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P rincipal component analysis is a versatile
statistical method for reducing a cases-by-
variables data table to its essential features,

called principal components. Principal components
are a few linear combinations of the original vari-
ables that maximally explain the variance of all the
variables. In the process, the method provides an
approximation of the original data table using only
these few major components. In this review we
present a comprehensive review of the method’s
definition and geometry, as well as the interpre-
tation of its numerical and graphical results. The
main graphical result is often in the form of a bi-
plot, using the major components to map the cases
and adding the original variables to support the dis-
tance interpretation of the cases’ positions. Variants
of the method are also treated, such as the analysis
of grouped data as well as the analysis of categor-
ical data, known as correspondence analysis. We
also describe and illustrate the latest innovative ap-
plications of principal component analysis: its use
for estimating missing values in huge data matri-
ces, sparse component estimation, and the analysis
of images, shapes and functions. Supplementary
material includes video animations and computer
scripts in the R environment.

1 Introduction
Principal component analysis1−9 (abbreviated as PCA)
is a multivariate statistical method that combines the in-
formation from several variables observed on the same
subjects into fewer variables, called principal compo-

nents (PCs). “Information” is measured by the total
variance of the original variables, and the PCs opti-
mally account for the major part of that variance. The
PCs have geometric properties that allow for an intu-
itive and structured interpretation of the main features
inherent in a complex multivariate dataset.
An introductory example is from the World Happi-

ness Report10 conducted in 2021 as part of the Gallup
World Poll in 149 countries. This international study
contains a measure of happiness on a 0 to 10 scale,
called the Cantril ladder11, as well as several indicators
that possibly explain this happiness score. Here we con-
sider five of these indicators: social support (abbrevi-
ated as Social), healthy life expectancy (Life), freedom
to make your own life choices (Choices), generosity of
the general population (Generosity) and perceptions
of internal and external corruption levels (Corruption).
PCA capitalizes on the relationships between these
five indicators, so if the data were random and there
was no correlation between any of the indicators, this
approach would be fruitless. PCA looks for a linear
combination of the indicators that has maximum vari-
ance; in other words, it combines them together in a
way that reflects the greatest variation across the 149
countries. The following linear combination achieves
this objective, and it defines the first principal compo-
nent, PC1:

PC1 = 0.538 Social+ 0.563 Life+ 0.498 Choices
− 0.004 Generosity− 0.381 Corruption (1)

Since the original indicators, usually called statistical
variables, have different scales and ranges, they have
each been standardized to have mean 0 and variance 1,
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Figure 1: Plot of multivariate data for 149 countries using the first two principal components as coordinate axes. The 82 countries
that contribute more than average to the two-dimensional solution are shown in darker font and are generally further
from the centre. The mean positions of the ten regions are added (each mean is at the centre of its label).

so their total variance is 5. Thanks to this standardiza-
tion, the coefficients of the variables, sometimes called
loadings, indicate the strength of their contributions
to the principal component and their signs indicate
whether they influence it positively or negatively. PC1
can also be thought of as coming as close as possible
in terms of correlation to all five variables, in other
words a single variable summary of what they most
have in common. If each of these five variables with
a variance of 1 is regressed on PC1, their explained
variances, usually denoted by R2 and being identical
to the squared correlations with PC1, are 0.680, 0.744,
0.583, 0.000, and 0.341. Hence, the second variable
(Life) makes the largest contribution to PC1, whereas
the fourth variable (Generosity) has almost none. The
sum of these explained variances divided by the total
5, is 0.470, so that PC1 has “explained” 47.0% of the
total variance.

Since 53.0% of the total variance has been left unex-
plained, a second linear combination of the variables
is sought to explain as much of this residual variance
as possible. The solution is the second principal com-
ponent, PC2:

PC2 =− 0.266 Social− 0.243 Life+ 0.258 Choices
+ 0.799 Generosity− 0.407 Corruption (2)

A condition in finding PC2 is that it should be un-
correlated with PC1, so that the principal components
measure different features in the data. Again, the five
original variables can each be regressed on the two
principal components, leading to increased R2 values
of 0.767, 0.816, 0.664, 0.782, and 0.544 respectively,
with an overall explained variance of 0.715, that is
71.5%. Hence, PC2 has explained an additional 24.5%
of the variance.

The maximum number of PCs is the number of vari-
ables, five in this case, so this process can continue
three more times to obtain PC3, PC4 and PC5, by which
time 100% of the total variance will be explained. The
first two PCs identified above can be computed for
each of the 149 countries and plotted in a scatterplot
(Fig. 1). The countries were classified into ten regions,
so the positions of the regional averages can also be
shown.
Notice that the signs of the coefficients are indeter-

minate, and different computer algorithms can pro-
duce the negative of PC1 or PC2, with all the signs
reversed, and the interpretation of the components
similarly reversed. The user is at liberty to multiply
any principal component by −1, which simply inverts
the corresponding axis in Fig. 1, in order to facilitate
the interpretation.
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Figure 2: Schematic view of the PCA workflow. The definition of the principal components (PCs) can be obtained using the
eigenvalue decomposition (EVD) of the covariance matrix of the variables, Standardization is optional, but centring is
mandatory, and if the variables are divided by their standard deviations, then the covariance matrix is the correlation
matrix and the analysis is sometimes referred to as “correlation PCA”. The first two PCs, PC1 and PC2, using the
coefficients defined by the first two eigenvectors, given in (1) and (2), were used in Fig. 1 to obtain a spatial map of the
countries. The lower pathway is a more efficient one, using the singular value decomposition (SVD) that leads directly to
the positions of the countries as well as vectors serving as directions for the variables in the joint representation in Fig. 2.
The eigenvectors are identical to the right singular vectors. For the lower pathway to be exactly equivalent to the upper
one, the (optionally standardized) data matrix should be divided by √

n (see Box 1) .

The visualization in Fig. 1 shows the approximate
positions of the countries in terms of all five variables
condensed into the two principal components, thus
spreading out the countries in the two-dimensional
plot as much as possible (i.e., maximizing variance).
Interpretation of the country positions will be facili-
tated after enhancing the plot by showing the variables
themselves in the display as well as any other variables
observed on the countries (e.g., economic indicators),
as explained in the following section.

2 Experimentation

2.1 PCA workflow

Step 1: Standardization of variables. The first and
most important step in the PCA workflow is to make
a decision about the standardization of the variables.
PCA aims to explain the variables’ variances, so it is
essential that certain variables do not contribute exces-
sively to that variance for extraneous reasons unrelated
to the research question. For example, the variable Life

(expectancy), was measured in years, Generosity was
measured in positive and negative amounts and the
other three variables lay in a 0 to 1 interval. In par-
ticular, Life has a very large variance due to its high
numerical range of years. So, if no adjustment were
made to its scale, it would dominate the total vari-
ance, with the PCA consequently being biased towards
explaining that variable at the expense of the others.

In such a situation, with variables on different scales,
a standardization is imposed on the variables. Divid-
ing each variable’s values by the respective variable’s
standard deviation is sufficient for removing the scale
effect, but at the same time each variable is usually
centred by subtracting its mean. This results in a set
of scale-free variables each with mean 0 and variance
1, as was done here for the five variables. The contri-
butions of these variables to the total variance are thus
equalized, irrespective of the possible differences in
the variables’ substantive importance for the research
question (see the later comments about weighting in
PCA). As a general rule, software for PCA does not
include automatic standardization of the variables, so
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if standardization is required the user has to perform
this manually before applying PCA or choose an option
for standardization if the software includes it.
Alternative forms of standardization are possible,

and sometimes pre-standardization is not necessary at
all8, for example if all the variables are on the same
scale. If positive ratio-scale data are log-transformed,
this is already a form of standardization of the variables
to have comparable additive scales that reflect the mul-
tiplicative differences in the variables, and generally
no further transformation is required12.
Step 2: Dimension reduction. The present dataset,
with n = 149 rows and p = 5 columns, is five-
dimensional. The process of extracting the best small
set of dimensions (often two), to facilitate interpreta-
tion and visualization is called dimension reduction, or
(in algebraic parlance) low-rank matrix approximation.
The top pathway of Fig. 2 shows how the principal
components can be computed using the eigenvalue de-
composition (EVD) of the covariance matrix. The EVD
computes eigenvalues, denoted usually by λ1, λ2, . . .
which in our five-dimensional example consist of five
positive values in descending order, as well as eigen-
vectors corresponding to each eigenvalue, denoted by
v1, v2, . . .. The coefficients defining the principal com-
ponents PC1 and PC2 in (1) and (2) are the elements of
the two eigenvectors corresponding to the two highest
eigenvalues. The eigenvalues themselves are the parts
of variance that each PC explains, and the sum of all
the eigenvalues is equal to the total variance. Hence,
the percentages on the axes of Fig. 1 are λ1 and λ2 as
percentages of the sum of all five.

The lower pathway shows the more efficient compu-
tational workflow. The singular value decomposition
(SVD), which is a generalization of the EVD to arbi-
trary rectangular matrices, is applied directly to the
matrix (optionally standardized, but at least centred),
resulting in a set of positive singular values and two
sets of vectors, the left and right singular vectors, for
the rows and columns respectively. The singular values
are proportional to the square roots of the eigenvalues
of the covariance matrix and the left and right singular
vectors lead to the joint display of cases and variables
in the form of a biplot13−15. Specifically, the first two
left singular vectors, u1 and u2, scaled by the respec-
tive singular values, α1 and α2, give the coordinates of
the cases in Figs 1 and 3 — these coordinates defined
by the principal components are also called principal
coordinates. The coordinates of the direction vectors
representing the variables in the biplot are given by
the respective pairs of values in the two right singu-
lar vectors, v1 and v2, which are identical to the first
two eigenvectors of the covariance matrix – these co-
ordinates are also called standard coordinates. Box 1
shows a technical algebraic definition of the PCA coor-
dinates obtained directly from the SVD. For a musical
illustration of the SVD, see 16. As indicated in Note 1 in
Box 1, an alternative way of making a biplot is to leave

the left singular vectors unscaled and scale the right
singular vectors by the singular values, which focuses
attention on the covariance and correlation structure
of the variables, and less on the geometry of the cases.

Box 1: The singular value decomposi-
tion (SVD) and the PCA biplot coor-
dinates
Given a data matrix X, with n rows and p columns,
already column-centred (i.e., column means sub-
tracted from respective columns) and possibly
column-standardized as well, the SVD decomposes
X into three matrices of simple structure:

X = U D VT

where

• D is the diagonal matrix of the (positive) singular
values α1, α2, . . . in descending order;

• U andV are the matrices of left and right singular
vectors (with columns u1,u2, . . . and v1, v2, . . .)
and are orthonormal: UTU = VTV = I, i.e. all
uT
kuℓ and all vT

kvℓ are equal to 0 for k ̸= ℓ but
equal to 1 for k ̸= ℓ.

Written as a sum of products of the individual
vectors, the SVD of X is

∑m
k=1 αkukvT

k , where m
is the rank of X. Since the sum of squares of each
rank 1 matrix ukvT

k is equal to 1 and the singu-
lar values are in descending order, this suggests
that taking the first terms of the sum will give an
approximation to X.
For the biplot the PCA row (principal) coordinates
in r dimensions are in the first r columns of UD,
and the column (standard) coordinates in the first
r columns of V. The squares of the singular values,
expressed relative to their sum, give the percent-
ages of explained variance.
Notice the following:
1. An alternative version of the PCA biplot assigns

the singular values to the right singular vectors,
so the coordinates are in the first columns of U
(row standard) and VD (column principal). This
biplot focuses more on the internal structure of
the column variables, and less on the distances
between the row cases.

2. To obtain complete equivalence between the
two alternative workflows shown in Fig. 2, the
data matrix X (optionally standardized) should
be rescaled prior to decomposition as follows:
X/

√
n, in which case the squared singular values

are variances.

Step 3: Scaling and interpretation of the biplot. The
resultant biplot is shown in Fig. 3. The countries are in
the same positions as in Fig. 1, but now using symbols
to make the display less cluttered. Their coordinates
are obtained either by computing the linear combina-
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Figure 3: Same plot as Fig. 1 (explained more fully later in the section on biplots) showing the countries with regional symbols,
with regional means indicated by labels Now variables are shown as arrows of increasing values, with the means of all
variables at the origin (i.e., point [ 0 0 ]). The scale of the variables is indicated on the upper and right sides of the
plot box. Two supplementary variables, happy (the Cantril ladder happiness score) and logGDP (logarithm of gross
domestic product per capita) have been added.

tions originally defined as the principal components in
(1) and (2), for each country, or equivalently using the
left singular vectors scaled by the singular values, as
just described. The arrows are defined by the pairs of
coefficients in the two linear combinations; for exam-
ple, the vector Social has coordinates [ 0.538 − 0.266 ]
in Fig. 3, according to the scale on the axes for the
variables (cf. (1) and (2)).

The five variable directions define biplot axes onto
which the countries can be projected perpendicularly.
The means of the variables are all at the origin (due
to the data centring) and the arrows indicate increas-
ing values (a specific interpretation for this example is
given later in the section Results: Interpretation of the
biplot). Thus, when two variables point in the same
direction, such as Life and Social, countries will project
similarly onto them and suggest that the variables are
strongly correlated (their actual correlation is 0.723).
Conversely, for two variables that point in opposite
directions, such as Corruption and Choices, this will
suggest a negative correlation, since countries’ projec-
tions onto them will line up in opposite directions (the

actual correlation is −0.401). Suggested correlations
are closer to actual ones when the dimensions explain
a higher percentage of total variance.

Although it is the spatial interpretation with respect
to the variable directions that is more important, it is
often possible, as in this case, to interpret the princi-
pal component directions themselves (i.e., the dimen-
sions, also called principal axes). The first dimension is
clearly a negative to positive scale in terms of the four
variables apart from Generosity, whereas Generosity
is the main driver of the second dimension, oppos-
ing mainly Corruption. For example, looking at the
positions of the UK, Malta, Germany and France in
Fig. 1, they are all at the same position on the first
horizontal dimension, but spread out vertically on the
second. Thus, they have the same position on their
overall “size” on this first dimension, but the composi-
tion of their ratings, their “shape”, is different in the
four countries. UK tends to be higher than average
on Generosity and lower than average on Corruption,
also lower on Life and Social, but nevertheless higher
than average. On the other hand, France is higher on
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all three variables pointing downwards and less than
average on Generosity.
Step 4: Optional de-emphasising of cases or vari-
ables in the biplot. To show all 149 country names
in Fig. 1, we resorted to distinguishing between coun-
tries that contributed more than average to the solution
dimensions17. The left singular vectors corresponding
to the countries, without scaling, each have sum of
squares equal to 1, and the individual squared values
are a direct measure of the proportional contributions
to the variance explained on the respective dimension.
The average contribution to a dimension is thus 1 di-
vided by the number of points, 1/149 in this case. The
countries with contributions greater than this threshold
on either of the two dimensions are the ones plotted
with higher intensity in Fig. 1, whereas the others,
which are less than this threshold on both dimensions,
are plotted using lighter labels. The high contributors
are thus the points furthest from the origin on the re-
spective dimensions. As an alternative, the countries
were represented in Fig. 3 by symbols so that their
regional dispersions could be visualized, but without
indication of specific countries.
Step 5: Optional adding of supplementary variables
to the biplot. If additional variables are available, these
can be added to the biplot as supplementary variables,
or passive variables. Since the directions of the five
variables in the two-dimensional biplot can be equiva-
lently obtained using the regression of these variables
on the two principal components, similarly the direc-
tion of any other variable observed on the cases can be
plotted to enrich the interpretation. The difference is
that such a variable has not been optimized in the bi-
plot like the five so-called active variables, which have
been used to construct the solution. Two variables, the
happiness score itself (abbreviated as happy), as well
as the logarithm of GDP (logGDP), are available for the
149 countries and are represented in Fig. 3 as arrows.
The coordinates of their arrowheads are the regres-
sion coefficients of each variable, also standardized,
when regressed on PC1 and PC2. The principal com-
ponents have explained variances (R2) equal to 0.728
and 0.756 in these respective regressions, with happy
being significantly explained by PC1 (p < 0.0001) and
logGDP significantly explained by PC1 and PC2 (both
p < 0.0001). The variable logGDP follows closely the di-
rections of Life and Social, whereas the happiness score
has a direction close to PC1 between these two indica-
tors and Choices. The happiness score has a correlation
of 0.850 with the first principal component.

2.2 EVD and SVD matrix decomposi-
tions

There are several equivalent ways to explain how the
EVD and SVD provide optimal solutions in a PCA. An
intuitive way is to accept that the eigenvalues, which
are in decreasing order, maximize the explained vari-
ances on each dimension, and these dimensions are

uncorrelated so that the parts of explained variance can
be simply accumulated over the dimensions. Hence,
as explained in the Introduction, the first eigenvalue
maximizes the explained variance in the first dimen-
sion, the second eigenvalue maximizes the explained
variance in the second, and the sum of the first two
maximizes the explained variance in the plane of the
first two dimensions, and so on for higher-dimensional
solutions.

Another way is to think of the SVD as the solution of
approximating the data matrix in a low-dimensional
space, illustrated schematically in Fig. 4. Each row of
the standardized data defines a point (shown as a solid
dot) in multidimensional space, with as many dimen-
sions as variables. If an approximation of these points
in two dimensions is required, any plane through the
average point C (for centroid) is imagined onto which
all the points are projected perpendicularly (their pro-
jections are shown as empty dots in Fig. 4B) — this
is equivalent to finding the closest point to each mul-
tidimensional point on the plane. Fig. 4C shows the
right-angled triangle made by each point with its pro-
jection and the centroid. The hypotenuse distance di
of the point to the centroid is fixed, whereas both ei,
the distance of the point to its projection, and d̂i, the
distance from the projected point to the centroid, de-
pend on the orientation of the unknown plane. To find
the optimal plane in terms of least squares, it should
minimize the sum of squared distances ∑i e

2
i , i.e., the

closeness of the plane to all the points, which is equiva-
lent to maximizing∑i d̂

2
i , since the total

∑
i d

2
i is fixed.

Averaging by dividing by n turns this into a decompo-
sition of variance.

This is exactly the solution that the SVD finds, a least-
squares approximation of the rows of the data matrix
in a lower-dimensional subspace. All the approximated
rows form a matrix which comes the closest to the data
matrix in terms of least squared differences between
the original and approximated matrices18, hence this
is often called least-squares matrix approximation. The
equivalent approach, using the EVD of the covariance
matrix, equivalently identifies the orientation of the
two dimensions of the optimum plane (i.e., the princi-
pal component directions), leading to the same matrix
approximation.
Because of the spatial interpretation of a PCA, it is

essential to display the results in a space where the
dimensions have the same physical scale – for example,
notice in Figs 1 and 3 that unit lengths on the horizontal
and vertical axes are physically equal, for each set of
scales. In the terminology of image displays, the PCA
graphics should have an aspect ratio of 1, like a spatial
map or an architectural plan.

2.3 Variations of the PCA theme

There are several multivariate methods that are simple
variants of PCA as described here. One possibility is
to change the way the distance function is defined,
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Figure 4: Schematic view of dimension reduction in PCA. A. The rows of data, optionally standardized, and their mean (or
centroid), c, define points in multidimensional space. B. The first two dimensions of the SVD identify the best-fitting
two-dimensional plane in terms of least-squared distances between the plane and the points. This plane contains c,
which becomes the zero point (or origin) of the PCA display and represents the averages of the variables. C. Each
multidimensional data point defines a right-angled triangle with its projection onto the plane and the centroid. The
average sum of squared distances of the points to the centroid is equal to the total variance, which is fixed. The
maximization of average squared distances in the plane (i.e., maximizing variance) is equivalent to minimizing the
average squared distances from the points to the plane (i.e., minimizing fit).

which implies a change to the measure of total variance.
Another variation is to assign different weights to the
cases so that some cases count more than others in
determining the PCA solution.

The distances between the projected points in a PCA
are approximating the Euclidean distances between
the points in the full space. The Euclidean distance
between points i and i′ is defined as:

d(i, i′) =

√∑
j

(yij − yi′j)
2
, (3)

where the yij are the standardized data. If the orig-
inal data are denoted by xij and standardization is
performed by subtracting the mean x̄j and dividing
by the standard deviation sj , then yij = (xij − x̄j) /sj
and (3) reduces to

d(i, i′) =

√∑
j

(xij − xi′j)
2
/s2j , (4)

called the standardized Euclidean distance. The in-
verses of the variances wj = 1/s2j can be considered as
weights on the variables.

A variant of PCA is correspondence analysis (CA),
which is applicable to two-way cross-tabulations, gen-
eral frequency data or data in the form of percentages.
In CA it is the relative values of the data that are of
interest, for example the rows divided by their row
totals, called profiles. The distances between profiles,
the chi-square distances, have a form similar to the
standardized Euclidean distance. Denoting the (row)
profile elements by rij:

d(i, i′) =

√∑
j

(rij − ri′j)
2
/cj , (5)

where cj is the j-th element of the average profile.
Thus, for such relative frequency data, the mean pro-
file element cj substitutes the variance s2j in (4), and
the implied weights on the variables are the inverses
1/cj . In CA weights are also assigned to the profile
points, which is explained in more detail later in the
Applications section in an analysis of a dataset of abun-
dance counts in marine ecology.
As an example of weighting of the cases in PCA,

suppose that there are groups of cases and the object
is to find dimensions that discriminate between the
groups, that is, explaining between-group variance
rather than the total between-case variance. Then
weights proportional to the group sizes can be allocated
to the group means, and the group means themselves
become the points to be approximated by weighted
least squares. The group means with higher weight
then play a more important role in determining the low-
dimensional solution. The original case points receive
zero weight but can still be projected onto the plane
that approximates the group points – these are called
supplementary, or passive, points, as opposed to the
group means, which are now the active points. This
could have been done for the previous analysis of the
five indicators of happiness if the objective had been to
discriminate between the 10 regions. An example of
PCA applied to weighted group means is given in the
Applications section in an analysis of cancer tumours
classified into four groups.
Another variant of PCA is logratio analysis (LRA),

which has its origin in geochemistry but is increasingly
being applied to biological data, especially microbiome
data and data from “omics” research19,20. These data
are generally compositional since the totals of each
sample are irrelevant and it is their relative values
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that are of interest. LRA is simply the PCA of the log-
transformed data that are initially row-centred; that
is, each row of the log-transformed data is centred
by its respective row mean. Because PCA performs
column-centring, LRA is thus the analysis of the double-
centred matrix of log-transformed data, which has row
and column means equal to 0. This is theoretically
equivalent to the PCA of the much wider matrix of
1
2p(p− 1) pairwise logratios of the form log(xj/xk) for
all unique pairs of the p compositional variables21,22.
LRA uses the logratio distance, which is the Euclidean
distance computed on the logratios, andweightswj can
be optionally allocated to the compositional variables
(as opposed to the cases, as described above)20.

3 Results
3.1 Dimensionality of a PCA solution

Usually, the first question of interest is how much of
the data variance is explained by the consecutive di-
mensions of the solution. PCA sorts the data variance
into the major features in the data on the leading di-
mensions and what is considered random noise on the
minor dimensions. The sequence of percentages of vari-
ance explained suggests how many non-random major
dimensions there are. Fig. 5 shows the bar chart of the
five percentages in the PCA of the five variables, where
the percentages on the first two dimensions, 47.0%
and 24.5%, can be seen to stand out from the last three.
This observation can be reinforced by drawing a line
(the red dashed line) through the last three, showing
that the first two are above that approximate linear
descending pattern. This bar plot is referred to as a
scree plot23 with the decision on the dimensionality
made by looking for the “elbow” in the sequence of
bars — see the similar line through the first two bars
changing slope abruptly compared to the one through
the last three. Based on this “elbow rule”, the con-
clusion is that the data are two-dimensional, and the
two-dimensional solutions presented before are thus
validly representing the relevant data structure, with
47.0 + 24.5 = 71.5% of the variance explained and
28.5% of the variance declared random or unexplained.
There are several more formal ways of deciding on the
number of non-random dimensions in PCA23−30.
It is not expected that datasets always turn out to

have exactly two major dimensions; they could have a
single major dimension or more than two. The former
case is not problematic — usually the first two dimen-
sions would be visualized anyway, with the caveat that
the second dimension is possibly compatible with ran-
dom variation, and interpretation should be restricted
to the dispersion of points and variables along the first
dimension. In the latter case, for a three-dimensional
solution, three-dimensional graphics can be used, or
a selection of planar views of the points made, for
example, dimensions 1 and 2, and then separately, di-
mensions 1 and 3, or for four-dimensional solutions, a
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Figure 5: Scree plot of the percentages of variance explained
by the first two PCs as well as the percentages ex-
plained by the remaining three, showing the elbow
that suggests that the first two dimensions are sig-
nal, whereas the last three dimensions are random
noise.

plot of dimensions 1 and 2, and a plot of dimensions 3
and 4, an example of which is given in 31.

3.2 Interpretation of a PCA biplot

The PCA biplot in Fig. 3, explaining 71.5% of the data
variance, consists of points for the cases and vectors
for the variables. As shown in Fig. 4, the positions of
the points projected onto the reduced-dimensional sub-
space, usually a plane, are an optimal approximation
of their exact positions in the “full” multidimensional
space. The distances between the projected points
are approximating the distances between the points
in the full space. Thus, the case (row) points in the
biplot solution have a distance interpretation, and the
quality of the distance interpretation is assessed by
the percentage of variance explained by the solution
dimensions. In fact, the coordinates of the case points
are identical, up to a scalar multiplying factor, to the so-
lution coordinates of the distance-based method called
classical multidimensional scaling (MDS), which takes
the exact interpoint distances as input and produces
low-dimensional approximations of the distances32.
The variables, usually represented by vectors from

the origin in different directions, define the directions
and sense of the changing values of the variables. Case
points can be projected perpendicularly onto these
directions in order to understand how the cases line
up approximately, but not exactly. To give a concrete
example, the country points can be projected perpen-
dicularly onto a biplot axis pointing in the top right
direction of Fig. 3, corresponding to Choices. Coun-
tries such as the Scandinavian ones, Sweden, Norway
and Denmark, as well as Singapore (check the country
names in Fig. 1) are highest in the positive direction
of the arrow, whereas Afghanistan is the lowest on the
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negative side of that direction towards bottom left. Re-
member that the origin of the biplot represents the
means of all five variables, so that countries projecting
on the upper right of the biplot axis of Choices are es-
timated to be above the mean and those on the lower
left are estimated to be below the mean. Taking the
projected values for all the countries onto that diago-
nal sloping axis and correlating them with the original
data for this variable, gives a correlation of 0.815. The
squared correlation, 0.664, is just the part of variance
of Choices explained by the first two principal compo-
nents, which was given earlier in the introduction of
this dataset, after defining the PCs in (1) and (2).

The set of countries can be projected in turn on each
of the other biplot axes defined by the direction vec-
tors, and the projected positions are as accurate as the
proportions of explained variance, the R2 values of
0.767, 0.816, 0.664, 0.782, and 0.544, as reported
in the Introduction. The second variable, Life, has the
highest R2, so the way the countries line up on this di-
rection in the biplot will be the most accurate, whereas
the projections onto the fifth variable, Corruption, with
the lowest R2, will give less accurate estimates. The
projected positions of the countries onto the five biplot
axes are simply the data values estimated by the two
principal components PC1 and PC2 by multiple regres-
sion, thus reinforcing the idea that PCA is a method of
matrix approximation.

3.3 Numerical results of a PCA

The values of the percentages of variance have already
been plotted and interpreted in Fig. 5, and the quality
of the approximation of the variables by the principal
components has been measured by the respective R2

values. Additional numerical results are in the form of
correlations and contributions. In this particular case
where the variance of each of the five standardized
variables is 1, the correlations in the columns of Table
1 are the principal component direction vectors (eigen-
vectors) multiplied by the respective singular values
of the standardized data matrix divided by √

n. For
example, the correlation of 0.825 between Social and
PC1 is equal to 0.538× 1.532 (see first coefficient of
PC1 in (1)). Since all the eigenvectors have sum of
squares equal to 1, and thus equally standardized, this
illustrates in a different way why the correlations with
the major dimensions are higher, because the singular
values are higher.

The sum of squared correlations column-wise in Ta-
ble 1 are the parts of variance, identical to the squares
of the first row, i.e. the squared singular values (eigen-
values) divided by n. The sum of squared correlations
of each variable row-wise over the five dimensions in
Table 1 is equal to 1, while the sum of squared correla-
tions over the first two dimensions is the corresponding
R2 for the two-dimensional PCA solution; for example,
for Choices, 0.7642 + 0.2852 = 0.664. Again, this only
holds for this particular case of standardized variables.

Row
PC1 PC2 PC3 PC4 PC5 SS

Singular
values /√n

1.532 1.107 0.838 0.692 0.495 5

Social 0.825 −0.295 0.303 0.183 0.328 1
Life 0.862 −0.269 0.002 0.252 −0.347 1
Choices 0.764 0.285 0.178 −0.549 −0.050 1
Generosity −0.007 0.884 0.380 0.268 −0.038 1
Corruption −0.584 −0.451 0.659 −0.091 −0.114 1

RowsumColumn
variables SS 2.348 1.226 0.703 0.478 0.245 5

Table 1: Correlations of the five variables with the five PCs of
the standardized data. The sum of squares (SS) of the
correlations for each variable is 1. The sum of squared
correlations for each PC is the square of the first row
(i.e., squared singular value divided by n) and is
that PC’s part of variance explained out of a total
variance of 5. Expressed as percentages these are the
percentages on the PC dimensions, plotted in Fig. 5.
For example, on the first dimension, 100×2.348/5 =
47.0%.

Contributions of the variables are the squared
correlations in the columns of Table 1 relative to
their sum. For example, in column 1, the con-
tributions by the five variables to the first PC are
[ 0.8252 0.8622 0.7642 (−0.007)2 (−0.584)2 ]/2.348 =
[ 0.290 0.317 0.248 0.000 0.145 ] — hence, these are
just the squares of the PC direction vector elements.
Thus, it is mainly the first three variables that con-
tribute highly to the construction of the first principal
component. Computing contributions to variance on
the major PCs is useful when there are very many vari-
ables and the biplot becomes too cluttered – a strategy
is then to show only the high contributors, usually de-
fined as those that are above average. This idea can
also be applied when there are very many rows, since
each row also contributes to the dimensional variance,
using the squared elements of the left singular vectors.
This tactic was used in Fig. 1, where the above average
country contributors were shown in a more intense
colour in order to improve the legibility of the biplot. It
will also be used later in a genetics application (see the
Applications Section 4.1) where there are thousands
of variables (genes).

4 Applications
4.1 A high-dimensional dataset with

groups of cases

Cases (usually the rows of the data matrix) are fre-
quently grouped and the research question is to iden-
tify variables (the columns) that account for this group-
ing. The Khan child cancer dataset33,34, consists of a
63× 2308 matrix of gene expression data, for 63 chil-
dren and 2308 genes. The children have small, round
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blue-cell tumours, classified into four major types: BL
(Burkitt lymphoma, n = 8), EW (Ewing’s sarcoma,
n = 23), NB (neuroblastoma, n = 12)), and RM (rhab-
domyosarcoma, n = 20). The data are already given
as log-transformed, and no further standardization is
required. The number of variables is higher than the
number of cases (i.e., tumours), and the dimensionality
of the data is thus determined by the number of cases
minus 1: 63− 1 = 62. To understand this, and remem-
bering that the data are column-centred, notice that 2
cases in a high-dimensional space lie exactly on a line
(1-dimensional), 3 cases in a plane (2-dimensional), 4
cases in a 3-dimensional space, and so on.
Fig. 6A shows the PCA of the data, where the four

tumour groups are grouped by enclosing them in con-
vex hulls. The genes are displayed as shaded dots, the
darkest being the ones that make the highest contri-
butions to the two-dimensional solution. As for the
countries in Fig. 1, these high-contributing genes are
the most outlying in the biplot, and are similarly con-
tributing to explaining the variance in the individual
cases, not necessarily to explaining the variance be-
tween the cancer groups. The individual tumors in the
different groups can be seen to overlap substantially, es-
pecially the groups EW and RM. Also shown in Fig. 6A
are confidence ellipses for the group mean points35.
These are obtained by estimating the bivariate normal
distribution for each group of points, and then show-
ing the area containing 95% of the bivariate normal
probability for the respective bivariate mean, taking
into account the bivariate correlation and margins of
error. For the means as well, the confidence ellipses for
RM and EW overlap, but their means show significant
separation from NB and BL, which themselves appear
significantly separated in this PCA solution.
To account for the separation of the groups, a dif-

ferent two-dimensional solution in the 62-dimensional
space of the cases can be found, where the group
means (i.e., centroids) are optimally separated. This is
achieved by computing the means of the groups and
using these four points, weighted by their respective
group sample sizes, as the data of primary interest.
Whereas Fig. 6A can be qualified as an unsupervised
PCA, the PCA in Fig. 6B is now supervised to explain
group differences. This PCA of the four group means
has only three dimensions, and the percentages on
the dimensions are thus much higher as they are ex-
pressed relative to the between-group variance. The
group means are highly separated now, and the convex
hulls do not overlap at all, as well as the confidence
ellipses, which are now much tighter. In this solution
the outlying highly contributing genes will be the ones
that account for the group differences. Notice that
this weighted PCA of the centroids ignores the covari-
ances within the groups, and is thus a simpler form
of Fisher’s linear discriminant analysis36, also called
canonical variate analysis37, which do take these co-
variances into account. Video 1 of the Supplementary
Material shows the exact three-dimensional solution of

the group centroids. Video 2 shows an animation of the
cases in Fig. 6A transitioning to the group separation
in Fig. 6B as weight is taken off smoothly from the indi-
vidual cases and transferred to the group means. The
effect on predicting the tumour group for a hold-out
test set is reported in 17.

4.2 Sparsity constraints for wide data

The coefficients that define the principal components
are generally all non-zero, or dense. For “wide” data,
that is when the number of features is very high, in
the hundreds and sometimes thousands, this presents
a problem for interpreting so many coefficients. This is
the case with the present cancer dataset as well as for
microbiome data and “omics” data in general, where
there can be thousands of variables compared to a
small number of samples. The interpretation would
be considerably simplified if some of the coefficients
were zero, that is, if they were more sparse. Earlier
attempts for partially solving this problem were made
by rotating the PCA solution so that variables aligned
themselves closer to the dimensions38,39.

More recently, sparse PCA implementations40−46 can
handle this problem by introducing penalties on the
sizes of the coefficients that force some coefficients
down to zero, hence eliminating them from the inter-
pretation of the respective principal components. For
example, combined with the objective of explaining
variance, the lasso penalty47 restricts the sum of the
absolute values of the coefficients, similar to lasso re-
gression. The result is a small sacrifice of the variance-
explaining objective in order to shrink the absolute
values of some coefficients down to zero. An improve-
ment to achieve coefficient sparsity is also made using
the elastic-net penalty48 which restricts both the sum of
the absolute values of the coefficients and their sum of
squares. For a recent comprehensive review of sparse
PCA methods, see 49. Sparse PCA is a fairly recent in-
novation, and is still actively debated in the literature
(e.g., see 50,51).

Fig. 6C shows the effect of the sparse PCA on the
results of the Khan gene data shown in Fig. 6A. Most of
the 2308 genes have been eliminated from the results,
leaving the remaining few with nonzero values either
on PC1 or PC2 (103 for PC1 and 84 for PC2), and a
few nonzero for both PCs. The configuration of the
samples and their averages in Fig. 6C is very similar to
Fig. 6A. Within each cancer group there is a vertical
separation of samples with positive PC2 and those with
negative PC2, which is even more accentuated now.
The genes that lie on the vertical axis will be the indi-
cators of this separation. On the horizontal dimension
the genes with nonzero values will be related to the
separation of the cancer groups, especially RM versus
BL. To achieve this simplified interpretation 2.5 per-
centage points of the explained variance have been
sacrificed, compared to Fig. 6A. In the sparse centroid
PCA of Fig. 6D the cancer groups are separated and
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A B

C D

Figure 6: A. PCA of the Khan child cancer data. The four tumour groups (EW, RM, NB, BL) are enclosed by convex hulls, and
95% confidence ellipses are shown for the group means, which are located at the group label in larger font. The 2308
genes are displayed as dots, where darker dots indicate higher contributions to the separation of individual tumours. B.
Supervised PCA of the Khan child cancer data, explaining the between-group variance. The four tumour groups are
again enclosed by convex hulls, with confidence ellipses for the group means, which are now all separated. The darker
dots now correspond to genes making higher contributions to the group separation. C. Sparse PCA of the Khan data
(explained in the next section), comparable to the regular PCA in FIG. 4A. Most of the 2308 genes are eliminated and
the remaining genes are now identified with either the first or second principal component, and in a few cases with both
PCs. The percentage of explained variance has dropped from 28.5% in the solution of Fig. 6A to 26.0%. D. Sparse PCA
of group centroids: 72 and 79 genes have nonzero values on PC1 and PC2 respectively, and the percentage of explained
variance has dropped from 75.6% in Fig. 6C to 71.6%.

the few genes with nonzero values (72 for PC1 and
79 for PC2) will again be indicators of this separation.
Notice the clear distinction now between groups RM
and EW, and their lower within-group dispersions. In
this case the percentage of variance explained by these
two sparse PCA dimensions has been reduced by 4
percentage points compared to the regular PCA of the

centroids in Fig. 6B.

Video 3 of the Supplementary Material shows an an-
imation of the tumour samples in Fig. 6B transitioning
to the sparse solution in Fig. 6D. The outlying genes in
Fig. 6B, which contributed the most to the regular PCA
solution, can be seen to be the ones not eliminated by
the shrinking to zero in the sparse solution.
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4.3 Correspondence analysis of cate-
gorical data

Correspondence analysis52,53 (CA) and its constrained
version, canonical correspondence analysis54 (CCA),
are among the most popular techniques for visualizing
abundance or presence/absence data in ecology, but
also extensively used in archaeology, linguistics and
sociology. By “constraining” it is meant that the dimen-
sions of the solution are forced to be related (usually,
linearly) to external information such as groupings or
explanatory variables. Interest is then focused on re-
ducing the dimensionality of the constrained variance
rather than the total variance. The analysis of Fig. 6B
is, in fact, a constrained PCA, where the constraint is
defined by the cancer tumour groups and the between-
group variance is of interest – here the constraining
variables are the four dummy variables for the tumour
groups.

A typical dataset is the Barents Sea fish data55: 600
samples over a period of six years, 1999–2004, each ob-
tained by 15-minute trawling in the Barents Sea north
of Norway, where the numbers of up to 66 different fish
species are counted in each sample. The sampling was
performed at a similar time of the year and at similar
locations. Such datasets are typically very sparse, since
only a few fish species are found in any single sample.
In this dataset, 82.6% of the values in the 600×66 data
matrix are zeros.
The data to be analysed by CA are the profile vec-

tors of relative frequencies in each row. If the original
data matrix has entries nij , with row sums ni+ then
the row profiles are the vectors of relative frequen-
cies (proportions) rij = nij/ni+, j = 1, . . . , J . The
interpoint distance function in the multidimensional
profile space is the chi-square distance (see (5)), us-
ing a weighting of the squared differences between
profile elements by the inverse of the average profile
with elements cj = n+j/n, the column sums n+j di-
vided by the grand total n. The chi-square distance
between two rows thus uses this standardization of
the profile data: (nij/ni+)/

√
cj , followed by the usual

Euclidean distance applied to these transformed values
(see Section 2.3).

The final property that distinguishes CA from PCA
is that the points have weights proportional to their
marginal frequencies — that is, the row weights are
ni+/n. CA also has the special property that it treats
rows and column symmetrically. Hence, it is equiva-
lent to think of the relative frequencies column-wise,
the column profiles, as the points to be approximated
in multidimensional space, with their corresponding
column weights and chi-square distances between col-
umn profiles. In other words, the data table can be
transposed and identical results will be obtained. This
property of symmetric treatment of rows and columns
is shared by logratio analysis, which was summarized
briefly in Section 2.3.
Similar to the genetic study of the child cancers,

there is a specific objective in analysing the Barents
Sea fish data, namely to see if there is a temporal evo-
lution of the relative fish abundances across the six
years. This is achieved analytically by aggregating the
fish abundances into a 6× 66 matrix, where the rows
are the six years and the counts are now summed for
each year. The constraint is thus by the discrete vari-
able year, with six categories. So the CA applied to
this aggregated matrix is effectively a CCA, shown in
Fig. 7. As before, only the top contributing variables
(fish species) are shown, 10 out of the total of 66. In ad-
dition, 95% confidence ellipses are shown for the year
points, but now based on 1000 bootstrap resamplings
of the coordinates of the 600 samples, recomputing the
year aggregations for each bootstrap sample, and then
computing the ellipse for each year’s set of 1000 points
using the estimated bivariate normal distribution.
There appears to be a transition from 1999 on the

left through to 2004 on the right, with 1999’s con-
fidence ellipse separated from the others.The biplot
vectors of the species show the reason, with Pa_bo
(Pandalus borealis, shrimp) being highest in 1999 and
Me_ae (Melanogrammus aeglefinus, haddock) and
Tr_es (Trisopterus esmarkii, Norway pout) the highest
in 2004. These conclusions can be verified in the table
of relative abundances: for example, for the last two
species, Me_ae and Tr_es, their percentages in 2004
were 2.3% and 0.7%, more than twice the next highest
relative abundances in the previous years. The differ-
ence between 1999 and 2000 appears to be due to
Bo_sa (Boreogadus saida, polar cod): indeed, percent-
ages were the highest (1.2%) in 1999 and the lowest
(0.06%) in 2000.

The presence of non-overlapping confidence ellipses
suggests that the temporal differences are statistically
significant — this can be confirmed by a permutation
test56, which gives a p-value of 0.003. This test com-
putes the between-year variance in the constrained
space of the data, which in this case is 5-dimensional,
one less than the number of years. Then, the year la-
bels are randomly allocated to the original 600 rows
of data, and the between-year variance is again com-
puted, with this random permutation of the year la-
bels being performed a total of 999 times. Assuming
the null hypothesis of no difference between years,
the obtained p-value of 0.003 means that only two
between-year variances based on random allocation
were greater than the observed value. These two plus
the original observed value give 3 out of the 1000 in
the tail of the permutation distribution, and hence the
p-value indicating high significance.

4.4 Imposing external constraints

Figs 6B and 7 are both examples of constrained
dimension-reduction methods, constrained to explain-
ing between-group variance (between the cancer
groups) in the PCA of Fig. 6B, and explaining differ-
ences between years in the CA of Fig. 7. Constraints
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Figure 7: CA of the Barents Sea fish data, 1999–2004, explaining the between-year variance. The year means are shown as well
as their 95% confidence ellipses. The 10 species (out of 66) that contribute more than average to this two-dimensional
solution are shown. Only species abbreviations are shown, with the following common names: Pa_bo (shrimp), Bo_sa
(polar cod), Tr_es (Norway pout), Cl_ha (herring), Me_ae (haddock), Ga_mo (cod), Hi_pl (long rough dab), Mi_po
(blue whiting), Ma_vi (capelin), Se_spp (redfish). The 600 individual sample points, which show great variation due
to the sparsity of the data, are not shown.

can be made with respect to such categorical variables
as well as continuous variables, a strategy very common
in ecological applications. The data matrix for the PCA
is regarded as a set of response variables, for example
“biological” variables such as biomasses of different ma-
rine species, where the constraining variables are “en-
vironmental” variables regarded as explanatory, such
as sea temperature and salinity. Categorical variables
(e.g., sampling year) are coded as dummy variables as
constraining variables. Other examples are morpho-
metric measurements on different fish, or microbial
compositions, as multivariate responses, and the con-
straining variables could be diet variables observed on
the same fish.

Rather than explain the total variance of the re-
sponse dataset, the objective is to focus on that part of
variance which is directly related to the explanatory
variables. This is achieved through projecting the re-
sponse dataset on the space defined by the explanatory
variables, called the constrained or restricted space,
thereby eliminating the biological variance unrelated
(in a linear sense) to the environmental variables. The
search for principal components is then performed in

the constrained space — in the context of PCA this is
known as redundancy analysis57−59. The result is in
the form of a triplot, of cases and response variables
as before, with the addition of vectors indicating di-
rections of the continuous constraining explanatory
variables or points showing the positions of the cate-
gories of constraining categorical variables, as in Figs
6B and 7.

The analogous constrained method for response data
such as frequency counts or presence-absence data,
which would usually be analysed using correspondence
analysis, is called canonical correspondence analysis,
one of the most widely used methods in quantitative
ecology54,60,61. As well as PCA and CA, both redun-
dancy analysis and canonical correspondence analysis
are available in the R package vegan62.

4.5 Multiple correspondence analysis

A popular variant of CA is multiple correspondence
analysis (MCA)53,63, for multivariate categorical data,
often found in social surveys where respondents choose
response categories in a series of questions64−66. The
data are coded as zero–one dummy variables, where

Page 13 of 24



Principal Component Analysis

each question generates as many dummy variables
as categories, and the categories chosen by each re-
spondent are indicated by ones in the corresponding
columns. The resultant matrix is called an indicator
matrix, with respondents as rows and categories as
columns. Then MCA is the application of CA to the
indicator matrix, generating biplots of the respondents
and the categories. One advantage of this approach is
that association patterns of single categories, such as
“missing value/not available" or “no opinion” categories,
can be investigated67,68. In sociological applications
it is generally the averages and dispersions of respon-
dents for different demographic categories that are of
interest in the MCA results.

4.6 Mixed-scale data

Variants or extensions of PCA have been developed for
different data types and structures. The observed vari-
ables could be of different types, called mixed-scale
data, which often involve both continuous and cate-
gorical data. The idea is to come up with a common
coding scheme, for example categorizing the contin-
uous variables into crisp categories (dummy variable
coding, zero or one) or fuzzy categories (values be-
tween zero and one), so that all the variables are of a
comparable categorical type69−72. A general strategy,
called nonlinear multivariate analysis, is to quantify
categorical variables so that the resulting principal com-
ponents explain as much as possible of the variance in
the transformed variables73−75.
Another context related to fuzzy category coding

is where the data are intervals of real numbers; for
instance, the observation of a variable is its range of
values. Interval data are used to represent uncertainty
or variability in observed measurements, as would be
the case with monthly interval temperatures at mete-
orological stations, or daily interval stock prices, for
example. An interval-valued observation is represented
by a hyper-rectangle, rather than a point, in a low-
dimensional space. Extensions of PCA for interval-
valued data apply classical PCA to the centres or the
vertices of the hyper-rectangles76−83.

4.7 Derivation of scales and indices

PCA has been used to derive composite indices or com-
posite indicators in many disciplines such as socioeco-
nomics, public policy making, environmental and bio-
logical sciences84−87. A composite indicator is formed
when individual indicators are compiled into a single
index. For example, if we want to know the opinion
on government measures aimed at the reduction of
carbon dioxide, we could execute a survey and ask
participants to answer a series of questions related to
this topic, each answered on an ordinal rating scale.
Often, the composite score is taken as the sum of all
answers as the approximation of the participants’ opin-
ions on the government measures. However, how do

we know that taking the direct sum is a good idea? Do
all the questions measure the same or possibly different
concepts? PCA can be used to do a first exploration.
A single large eigenvalue is a strong indication that
indeed there is a single dominant scale. Two or more
large eigenvalues are indications of the presence of
multiple concepts and thus more than one composite
indicator. PCA can be helpful in the exploration of
such composite indicators, but (confirmatory) factor
analysis is recommended for the validation of such com-
posite scales88. Note that MCA has also been used to
construct indices based on categorical data89,90, since
the method assigns quantitative values to categories
to maximize explained variance, and these summed
quantifications then constitute new scales91.

5 Reproducibility and data depo-
sition

5.1 Minimal reporting

Reporting the results of a PCA is generally in the form
of a two-dimensional biplot, where the unspoken as-
sumption is often that this is an adequate explanation
of the dataset at hand. Percentages of variance should
be reported for each dimension, and by “adequate” it is
not necessarily meant that the percentages explained
by the two dimensions should be high. As in regression
analysis, there can be a lot of noise in the data, and
low percentages of variance in the leading dimensions
might still reflect the only signal contained in the data.

When there are very many cases, it is often not nec-
essary to display them all — when the cases fall into
groups, showing the group means and their possible
confidence regions is usually sufficient, as in Fig. 7.
When there are very many variables, attention can be
taken off those that make low contributions to the so-
lution, as in Figs 6A and B, or in Fig. 7 where the low
contributors are simply omitted.
As stressed earlier, to avoid distortion, the aspect

ratio should be 1 in such a plot, since its interpretation
is in terms of distances and perpendicular projections.

5.2 R and Python implementations

PCA is widely implemented in commercial and open-
source statistical packages. In the R language, there
is a large number of implementations of the PCA al-
gorithm and its several variants. An exhaustive list of
the R packages and Python libraries or PCA is beyond
the scope of the paper. Box 2 shows the packages and
functions that can be used to implement the methods
described in this review. The graphics were generally
done using base R functions — this sometimes requires
more code but gives all the flexibility needed for pro-
ducing publication quality results.
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Box 2:  Packages and functions implementing PCA and its variants  _____________________________________________________________________________ 
R Package    Function Description 
stats142    prcomp,  These base R functions have minimal output and some confusing 
        princomp differences. Plotting is achieved with the biplot function, but the result  
    is rather poor. 
base   svd  Singular value decomposition of a matrix 
FactoMineR143 PCA  These five packages all have options for weighting rows and columns 

ade4144  dudi.pca of the data matrix. Options for supplementary rows and supplementary 

amap145  acp  columns are provided in PCA (FactoMinerR) and dudi.pca. PCA  
easyCODA22  PCA  (easyCODA) has supplementary rows only. These three last-mentioned 
PCAtools146  pca  packages have extensive results in the created objects. The easyCODA  

package is aimed at compositional data analysis but has functions for  
PCA, CA, LRA and RDA. Most of these packages have dedicated 

  plotting functions (in the case of the ade4 package there is a 
        separate package adegraphics147). 
pca3d148  pca3d Three‐dimensional PCA graphics. 
vegan62  rda  This function computes redundancy analysis (RDA), that is PCA with 
        constraints, but can also perform PCA with no constraints. The same 

package has function cca for CA with or without constraints.  
elasticnet149 spca  Implementations of sparse PCA using a lasso penalized least‐squares  
   arrayspc   approach to obtain sparsity. arrayspc is specifically designed for the  

case p   n, such as microarrays. 
irlba150   prcomp_irlba These fast and memory efficient functions are used when the data are  
RSpectra151  svds  too large to fit in memory, or are arriving in streams.  
rsvd152  rpca 
onlinePCA153  batchpca 
idm154   i_pca  
symbolicDA155 PCA.centers.SDA   PCA for interval‐valued data 
RSDA156  sym.pca  
fdapace157  FDA  PCA of functional data, where data are sparse and longitudinal 

softImpute158 softImpute Imputation of missing values for PCA or matrix completion; can handle 
        very large and sparse matrices 
missMDA159  imputePCA Imputation of missing values for PCA. 

Python library        Function                   Description 
scikit-learn160  sklearn.decomposition.PCA   PCA, also with truncated SVD 
                  for large data sets 

     sklearn.decomposition.SparsePCA  Sparse PCA using lasso penalty 
     sklearn.decomposition.IncrementalPCA Computes solution by processing 
       data in chunks, when data set is 
              too large to fit in memory 

NumPy161           linalg.svd     SVD of a matrix 

6 Limitations and optimizations

6.1 PCA for large datasets

When PCA is used to visualize and explore data, there
are practical limitations to the data size and dimension-
ality that can be handled. In several applications of PCA,
such as image classification92, image compression93,
face recognition94,95, industrial process modelling96,
quantitative finance97, neuroscience98, genetics and
genomics99−102, to name a few, the size and the di-
mensionality of the datasets can be very large and lead
to computational issues. At the core of PCA there is
the EVD of the covariance (or correlation) matrix, or

the SVD of the centred (possibly standardized) data
matrix (see Box 1). Both these matrix decompositions
are computationally expensive for very large matrices
and require the whole data matrix to fit in memory.

The computations for large-scale EVD and SVD can
be enhanced in several ways, where a distinction can
be made between batch (or offline) and incremental
(or online) approaches. Most batch-enhanced matrix-
decomposition methods rely on the fact that interest is
usually focused on the first few eigenvalues (or singular
values) and corresponding eigenvectors (or singular
vectors), that is, a truncated EVD or SVD. To find the
largest eigenvalue is the goal of the power method103,
and its adaptation to find the leading eigenvalues and
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vectors is the Lanczos algorithm104. Some of the most
enhanced batch EVD methods are variations of the
Lanczos algorithm105,106. An alternative probabilistic
approach leads to approximate yet accurate matrix
decompositions107.

Batch methods lead to a substantial reduction of the
computational cost, but do not solve the case when the
matrix cannot be stored in memory, or when new data
are constantly produced (i.e., data flows). The general
aim of online matrix decomposition methods is to in-
crementally update an existing EVD or SVD as more
data come in. Several approaches have been proposed
in the literature108−112. An incremental approach to
SVD (and PCA) is best suited when the number of
variables is much greater than the number of observa-
tions (p ≫ n), and new observations become available.
Examples are market basket data113 and data from
recommender systems on e-commerce websites114 —
see the section on PCA for matrix completion below.
An example of the continuous arrival of image data
is that from surveillance cameras115−118, where each
image is coded as a single vector, with p given by the
number of pixels of that image (see an image example
in Fig. 11). If nothing happens, the background corre-
sponds to low-variance singular vectors, whereas any
disturbance or intruder, however small, creates a big
change.

6.2 Missing values using SVD

PCA can be extended to the case when data are par-
tially observed. For example, suppose that 10% of
the 149 × 5 = 745 entries in the World Happiness
Report dataset were corrupted and, as a result, indi-
cated as missing. One of the natural ideas to deal with
this situation would be to remove all the rows con-
taining missing observations and perform PCA on the
fully-observed samples only. Although convenient, this
approach would be very wasteful: in the worst-case
scenario, as many as 50% of the 149 samples would be
removed. As an alternative, one could replace missing
values by the mean of the corresponding column (e.g.,
missing values for the variable life would be replaced
by the average value for all the countries with observed
values). Although widely applied in practice, this ap-
proach ignores the correlation between the variables.
To explain the goal of PCA with missing values, we

first link standard PCA to the low-rank matrix approx-
imation problem. In what follows we assume that X
is a matrix with missing values, which has been pre-
centred and pre-scaled using the observed values. As
explained earlier, finding the first r principal compo-
nents is equivalent to searching for the matrix X of rank
r, denoted by Xr, which minimizes the residual sum-
of-squares (RSS) in its fit to the original data matrix.
For fully-observed data, we measure RSS for all matrix
elements, but when some data values are missing, we
measure the RSS between the data and Xr using the
observed values only. In this case no explicit solution

exists, but the problem can be solved using a simple
iterative algorithm detailed in Box 3. An example is
given in the online R script of simulating 10% missing
data, and finding results quite consistent with those
using the complete dataset.

In the next section, more details are given about
the imputation of missing data on a massive scale for
high-dimensional data, and how the value of r can be
inferred.

Box 3: Iterative algorithm for PCA
with missing values
Step 1: Initialization for rank r = 0.
(a) Set X0 = 0.
(b) Replace the missing values in X by the corre-

sponding values in X0.
(c) Compute RSS between completed X and X0

and denote it by RSS0.
Step 2: Find solutions for ranks r = 1, 2, . . . , p in
a sequential way.
(a) Iterate the following steps until convergence:

(i) Compute the first r principal components
of completed X, obtaining the rank r ap-
proximation Xr from the SVD (see Fig. 2
and Box 1) as follows:

Xr =

r∑
k=1

ukvT
k

(ii) Replace the missing values in X by the cor-
responding values in Xr .

(b At convergence, compute RSS between com-
pleted X and Xr and denote it by RSSr. The
proportion of variance explained by compo-
nent r can be measured by

(RSSr−1 − RSSr)/RSS0
Step 3: The proportions of variances explained
by each component define the scree plot. Use it
to choose a rank r∗ for the final solution. Return
the sample principal coordinatesαkuk and the vari-
able standard coordinates vT

k , for k = 1, 2, . . . , r∗,
which form the decomposition of Xr∗ .
Notice the following:
• Because of the pre-centering, Steps 1(a) and

(b) amount to imputation with column means
of the observed data.

• When proceeding from rank r to r+1 in Step 2,
the completed data matrix X carries the filled-in
values from Xr.

• Measuring RSS between completed X and Xr is
equivalent to measuring RSS using the observed
values only.
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6.3 Matrix completion

In the previous section an algorithm was described for
making PCA work on a data matrix with missing data.
Attention was not focused there on the values replacing
the missing ones, but in other contexts the replaced, or
imputed, values are of principal interest. A well-known
recent example is that of the Netflix competition114

where a huge dataset of 480 189 customers and 17 770
movie titles was supplied to contestants (see a tiny
part in Fig. 8). On average each customer had rated
about 200 movies, which means that only 1% of the
matrix was observed. The task is to predict the gaps
in the data, the users’ ratings of movies they have not
seen, based on the ratings they have supplied, and
those of other users similar to them. These predictions
would then be used to recommendmovies to customers.
Such recommender systems are widely used in online
shopping and other e-commerce systems.
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Figure 8: A small portion of the large data matrix M of movie
ratings.
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Figure 9: The matrix factorization of the data matrix M ap-
proximately into a product of low-rank matrices, C
(cliques) and the transpose of G (genres).

A low-rank matrix approximation of the PCA type is
a natural solution to such a problem (Fig. 9): M ≈ CGT.
We think of movies belonging to r genres (e.g., thrillers,
romance, etc, the rows of the pink matrix), and users
belonging to r cliques (e.g., types who like thrillers,
types who like romance, etc, the columns of the green
matrix). This translates into a matrix approximation M̂
of rank r, where the general element of the low-rank
approximation is m̂ij =

∑r
k=1 cikgjk. Notice how the

cliques and the genres are combined—hence, themore
a customer is in a clique that favours a certain genre,
the higher the predicted rating m̂ij will be. The objec-
tive is then to minimize the residual sum of squares
(RSS) ∑i

∑
j(mij − m̂ij)

2, that is, optimize the fit of
the m̂ij to the mij by least squares, over the observed
values in M only. Notice that the form of the matrix
product CGT is the same as the SVD of low rank (see
Box 1), where the singular values have been absorbed
into either the left or right singular vectors, or partially
into both.
The successive filling-in algorithm for missing data

described in Box 3 would be infeasible for this massive
imputation task. But the basic algorithm can be signifi-
cantly enhanced by introducing several computational
tricks into what is called the HardImpute algorithm119:
(i) solving the SVD problem, with filled-in values in M,
in alternating stages by fixing the genre matrix G and
then optimizing the fit with respect to C, then fixing
the clique matrix C and optimizing with respect to G;
(ii) storing only the observed elements of the matrix
M (which are very few in the Netflix example com-
pared to the elements of the whole matrix) in so-called
sparse format and adapting the computations to this
format; (iii) a further adaptation, called the SoftIm-
pute algorithm119, adding a penalty to the singular
values that reduces their values, called shrinkage, so
that some become zero and effectively estimate the
rank of the solution.
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Figure 10: Performance (root mean square error, RMSE) of
HardImpute and SoftImpute on the Netflix test
data. “Cinematch” was the in-house algorithm
used by Netflix at the time of the competition.

The SoftImpute algorithm is described more fully in
119−122 and has been demonstrated to give improved
performance over HardImpute in many applications —
see 123,124. For the massive Netflix example, Fig. 10
shows how SoftImpute improves over HardImpute.
HardImpute starts to overfit at a fairly low-rank solu-
tion, while the singular-value shrinkage in SoftImpute
delays the overfitting and allows it to find signal in
many more dimensions.
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Fig. 10| A. 16×6 grid on one of 662 handwritten “4”s, for coding the gray-scale image for the 256  cells . B. 
Resultant 652×256 data matrix for all the "4"'s.  C. PCA plot of the 662 samples, showing some selected images. 

B

Figure 11: A. 16×6 grid on one of 652 handwritten “4”s, for coding the gray-scale image for the 256 cells . B. Resultant 652×256
data matrix for all the "4"’s. C. PCA plot of the 652 samples, showing some selected images.

7 Outlook

PCA has been and will remain the workhorse of ex-
ploratory data analysis and unsupervised machine
learning, as well as being at the heart of many real-life
research problems. The future of PCA is its increasing
application to a wide range of problems and some-
times quite unexpected areas of research. Here we give
some recent innovations where PCA and its core algo-
rithm, the SVD, play an important role, especially in
the analysis of very large challenging datasets emanat-
ing in genetics, ecology, linguistics, business, finance
and signal processing. Some of these have already
been described, for example sparse PCA and matrix
completion. Images, physical objects, and functions
are non-standard data objects, to which PCA can be
applied after using clever ways of coding the data in
the form of a data matrix.

7.1 PCA of images

Often the observations represented by PCA can be ren-
dered in a recognizable form, such as images. For
example, images of birds from closely related species,
images of human faces, and retinal images taken dur-
ing routine eye exams. In this application we have a
dataset with 652 handwritten “fours” scanned from
the zip codes on letters posted in New York. Each is
represented by a 16 × 16 grayscale image (see the
grid in Fig. 11A, with pixel values ranging from −1
to +1). Each image of a “4” can then be coded as a
single vector of length 256, thus defining a point in
a 256-dimensional space, and hence the data matrix
in Fig. 11B is 652× 256. Fig. 11C shows a plot of the
first two principal component scores for these data,

where we have added some emblematic examples of
the points to interpret the configuration: two images
each that project to the extremes of PC1 and PC2, and
two that project near the middle. We include their
images in the plot, and they help understand what
components of variation the axes explain. The PC1
axis seems to differentiate 4s with stubby tails (neg-
ative side) versus long tails (positive side). The PC2
axis (positive side) has 4s with stubby upturns in the
left part of their horizontal arms, and long right arms,
contrasted with the opposite pattern on the negative
side.

7.2 PCA of shapes

A special case of images is that of shapes. Here we
present an example in morphometrics, the study of
shape. The plot in Fig. 12A shows one of the mosquito
wings, with 100 landmarks indicated along the edge
of a wing125. Each wing is thus represented by 100
pairs of (x,y) coordinates, 200 numbers in all. The data
matrix for the 126 species of mosquitos studied is thus a
126 × 200 matrix of coordinates (Fig. 12B), where the
wings were previously rotated while being anchored
at the joint part of the wing. This fitting-together of
shapes is achieved by Procrustes analysis, yet another
multivariate method that relies on the singular value
decomposition126,127. We use PCA to understand the
shape variation of the wings and Fg. 12C shows the
positions of the wings in a two-dimensional PCA plot,
with some samples labelled at the extremes of the two
PC axes. The first principal component PC1 explains
67.2% of the variance, and the plot in Fig. 12D shows
all the wings in grey, the mean wing shape in black and
then the two extreme wings on PC1 coloured the same
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Figure 12: A. 100 landmarks, each with an x- and y-coordinate, shown on one of 126 mosquito wings, giving 200 values
for each wing. B. The resultant 126× 200 data matrix of coordinates. C. The PCA of the 126 wings, with
some emblematic ones labelled on the extremes of the two dimensions, PC1 and PC2. D. All the wing shapes,
showing the mean wing shape and the shapes of the two wings on the extremes of PC1. E. The mean wing
shape and the shapes of the two wings on the extremes of PC2.

as the dots in Fig. 12C. Fig. 12E is a similar plot for
PC2. It seems that PC1 has something to do with the
shape of the wing, while for PC2 the wings are more
or less the same shape but different in length.

7.3 PCA of functions

Functional data are observed as smooth curves or
functions. In functional PCA continuous eigen-
functions (rather than eigenvectors) are associated
with the major eigenvalues. Since early work
in functional PCA128,129, there have been several
developments130−135. Suppose that each data feature
corresponds to a value of some function evaluated at
different points of continuous time, say. The context
presented here is the measurement of the angles of
knee flexion, shown in Fig. 13A for a set of 1000 pa-
tients during a gait cycle, which is the period between
successive foot contacts of the same leg. The variables
are the successive values of each subject’s gait curve
evaluated at 100 evenly spaced times along their com-
plete gait cycle. A patient’s set of measurements is
stored in a row of a 1000 ×100 matrix, and all the
functions are represented as a set of curves in Fig. 13B,
with the mean curve represented by the thicker black
curve. Some emblematic curves are coloured and will

be referred to in the next figure, Fig. 13C.

In the usual PCA of a matrix of p variables the axes
form a basis in the p-dimensional space and each vector
of p observations is approximated in two dimensions,
say, by the mean vector (centre of the PCA plot) plus a
linear combination of the first two eigenvectors v1 and
v2. In the case of functional data, the principal com-
ponent directions are curves, so now each observed
curve is approximated by the mean curve plus linear
combinations of the two principal component curves.
Fig. 13C shows the PCA plot of the 1000 curves, and
by studying the shapes of the curves labelled as ex-
treme points in this plot, an interpretation of what the
dimensions are capturing can be suggested. The two
principal component curves, shown in Fig. 13D with
the same horizontal scale as Fig. 13B, give a more di-
rect interpretation, where it should be remembered
that these explain the deviations from the mean curve.
(The two points close to the centre in Fig. 13C have
curves similar to the mean curve in Fig. 13B). It can be
deduced that PC1 is mostly a “size” component in the
form of an almost constant vertical knee shift and PC2
a “shape” component in the form of a differential phase
shift (PC2). Looking back at the emblematic samples
in Figs 13B and 13C confirms this interpretation.
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Fig. 12| A. Angle measurement of the knee. B. 1000 knee tension and 
extension curves, showing the mean curve as the thicker black one in the 
middle and some other selected ones similar and quite different from the 
mean (see C). C. The PCA plot of the 1000 curves, showing the positions 
of the ones highlighted in B. D. The first (red) and second (blue) principal 
component functions. 

B

Figure 13: A. Angle measurement of the knee. B. 1000 knee tension and extension curves, showing the mean curve as the thicker
black one in the middle and some other selected ones similar and quite different from the mean (see C). C. The PCA plot
of the 1000 curves, showing the positions of the ones highlighted in B. D. The first (red) and second (blue) principal
component functions.

The two principal component curves shown in
Fig. 13D are the principal component “direction” vec-
tors, plotted against percentage time in the gait cycle.
They are smooth because the original data curves are
smooth. Sometimes the function data are noisy, but we
would still prefer smooth principal component curves
for the solution. In this case we could insist that any
solution curve be a linear combination of a small set of
smooth functions in the columns of a matrix S. These
smooth functions can be a basis for polynomials, sines
and cosines, or splines, which are simple polynomial
functions joined together smoothly to give more flexible
curves. In addition, if the columns of S are orthonor-
mal (which can be assumed without loss of generality),
then the solution for the coefficients that combine the
smooth functions can be conveniently obtained from
the PCA of the matrix XS, where in this application X
is the original 1000× 100 data matrix129,137.

7.4 PCA unlimited

There are many other innovative uses of PCA in the
literature, which take PCA into all sorts of interesting
and completely different directions, of which these are
a few examples. As before, the art is in coding the ap-
propriate variables, or features, prior to the application
of PCA.

Several studies use PCA to understand the structure
of songs of Humpback whales. For example, single
song sessions by several whales are broken down into
themes, then into phrases and finally into units. The
units are then coded for various acoustic features based
on the sound spectrogram, such as various harmonics
and amplitudes138. PCA is applied to classify the songs

and see their similarities in terms of times of the day
and locations. In another study PCA is used to derive a
complexity score based on patterns of the song, such as
song length, number of units, number of unique units
and average phrase length139.

To understand the patterns of movements of mice140,
continuous three-dimensional imaging data of mice
over time were subjected to wavelet decomposition
and then analysed by PCA, which transformed the data
into continuous trajectories through PC space. The first
10 PCs, explaining 88

Another PCA problem treats the problem of recon-
structing images of three-dimensional molecules, using
single-particle imaging by X-ray Free Electron Lasers.
This work141 deals with several methodological aspects
of PCA that we have discussed and used in the present
review: (i) alternative ways to standardization for bal-
ancing out the contributions of the image features,
using the error standard deviation rather than the
usual overall standard deviation; (ii) the weighting
of features; and (iii) using shrinkage to determine the
number of PCA dimensions.

8 Concluding remarks

PCA was one of the first multivariate analysis tech-
niques proposed in the literature, and has since become
an important and universally used tool in the under-
standing and exploration of data. We have presented
several applications in diverse disciplines, showing how
this simple and versatile method can extract the essen-
tial information from complex multivariate datasets.
Recent developments and adaptations of PCA have
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expanded its applicability to large datasets of many
different types. More innovations of this quintessential
statistical method are likely to come in future. We are
convinced that PCA, along with its many variants and
extensions, will remain one of the cornerstones of data
science.

SUPPLEMENTARY MATERIAL

Three video animations of the PCAs of the cancer tu-
mour data in the Applications section:

1. A three-dimensional animation of the centroid anal-
ysis of the four tumour groups.

2. A dynamic transition from the regular PCA to the
PCA of the four tumour group centroids, as weight
is transferred from the individual tumours to the
tumour group centroids. This shows how the cen-
troid analysis separates the groups better in the
two-dimensional PCA solution, as well as how the
highly contributing genes change.

3. A dynamic transition from the PCA of the group
centroids to the corresponding sparse PCA solution.
This shows how most genes are shrunk to the ori-
gin, and are thus eliminated, while the others are
generally shrunk to the axes, which means they
are contributing to only one PC. A few genes still
contribute to both PCs

Several datasets and the R scripts that produce certain
results in this Primer can be found on GitHub at:

https://github.com/michaelgreenacre/PCA
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