemma
1 but using an augmented policy rule

AppP−ApyY = (Bpξ + T )Ξ+ ϵ ,

and we obtain the equilibrium representation

Y = (Γ(ϕ) +R(ϕ)T )Ξ+R(ϕ)ϵ , (31)

where
Γ(ϕ) = D(Byξ +AypA−1

pp Bpξ) and R(ϕ) = DAypA−1
pp ,

with D = (Ayy −AypA−1
pp Ayp)

−1. We obtain the first part of Lemma 2 for ϕ = ϕ0.
Further, recalling that θ = {App,Apy,Bpξ} we have

Γ(ϕ) = Γ({App,Apy,0}) +R(ϕ)Bpξ , (32)

from which the second part of Lemma 2 follows directly by adjusting the rule coefficients
Bpξ to Bpξ + T .

Proof of Proposition 1. The proof proceeds in two steps: (a) we show the equivalence for
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{minϕ L s.t. (11) with ϵ = 0} = {minBpξ
L s.t. (11) with ϵ = 0 ,App = A0

pp, Apy = A0
py} and

(b) we show that the value for Bpξ that solves the second problem is B0
pξ + T ∗. To show (a)

we note that under ϵ = 0 we have that Y can be written as

Y = DByξΞ+DAypA−1
pp BpξΞ = Γ(ϕ)Ξ

Using that the entries of Ξ have mean zero, unit variance and are uncorrelated we have that

L =
1

2
E(Y′WY) = Tr((Byξ +AypA−1

pp Bpξ)
′D′WD(Byξ +AypA−1

pp Bpξ)) .

The derivative maps of L with respect to ϕ = {App,Apy,Bpξ} are given by

A−1′

pp A′
ypD′WD(Byξ +AypA−1

pp Bpξ)B′
pξA−1′

pp +

A−1′

pp A′
ypD′WD(Byξ +AypA−1

pp Bpξ)(Byξ +AypA−1
pp Bpξ)

′D′A′
pyA−1′

pp = 0

A−1′

pp A′
ypD′WD(Byξ +AypA−1

pp Bpξ)(Byξ +AypA−1
pp Bpξ)

′D′ = 0

A−1′

pp A′
ypD′WD(Byξ +AypA−1

pp Bpξ) = 0

The last equation gives the derivative map with respect to Bpξ. Solving this expression for
Bpξ yields

B∗
pξ = −[A−1′

pp A′
ypD′WDAypA−1

pp ]
−1A−1′

pp A′
ypD′WDByξ .

Further, it is easy to see that if the last equation holds then the first two equations also
hold. This holds regardless of App and Apy as long as the invertibility conditions above are
satisfied.

To show part (b), note that R0 = D0A0
yp(A0

pp)
−1 and if B0

pξ = 0 we have that Γ0 =

Γ({A0
pp,A0

py,0}) = D0Byξ. This implies that B∗
pξ = T ∗ = −(R0′WR0)−1R0′WΓ0 and the

proof is complete. Now suppose that B0
pξ ̸= 0, using (32) we have B0

pξ + T ∗ = B0
pξ −

(R0′WR0)−1R0′WΓ0 = B0
pξ−(R0′WR0)−1R0′WΓ({A0

pp,A0
py,0})−(R0′WR0)−1R0′WR0B0

pξ =
B∗
pξ.

Proof of Proposition 2. From

EL = (Γ0
b +R0

aTab)
′(Γ0

b +R0
aTab) + terms independent of Tab ,

and the definition of T ∗
ab, we have that

∂EL
∂Tab

∣∣∣
T ∗
ab

= 0, which establishes the first part since the

optimization problem is convex.
We have that

L(ϕ0) = L(A0
pp,A0

py,B0
px,B0

paξb
+ Tab,B0

−pa−ξb
)
∣∣
Tab=0

≥ min
Tab

L(A0
pp,A0

py,B0
px,B0

paξb
+ Tab,B0

−pa−ξb
)

= ELt(ϕ
∗) ,

which establishes the second part.
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Figure 1: Inflation and unemployment, 1879–2019
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Notes: Year-on-year inflation (GDP deflator) and the unemployment rate. The vertical lines highlight

the different periods: Pre Fed 1879-1912, Early Fed 1913-1941, Post WWII 1951-1984 and Post Volcker

1990-2019.

Table 1: Realized losses

Pre Fed Early Fed Post WWII Post Volcker
1879-1912 1913-1941 1951-1984 1990-2019

Lπ 24.3 83.0 11.9 0.7
Lu 3.7 70.0 3.6 3.0
L 28.1 153.1 15.5 3.8

Notes: Realized losses for inflation (Lπ), unemployment Lu and total (Lπ + Lu) for the different periods.
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Table 2: ORA statistics for US monetary policy

Non-policy shock Bank panics G Energy πe TFP Average |ORA|
Shock sign convention u ↑ u ↑ π ↑ π ↑ π ↑

Pre Fed
1879−1912

−0.9∗

(−1.5,−0.3)
−0.6∗

(−1.3,0)
−0.1

(−0.5,0.4)
— 0.6

(−0.2,1.1)
0.6

Early Fed
1913−1941

−1.2∗

(−1.9,−0.8)
−0.5∗

(−0.9,−0.1)
0.0

(−0.3,0.3)
0.7∗
(0.3,1.0)

0.1
(−0.2,0.5)

0.5

Post WWII
1951−1984

— −0.2
(−0.8,0.3)

0.8∗
(0.1,1.4)

1.2∗
(0.6,1.8)

0.5
(−0.2,1.2)

0.7

Post Volcker
1990−2019

−0.3
(−0.8,0.2)

0.1
(−0.4,0.6)

−0.2
(−0.8,0.7)

−0.1
(−0.4,0.3)

−0.3
(−0.7,0.1)

0.2

Notes: Median ORA statistics together with 68% credible sets. The monetary policy shocks are identified

as described in the main text: using gold rush discoveries in the pre-Fed period, Romer and Romer (1989)’s

Friedman-Schwartz dates in the early Fed period, Romer and Romer (2004) monetary shocks for the post

WWII period and high-frequency surprises in the post Volcker period. The financial shocks are bank panics

from Reinhart and Rogoff (2009), the government spending shocks (G) are from Ramey and Zubairy (2018),

TFP shocks from Gali (1999), energy shocks are computed using the peak-over-threshold approach of Hamil-

ton (1996), and inflation expectation shocks (πe) are innovations to inflation expectations as measured from

Cecchetti (1992) for Early Fed period and from the Livingston survey after 1946. For the Pre Fed period the

TFP, G and Energy ORAs are computed over the 1890-1912 period. The right column (“Average |ORA|”)
reports the average absolute ORAs estimated for each period.

Table 3: The effects of ORA adjustments on the loss function

Pre Fed Early Fed Post WWII Post Volcker
1879-1912 1913-1941 1951-1984 1990-2019

∆Lπ -2.3 -16.3 -3.3 0.0
∆Lu -1.2 -18.8 0.7 -0.6
∆L -3.4 -35.2 -2.7 -0.6

Notes: Effects of ORA adjsutments on realized losses for inflation (∆Lπ), unemployment ∆Lu and total

(∆L = ∆Lπ +∆Lu) for the different periods, as computed from (27).

42



Figure 2: Early Fed, 1913-1941, Reaction to Financial shocks
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Figure 3: Post Volcker Fed, 1990-2019, Reaction to Financial shocks
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0 . The 95% and 68% credible sets are plotted as dark and light shaded

areas, respectively.
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Figure 4: Post WWII Fed, 1951-1984, Reaction to πe shocks
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0 . The 95% and 68% credible sets are plotted as dark
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Figure 5: ORA adjustments over 1879-2019
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Notes: The top row shows the policy rate (“raw data”, blue plain line) along with the adjustment to

the contemporaneous policy rate implied by the median ORA adjustment (“ORA adjustment”, red line)

over each period, calculated following (26). The middle and bottom rows show the same information but

for inflation and unemployment. In each panel, the sum of the blue line (“raw data”) and the red line

(“ORA adjustment”) gives the counter-factual ORA-adjusted time series for the policy rate, inflation and

unemployment (respectively).
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