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Abstract

The approach to analysing compositional data with a fixed sum con-
straint has been dominated by the use of logratio transformations, to
ensure exact subcompositional coherence and, in some situations, exact
isometry as well. A problem with this approach is that data zeros, found
in most applications, have to be replaced to permit the logarithmic trans-
formation. A simpler approach is to use the chi-square standardization
that is inherent in correspondence analysis. Combined with the Box-Cox
power transformation, this standardization defines chi-square distances
that tend to logratio distances for strictly positive data as the power
parameter tends to zero, and can thus be considered equivalent to trans-
forming to logratios. For data with zeros, a value of the power can be
identified that brings the chi-square standardization as close as possi-
ble to transforming by logratios, without having to substitute the zeros.
Especially in the field of high-dimensional “omics” data, this alterna-
tive presents such a high level of coherence and isometry as to be a
valid, and much simpler, approach to the analysis of compositional data.

Keywords: Box-Cox transformation, chi-square distance, correspondence
analysis, isometry, logratios, Procrustes analysis, subcompositional coherence
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1 Introduction

Compositional data are non-negative data with a fixed sum constraint, usu-
ally 1 or 100%. Such data are found in many fields, notably biochemistry,
geochemistry, ecology, linguistics, as well as all the “omics” fields of genomics,
proteomics, microbiomics, and metabolomics, to name but a few. In most
cases, such data are observed as counts, abundances or intensities, where the
totals in the samples, usually the rows of the data matrix, are irrelevant. Con-
sequently, the sample values can be divided by their respective totals to give
compositional vectors, with sums equal to 1. This operation of dividing by the
total is called closure, or normalization.

It has long been recognized that such data need special statistical treat-
ment, since the vectors of sample data would change by different scalar mul-
tiples if some compositional parts were excluded and the data re-normalized
with respect to their new totals, giving so-called subcompositions. In reality,
in almost all applications the observed compositions are themselves subcom-
positions of a larger set of potentially observable parts, with proportional
values out of a total of 1 that would change if an extended set of parts were
observed. To deal with this problem in compositional data, the use of ratios
of parts as the basis for statistical analysis was proposed by John Aitchison
[1, 2], who laid the foundation for a field of statistics often referred to as
compositional data analysis, or CoDA. Ratios are invariant with respect to
deleting parts from or adding parts to a composition, and are thus described
as being (subcompositinally) coherent. Because ratios are compared multi-
plicatively, logarithmic transforms of the ratios, called logratios, have become
the preferred transformation for CoDA. Thus, the idea has been to transform
to logratios and then continue with regular statistical methods applicable to
interval-scale data, but taking appropriate care in the interpretation of the
subsequent results in terms of the original compositional parts.

The logratio approach has not been without controversy, especially since
the introduction of the isometric logratio transformation [3]. Several authors
have insisted that the logratio transformation has to be isometric, a require-
ment that was never in Aitchison’s vision of CoDA [4]. Isometry means that
the geometry of the transformed data, which can be thought of as the mul-
tivariate distances between all pairs of samples, must be exactly the same
as the logratio distances, which are the Euclidean distances between samples
based on all their pairwise logratios. Criticisms of this insistence on the type of
“permitted” data transformation, which severely limits practitioners in their
choice, can be found in several papers, for example [5], [6], [7], [4].

To counter the rigid approach to CoDA, bordering on dogmatic, a more
flexible, pragmatic approach to CoDA has been suggested by, for example,
[4, 8–12], where simple pairwise logratios are used, for example the additive
logratio transformation first proposed by [2]. Here the CoDA principles of
coherence and isometry are regarded as ideals and transformations are allowed
that come very close to these ideals. The idea is similar to the approach in
statistics where an ideal mathematical model for the data is assumed, for
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example the normal distribution, and then methods are validly applied to data
that are found to be closely following the model, for example approximately
normally distributed.

The challenge is thus to find alternative transformations of compositional
data that approximate closely the logratio approach. To support such an
approach, quantitative measures are needed to compare the properties of a
transformed data set to that of a logratio-transformed one, just like the distri-
bution of observed data are quantitatively compared to the ideal of a normal
distribution.

The two ideal properties considered here are coherence and isometry. A pos-
sible measure of coherence (or, conversely, lack of coherence, or incoherence)
has already been proposed by [13]. Similarly, if isometry is deemed to be impor-
tant, a measure of isometry (or, conversely, lack of isometry, or anisometry)
can also be defined [4]. This allows practitioners to judge whether alternative
transformations are quasi-coherent, or quasi-isometric, which means that they
are close enough to coherence and isometry, for all practical purposes.

The objective of this paper is to demonstrate the circumstances in which
the chi-square standardization of compositional data, which is intrinsic to
correspondence analysis [14–16], can be used as a valid alternative to the logra-
tio transformation, especially when the standardization is preceded by the
Box-Cox power transformation [17]. This result is not coincidental, for it is
known that chi-square distances on Box-Cox transformed compositions tend
to logratio distances as the power parameter tends to zero, where the Box-Cox
transformation tends to the log-transformation [18, 19]. This close theoretical
connection holds for strictly positive data, and clearly not for data that include
zeros where the logarithm in the limit can not be attained. However, in the
presence of zeros, it turns out that a power transformation can be identified
that is optimal in approximating the logratio distances, and the validity of the
resulting chi-square transformation can be checked using the coherence and
isometry measures mentioned above. This approach has the important advan-
tage that zeros do not have to be substituted, as is the case for the logratio
approach.

To illustrate this more flexible approach, a large “wide” compositional data
set is considered from a study of the intramuscular fat of 89 rabbits, where
the compositional parts are 3937 microbial genes [12, 20]. This is a typical
data set in the burgeoning field of “omics” research: genomics, microbiomics,
metabolomics, proteomics, etc. The original data set is of counts, so these data
are first expressed as compositions by dividing each sample’s counts by its total
count. This data set has only positive counts, so that these closed (or normal-
ized) values are strictly positive. Hence, it is a good example to demonstrate
the chi-square transformation’s approximation to the logratio transformation.
And then, by simulating a large percentage of small counts to be zeros, the
behaviour of the chi-square approach, which can handle zero values without
any problem, can be further studied. In this case, the logratio transformation
is not possible unless the zeros are replaced with imputed positive values.
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2 Methods

2.1 Measuring coherence and isometry

Coherence is a property of the compositional parts, usually the columns of the
data matrix, whereas isometry is a property of the sampling units, usually the
rows. Measures of coherence and isometry can be unified under the umbrella
of statistical distance in both cases.

Isometry means “the same metric”, that is the same distance structure or
geometric configuration in multivariate space. Hence, consider the ideal logra-
tio distances between all the samples, on the one hand, and the distances
between the same samples based on any other transformation of the com-
positional data, on the other hand. Even the identity transformation can be
considered, that is no transformation at all. There are various measures of con-
cordance of these two sets of distances in the literature on multidimensional
scaling [21]. For the present purpose we prefer a measure of the similarity of the
multivariate configurations that are engendered by these two sets of distances,
called the Procrustes correlation [22], also proposed by [23] in the context of
variable selection. One advantage of a correlation measure is that it has a
familiar scale, so that for alternative transformations Procrustes correlations
very close to 1 would be desirable.

Perfect (subcompositional) coherence of the compositional parts means
that the results for subsets of parts forming subcompositions, after renormal-
ization, remain exactly the same as when they formed the “full” composition.
This principle is important because the set of observed parts is almost always a
subset of a larger set of parts, and so the results should not change. Coherence
can have a different meaning depending on whether the statistical analy-
sis is unsupervised, that is identifying patterns in the data, or supervised,
that is using compositional variables to explain one or more response vari-
ables. In an unsupervised context, coherence would be when the relationships
between parts remain the same in subcompositions, where these relationships
can be quantified by the multivariate configuration of the parts, similar to
the distance-based approach to measuring isometry of the samples, described
previously. In a supervised context, coherence would be when the predic-
tive models estimated using certain compositional parts remain the same
irrespective of the parts being in a subcomposition or the original composition.

To assess alternative transformations that are not coherent, subcomposi-
tions of parts need to be chosen, and results compared with those in the full
composition. There are clearly very many possibilities to choose subsets of
parts and create subcompositions. Random subsets of parts can be selected, or
it may be that subcompositions in particular applied contexts tend to include
the more frequent parts than the less frequent ones. For example, in micro-
biome research, the more frequent bacteria would always be present across
different studies, whereas they would vary in the rarer bacteria they include.

Whichever way a subcomposition is chosen, the multivariate configuration
of the parts in the subcomposition can be compared to the configuration of
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the parts in the full composition, and their similarity can again measured by
the Procrustes correlation. Notice that in this case, the comparison is not
between the logratio configuration and the alternative one based on a different
transformation, but between configurations both based on the same alterna-
tive transformation. For the logratio transformation, which is coherent, there
would be no difference in the configurations and the Procrustes correlation
would be exactly equal to 1. For alternative transformations, high correlations
consistently near 1, whatever the subcomposition selected, would indicate that
the transformation is very close to being coherent, in other words that the
renormalizing of the subcompositions has minimal effect on the relationships
between the parts. In the supervised context emphasis would not be focused on
the relationships between the parts themselves but rather on their performance
in explaining response variables.

There is an obvious relationship between the two concepts of coherence (of
the parts) and isometry (of the samples). Showing that a transformation is
very close to being isometric, means that it is close to the logratio transforma-
tion. But the logratio transformation is perfectly coherent, which implies that
alternative transformations close to being isometric must also be coherent.

2.2 Theoretical link between correspondence analysis
and logratio analysis

It has been known for some time that the principal component analysis (PCA)
of all pairwise logratios, called logratio analysis (LRA) [8], and correspon-
dence analysis (CA) [16] have a theoretical connection via the Box-Cox power
transformation:

f(x) =

{
1
α (xα − 1) if α > 0

log(x) if α = 0

The connection is that if the compositional data in the matrix X are
power-transformed as above, where the −1 can be omitted thanks to the
double-centring in CA, then the CA of the power-transformed data converges
in the limit to LRA as α tends to 0. This result only applies to strictly positive
data, although we will soon treat the case when zeros are present. The multi-
plicative rescaling by 1/α is important to correct for the decreasing variance
as α decreases to 0. Notice that LRA has a weighted and unweighted version
[8], and for the purposes of the present study the unweighted version is used,
as in [24].

The important implication of the above result is that, for strictly positive
data, one can perform a CA with a very strong power transformation (i.e., tiny
power α), and come as close as required to performing LRA based on all the
pairwise logratios. Equivalently, the chi-square distances on power-transformed
compositional data are converging to the logratio distances as the power tends
to 0. In other words, the chi-square standardization on power-transformed
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compositional data is converging to an isometric transformation. And, fur-
thermore, in coherence terms, the chi-square transformation is increasingly
coherent as the power decreases and tends to exact coherence.

The chi-square standardization is very simple: each part xij in a compo-
sitional data matrix X is divided by the square root of its respective mean
value

√
x̄j : xij/

√
x̄j . Since all the means x̄j are less than 1, this has the

effect of stretching out the regular simplex of the compositions into an irreg-
ular simplex, where the vertices of the simplex corresponding to rarer parts
are stretched out more than those corresponding to abundant parts. Since
the logratio transformation takes the compositional data into real space, it
is noteworthy that the power transformation combined with the chi-square
standardization is stretching the simplex, and consequently the samples in the
simplex, to exactly the positions of the samples in logratio space as the power
of the transformation tends to 0.

2.3 The problem of data zeros

The problem of zeros has been called the “Achilles heel” of compositional data
analysis [25], since data have to be strictly positive to be able to compute
logratios. Because zeros are usually present in compositional data, and often in
large quantities, a number of zero replacement strategies have been developed
— see [26] for a review. The presence of many zeros can cause problems in
the analysis [27]. The CA approach combined with a power transformation,
provides an approach to avoid zero replacement, but it is clear that, as the
power of the Box-Cox transformation decreases when applied to data that
have many zeros, there will be a problem as the transformation approaches
the logarithm. In the present approach, for data with zeros, the power of the
Box-Cox transformation will be identified that leads to chi-square standardized
data having maximum isometry with the logratio-transformed data, where
zeros will have to be replaced in the latter case to enable its computation.

3 Results

3.1 Strictly positive compositional data

The compositional “Rabbits” compositional data set (89 samples, 3937 genes)
has strictly positive values, which is rather atypical, but it is useful here to
illustrate the good properties of the chi-square standardization combined with
power transformations. The next subsection treats the case with data zeros.

Logratio analysis (LRA, the “ideal”) is first performed on the data and
the configuration of the 89 samples established in 88-dimensional multivariate
space, one less than the number of samples for this wide data set. Then CA is
performed on the original untransformed compositions, and then successively
on versions of the data transformed by powers α descending from 1 to almost
0, where “almost” is α = 0.0001.
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Figure 1A shows a plot of the Procrustes correlations between the logratio
geometry of the 89 samples and corresponding power-transformed chi-square
geometry, showing the convergence to 1 as α tends to 0. In each case along the
curve the 88-dimensional logratio geometry is compared to the 88-dimensional
chi-square geometry. Values indicated are for square root, fourth root and ten
thousandth root (α = 0.0001) transformations.

Figure 1B plots the 89 × 88/2 = 3916 logratio distances between pairs
of sample points in the full 88-dimensional space against the corresponding
distances for the α = 0.0001 case, where the isometry is further shown.

Power of Box−Cox transformation
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Fig. 1 A. The Procrustes correlations, measuring proximity to isometry between the exact
logratio geometry and the geometry of correspondence analysis on compositional data sub-
jected to Box-Cox transformation with different powers. B. For the power equal to 0.0001,
the chi-square distances are practically identical to the logratio distances. In the limit as the
power tends to 0, they are exactly equal.

To further illustrate the theoretical convergence of these geometries, Figure
2 shows the two-dimensional results of the CA for α =1 (original CA), 0.5
(CA on square-root data), 0.0001 (CA on ten thousandth-root data), and
finally LRA. Figures 2C and 2D are identical in their coordinates up to four
decimals — the maximum absolute difference over all coordinate values is
0.00006. The three groups of points correspond to three different laboratories
which performed the testing, where it can be seen that one was quite different
from the other two.

3.2 Compositional data with zeros

To simulate a situation where zeros are present, using the same rabbits data
set, a count of 20 was temporarily regarded as the detection limit and all
values less than 20 in the original matrix of microbial gene counts were set



Springer Nature 2021 LATEX template

8 Article Title

A

C D

B Correspondence analysis (alpha=0.5)

C

Fig. 2 Using the rabbits data set, three correspondence analyses of Box-Cox transformed
data with decreasing powers, and logratio analysis as the limit solution. A. The regular CA
with power 1 (no transformation) B. CA with power 0.5 (square root). C. CA with power
0.0001. D. Logratio analysis (LRA). C and D are identical in their coordinate values to the
fourth decimal. The ellipses are 95% bootstrap confidence regions for the means of the three
groups of points.

to 0. This resulted in a data matrix with 25035 zeros, which is 7.1% of the
89 × 3937 data matrix. This matrix was then normalized to compositions,
and analysed in a similar way as before. In order to compare the CA results
with logratio ones, the zeros were imputed using the function cmultRepl in
the zCompositions R package [28], which is one of the popular ways of zero
replacement. The chi-square distance structure of power-transformed data
(with zeros) was compared to the logratio distance structure of the data matrix
with zeros replaced.
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Power of Box−Cox transformation
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Fig. 3 A. The Procrustes correlations, measuring proximity to isometry between the exact
logratio geometry and the geometry of correspondence analysis on compositional data sub-
jected to Box-Cox transformation with different powers. The correlation is at an optimum
value of 0.997 for a power of 0.22. B. In the respective 88-dimensional spaces, the chi-square
distances are very similar to the logratio distances.

Figure 3 shows the results, where now the CA obviously cannot reproduce
exactly the logratio structure, but it can come very close depending on the
power transformation selected. Figure 3A shows that, as the power decreases,
an optimal value of the Procrustes correlation is reached, equal to 0.997, at
α = 0.22, which is close to a fourth-root transformation. Hence the level of
isometry is almost perfect, and the concordance of the chi-square and logratio
distances can be seen in Figure 3B. Since we know the true values of the
constructed zeros in the data, the comparison could also be made directly
between the CA applied to the data matrix with zeros and the LRA on the
original data. The highest Procrustes correlation in this case is 0.990, only
slightly less than 0.997 above, but for a power of α = 0.59, which is close to a
square root transform. All these results point again to the successful use this
type of transformation of compositional data in the context of unsupervised
learning, and without the need for zero replacement.

3.3 Power transformations for supervised learning

When it comes to compositional variables serving as predictors of a continuous
or categorical response, it will be essential to perform some type of variable
selection, especially in the present wide example where the number of variables
considerably exceeds the number of samples. In this case the issue of isometry
is no longer relevant but coherence certainly is. For example, suppose a small
subset of parts of a composition is identified as good predictors of a response,
how would the results change if only a subcomposition had been observed,
with different compositional values?
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Using logratios, because of their coherence, a result for any subcomposition
would be identical if any number of genes were eliminated (or added) to the
data set and the data reclosed to sum to 1. The level of incoherence of the
chi-square approach can be investigated by taking random subcompositions of
different sizes to see how model estimates in logistic regression are affected.
From Figure 3 the optimal Box-Cox transformation is for power α = 0.22,
so we apply this transformation, without any need to apply the chi-square
normalization since it would only affect the scale of the predictors. Likewise,
the compositional data can be transformed simply as x0.22

ij , without the need
for the division by 0.22, which affects the scale, nor the subtraction of 1/0.22,
since this only affects the constant of the regression. Standardized regression
coefficients, however, should be computed for the subsequent comparisons on
subcompositions. A model with two power-transformed variables, microbial
genes MG2249 and MG3907, was found to be highly significant (p = 0.0001
and p = 0.001 respectively), with estimated model

log

(
p

1− p

)
= 0.116 + 1.077MG22490.22 + 1.023MG39070.22 (1)

The acid test of coherence is how much the regression coefficients in (1) change
when subcompositions are chosen. Random subcompositions of 10%, 20%, etc.,
up to 90% of the microbial genes were taken, 100 in each case, the only con-
dition being that MG2249 and MG3907 were always included. Figure 4 plots
the dispersions of the estimated standardized regression coefficients in all the
subcompositions in the form of boxplots.
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Fig. 4 Boxplots of the standardized regression coefficients for each predictor, computed for
sets of 100 random subcompositions of different sizes, from 10% to 90%. The horizontal red
lines show the values of the two coefficients, 1.077 and 1.023, which were estimated in the
full composition. The vertical grey bars on the left of the plots show the 95% confidence
intervals for the original estimates, using values in the full composition.

The models applied to the simulated subcompositions are all giving coef-
ficient estimates distributed closely around the respective values estimated in
the full composition. As expected, the smaller subcompositions have estimated
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coefficients more variable than the larger ones. But the variability of these coef-
ficients should be judged against the margins of error of the estimates in the
full composition. The standard errors are SEMG2249 = 0.280 and SEMG3907 =
0.314, implying confidence intervals, shown in Figure 4, which are much wider
than the narrow dispersions of the subcompositional estimates, for all sizes of
subcompositions.

4 Conclusion

An alternative pipeline is possible for analysing compositional data, using the
chi-square standardization preceded by a Box-Cox power transformation. The
power can be deduced from a study of the proximity to isometry, as illustrated
in Figure 3, which is useful for unsupervised learning. The same approach
can be used for supervised learning, where the closeness to coherence can
be evaluated by observing the effect of taking subcompositions on the model
estimates. Overall, this approach, which uses simple measures to assess its
validity, presents a simpler and more easily interpretable alternative to the
logratio transformation in compositional data analysis, without any need for
zero replacement.
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