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Abstract

A macro-evolutionary theory of income inequality is proposed that is based on a society’s dynamic

income generating process. Two types of processes are distinguished, namely dispersing and concen-

trating ones. A basic result shows that dispersing processes provide a selective advantage for more

balanced and mutualistic interaction; whereas concentrating ones favor weaker, less balanced and less

mutualistic interaction. We also show that societies with more balanced and mutualistic interaction

induce more income equality and a non-stratified society, while less balanced and less mutualistic ones

induce more inequality and a possibly stratified society. Also, more equal societies are more resilient

in the sense of being quicker to recover from shocks and return to steady state than less equal ones.

Stylized examples of pre-modern and modern societies are briefly discussed.
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cilia Garcia-Peñalosa, Ramon Marimon, Kiminori Matsuyama, Eulalia Nualart, Giacomo Ponzetto, Joel Sobel and
Jaume Ventura for insightful comments and conversations, as well as audiences in Abidjan, Aix-en-Provence, Ali-
cante, Barcelona, Barcelona (Bellaterra), Bologna, Cambridge, Copenhagen, Florence (Fiesole), Louvain-la-Neuve,
Luxembourg, Marseille, Montreal, Reus, Toulouse and Vienna. Finally, I thank AMSE-IMéRA at Aix-Marseille
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1 Introduction

The question of why some societies are wealthier and/or exhibit stronger growth than others

has received much attention within economics, as has the question of possible consequences of

income inequality for development and growth (Acemoglu [1], Aghion et al. [6], Alesina and

Rodrik [10], Bénabou [15], Galor [47]). Less studied is the question of why societies differ so

much in terms of inequality, and why such different levels of inequality persist for so long across

societies (some exceptions include Acemoglu and Robinson [4], Atkinson and Bourguignon [13],

Galor and Zeira [48], Kuznets [52], Piketty [59, 61]; further exceptions focusing on pre-modern

societies include Boix [17], Borgerhoff Mulder [20], Bowles et al. [22], Mayshar et al. [54]). This

paper addresses this question by taking a novel entropy-based macro-evolutionary approach that

identifies specific aspects of a society’s income generating process as critical for the emergence

and persistence of disparate levels of income inequality. To focus the analysis, we limit ourselves

to pre-modern or very early societies with state that appear to be a more direct fit for the simple

types of income generation processes considered here.1

The macro-evolutionary analysis introduced, distinguishes income generating processes be-

tween what we call dispersing and concentrating ones. Dispersing processes are characterized

by scarce and diverse resource environments, meaning that how much individuals can generate

for their own group or for another group is limited (scarce), and there are multiple or spread

out sources of income generation (diverse). Both properties are shown to reinforce each other

in promoting stronger and more mutualistic interaction, and eventually in generating and sus-

taining a more equal income distribution. Within pre-modern societies, some types of societies

that correspond to this kind of income generation are hunter-gatherer societies or horticultural

societies that are often found to be cooperative and equal.2 By contrast concentrating processes

are characterized by abundant and singular resource environments, which allow for relatively high

rates of income generation for individuals’ own group or for another group (abundant), and have

few, concentrated sources of relatively high income generation (singular). Again, both properties

reinforce each other and promote weaker and less mutualistic interaction and eventually generate

a less equal income distribution. Pre-modern society examples for this are fertile agricultural or

pastoral societies that are often less cooperative and less equal. Thus certain eatures of income

generating processes act as basic forces pushing towards more or less balanced interaction and

through that, also towards more or less income equality. To the extent that the basic underlying

productive structure and resource environment are fixed for given societies over long periods of

time, and through that whether the associated income process is dispersing or concentrating, they

can explain both the persistence of different levels of income inequality, as well as the emergence

of perpetuating trends.

1We do not exclude, however, that the basic forces pushing for more or less equality presented in this paper, that
are derived from the underlying income generating processes, may apply to more modern and complex societies.

2See Borgerhoff Mulder et al. [20], Bowles et al. [22], Smith et al. [69], Flannery and Marcus [44] for discussions
and comparisons of various examples of pre-modern societies. We discuss related examples in Section 5.
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More specifically, the paper introduces a simple dynamic macroeconomic framework that

combined with an evolutionary analysis shows that:

(I) When the macro-economic income generation process is dispersing (that is, scarce and di-

verse), stronger and more balanced and mutualistic interaction within and across groups

is more effective at generating income. A society in such an environment tends to become

more equal and more robust.

By contrast:

(II) When the macro-economic income generation process is concentrating (that is, abundant and

singular), weaker and possibly less balanced and mutualistic interaction is more effective.

Such a society tends to become more unequal and more fragile.

Thus, starting from a mathematical macro-model of interaction and income generation, the

present approach allows us—within a single framework—to address three critical dimensions of

the problem alluded to above, namely, the origin and spread of income equality and inequality,

the positive correlation between balanced interaction or cooperation and income equality and the

social and economic instability of highly unequal societies. To the best of our knowledge this has

not been addressed so far in a single framework in the economics literature.

Inequality has traditionally been addressed in economics in terms of supply and demand for

different types of factor endowments (Atkinson and Bourguignon [13] contains a survey). These

models are typically formulated within the context of (competitive) markets and are sufficiently

flexible to provide insight into a variety of empirical aspects of inequality, including the expla-

nation of a widening gap between skilled and unskilled labor due to technological change. An

important limitation, is that they take as given not just the socio-economic context, but also the

distribution of factor endowments, as well as the mechanisms that determine the compensation

of the different factors. Not surprisingly, they cannot explain certain empirical observations that

set apart stratified and non-stratified societies, namely, (i) the positive correlation between eco-

nomic inequality and intergenerational immobility; (ii) the negative correlation between income

inequality and social cohesion: non-stratified societies tend to have high levels of social cohesion

and trust, stratified societies tend to have low levels of social cohesion and trust, which in turn

can lead to a dysfunctional society; (iii) the negative correlation between economic inequality and

robustness or resilience, that is, the capacity of the economic institutions to maintain a high level

of economic and political stability and functionality in spite of internal and external shocks.3

More recently, the literature has addressed questions of persistent inequality and intergener-

ational mobility (Piketty [59] contains a survey). It has integrated socio-cultural factors in its

framework, which include: the transmission of wealth from parents to children through inheri-

tance, the intergenerational transmission of ambition and the recognition of economic success and

3For evidence on (i)–(iii), we refer to, respectively, the 2012 US Economic Report of the President [27], the 2011
UN Human Development Report [78], and Wilkinson and Pickett [82]; see Section 7 below for further discussion.
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social prestige, the statistical discrimination or the prevalence of self-fulfilling discriminatory be-

liefs. These socio-cultural perspectives have helped to elucidate the limitations of the supply and

demand model and to resolve some of its anomalies. But they also have shortcomings in that they

do not account for the large variation across societies with respect to their key features, namely,

the transmission of wealth through inheritance, the intergenerational transmission of ambition

and work ethic, and the extent of discrimination.

Societies which show significant differences in economic inequality typically differ in terms of

their income generating processes. Societies with severe economic inequality often have economies

which are largely dependent on a small (singular) set of relatively abundant dominant economic

resources; more equal societies tend to have economies based on relatively scarce and diverse sets

of resources (Piketty [60, 61]). Our analysis shows that the underlying income generation process

confers advantages to different interaction modes, which in turn, whether more or less mutual-

istic, further feed back into the income generating process. Over the long run, the underlying

interdependence thus reinforces different ways of interacting, which in turn can be seen as directly

reinforcing basic norms of behavior (Tomasello [77]). In his more recent book, Piketty [61] high-

lights the importance of having an ideology in place, often reinforced by the elites, that justifies

inequality and that is accepted by the members of the society in order to support significant

societal stratification; this point is also emphasized by Flannery and Marcus [44] in their study

of early societies. Our approach further suggests that the income-generating process itself may

contribute towards reinforcing certain behavioral norms, such as more or less mutualistic behavior

or sharing between individuals within and across groups.

At a formal level, our analysis revolves around a statistical measure called evolutionary en-

tropy, which has its origins in the ergodic theory of dynamical systems (Demetrius [31, 33]). In

our macroeconomic context, it is a measure of the number of productive interaction links between

individuals within and across groups in the economy. A low entropy network is described by few

and typically weakly mutualistic interaction links and is characteristic of unequal societies. A

high entropy network is described by a large number of strongly mutualistic interaction links and

is characteristic of equal societies. The significance and centrality of the evolutionary entropy

concept towards our understanding of the origin of equal and unequal societies derives from its

relation to several key socio-economic variables. First of all, as mentioned, it is a measure of

the strength and balancedness in the sense of mutualistic or reciprocal interactions and hence of

cooperation in the underlying economic network. Moreover, it is negatively related with income

inequality measured by the Theil index (Proposition 1), positively related with Field’s measure of

income equalization (Proposition 2), and positively related with the robustness or resilience of the

network (Theorem 3). Interestingly, a rich Markovian stochastic structure is derived from an oth-

erwise simple, linear dynamic macro-model. The stochastic structure is best understood through

the genealogy model, which also shows the centrality of interactions and the entropy measure in

understanding income inequality. Establishing the connection between entropy, cooperation and

income inequality is novel and constitutes an important contribution of the paper.
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Building on this stochastic structure, we study an evolutionary process, whose outcome is

characterized by the entropic selection principle (stated within our macroeconomic context as

Theorem 1). This is the central tenet of Directionality theory (see Demetrius [33], Demetrius

and Gundlach [34] for recent expositions). It describes the outcome of competition between an

incumbent and a variant population, and asserts that, when the income generation process is

dispersing (in the sense of scarce and diverse), communities which have a higher evolutionary

entropy will have a selective advantage and increase in frequency; whereas when the income

generation process is concentrating (in the sense of abundant and singular), communities which

have lower entropy will have a selective advantage and increase in frequency. At a basic level, the

entropic selection principle can be seen as partitioning income generation processes into what we

refer to as dispersing and concentrating ones.4

As an example of a dispersing process consider rice agriculture. It is well known that it requires

hard work but also joint participation of farmers and villagers in irrigating and maintaining the

rice fields. A more interactive society performs better in such a situation, whereas a less interactive

one would not do as well. By contrast, as an example of a concentrating process, consider wheat

agriculture in a relatively fertile area. In this case, a less interactive society, but one where

corresponding households concentrate on their own productive plots performs better than one

that is more interactive but does not sufficiently exploit the highly productive plots. Consistent

with this, it has been found that more interdependent culture has developed (and persists today)

in regions of China where rice agriculture was prevalent, and more individualistic culture has

developed in regions where wheat was prevalent (Talhelm et al. [76]).

Because of the negative relation between changes in evolutionary entropy and changes in

income inequality (Proposition 1), the entropic selection principle allows us to relate the income

generation process to changes in income inequality (Theorem 2). Specifically, in environments

that are dispersing, societies with low income inequality will be more successful and will grow

faster and steadier; while in environments that are concentrating, societies with high inequality

will be more successful. Thus whether a society tends to be more or less equal depends on aspects

of its underlying income generating process.

Another important tenet of Directionality theory is the complexity-stability principle (stated

here as Theorem 3). In the context of our paper, it implies that unequal or highly stratified

societies are inherently unstable and sensitive to shocks; they take longer to return to steady

state than more equal ones. More equal societies are more stable and more robust to shocks; they

are quicker in returning to steady than less equal societies.

Related Literature. The framework introduced seems particularly suited for the study of

pre-modern societies. Borgerhoff Mulder [20] and the articles in the special issue of Current

Anthropology on “Intergenerational Wealth Transmission and Inequality in Premodern Societies”

(Bowles et al. [22], Smith et al. [69]) are especially relevant. They provide first comprehensive

4Note that Theorem 1 covers all possible cases, including, scarce and singular, and abundant and diverse.
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estimates of intergenerational wealth transmission and inequality in pre-modern societies. Besides

containing a wealth of empirical data and insights, their theoretical approach is complementary

to ours in that it emphasizes the role of capital, particularly material capital as a driver of

inequality. To the extent that the introduction and extensive use of material capital leads to what

we call an abundant income generation process, then the two theories may be connected. There

is also a long-standing literature that identifies the emergence of hierarchical societies from more

egalitarian hunter-gatherer or early agrarian societies with the capability to produce surplus from

increases in productivity (e.g., Lenski [53]). This literature is discussed and qualified in Mayshnar

et al. [54] and Scott [66], who show the importance that some of the key goods produced also

be appropriable by the elites in order to maintain and reinforce a hierarchical structure. To the

extent that appropriability affects the income generation process and is reflected in the underlying

interaction matrix, these results are not inconsistent with our mechanism.

Another literature related to our approach is the multidisciplinary literature on the evolution

of cooperation in human societies, which includes theoretical, experimental and empirical work,

also covering different types of societies and over different periods of human history (Boix [18],

Bowles and Gintis [21], Boyd and Richerson [23], Henrich [49], Mesoudi [57], Tomasello [77]

contain surveys and expositions of different aspects of the literature). This literature contains

a variety of models which study the evolution and coevolution of cooperation and other related

norms and institutions under various assumptions and perspectives, and includes explicit agent-

based, multilevel and gene-culture analyses (see especially Bowles and Gintis [21] for a detailed

overview). What we contribute to this rich literature is a reduced form model that is embedded in

a simple macroeconomic framework that we view as complementary to the models studied in the

literature. For us, cooperation is modeled in terms of the evolutionary entropy of the underlying

economic network and its income generating process that evolves at the macro-group level.5

Also, a vast literature studies how institutional and non-institutional factors may explain

long run differences in various economic variables across countries (Acemoglu and Robinson [4],

Currie et al. [30], Engerman and Sokoloff [40] and Spolaore and Wacziarg [72] contain surveys).

Although most of the focus has been on understanding growth and development, part of the

literature has studied institutional and non-institutional effects on inequality, for example, whether

a country being politically organized as a democracy may contribute to income being more equally

distributed (Alesina and Rodrik [10], Meltzer and Richard [55] and more recently Acemoglu et

al. [3]). To this general literature, our approach contributes a novel entropy-based mechanism,

that formally puts the countries’ income generating processes at the center of the analysis of

long-run determinants. The income generating process affects the interaction between individuals

which in turn contributes to the coevolution of stronger or weaker behavioral norms of cooperation

and sharing. In our approach, whether a society is more or less equal is not necessarily a matter

of whether or not it is a democracy, or whether it is capitalistic, or industrially or technologically

5Establishing a formal connection to some of the explicit agent-based or multilevel models in the literature goes
beyond the scope of this paper and is left for further research.
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developed, but rather it depends on specific parameters of the income generating process, which

in turn affect the society’s underlying social and behavioral norms of cooperative behavior.

Finally, the paper also contributes to the rapidly growing literature on fluctuations and the

macroeconomics of networks. Acemoglu et al. [2], Carvalho and Gabaix [25], and Gabaix [45],

model aggregate fluctuations through the propagation of individual firm-level shocks across the

economy as a function of the network structure and the relative sizes of the firms. The present

application of Directionality theory studies networks of dynamic economic interactions between

different groups and derives a rich stochastic structure from the average group level interactions.

Evolutionary entropy, as an analytic measure of network structure, may prove to be a potentially

useful conceptual tool for studying dynamic aggregate behavior.

The remainder of the paper is organized as follows. Section 2 presents the macroeconomic and

interaction framework. Section 3 introduces the evolutionary process and shows our key analytical

result, the entropic selection principle. Section 4 contains the economic results of the paper and

establishes the relation between evolutionary entropy and measures of income inequality and

income equalization. Section 5 contains examples of simple economies that include a discussion

of pre-modern and very early modern societies from the point of view of the present framework.

Section 6 addresses the fragility of unequal societies, and Section 7 concludes. The proofs and

some background material are contained in the Appendix.

2 Macroeconomic Framework

Our analysis takes as its point of departure a society’s intertemporal income generating process,

which depends on the economic interaction of individuals within and across different groups and

which we capture by what we call the interaction matrix A, described below. It reflects both

allocation and production of goods and services. Moreover, it gives rise to the Markov matrix P ,

which provides the basic underlying stochastic structure of our model.

Population and Income. Consider a society with a total population N(t) of individuals

distributed in d groups, written as,

N(t) =

d∑
i=1

ni(t), (1)

where ni(t) denotes the number of individuals (or households) in group i in period t. The groups

may be thought of as describing occupational groups or extended families, which, for expositional

purposes, we assume throughout to be of equal size ni(t) = N(t)/d.6 The individuals engage in

several activities in order to produce and exchange commodities and services. The total income

6This allows for easier comparison of income levels across groups. Clearly, the theory can be adapted to account
for classes of significantly different sizes.
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(or production) Y (t) of the economy is the sum of the income of the different groups,

Y (t) =
d∑
i=1

yi(t), (2)

where yi(t) denotes the income of group i in period t; we also write y(t) = (y1(t), . . . , yd(t))
> for

the (column) vector of incomes of the different groups.7 Prices are not modeled explicitly in this

set-up. We assume all goods (outputs, inputs, services) in all periods to be measured by a fixed

common numéraire commodity.

Interaction Matrix and Income Generation Process. The individuals are jointly involved in

a process of income generation, where, besides exchanging and transforming resources or produc-

ing goods and services within groups, they also exchange and transform resources across groups.

We summarize this by what we call the society’s intertemporal income generation process,

that is, a law of motion for income in the different groups,

y(t+ 1) = Ay(t), (3)

where

A = (aij), aij ≥ 0, 1 ≤ i, j ≤ d, (4)

is a d×d matrix, which we refer to as the society’s interaction matrix. The elements aij measure

the rate of contribution or transformation of income in group j in period t towards income in

group i one period later.

The interaction matrix A can be thought of as representing a directed graph over d nodes (for

the d groups), where aij corresponds to a directed link from node j to node i of intensity aij . We

assume the matrix is irreducible, meaning that there exists a finite n ≥ 1 such that a
(n)
ij > 0 for

all i, j, where a
(n)
ij is the (i, j)-th element of An.

We assume the entries of the interaction matrix are initially fixed and that the economy is at

steady state. The Perron-Frobenius theorem guarantees that the matrix A has a maximal, positive

and real-valued eigenvalue λ with corresponding positive, real-valued right and left eigenvectors,

v = (v1, . . . , vd)
> and u = (u1, . . . , ud), respectively, such that,

Av = λv and uA = λu. (5)

If we further assume the vectors are normalized such that
∑d

i=1 vi = 1 and
∑d

i=1 ui = 1, then vi

represents group i’s steady state share of received income, and ui represents group i’s steady state

share of contributed income. We also refer to g = log λ as the growth rate at steady state.

Eq. (3) can be viewed as representing a reduced form of the steady state of a process of

economic interaction between individuals in different groups in a society with exchange (including

7Throughout the paper, we denote the transpose of a vector (or matrix) x by x>.
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on markets) and with production (including with capital). Mathematically speaking it can be

viewed as a linear approximation to a more complex, nonlinear and higher dimensional system,

for example, of the form z(t + 1) = F (z(t)), where z(t) = (x(t), y(t)) is an m + d vector with

x(t) a vector of m further variables, besides y(t) introduced above, with F : Rm+d → Rm+d a

function that is not necessarily linear. Importantly, following Solow and Samuelson [71], if all

equations zk(t+ 1) = Fk(z(t)) are homogenous of degree one, then, at steady state, all variables

grow at the same rate, say g, and satisfy zk(t) = ψk,` · z`(t) with some constant ψk,` > 0, for

any pair 0 ≤ k, ` ≤ m + d. Thus, the framework allows for underlying production functions

of the Cobb-Douglas form with capital variables, as long as the functions (and all equations in

the model) are homogeneous of degree one. An example of such a system for early pre-modern

societies and with a composite measure of capital, possibly used jointly between the groups, is

presented in Appendix A.4. It can be seen as providing a background for almost all the examples

discussed throughout the paper.

Interactions, Evolutionary Entropy and Productive Potential. From the interaction

matrix A, we can define the Markov matrix,

P = (pij) =

(
ajiuj
λui

)
, 0 ≤ pij ≤ 1, 1 ≤ i, j ≤ d, (6)

where an element pij is the fraction of income contributed by group i that is contributed from

group i to group j. The rows of the matrix P always sum to one. Let π = (π1, . . . , πd) denote the

corresponding stationary distribution satisfying πP = π, then πi (≥ 0) can be interpreted as the

fraction of total income that “passes” through group i. It can also be shown that πi = uivi∑
i uivi

.

The genealogies model presented below at the end of this section provides further intuition for the

underlying probabilistic structure.

Next we define the evolutionary entropy,

H = −
d∑
i=1

πi

d∑
j=1

pij log pij , 0 ≤ H ≤ log d, (7)

where H = log d and H = 0 indicate, respectively, maximal and minimal entropy; H is our

measure of cooperation and is the central concept of the approach of the present paper.

The evolutionary entropy H is a measure of the strength and balancedness of overall inter-

action between individuals in the economy, within and across groups. Figure 1 represents the

interaction networks associated to high entropy (left-hand panel) and low entropy income pro-

cesses (right-hand panel). In the former there are strong and balanced interactions between all

groups, describing a high entropy (and strongly reciprocal or mutualistic) network; in the latter,

the interactions are weaker and less balanced and are directed towards a single group (node 1,

since a � ε > 0 and ε ≈ 0), describing a low entropy (and weakly reciprocal or mutualistic)

network. More technically, the evolutionary entropy describes the effective number of productive
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Figure 1: High entropy (left) and low entropy (right) interaction graphs, a� ε > 0, ε ≈ 0.

cycles of interaction between individuals in the different groups thereby directly measuring an

aspect of mutualism or reciprocity of interaction within and across groups.8 Besides being a mea-

sure of cooperation in the sense of strong and mutualistic or reciprocal interaction, H is further

related to an economy’s robustness or resilience in the sense of the rate at which it returns to

steady state after an arbitrary shock (see Theorem 3 in Section 6).

Scarcity and Diversity. The central tenet of our evolutionary analysis, the entropic selection

principle, distinguishes the income generation process along two dimensions, namely, what we

refer to as scarcity and diversity. As is clear from the proof of the entropic selection principle,

the economy’s selective advantage (see Eq. (15)) depends on these two measures as well as on the

direction of change of the society’s level of entropy. We define them formally.

Scarcity. The parameter used to define scarcity is the productive potential defined by,

Φ =

d∑
i=1

πi

d∑
j=1

pij log aji, (8)

8A fundamental characterization of evolutionary entropy relates it to a measure of the number of cycles of
interaction of the associated interaction network (see Demetrius and Gundlach [34], pp. 5461-62): Fix a group
α ∈ {1, 2, . . . , d} which can be thought of as a node of the corresponding interaction network and consider an
arbitrary path α̃ of length n ≥ 1 that starts and ends at α without otherwise passing through α (but possibly
repeatedly passing through other nodes βk 6= α), written as

α̃ = [α, β1, . . . , βn−1, α], where βk ∈ {1, 2, . . . , d}, βk 6= α.

Let X̃α be the set of all such paths of arbitrary length n ≥ 1. Then it can be shown that, for any α ∈ {1, 2, . . . , d},

H =
−
∑
α̃∈X̃α pα̃ log pα̃∑
α̃∈X̃α | α̃ | pα̃

≡ Hα
Tα

,

where, pα̃ = pα,β1pβ1,β2 · · · pβn−1,α is the probability of the given cycle α̃, and | α̃ | denotes its length (i.e., the
number of nodes through which it passes). Hα is a measure of the average uncertainty of the cycles starting at
α, and Tα is the average length of such cycles. Thus the characterization shows that the evolutionary entropy is
directly related to the number of paths connecting individuals in a group to individuals in the own and other groups
in the network. The characterization makes clear that the more mutualistic the network is, the higher the Hα’s are
and the lower the Tα’s are, and hence the higher the entropy is, and vice versa. Demetrius [33] and Demetrius and
Gundlach [34] contain further discussions, also with respect to other measures of entropy.
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which can be interpreted as an average of the “log aji’s” under the Markov process associated

with P . With Eq. (7) it can be shown to satisfy Φ = g −H.

When Φ < 0, we say the income generation process is scarce and when Φ > 0 we say it

is abundant. Given Eq. (8), the condition Φ < 0 implies that the (individual) intertemporal

“productivity rates” aii and aij are predominantly < 1, and therefore the environment exhibits a

certain degree of scarcity and limited abundance; Φ > 0, on the other hand, implies productivity

rates that are predominantly > 1, which is typical of environments exhibiting a certain minimum

degree of abundance or concentrated sources of high returns and/or individual contributions to

income generation.9

Diversity. The parameter for diversity is γ = 2σ2 + κ. We say the income generation process

is diverse if γ > 0; we say it is singular if γ < 0. As mentioned, σ2 is a measure of variance

and κ a measure of skewness of the log aij ’s and hence of the sources of income generation. The

condition γ < 0 holds when the variance measure σ2 is small and the skewness measure κ is

negative, so that the density over the log aij ’s is concentrated on few links with sufficiently large

values. This reflects what we call a singular income generating process with few but large and

dominating sources of productivity. The condition γ > 0 holds in the opposite case with many

small and spread out sources of productivity, which we refer to as diverse.

Dispersing and Concentrating. Finally, we also say that the income process is dispersing

if it is both scarce and diverse so that Φ < 0 and γ > 0, and we say it is concentrating if it is

both abundant and singular so that Φ > 0 and γ < 0.

Genealogies Model and Macroscopic Variables. The point of departure for our analysis of

cooperation is the society’s income generation process summarized by the matrix A of Eq. (3). The

complexity of its underlying interactions are modeled through what we call the genealogies model.

It introduces a stochastic structure that is based on the ergodic theory of random dynamical

systems, which provides a general formalism for generating a family of macroscopic variables

from the matrix A (see Arnold et al. [12] or Demetrius [33]). These macroscopic variables capture

critical aspects of dynamic aggregate behavior, besides the growth rate g, such as the entropy

H and the productive potential, variance and skewness measures Φ, σ2, and κ mentioned above.

Before introducing the formalism, we provide some intuition to motivate the space Ω.

Heuristics for the Genealogies Model. Consider a society of foragers, where individuals collect,

share, exchange and ultimately consume, say, apples. This heuristics is inspired by interpreting the

interaction matrix A as a generalized Leslie matrix, typically used to model population dynamics

by age groups (Arnold et al. [12], Demetrius [33]). While in such a population model, the quantities

of interest are the numbers of individuals in each age group, in our model the quantities of interest

9The notion of scarcity (abundance) does not perfectly represent the condition Φ < 0 (> 0), since an environment
with Φ < 0 may nonetheless have several relatively large rates aij < 1, evenly distributed over several interactions,
and, for example, have a greater growth rate and be in some sense “more abundant” than one with Φ > 0 that
nonetheless has one or more rates aij > 1. In other words, Φ also distinguishes between dispersed vs. concentrated
sources of income generation.
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are total apples in each group (household or extended family). Furthermore, in the population

model, mothers give birth to one or more daughters, allowing one to associate to each daughter a

unique mother. Here, assume individuals collect apples, but before collecting one or more apples,

each individual needs to consume an apple so that each apple collected can be associated to

a unique apple consumed. In turn the apple consumed was either collected by the individual

himself or it was contributed from another individual from the same group or from another one.

What is important is that, for each apple consumed or collected, one can trace the sequence of

all “ancestor” apples with the corresponding group of the individual who contributed the given

“ancestor” apple. Thus, if we fix an apple of an individual in, say, group 1 at time t0, we can

go backwards in time and follow all the successive ancestors of that apple. Doing so for, say,

5 periods, from t0 to t0 − 5 the corresponding sequence might take the form (the t0 entries are

underlined for expositional purposes):

· · · −→ 3
a23−→ 2

a12−→ 1
a31−→ 3

a13−→ 1
a11−→ 1 −→ · · ·

with ancestors in the groups:

(. . . , xt0−5, xt0−4, xt0−3, xt0−2, xt0−1, xt0 , . . .) = (. . . , 3, 2, 1, 3, 1, 1, . . .).

The interpretation is simply that at t0 the apple consumed by the individual in group 1 (xt0 = 1),

was contributed by someone in group 1 (xt0−1 = 1), which in turn was contributed by someone

in group 3 (xt0−2 = 3) and so on until in period t0 − 5 the apple consumed in group 2 was

contributed from someone in group 3 (xt0−5 = 3). These sequences, which are the elements of

our space Ω, can be followed backward (direction of ancestor/contributor) and forward (direction

of successor/reciever). The different sequences and their distribution in the space Ω can be used

to describe the intensity and balancedness of interaction in the network associated to the matrix

A. Specifically, in this context, the evolutionary entropy H associated to the Markov chain with

Markov matrix P and stationary distribution π, measures of the average uncertainty about what

the ancestor group of a given apple is (one step backward), given the current group of that apple.

The larger the uncertainty the larger the entropy, which therefore is also natural measure of

cooperation in the sense of strong and balanced interaction, derived from the links in the network

graph G associated to the matrix A.

We now describe the formalism which we refer to as the genealogies model (see Arnold et

al. [12] or Demetrius [33] and also Appendix A.3 for more details), which provides formal defini-

tions of the space Ω and of macroscopic variables such as H,Φ, σ2 and γ. This formalism embeds

a stochastic model of productive interactions in our linear dynamic macro-model of (Eq. (3)). It

can be skipped on a first reading.

Genealogies Model. Consider the macro-model of Eq. (3) and let G denote the directed graph

associated with the interaction matrix A = (aij) over the nodes D = {1, 2, . . . , d}, which in our

model coincide with the d groups. Figure 1 above illustrates two examples of graphs over three
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nodes. To study such systems at steady state, let

Ω = {x ∈ X : axν+1xν > 0}, where X =

∞∏
ν=−∞

Dν and Dν = D.

The set Ω, which we refer to as the phase space, is the set of all paths (or genealogies) of the

graph G, associated with the matrix A, of the form (again, the ν = 0 entries are underlined for

expositional purposes):

x = (. . . , x−1, x0, x1, . . .), xν ∈ D.

In the case of a graph with d = 3 nodes (e.g., Figure 1, right panel), the elements in the set Ω are

described by sequences (or genealogies) of the form:

(. . . 1 1 1 2 3 1 1 1 2 1 1 . . .)

(. . . 3 1 2 3 3 1 1 1 3 1 2 . . .)

(. . . 2 1 3 1 2 2 1 2 1 2 3 . . .) .

Consider now the shift map τ : Ω → Ω, (xν) 7→ (x̃ν), where x̃ν = xν+1. Then the dynamics

for τ is related to the dynamics given by Eq. (3) but they are not the same object. While the

latter describes the dynamics of income levels of the groups in the society, the shift on Ω is only

concerned with the genealogical history of income generation and consequently corresponds to

the dynamics defined by P . To establish a connection between the two, define the potential

function ϕ by:

ϕ : Ω→ R, ϕ(x) = log ax1x0 ,

which represents the intensity of the individual interactions reflected in the interaction matrix A.

The steady state of the dynamical system induced by Eq. (3) can be described by an equilibrium

probability measure µ induced by the function ϕ, which is invariant under the shift map τ

defined above, and which can be written in terms of the Markov matrix P = (pij) and its eigen-

vector π.10 Together with Ω, these yield the dynamical system (Ω, µ, ϕ) that replaces the classical

system of difference or differential equations (Rd, y, f) (see Demetrius [33] and also Appendix A.3

for more discussion).

Macroscopic Variables. The dynamical system (Ω, µ, ϕ) with its underlying genealogies model

is the basis for generating a number of macroscopic variables that characterize diverse aspects

of the income process Y (t) besides the growth rate g, which has been almost exclusively at the

center of economic growth theory. As shown, for example, in Petersen [58] and Walters [81],

the associated Markov chain (P, π) has entropy H as defined in Eq. (7). This means that, if we

10It satisfies, for any n and and sequence of finite length k, (in, · · · , in+k) ∈ Dk+1,

µ(xn = in, . . . , xn+k = in+k) = πinpinin+1 · · · pin+k−1in+k ,

as shown, for example, in Petersen [58] and Walters [81].
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read genealogies in direction of successive ancestors, then H can be interpreted as the average

uncertainty about the ancestor class xn−1 ∈ D that appears at time n− 1, given the class xn ∈ D
seen at time n. As mentioned above, this further motivates our interpretation of the entropy as

measure of cooperation (see also footnote 8 above).

Moreover, let

Snϕ(x) =
n−1∑
k=0

ϕ(τkx) =
n−1∑
k=0

log axk+1xk ,

and

Zn(ϕ) =
∑

(x0,x1,...,xn)

expSnϕ(x) =
∑

(x0,x1,...,xn)

ax1x0ax2x1 · · · axnxn−1 ,

then, using the Perron-Frobenius Theorem, we can represent the growth rate as the limit,

g = log λ = lim
n→∞

1

n
logZn(ϕ). (9)

Furthermore, define the following macroscopic variables as moments of the system (Ω, µ, ϕ):

Φ = lim
n→∞

1

n
En [Snϕ] =

∫
ϕdµ, σ2 = lim

n→∞

1

n
Vn [Snϕ] , κ = lim

n→∞

1

n
En [Snϕ− EnSnϕ]3 , (10)

where En and Vn denote the expectation and the variance with respect to the measure µn on

finite sequences of length n, (x0, x1, . . . , xn), and which is defined by:

µn =
Snϕ(x)∑

(x0,x1,...,xn)
Snϕ(x)

.

The first macroscopic variable, Φ, defined in Eq. (10) is our measure of scarcity. Next, the

variables σ2 and κ represent respectively variance and skewness measures, from which we

define γ = 2σ2 +κ, which is our measure of diversity of the income generating process. Together

with g and H, these parameters allow us to characterize the long-run outcome of our evolutionary

process. In Appendix A.3, we present an alternative way to compute the parameters Φ, σ2, κ,

and γ, by expressing them as moments of the Taylor series expansion of the growth rate g as a

function of a certain perturbation parameter δ.

The following example provides more intuition for the macroscopic variables and the overall

framework developed so far.

Example 1. To illustrate the framework introduced, we consider a few simple 2× 2 interaction

matrices that represent different income generation processes between two (similar) groups of

individuals. In Appendix A.4 we sketch a structural model of an economy that yields such

interaction matrices as special cases and discuss the possible underlying productive context in

more detail. Here we limit ourselves to illustrating the connection between the stylized interaction

matrices and the macroscopic variables introduced, including the relation between evolutionary
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entropy and cooperation. The first case is of a fully symmetric income generation process (matrix

A), while the remaining two are asymmetric with respect to the distribution of income (matrix

A′) or with respect to contribution towards income generation (matrix A′′).

Consider the interaction matrix between two groups of individuals, i = 1, 2, given by:

A =

(
a b

b a

)
,

where a > 0 measures rate of (intertemporal) resource contribution to individuals in the own

group, and b > 0 measures rate of resource contribution to individuals in the other group.

We can readily compute λ = a+ b, u =
(
1
2 ,

1
2

)
, v =

(
1
2 ,

1
2

)>
and hence also:

P =

(
a
a+b

b
a+b

b
a+b

a
a+b

)
(Markov matrix)

π =
(
1
2 ,

1
2

)
(stationary distribution of P )

H = − a

a+ b
log

a

a+ b
− b

a+ b
log

b

a+ b
(entropy)

Φ =
a

a+ b
log a+

b

a+ b
log b (scarcity)

g = Φ +H = log (a+ b) (growth rate)

σ2 =
ab log

(
a
b

)2
(a+ b)2

(variance)

κ = −
ab (a− b) log

(
a
b

)3
(a+ b)3

(skewness)

γ = 2σ2 + κ (diversity)

In particular, defining ρ = b
a+b as a normalized rate of contribution to individuals in the other

group, we can write:

H = −(1− ρ) log (1− ρ)− ρ log ρ.

This expression is maximized at ρ = 1
2 , where there is maximally mutualistic interaction within

and across groups, and is minimized at ρ = 0 or ρ = 1, where there is minimally mutualistic

interaction. To make this connection even clearer, using the characterization in footnote 8, we

can further compute:

H1 = H2 = −(1− ρ) log (1− ρ)−
∞∑
i=0

ρ2(1− ρ)i log (ρ2(1− ρ)i)

= −2(1− ρ) log (1− ρ)− 2ρ log ρ = 2H

T1 = T2 = 1 · (1− ρ) +

∞∑
i=0

(2 + i) · ρ2(1− ρ)i = (1− ρ) + (1 + ρ) = 2,

for 0 < ρ < 1. For ρ = 0 and ρ = 1, clearly, H1 = H2 = 0, whereas, T1 = T2 = 1 for ρ = 0 and
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Figure 2: Macroscopic variables of Example 1 as a function of ρ = b
a+b for λ = a+ b = 5

4 .

T1 = T2 = 2 for ρ = 1. Interestingly, since H is directly related to H1 and H2, it is also a measure

of the amount of uncertainty over the productive cycles that start and end at node 1 or 2; T1 and

T2 measure how long it takes on average to return to the initial node in such cycles.

Figure 2 shows the key macroscopic variables as a function of ρ, assuming λ = a + b = 5
4 .11

Notice that for ρ ≈ 0 and ρ ≈ 1 the income generation process is what we call concentrating

(Φ > 0, γ < 0) and is associated with a low entropy (H ≈ 0), while for interior values of ρ it is

dispersing (Φ < 0, γ > 0) and is associated with higher entropy.12 In the next sections, we study

the reasons for distinguishing the income generation processes in terms of (the signs of) Φ and γ,

as well as the implications this has for the evolution of cooperation and for income inequality.

Next, consider the following two variations of matrix A:

A′ =

(
a a

b b

)
, A′′ =

(
a b

a b

)
.

They differ from A in that they are no longer symmetric. All three matrices have the same

eigenvalue λ = λ′ = λ′′ = a+ b, yet they differ with respect to the eigenvectors. With the matrix

A both groups receive and contribute the same at the steady state: u =
(
1
2 ,

1
2

)
, v =

(
1
2 ,

1
2

)>
; with

A′ both groups contribute the same but receive different shares: u′ =
(
1
2 ,

1
2

)
, v′ =

(
a
a+b ,

b
a+b

)>
=

(1 − ρ, ρ)>; and with A′′ both groups receive the same shares but contribute differently: u′′ =(
a
a+b ,

b
a+b

)
= (1−ρ, ρ), v′′ =

(
1
2 ,

1
2

)>
. Nonetheless, the matrices A′ and A′′ have the same Markov

matrix with the same stationary distribution:

P ′ = P ′′ =

(
a
a+b

b
a+b

a
a+b

b
a+b

)
=

(
1− ρ ρ

1− ρ ρ

)
, π′ = π′′ =

(
a
a+b ,

b
a+b

)
=
(

1− ρ, ρ
)
.

Interestingly, all the remaining macroscopic variables, H,Φ, g, σ2, κ, and γ have the same formulas

11Assuming λ = a+ b = 5
4

implies a = 5
4
(1− ρ) and b = 5

4
ρ, which allows us to express all macroscopic variables

as a function of ρ alone. Otherwise, the number 5
4

is taken purely for expositional purposes.
12It can be calculated that for the matrix A and for the matrices A′ and A′′ below, Φ changes sign at ρ ≈ 0.06

and ρ ≈ 0.94, and γ changes sign at ρ ≈ 0.08 and ρ ≈ 0.92.
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as functions of a and b for all three matrices. Given that with the matrices A′ and A′′ the

parameter ρ = b
a+b can be seen as a measure of similarity/discrepancy between what is received

and contributed by the two groups, it further shows how the formula for the entropy H (expressed

as a function of ρ) captures balancedness in the sense of mutualism of the income generation

process in terms of what is received and contributed between the two groups. When ρ = 1
2 there

is no discrepancy and hence maximal mutualism, and entropy is maximal, whereas when ρ = 0 or

ρ = 1 there is maximum discrepancy and hence minimal mutualism and minimal entropy. Finally,

with respect to the characterization in footnote 8, for A′ and A′′, we have H ′1 = H ′′1 = (1− ρ)H,

T ′1 = T ′′1 = (1− ρ)−1, and H ′2 = H ′′2 = ρH, T ′2 = T ′′2 = ρ−1, for 0 < ρ < 1. 2

3 Evolutionary Dynamics and Entropic Selection

This section introduces the evolutionary framework and states a key result, the Entropic Selection

Theorem (Theorem 1), based on the entropic selection principle of Demetrius [32] and Demetrius

and Legendre [37]. We assume the economy is in a steady state described by Eq. (3) with an

initially given matrix A. This matrix is then allowed to evolve in response to small perturbations,

some of which are successful, while others are not. Unsuccessful perturbations are not adopted

and do not change the matrix A, while successful ones do. In this sense while initially exogenous,

the matrix A is subject to small changes. The perturbations in A are modeled by what we call

the perturbed matrix A∗ = A(δ) of the initial (or incumbent) matrix A = A(0), where δ ∈ R is a

small perturbation parameter. Whether or not a perturbation is successful is determined by the

evolutionary process. Each perturbed matrix A∗ has an entropy level H∗ = H(δ) that corresponds

to it. The Entropic Selection Theorem (Theorem 1) characterizes the successful perturbations

in terms of the entropy of the (successful) perturbed matrix (H∗) compared to the one of the

initial matrix (H), given Φ and γ. Importantly, the perturbations do not change the signs of

Φ and γ, so that an environment that is dispersing (or concentrating) will remain so even as

the matrix A is subject to repeated, successive perturbations. In this sense, the type of income

generating process, whether dispersing or concentrating is determined by the initial matrix A and

is exogenous throughout (Demetrius [33]).

The evolutionary process has two aspects. The first aspect occurs on a short term level. It is

characterized by competition between the incumbent population with interaction matrix A and

entropy H, and a variant population with perturbed interaction matrix A∗ and entropy H∗. The

second aspect occurs on a long term level. It is characterized by the interaction between the

external environment and the composite population (incumbent and variant) as it evolves from

one steady state with entropy H to a new steady state with entropy Ĥ. The short term entropy

change ∆H = H∗ −H induced by invasion of the (successful) variant population is determined

by the entropic selection principle. The long term entropy change ∆̂H = Ĥ −H, which describes

the transition from one steady state to the next, is determined by the external environment

and the population dynamics. It is shown in Demetrius [33], Section 9, that the change in H
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from one steady state to another (∆̂H) is related and in fact positively correlated to the short

term change (∆H), that is, ∆H∆̂H > 0, under regularity conditions. Therefore, the long term

changes in entropy can be inferred from the short term changes (∆H), captured by the entropic

selection principle. What the theory contributes then, is not so much endogenously determined

matrices, but rather directions or, better, classes of matrices A∗ (distinguished by their associated

level of entropy H∗) that constitute successful perturbations or variants to the exogenously given

matrix A. We now introduce the evolutionary framework, which underlies the short and long

term changes in entropy.

Evolutionary Dynamics. We use a model of evolution that is based on the interaction between

an incumbent population and a variant (or mutant) population that can potentially increase

in frequency and lead to a displacement of the incumbent types. This can be seen as being

representative of various models of cultural evolution. To determine the evolutionary outcome,

we compute the probability that the variant population completely displaces the types of the

incumbent population.

Consider an incumbent populationN operating with an interaction matrixA and producing

Y , and consider a (small) variant population N∗ operating with an interaction matrix A∗ that

is modeled as a perturbation of the matrix of the incumbent population; the variant population

produces Y ∗. Importantly, in order to keep things tractable, while attempting to capture a large

class of variants, we consider, throughout the paper, perturbations of the form:

A∗ = A(δ) = (aij(δ)) , where aij(δ) = a1+δij , for δ ∈ R. (11)

These constitute in a precise sense a canonical class of perturbations that can be modeled with

a single one-dimensional parameter, δ ∈ R, small in absolute value. They represent changes in

the income generating process that are derived as small perturbations of the original potential

function ϕ that preserve the multiplicative structure of the model.13 As shown in Appendix A.3,

they also allow us to easily compute the macroscopic parameters Φ, σ2 and γ.

The population N∗ can be thought of as a small (sub-)population or sub-community (with

the same d groups), that operates with A∗ = A(δ) that is similar to A but slightly different. For

example, the underlying interaction mode might involve slightly more or less exchange or sharing

(as in Example 2 below). The question we ask is whether this variant or perturbation will be

successful and hence increase in frequency and displace the traits of the original population, or

whether it will be unsuccessful and simply disappear. This is calculated based on the competitive

interaction of the corresponding processes Y and Y ∗.

The introduction of a variant type via perturbations thus constitutes the first step in describing

the evolutionary dynamics. The second step is given by the invasion dynamics, which studies

13These take the form ϕ(δ) = ϕ + δϕ = (1 + δ)ϕ = (1 + δ) log aij = log a1+δij for δ ∈ R small in absolute value.
More generally, the perturbations can take the form ϕ(δ) = ϕ + δψ, where ψ has the same productive potential
and the same directional derivative as ϕ, see Demetrius et al. [36], Section 6, and Demetrius [33], Ch. 4; we provide
further details in Appendix A.2.
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the interaction and competition between the incumbent population N and the variant population

N∗ for the resources which the economic environment makes available for the corresponding

productions Y and Y ∗. Given that each population is producing according to its own interaction

matrix A and A∗, we are essentially studying a situation where the two populations produce side

by side with a constraint on total production such that Y +Y ∗ is locally fixed while the “invasion”

of the variant takes place.

When analyzing the invasion dynamics and the evolution of Y and Y ∗, we follow Demetrius

et al. [36] and work with continuous time representations Y (t) and Y ∗(t) derived from techniques

of diffusion approximation originally studied by Feller [41] integrated with techniques of ergodic

theory from Arnold et al. [12]. Starting from the system (Ω, µ, ϕ) of the genealogies model for

Eq. (3) introduced in Section 2, we can write Y (t) as the solution to the stochastic differential

equation,

dY (t) = gY (t)dt+ σ
√
Y (t)dW (t), (12)

where W (t) is Brownian motion, and r and σ
√
Y (t) ≥ 0 are respectively the growth rate and the

standard deviation of the process Y (t), where g and σ2 coincide with the macroscopic variables

defined in Section 2.14 This can be obtained using a version of the Central Limit Theorem as

sketched in Appendix A.1 (see Demetrius et al. [36] for details). The process Y (t) can be viewed

as a Feller-type process with parameters, g and σ2;15 it belongs to the class of Cox-Ingersoll-Ross

(CIR) processes also studied in finance (see Cox et al [29]). The same applies to the process Y ∗(t)

(with parameters g∗ and σ∗2). We use these representations of processes Y (t) and Y ∗(t) when

studying the invasion dynamics.

Entropic Selection. Formally, the (global) selective dynamic is determined by the entropic

selection principle. As studied in Directionality theory, the changes in evolutionary entropy

under the process of variation and selection are contingent on the income process and can be

characterized in terms of the following local result:

(I) When the income generating process is dispersing (scarce and diverse), a community with

higher entropy will have a selective advantage and will increase in relative size.

14This in itself provides a novel yet natural technique of generating macroeconomic fluctuations from disaggregated
interactions based on law of motion described by Eq. (3) and the underlying system (Ω, µ, ϕ) derived from the
network structure associated to A. Note that our source of fluctuations are distinct and complementary, to the ones
of Acemoglu et al. [2] and Gabaix [45], who model aggregate fluctuations through the propagation of individual
firm-level shocks across the economy as a function of the network structure and the relative sizes of the firms.

15This process is likely to underestimate the variance of contemporary processes, see Stock [75] who estimates a
variance of the order Y (t) rather than

√
Y (t) for postwar US GNP. To better understand the difference, write the

discrete time version of our process as Y (t) = (1 + g)Y (t − 1) + εt, where εt ∼ N(0, σ2Y (t)), and notice that our
process yields an error term that decreases in Y (t), hence vanishes in the limit, when estimated in log-differences
(∆ log Y (t)) rather than a stationary one as in [75]. On the other hand, the present model seems to explain a
nontrivial amount of fluctuations. This is unlike macro-models, where stationary idiosyncratic shocks typically do
not lead to aggregate fluctuations (e.g., Aiyagari [7], Bewley [16]). In our case, the fluctuations originate from the
randomness of the interaction patterns (or sequences) of individual interactions. Gabaix et al. [46] introduce a very
flexible class of processes to study the dynamics of income inequality, including transition dynamics.
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(II) When the income generating process is concentrating (abundant and singular) , a community

with low entropy will have a selective advantage and will increase in relative size.

We exploit (I) and (II) to address questions about the origin, spread, and persistence of inequality,

which have hitherto seemed intractable within classical frameworks of economic growth and socio-

cultural evolution. The entropic selection principle can also be interpreted loosely as characterizing

when to expect more or less mutualistic or cooperative behavior to spread locally.

Through the entropic selection principle, our main result characterizes whether globally the

economy tends towards higher or lower entropy. This indirectly characterizes which perturbations

will be successful and which will not. We make this more precise. Consider an incumbent

population N(t) operating in steady state with interaction matrix A and producing Y (t). We

say that in this economy, entropy tends to increase (decrease) if, for any δ ∈ R small and

for any variant population N∗(t) of N(t), t > t0, operating with A∗, producing Y ∗(t), for which

H∗ > H (H∗ < H), we have:

Prob

[
lim
t→∞

Y ∗(t)

Y (t) + Y ∗(t)
= 1

∣∣∣∣ Y ∗(t0) > 0

]
= 1. (13)

If Prob
[
limt→∞

Y ∗(t)
Y (t)+Y ∗(t) = 1 |Y ∗(t0) > 0

]
= p, we say entropy tends to increase (decrease)

with probability p. An analogous definition holds for the inequality measure introduced in

Section 4, replacing respectively T, T ∗ for H,H∗.

The next theorem shows that whether higher or lower entropy interactions prevail, depends

on characteristics of the underlying income process. Scarce and diverse processes are conducive

to higher entropy interactions, while abundant and singular ones are conducive to lower entropy

interactions. The following result states how the level of entropy of the underlying interaction

will evolve globally in all possible cases.

Theorem 1 (Entropic Selection). The outcome of the selection process in a society evolving

according to the income process Y (t) described by Eq. (3) above is characterized by the following

four cases:

(Ia) If the income process is scarce and diverse (Φ < 0, γ > 0), entropy tends to increase;

(Ib) If the income process is scarce and singular (Φ < 0, γ < 0), entropy tends to increase,

provided total income is sufficiently large (Y > γ/Φ); otherwise for small total income

(Y < γ/Φ) entropy increases with a probability that increases in the total level of income;

(IIa) If the income process is abundant and singular (Φ > 0, γ < 0), entropy tends to decrease;

(IIb) If the income process is abundant and diverse (Φ > 0, γ > 0), entropy tends to decrease,

provided that total income is sufficiently large (Y > γ/Φ); otherwise for small total income

(Y < γ/Φ) entropy decreases with a probability that increases in the total level of income.
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This suggests that it is essentially in societies with scarce income processes (Φ < 0) that one

should expect to find higher entropy societies. In large economies the result is general. When

aggregate income is not sufficiently large (Y < γ/Φ) then, to guarantee the same result, one needs

that the process also be diverse (γ > 0). Conversely, when the income process is abundant (Φ > 0)

one should expect to find low entropy societies. Again, in large economies this is general. When

aggregate income is not sufficiently large (Y < γ/Φ) then, to guarantee the same result, one needs

that the process also be singular (γ < 0). In particular, it follows that in dispersing environments

(Φ < 0, γ > 0) a variant with higher entropy (H∗ > H) will be successful and grow faster and

steadier, whereas in concentrating ones (Φ > 0, γ < 0) a variant with lower entropy (H∗ < H)

will be successful and grow faster and steadier. This follows from basic relations between the

macroscopic variables derived in Appendix A.3 (see statements (f) and (g)).

The analytical basis for the Entropic Selection Theorem involves the integration of the ergodic

theory of dynamical systems with the theory of diffusion processes (Demetrius [33], Demetrius

and Gundlach [34]). A proof of the theorem can be found in Demetrius et al. [36]. Below, we

sketch some of the key steps (with further details also given in the Online Appendix). Before

that, we offer the following intuition for the result.

Heuristics for Entropic Selection. Consider two communities of foragers competing for re-

sources. A first community is more egalitarian and shares the proceeds from foraging more equally;

the second one is less egalitarian and awards significantly larger shares to the more productive

“star-hunters” (and their families). We go through the selection process in the two types of

environments.

In the scarce environment (Φ < 0, all or almost all aij ’s are less than 1), the first, more

egalitarian community, will have all members relatively well provided for. They do well, as all

members are effectively contributing and their contributions are reciprocated. In the second, less

egalitarian, community the star-hunters receive a larger share of the produce at a cost to the

others. Because resources are scarce, this does not significantly increase overall produce by star-

hunters, but as it reduces the resources to the non-star-hunters, it can seriously threaten their

capacity to effectively contribute. This can hinder the community’s survival, especially when

competing with a more egalitarian one.

In the abundant environment (Φ > 0, at least some aij ’s are sufficiently greater than 1), the

first, more egalitarian, community will have all members relatively well provided for, but now

the star-hunters forgo a more significant quantity of produce. The less egalitarian group, on the

other hand, awards a larger share to the star-hunters, thus potentially significantly increasing

total produce, while at the same time being able to provide sufficiently for the others. This gives

the less egalitarian community an advantage over the more egalitarian one, and overall improves

its survival when competing for resources.

A second important aspect of the evolutionary process is the variance or steadiness of the

resulting income generation process. A more egalitarian community provides for its members in
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a more steady way than a less egalitarian one, which gives it a further advantage over the less

egalitarian community. An exception occurs with singular income processes, where the underlying

resources are very concentrated. In such cases, a less egalitarian community that strongly rewards

the most productive “star-hunters” and is more focused on the singular resources may achieve an

even steadier income generation process and therefore possibly do better.

The heuristic is consistent with several of the fascinating, historical examples discussed in

Flannery and Marcus [44], where the scarcity (Φ < 0) or abundance (Φ > 0) of the resources

available for production and consumption play an important role for the appearance and disap-

pearance of more or less intense and reciprocal modes of interaction. In many of the examples,

(long-term) scarcity indeed seems to encourage agents to cooperate in order to get by, whereas

(long-term) abundance (especially coupled with the possibility to store) generates competition for

the “lion’s share” or for the surplus production, which encourages and rewards less cooperative

or self-regarding behavior. The same heuristics, reinforced by diversity, which naturally encour-

ages cooperation and interaction, also seems relevant for understanding socio-cultural evolution in

resource-cursed economies.16 More recently, Bartos [14] studies sharing and enforcement of shar-

ing norms within poor communities of subsistence farmers in Afghanistan. He finds that, while

the overall sharing norms appear to be constant over the periods considered, the reinforcement

norms become laxer in periods of seasonal scarcity and stronger in periods of seasonal abundance.

An interpretation consistent with our model would be that, from a long-term perspective, enforce-

ment may be more necessary (and effective) in periods of abundance than in periods of scarcity.17

Buggle and Durante [24] show that areas in Europe with historically higher climatic variability

(measured by inter-annual variability in precipitation and temperature) are associated with higher

levels of cooperation and trust. To the extent that higher climatic variability is associated with

limits on crop yield productivity (Mendelsohn [56], Semenov and Porter [67]) and thus encourages

more diverse production modes (Reidsma and Ewert [64]), it may well contribute to what we call

scarce and diverse environments, thereby providing a further, complementary explanation for the

observed positive association of climatic variability with cooperation and trust, as well as more

intense economic exchange. As discussed earlier, Talhelm et al. [76] show that rice agriculture,

which is associated with a typically more scarce income process, as compared to wheat, has led

to stronger sharing norms in regions of China where it was prevalent, while more individualistic

norms developed in regions where wheat was prevalent. Finally, somewhat related, in a com-

prehensive survey carried out in 67 countries, Elbaek et al. [39] study the relationship between

morality, social class and income inequality, and find that relative chronic economic scarcity, in-

16A particularly insightful example is that of the Kachin society in Highland Burma, described in Flannery and
Marcus [44], Ch. 10, pp. 195-199. Here the primary commodity of the income generating process is rice, and the
scarcity or abundance of key resources is determined by the environmental constraints: highlands (low rainfall) and
lowlands (high rainfall).

17Relatedly, Aksoy and Palma [8] study cheating and sharing behavior as well as in- and out-group favoritism
among poor communities of coffee farmers in Guatemala. Among other things, they show that overall levels of
cheating and sharing are constant across periods of scarcity and abundance, but also that while in-group favoritism
is higher than out-group favoritism under abundance, the bias vanishes during periods of scarcity.
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dexed by social-economic status, predicts, among other things, higher morality-as-cooperation

and higher pro-social behavior.

We now sketch the main steps of the argument presented in Demetrius et al. [36]. Besides the

first-order effect of the scarcity of the environment, it also includes the effect of diversity as the

two enter the formula for the variant’s selective advantage.

Invasion Dynamics and Sketch of Proof for Entropic Selection Theorem. The essence

of the argument lies in the interaction between the aggregate production of a given incumbent

population (whose production process is described by A, (Ω, µ, ϕ), and the process Y (t) satisfying

Eq. (12)) and that of the variant population (described by A∗, (Ω, µ∗, ϕ∗), and the related process

Y ∗(t)). We thus model variants (mutants or invaders) as producing alongside the incumbent

community, according to their own production and allocation technology represented by the matrix

A∗, defined in Eq. (11), and which we model as being a perturbation of the incumbent’s matrix A.

For the matrix A∗, we can compute corresponding macroscopic parameters g∗ = g(δ), σ∗2 = σ2(δ),

and H∗ = H(δ). Given the incomes of the two populations, we study the evolution of the share

of the variant population’s income,

p(t) =
Y ∗(t)

Y (t) + Y ∗(t)
,

when the two are competing for resources, that is, for a locally fixed total production Z =

Y (t) + Y ∗(t). The idea is that invasion takes place on a significantly faster scale, during which

total resources are fixed, which is captured by assuming a fixed total production Z. Computing

the probability of a complete displacement of the incumbent population by the variant population

(p(t)→ 1), we obtain that it depends on the sign of the expression,

s = ∆g − ∆σ2

Z
, (14)

where ∆g = g∗−g and ∆σ2 = σ∗2−σ2. This expression describes the selective advantage of the

variant population over the incumbent population which, using the properties of the perturbations

and assuming Φ 6= 0 and γ 6= 0, can be conveniently rewritten as:

s = −
(

Φ− γ

Z

)
∆H, (15)

where ∆H = H∗−H. This highlights the joint role of the parameters Φ and γ of the incumbent’s

income process (Y (t)), coupled with the entropy differential between the two populations’ income

processes (∆H). In particular, if Φ < 0 and γ > 0, then the variant population has a positive

selective advantage (s > 0) when H∗ > H; on the other hand, if Φ > 0 and γ < 0, then the

variant has a positive selective advantage (s > 0) when H∗ < H. The studied invasion dynamics

covers a wide class of models of cultural evolution.18

18The present approach does not assume an infinite amount of available resources. The Malthusian case where
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4 Entropy, Inequality and Redistributive Selection

In this section, we establish the implications of the Entropic Selection Theorem for the evolution

of inequality. In order to state our main result, Theorem 2, we first introduce measures of income

inequality, which we relate formally to underlying measures of evolutionary entropy.

Theil Index and Income Inequality. As a measure of income inequality, we use a well-known

entropy-based measure, the Theil index (Cowell [28], Sen [68]), which can be written as:19

T (v) =

d∑
i=1

vi log (d · vi), 0 ≤ T (v) ≤ log d, (16)

where v = (v1, . . . , vd)
> is an income distribution written as a vector of income shares. We also

use the notation T (0) ≡ T (v), and write T (δ) ≡ T (v(δ)) for the Theil index of the eigenvector (of

income shares) of the perturbed matrix A(δ), δ ∈ R. The more unequal the incomes across groups,

the larger the index T is. To see this, let HEQ(v) = −
∑d

i=1 vi log vi denote an entropy-based

measure of equality of the income distribution v. When all income shares are equal (vi = 1/n for all

i) the corresponding entropy HEQ is maximal and equal to log d, while the Theil index is minimal

and equal to 0. It is easy to see that the Theil index can also be written as T (v) = log d−HEQ(v).

Our first result shows that inequality as measured by T is negatively correlated with the

evolutionary entropy H of the process y(t). This result is novel and is key in making the connection

between the results of directionality theory with corresponding statements on income inequality.20

Proposition 1 (Evolutionary Entropy and Inequality). For perturbations of the form A(δ) =

(aij(δ)), where aij(δ) = a1+δij , we have that the Theil index and the evolutionary entropy move in

opposite directions, ∆T∆H ≤ 0, where ∆T = T (δ)− T (0) and ∆H = H(δ)−H(0), δ ∈ R small;

with strict inequality if ∆T,∆H 6= 0.

A few comments are in order. First, while it is straightforward to show that T is negatively

correlated with the equality measure HEQ, this does not automatically show that it is negatively

correlated with the evolutionary entropy measure H. To see the relation, we need to show that

HEQ is positively correlated with H. This involves showing that, starting from a matrix A, per-

turbations of the form A(δ) = (a1+δij ) that increase entropy H will generate more interaction and

will redistribute income more such that HEQ increases, while T decreases; similarly, perturbations

that decrease H will decrease HEQ and increase T . Second, this result confirms the intuition from

the selective advantage s is based exclusively on the growth rate differential (∆g) between the two populations,
is a special case and is obtained in the limiting case where total production (and resources) tend to infinity (see
Demetrius [33], Sections 2.3 and 6.3, for discussion).

19The use of the variable T for the Theil index here and in the rest of the paper is not to be confused with the
variable Tα used in Section 2 to denote the length of time of a cycle starting at node α. Notice that the version we
use is not normalized to lie between [0, 1].

20Knack and Keefer [51], Putnam [62] and Wilkinson and Pickett [82] among others find that measures of trust
and indices of social capital (e.g., civic, social, and political participation), which are often taken as measures of
“cooperation” are typically negatively correlated with various measures of income inequality.
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the genealogy model that a society with a higher evolutionary entropy H, and hence stronger and

more balanced interactions within and across groups, implying a greater uncertainty about from

what group a given unit of income was contributed, will be associated with a higher degree of

income redistribution.

Redistributive Selection. We now turn to our main implication, which establishes a link

between the income generating process and the evolution of inequality in the society. Given

the last proposition, the notion of evolutionary entropy plays a central role in establishing the

link. Again, in our evolutionary model, variants with different modes of redistribution (perturbed

matrices A∗ with levels of inequality T ∗) are introduced; these variants have to compete with the

original types (operating with matrix A with level of inequality T ) for the existing resources. The

outcome of the evolutionary process depends on which of the two types has a selective advantage.

This in turn depends on the underlying income generating process.

Theorem 2 (Redistributive Selection). The outcome of the selection process facing a society

evolving according to Eq. (3) is such that, if the income process is dispersing (Φ < 0, γ > 0), in-

come inequality tends to decrease; whereas, if it is concentrating (Φ > 0, γ < 0), income inequality

tends to increase.

This result follows as a direct application of cases (Ia) and (IIa) of Theorem 1 together with

Proposition 1. It shows that, whether equal or unequal societies tend to prevail depends on the

underlying income process, concretely, on the matrix A. More equal societies have a selective

advantage in dispersing (scarce and diverse) processes, while less equal ones are favored in con-

centrating (abundant and singular) ones. From relations (f) and (g) in Appendix A.3, we expect

again that more equal variants (T ∗ < T ) grow faster and steadier in dispersing processes, while

less equal ones (T ∗ > T ) grow faster and steadier in concentrating ones.

Income Equalization. To end this section, we briefly consider the issue of persistence of equality

or inequality. For this, we use Fields’ [42, 43] measure of income equalization, that compares two

(successive) income distributions, say v = (v1, . . . , vd)
> and v′ = (v′1, . . . , v

′
d)
>, and is defined by

E(v, v′) = 1−
T (v+v

′

2 )

T (v)
. (17)

As is discussed in Fields [42, 43], this is a measure of the degree of equalization of income distri-

butions v and v′, in the sense that positive values indicate a higher income equality at v′ since

average income v+v′

2 is more equally redistributed than base income v with respect to the inequal-

ity measure T . We take this as a basic measure of persistence of changes in income equality or

inequality, and show that it is positively correlated with changes in the evolutionary entropy. As

before, we use the notation E(δ, 0) ≡ E(v(δ), v(0)).

Proposition 2 (Evolutionary Entropy and Income Equalization). For perturbations of the form

A(δ) = (aij(δ)), where aij(δ) = a1+δij , we have that income equalization as measured by E and
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changes in the evolutionary entropy H move in the same direction, E∆H ≥ 0, where ∆H =

H(δ)−H(0), δ ∈ R small, with strict inequality if E,∆H 6= 0.

Small perturbations that increase the entropy H are also associated with higher income equaliza-

tion, as captured by the measure E. Applying this measure for successive income distributions

along an evolutionary process with multiple perturbations, where the signs of the changes in en-

tropy are the same, further shows the persistence of the changes in income equality or inequality.

5 Examples

In this section we provide some examples that illustrate the mechanics of the theory developed so

far, while also providing some context for the framework used. Example 2 extends Example 1 of

Section 2 to allow for a richer class of interactions. Besides computing the relevant macroscopic

variables for the corresponding interaction matrices, it also shows key evolutionary implications

of the theory. Next, Example 3 sketches possible interaction matrices for income generation

processes of selected types of pre-modern societies such as hunter-gatherer, horticultural or early

agricultural societies, and uses these to show how our theory can be used to interpret some of the

evidence on cooperation and inequality found in the literature. All these examples can be derived

as special cases of a relatively general production economy presented in Appendix A.4. There

are two groups that produce goods using labor and a composite measure of capital, according

to a production function homogeneous of degree one, and where the two groups may share their

production as well as their production activities to varying degrees. Example 4, finally, sketches an

exploitative type of society, where a group of workers or farmers contribute a significant multiple

of what they produce to a group of elites or clergy.

Example 2. Consider an economy with two groups (i = 1, 2) operating with an asymmetric

version of the interaction matrix of Example 1. Let ai > 0 measure the rate of contribution to

the own group and bi > 0 the rate of contribution to the other group. To better interpret the

resulting income generation processes, define, ρi = bi
ai+bi

as a normalized rate of contribution of

individuals in group i to individuals in the other group, and let ηi = ai + bi be a measure of

productivity of class i. We can then write the interaction matrix between the two groups as:

A =

(
a1 b2

b1 a2

)
=

(
η1(1− ρ1) η2ρ2

η1ρ1 η2(1− ρ2)

)
. (18)

For concreteness, fix η1 = 5
4 , η2 = 1, so that group 1 has a productivity advantage over group 2.

The resulting matrix takes the form:

A =

(
5
4(1− ρ1) ρ2

5
4ρ1 1− ρ2

)
.

The associated graph is depicted in Figure 3 and the level curves for the different macroscopic
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4 (1− ρ1)

ρ2

1− ρ2

Figure 3: Interaction graph for the economy of Example 2 with η1 = 5
4 , η2 = 1.

variables as a function of the parameters ρ1 and ρ2 are depicted in Figure 4. Notice that for ρ1

not too small the income generation process is what we call scarce and diverse (Φ < 0, γ > 0),

while for ρ1 small it is abundant and singular (Φ > 0, γ < 0). The red contour line in Figure 5

separates the two regions.

To illustrate our results on entropic selection (Theorems 1 and 2), consider the following three

cases:

ρ(1)
(

=
(
ρ
(1)
1 , ρ

(1)
2

))
=
(

3
10 ,

3
10

)
, ρ(2) =

(
7
10 ,

3
10

)
, and ρ(3) =

(
1
20 ,

1
10

)
.

Each case can be seen as representing a different type of interaction and hence a different income

generation process. It can be checked that the first two are scarce and diverse (ρ1 not so small),

while the third is abundant and singular (ρ1 small). Perturbations of the corresponding matrices

are successful when they are associated with a positive selective advantage (−(Φ−γ/Y )∆H > 0).

Consider the perturbed matrices associated with ρ(1) and ρ(2), for δ small in absolute value:

A(1)(δ) =

( (
7
8

)1+δ (
3
10

)1+δ(
3
8

)1+δ (
7
10

)1+δ
)
, A(2)(δ) =

( (
3
8

)1+δ (
3
10

)1+δ(
7
8

)1+δ (
7
10

)1+δ
)
.

Since Φ− γ/Y < 0 at ρ(1) and ρ(2) (see Figure 5), successful perturbations are ones where δ < 0.

Such perturbations have a selective advantage over the original matrices A(1)(0) and A(2)(0), as

measured by −(Φ − γ/Y )∆H > 0, and are associated with higher entropy (∆H > 0) and lower

income inequality (∆T < 0). The directions of corresponding successful perturbations are plotted

(in blue) in Figure 5. Notice that both ρ(1) and ρ(2) are inside the red region where Φ− γ/Y < 0

and hence both perturbations point roughly towards ρH , where the entropy is maximal.

Consider now the perturbed matrix associated with ρ(3), for δ small in absolute value:

A(3)(δ) =

( (
19
16

)1+δ (
1
10

)1+δ(
1
16

)1+δ (
9
10

)1+δ
)
.

Since Φ − γ/Y > 0 at ρ(3) (see Figure 5), successful perturbations are ones where δ > 0. Such

perturbations have a selective advantage over the original matrix A(3)(0), as measured by −(Φ−
γ/Y )∆H > 0, and are associated with lower entropy (∆H < 0) and higher inequality (∆T > 0).

The direction of such a successful perturbation is plotted (in red) in Figure 5.21

21To make the successful perturbations more tangible, and using as measure of selective advantage ∆g−∆σ2/Y ,
take the cases ρ(1) and ρ(3) and in both cases consider a slight increase in the level of contribution to the other
group (∆ρ1,∆ρ2 > 0 small). Then it can be checked that for ρ(1), this leads to a positive term for the selective
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Figure 4: Contour levels for the main macroscopic variables of Example 2
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Figure 6: Macroscopic variables of Example 2 as a function of ρ1 for ρ2 =
√
ρ1(1− ρ1).

Finally, to further illustrate the relation between the macroscopic variables, in particular

between the entropy and the Theil index, we consider a subset of the parameters (ρ1, ρ2) ∈
[0, 1]2, namely, parameters along the (inverse U-shaped) curve satisfying ρ2 =

√
ρ1(1− ρ1), which

roughly passes through the points ρ(1), ρ(2) and ρ(3), as well as through ρ = (0, 0), (12 ,
1
2) and (1, 0).

Figure 6. shows the key macroscopic variables. In particular, we see the regions where Φ and

Φ− γ/Y go from being positive to being negative. We also see the negative correlation between

the entropy (H) and the Theil index (T ). 2

Next we apply some of the insights obtained from this example to discuss stylized examples

of early pre-modern societies, including hunter-gatherer or early agricultural societies.

advantage (∆g − ∆σ2/Y ), whereas it leads to a negative term in the case of ρ(3). It follows that ∆ρ1,∆ρ2 > 0
is a successful perturbation for ρ(1) but not for ρ(3). A perturbation in the opposite direction (∆ρ1,∆ρ2 < 0) is
a successful perturbation for ρ(3), which also can be shown to lead to an increase in the corresponding selective
advantage (∆g −∆σ2/Y ).
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Example 3. (Early Pre-Modern Societies) Consider again the interaction matrix A given in

Eq. (18), a version of which is depicted in Figure 3. We saw that, as a consequence of the

Entropic Selection Theorem, the space of such interaction matrices is divided into ones at which

entropy tends to increase (namely, where Φ − γ/Y < 0) and ones at which it tends to decrease

(where Φ − γ/Y > 0). By Proposition 1 these also correspond to matrices at which inequality

tends to decrease and increase respectively. Given various descriptions of some simple pre-modern

societies such as hunter-gatherer, horticultural or early agricultural societies (Boix [18], Flannery

and Marcus [44], Smith and Winterhalder [70], or the special issue of Current Anthropology [22])

it appears that their income generation processes may be approximated by interaction matrices as

in Eq. (18). To the extent that we can place those matrices in corresponding regions (essentially

by distinguishing whether Φ−γ/Y < 0 or Φ−γ/Y > 0), our theory can be used to infer whether

to expect the economies to tend towards more or less cooperation or more or less inequality.

With the objective of placing the matrices in corresponding regions, we draw from the above

mentioned literature to sketch some special cases that provide highly idealized and speculative

examples of possible interactions between say two extended families (or clans) within some types

of pre-modern societies.22 In Appendix A.4, we provide a simple structural model involving a

form of capital that gives a derivation of a matrix, slightly more general than the one of Eq. (18).23

(A) Hunter-gatherer society. For simplicity, suppose the hunter-gatherer society consists of two

main families who frequently hunt and gather together and share almost all the goods

hunted and gathered roughly equally. This would yield ρ1 ≈ ρ2 ≈ 0.5. Suppose further that

their (slightly asymmetric) productivity is such that they can sustain a small growth rate

of g ≈ 0.02, that is, η1 ≈ 1.04 > 1 ≈ η2. Then a corresponding (highly stylized) interaction

matrix could take the form: A ≈
(

0.52 0.50

0.52 0.50

)
(with Φ ≈ −0.67, H ≈ 0.69, and T ≈ 0).

(B) Agricultural society (wheat). This type of pre-modern society includes very many types of

organizations and hence different types of income generation processes and corresponding

interaction matrices. The one we consider here is where, say, two main families are fairly

independent of each other, that is, ρ1 ≈ ρ2 ≈ 0.01 and can sustain a slightly larger growth

rate of g ≈ 0.03, that is, allowing again for some productivity asymmetry, suppose η1 ≈
1.04 > 1 ≈ η2. Then a corresponding (highly stylized) interaction matrix could take the

form: A ≈
(

1.03 0.01

0.01 0.99

)
(with Φ ≈ 0.01, H ≈ 0.03, and T ≈ 0.19).

(C) Horticultural society. This type of society can be seen roughly as a mixture between a

22The matrices are clearly overly simplified and are meant to at best capture possible representative features of the
interactions for different types of societies. The numbers chosen are based loosely on the analysis and descriptions
from Boix [18], Flannery and Marcus [44], Smith and Winterhalder [70], or the special issue of Current Anthropology
[22]. For example, Figure 1, p. 26, from Flannery and Marcus [44] on Netsilik Eskimo meat sharing partnerships
partly motivated the numbers chosen for the matrix for the hunter-gatherer society (Case (A)). Another example
is Wood and Marlowe [83], Table 5, p. 300, which provides numerical estimates for Hazda hunter-gatherers.

23Clearly, there are many meaningful ways in which a society can be partitioned in different groups, besides
extended families or professions, such as by gender or by age. Each one leads to a different matrix A. Studying the
corresponding matrices and respective macroscopic variables, may reveal further interesting aspects of the societies.
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hunter-gatherer and an agricultural society. Accordingly, we could have ρ1 ≈ ρ2 ≈ 0.255

and η1 ≈ 1.04 > 1 ≈ η2, implying a growth rate g ≈ 0.02, and hence an example of an

interaction matrix of the form: A ≈
(

0.77 0.26

0.26 0.74

)
(with Φ ≈ −0.55, H ≈ 0.57, and T ≈ 0.001).

It can be checked that the matrices of cases (A) and (C) satisfy Φ− γ/Y < 0 whereas the one of

case (B) satisfies Φ − γ/Y > 0.24 Hence, we expect societies with matrices in the neighborhood

of (A) and (C) to tend towards increasing levels of cooperation and redistribution, whereas the

ones in the neighborhood of (B) we expect to tend towards decreasing levels of cooperation and

redistribution. This is not inconsistent with what the literature finds (Borgerhoff Mulder et al. [20],

Bowles et al. [22], Smith et al. [69], Flannery and Marcus [44]), namely, more equality in hunter-

gatherer and horticultural societies (represented by cases (A) and (C)) as opposed to a stronger

tendency towards inequality and stratification in agricultural (and pastoral) societies (represented

here by case (B)). Cleary more work is needed to obtain empirically founded interaction matrices

for different societies in order to estimate corresponding parameters Φ and γ and match them

with observed levels of inequality (T ) and cooperation (H). 2

We conclude with a stylized example of a more exploitative type of society that has two

distinct groups (or classes) of individuals. Group 1 can be seen as representing a well-off elite

(warriors, landowners, clergy), while group 2 represents a hard-working group (farmers, artisans,

workers) possibly living on subsistence. The example illustrates how our approach can be applied

to feudal or ternary societies (Flannery and Marcus [44] or Piketty [61]).

Example 4. (Exploitative Society) Consider now an interaction matrix between two groups of

individuals, i = 1, 2, given by:

A =

(
a b

a a

)
,

where b > a is meant to be a possibly large rate of (intertemporal) resource contribution from

group 2 to group 1, whereas 0 < a < 1 is a parameter for the rate of contribution to the own group

for both groups 1 and 2 as well as for the rate of contribution from group 1 to group 2. Group 1

is meant to represent the “exploiting” group or the elite (clergy and nobility in ternary societies),

whereas group 2 represents the potentially “exploited” group (farmers or workers) when b is very

large compared to a. This is a clearly highly stylized example with just two parameters.

If we set ρ =
√
b√

a+
√
b
, then we can readily compute λ = a+

√
ab, u = (1− ρ, ρ) , v = (ρ, 1− ρ)>

and hence:

P =

(
1− ρ ρ

ρ 1− ρ

)
, π =

(
1
2 ,

1
2

)
, g = log (a+

√
ab) ,

24If we were to plot the parameters, say ρ(A) and ρ(C) in a figure similar to Figure 5, then the corresponding points
would be in a neighborhood of the points ρ(1) and ρ(2) with successful perturbations also pointing in direction of
higher entropy. By contrast, ρ(C) would correspond to a point in a neighborhood of ρ(3) and a successful perturbation
would point in direction of lower entropy.
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Figure 7: Macroscopic variables of Example 4 as a function of ρ for λ = a+
√
ab = 5

4 .

but also:

H = −(1− ρ) log (1− ρ)− ρ log ρ , Φ = (2− ρ) log
√
a+ ρ log

√
b .

In particular, entropy is maximized at ρ → 1
2 (or b → a), where there is maximally mutualistic

interaction within and across groups, and it is minimized at ρ = 1 (or b → ∞, a → 0), where

there is minimally mutualistic interaction and full dependence on group 2. Figure 5 shows these

and other key macroscopic variables as a function of ρ, assuming that λ = a+
√
ab = 5

4 .25

Notice that for ρ > 0.94 (or b > 18, a < 0.075), the income generation process is what we

call concentrating (Φ > 0, γ < 0) and is associated with a low entropy, while for smaller values

of ρ, it is dispersing (Φ < 0, γ > 0) and is associated with higher entropy.26 Accordingly, and

perhaps paradoxically, societies with large levels of exploitation may tend to increase the level of

exploitation, and hence inequality, over time, whereas ones with lower levels may tend to decrease

the level of exploitation. As we show in the next section, the former will tend to become more

robust, whereas the latter will tend to become more fragile in response to small perturbations. 2

6 Entropy, Inequality and Robust Selection

Do equal societies present advantages over unequal ones? Wilkinson and Pickett [82] suggest

that economic inequality is “socially corrosive” in that it is positively correlated with a variety of

“undesirable” variables that cover issues ranging from health, life expectancy and literacy rates to

fairness, trust, and happiness of individuals in society. Aghion, Banerjee, and Piketty [5], Alesina

25Assuming λ = a +
√
ab = 5

4
implies a = 5

4
(1 − ρ) and b = 5

4
ρ2

1−ρ , which allows us to express all macroscopic

variables as a function of ρ alone. As with Example 1, the number 5
4

is taken purely for expositional purposes.
26To better interpret the parameters, consider a value of ρ = 0.95. This implies left and right eigenvectors

u = (0.05, 0.95) and v = (0.95, 0.05)>, and further implies that, at the steady state, households in group 2 contribute
19 (= 0.95/0.05) times more towards income generation than households in group 1, while households in group 1
receive 19 times more income than households in group 2. This stylized example also assumes that the population
in the two groups is equal, which is often not the case, see Piketty [61]. Clearly, the framework allows for a more
nuanced analysis, that distinguishes more groups and with different sizes of population.
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and Perotti [9], and Rodrik [65] study models that associate inequality within a society with po-

litical instability. More recently, Stiglitz [73, 74], among others, examine various macro-economic

and financial channels for how inequality contributes to economic instability and financial crises;

see Van Treeck [80] for a survey.

Using a notion of robustness (or resilience) that measures the capacity or the speed with

which a society returns to steady state, we show that more equal societies are more robust than

less equal ones. This is important since more robust societies will also be more stable and less

sensitive to shocks. Roughly speaking, a society that is slow in recovering from a shock can

become dysfunctional in the sense that, after a shock, interaction levels deviate from the expected

ones, and if this occurs for prolonged periods, there is a chance that further shocks occur, creating

further deviations and so on, making the society overall more dysfunctional and fragile. Being

quicker to recover from shocks, reduces the chances that a society is subject to dysfunction. This

is the case for societies with high entropy and low inequality.

Following Demetrius, Gundlach and Ochs [35], we first formally define our notion of robustness

and show that it is positively related with the evolutionary entropy (Theorem 3). We then

invoke Proposition 1 to also show a positive relation between robustness and income equality

(Proposition 3). Finally, we invoke Theorem 1, to show that dispersing income processes lead to

more robust societies, while concentrating ones lead to more fragile ones (Proposition 4), thus

providing a rationale in favor dispersing processes.

Robustness. At a general level, robustness is associated with the invariance of key macroscopic

variables to endogenous or exogenous shocks. This is captured here using the formalism of large

deviation theory (see Demetrius [33] and Demetrius, Gundlach and Ochs [35]). Formally, the

robustness result to be shown focuses on the macroscopic parameter Φ, and introduces, for fixed

ε > 0, the probability:

Pε(n) = µ

{
x ∈ Ω

∣∣∣∣ ∣∣∣∣ 1nSnϕ(x)− Φ

∣∣∣∣ > ε

}
,

that is based on averages of sample trajectories of length n, Φ̂(n) ≡ 1
nSnϕ(x), that differ by

more than ε from the steady state average Φ over all trajectories.27 The ergodic theorem states

that Pε(n) converges to zero for large enough sample lengths; moreover, it can be shown that

there exist constants, c0, c1 > 0, such that, Pε(n) ≤ c0 exp−c1n, (see Appendix A.5.1), so that the

convergence rate is at least exponentially fast. Hence, we define robustness R as the following

fluctuation decay rate:

R = lim
n→∞

[
− 1

n
logPε(n)

]
. (19)

Large values of R correspond to fast rates of convergence of the sample averages (Φ̂(n)) to

their steady state values; small values of R correspond to slow rates of convergence. Thus,

27Recall the definition, Φ = limn→∞
1
n
En [Snϕ] (see Section 2). As average of the potential function ϕ, the

parameter Φ is central in determining all other macroscopic parameters of the process Y (t), including g, σ2 and γ.
It is for this reason that the robustness measure is based on the probability of sample averages approaching Φ.
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R characterizes the adjustment rate of the (fundamental) macroscopic variable (Φ̂(n)) in the face

of general shocks or perturbations in the underlying system. More generally, because all further

macroscopic variables are directly determined through the variable Φ, the variable R also provides

a measure of the convergence rate of sample averages of all macroscopic variables to their steady

state values.

The next result asserts that changes in robustness are positively correlated with changes in

evolutionary entropy.

Theorem 3 (Robustness and Evolutionary Entropy). For perturbations of the form A(δ) =

(aij(δ)), where aij(δ) = a1+δij , we have that robustness and evolutionary entropy move in the same

direction, ∆R∆H ≥ 0, where ∆R = R(δ) − R(0), ∆H = H(δ) − H(0), for δ ∈ R small; with

strict inequality if ∆R,∆H 6= 0.

Consider two societies operating according to A and A∗(= A(δ)) with corresponding levels of

robustness R and R∗(= R(δ)), satisfying R > R∗, then from the definition of R, we can say that

the first society is more resilient to shocks in the sense of returning faster to steady state. In this

sense, the proposition suggests that societies with higher evolutionary entropy are more resilient

to shocks than societies with lower evolutionary entropy. In view of Proposition 1, this further

implies that changes in robustness are negatively correlated with changes in inequality.

Proposition 3 (Robustness and Inequality). For perturbations of the form A(δ) = (aij(δ)),

where aij(δ) = a1+δij , we have that robustness and the inequality index move in opposite directions,

∆R∆T ≤ 0, where ∆R = R(δ)−R(0), ∆T = T (δ)−T (0), for δ ∈ R small; with strict inequality

if ∆R,∆T 6= 0.

These results point to a significant advantage of equal over unequal societies, namely, the

former are more robust and have a higher level of resilience to shocks in the sense that they are

quicker in returning to steady state; unequal societies are more fragile and slower in getting back

to the steady state. The role of inequality in affecting the resilience of a country to respond to

shocks was an important topic in the 2011 and 2014 reports of the United Nations Development

Programme (UNDP [78, 79]), which finds that less equal societies are slower in adapting to

shocks and also tend to have less stable environments. The ability to quickly respond to shocks is

particularly relevant when shocks are adverse. Anbarci et al. [11] and Kahn [50] study respectively

earthquakes and natural disasters and show that besides national income, the level of income

inequality has an important effect on the death toll and fatalities; Alesina and Perotti [9] show that

income inequality fuels discontent and is empirically positively correlated with political instability.

Finally, Theorems 1 and 3 readily imply the following.

Proposition 4 (Robust Selection). The outcome of the selection process facing a society evolving

according to Eq. (3) is such that, if the income process is dispersing, it will tend towards higher

levels of robustness; whereas if it is concentrating, it will tend towards lower robustness.
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If the previous results (Theorems 1 and 2) show that dispersing processes tend to favor higher

levels of cooperation as well as higher income equality, this last result shows that they also

generate more robust societies. By contrast, concentrating processes, while favoring lower levels

of cooperation and higher inequality, tend to generate more fragile societies. This seems to provide

an important rationale for preferring dispersing processes over concentrating ones.

7 Conclusion

Discussions regarding the phenomenon of economic inequality, its origin and spread, have moved

recently from the confines of specialized academic departments to being among the most widely

debated topics by the general public worldwide. At least three issues fuel the debate: the empirical

reality that the gap between rich and poor has shown a remarkable increase in a number of

countries over the last 30 years (Bourguignon [19], Piketty [60, 61]); the empirical observation

that countries with large economic inequality have a high degree of dysfunction in a number

of canonical indices, including health, corruption, and crime, as well as economic and political

instability (Acemoglu and Robinson [4], Case and Deaton [26], Piketty [61], Stiglitz [74], Wilkinson

and Pickett [82]); the instability and dysfunctionality of highly unequal societies often generates

flows of immigrants that in turn create further problems for hosting countries (UNDP [78]).

The theory developed here contributes to the understanding of the origin and spread of in-

equality by relating changes in inequality to specific features of the underlying income generation

process. The theory distinguishes between dispersing and concentrating processes. The former

favor more reciprocal interactions and cooperation between individuals within and across groups

as well as more equal redistribution. The latter favor weaker or less reciprocal interactions and

less equal redistribution.

The income process, whether dispersing or concentrating, further impacts the society’s re-

silience. This occurs in a way that reinforces and amplifies the original effect on inequality and

cooperation, thus explaining the emergence and persistence of more equal or egalitarian societies

on one hand, and unequal or stratified ones on the other. The intrinsic instability of highly

unequal societies that we associate with concentrating income processes entails their potential

vulnerability to shocks which can seriously compromise their functionality and welfare.

Economic policy may be designed to take such underlying forces into account. While the

paper focused on pre-modern or early societies with state, we believe all the main insights and

especially the distinction between dispersing and concentrating income processes may well be

relevant for contemporary societies. In this sense, our central policy implication wold be that

regulation and fiscal policies should be designed to ensure that societies’ income processes be

dispersing rather than concentrating. This may be obtained through regulation and taxation

and other fiscal policies that constrain and redistribute excessive returns or sources of returns,

typically associated with concentrating processes; as well as macroeconomic and industrial policies

that stabilize and diversify the underlying income generation process. Policies that attempt to
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address issues of, say, inequality and immobility, without monitoring the underlying type of income

generation process may fail to achieve their intended objectives.

Clearly, significant empirical work is needed to estimate the relevant matrices A and the

associated parameters and to test the different mechanisms and correlations derived in this paper

for simple pre-modern or early societies as well as for contemporary ones.28 At the same time,

more theoretical work is needed to extend the present framework to contemporary societies with

financial sectors and social states. This may yield an improved understanding of key aspects of

income generating processes as driving forces of equality, cooperation and robustness, and may

contribute to a better design of long-run economic policies.

References

[1] Acemoglu, D. (2009) Introduction to Modern Economic Growth, Princeton University Press. Prince-

ton, NJ.

[2] Acemoglu, D., Carvalho, V., Ozdaglar, A., and A. Tahbaz-Salehi (2012) “The Network

Origins of Aggregate Fluctuations,” Econometrica, 80(5), 1977-2016.

[3] Acemoglu, D., Naidu, S., Restrepo, P., and J.A. Robinson (2019) “Democracy Does Cause

Growth,” Journal of Political Economy, 127(1).

[4] Acemoglu, D., and J.A. Robinson (2012) Why Nations Fail: The Origins of Power, Prosperity

and Poverty. Profile Books, London.

[5] Aghion, P., Banerjee, A.V., and T. Piketty (1999) “Dualism and Macroeconomic Volatility,”

Quarterly Journal of Economics, 114, 1359-1397.

[6] Aghion, P., Caroli, E., and C. Garcia-Peñalosa (1999) “Inequality and Economic Growth:
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APPENDIX

A Background Analysis and Proofs

We here build on Arnold et al. [12] and Demetrius and Gundlach [34] to sketch some basic properties of

the dynamic system and of its macroscopic variables at steady state. This allows us to better understand

the terminology and connections between the different variables in the model. These facts are derived in

detail in the cited articles using the formalism of random dynamical systems and statistical mechanics.

While we can only limit ourselves to sketching the main steps, we refer to those articles for a complete

discussion; see also Demetrius [33] and Demetrius et al. [36] for further discussion.

A.1 Random Dynamical Systems

We assume that the (possibly nonlinear) dynamic system,

v(t+ 1) = A(t)v(t)

evolves to a steady state. At steady state we assume the process is represented by means of a constant

d× d matrix A = (aij) with aij > 0. Let D = {1, 2, . . . , d} and define the set of all possible doubly infinite

sequences

X =

∞∏
ν=−∞

Dν , where Dν = D,

and let

Ω = {x ∈ X : axν+1xν > 0},

define the space of all such sequences associated to paths on the graph associated with the matrix A. Let

further τ : Ω→ Ω, (xk) 7→ (x̃k), where x̃k = xk+1 be the shift map, and letM denote the set of probability

measures that are invariant under the shift map τ . Defining µ as the natural Markov measure on Ω at

the steady state, one can show that (see [36], Theorem 4.2) this is the unique probability measure that

maximizes Hµ(τ) +
∫
ϕdµ such that,

log λ = sup
µ∈M

{
Hµ(τ) +

∫
ϕdµ

}
, (20)

where Hµ(τ) is the Kolmogorov-Sinai entropy for the system (Ω, µ, ϕ), and ϕ : Ω→ R is given by

ϕ(x) = log ax1x0
.

Analytically, it can be described explicitly by means of the Markov matrix P = (pij), where as usual

pij =
ajiuj
λui

, and u = (ui) is the left (row) eigenvector corresponding to the largest eigenvalue λ of A; (see

Arnold et al. [12] and also Demetrius et al. [36], Theorem 4.2).

For future reference, for x ∈ X, define the sample path,

Snϕ(x) =

n−1∑
k=0

ϕ(τkx) =

n−1∑
k=0

log axk+1xk ,

and recall that limn→∞
1
nEn [Snϕ] =

∫
ϕdµ = Φ.
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Diffusion Approximation of the Income Process. Using a generalization of the Central Limit Theo-

rem, (see Demetrius et al. [36], Theorem 7.1), one can show that, in the genealogies model of the dynamical

system defined by Eq. (3) and (Ω, µ, ϕ), for the natural measure µ and any t̂ ∈ R, we have,

lim
n→∞

µ

{
x ∈ Ω

∣∣∣∣Snϕ(x)− n
∫
ϕdµ√

n

}
≤ 1

σ
√

2π

∫ t̂

−∞
exp

(
− t

2

σ2

)
dt.

Thus, asymptotically, the deviations of the sample paths Snϕ for genealogies x ∈ X from their mean, as

n→∞, can be approximated by a Brownian motion with variance σ2t for the process in continuous time.

The density of f(Y, t) of the process Y (t) can then be characterized by the Fokker-Planck equation,

∂f

∂t
= −g ∂(fY )

∂Y
+
σ2

2

∂2(fY )

∂Y 2
.

Hence, we can characterize Y (t) as the solution to the stochastic differential equation,

dY (t) = gY (t)dt+ σ
√
Y (t)dW (t), (21)

where W (t) is a Brownian motion. In particular, this yields a continuous time process with growth rate

g and variance σ2Y (t). (See Demetrius et al. [36], Section 7, for the details.) This process belongs to the

class of so-called Cox-Ingersoll-Ross processes studied in mathematical finance (see Cox et al [29]).

A.2 Perturbations

Throughout the paper we make use of perturbations of the matrix A of the form A(δ) = (aij(δ), where

aij(δ) = a1+δ
ij ), for δ ∈ R. We here sketch a motivation for the specific one-parameter form we adopt

throughout the text.

Consider two dynamical systems at steady state given respectively by (Ω, µ, ϕ) and (Ω, µ∗, ϕ∗). To

capture the fact that, the latter is a variation (mutation) of the former, we assume that

ϕ∗ = ϕ(δ) = ϕ+ δψ,

satisfying the conditions∫
ϕdµ =

∫
ψdµ and

d

dδ

∫
ϕdµ |δ=0 =

d

dδ

∫
ψdµ |δ=0 .

The first condition says that the deviation ψ of the variant (mutant) population has the same productive

potential as that of the incumbent population; the second condition says that the deviation ψ also has

the same directional derivative as that of the productive potential of the incumbent population. This is

sufficient for our results. However, for ease of representation and to simplify the analysis we consider the

special case ψ = ϕ, which, if we assume ϕ = log aij (where A = (aij) is the interaction matrix), implies

ϕ(δ) = ϕ+ δϕ = (1 + δ) log aij = log a1+δ
ij ,

which corresponds to perturbations of the interaction matrix of form A(δ), with aij(δ) = a1+δ
ij , considered

throughout the paper. See Demetrius et al. [36], Section 6, for details. The perturbations A(δ) are used

both to model the variant populations’ interaction matrices and to generate the macroscopic variables.
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A.3 Macroscopic Variables and Their Relations

In Section 2, we defined several macroscopic variables using the genealogies model. We here summarize

some of the relationships that hold between the macroscopic variables used in the paper. We refer to

Demetrius et al. [36] and Demetrius and Gundlach [34] for derivations and further details. As mentioned

in the body of the paper, we can also generate the macroscopic variables from the moments of the growth

rate, using perturbations. This provides an easier way of computing the macroscopic variables. Let λ(δ)

denote the dominant eigenvalue of the perturbed matrix A(δ) = (a1+δ
ij ), and g(δ) = log λ(δ), for δ ∈ R.

Then it can be shown that:

g(δ) = g(0) + δg′(0) +
δ2

2!
g′′(0) +

δ3

3!
g′′′(0) + . . . ,

and

g′(0) = lim
n→∞

1

n
En [Snϕ] =

∫
ϕdµ = Φ

g′′(0) = lim
n→∞

1

n
Vn [Snϕ] = σ2

g′′′(0) = lim
n→∞

1

n
En [Snϕ− EnSnϕ]

3
= κ.

Here En and Vn denote the expectation and variance with respect to the measure µn on finite sequences

of length n of the form (x0, x1, . . . , xn), which is defined by

µn =
Snϕ(x)∑

(x0,x1,...,xn) Snϕ(x)
.

Consider now the perturbed variance σ2(δ) obtained by further perturbing A(δ) again. Then we can define

γ =
dσ2(δ)

dδ
|δ=0 .

The following relations between the macroscopic variables hold:

(a) Φ = g −H

(b) γ = 2σ2 + κ.

In our evolutionary analysis, an incumbent population is in competition with a variant (or invader)

population, which we capture in terms of a dynamic interaction between the two populations. The incum-

bent and the variant (invader) population steady state dynamics are given respectively by (Ω, µ, ϕ) and

(Ω, µ∗, ϕ∗), where to capture the fact that the latter is a mutation of the former, as discussed in A.2, we

assume that

ϕ∗ = ϕ(δ) = ϕ+ δϕ,

which corresponds to an interaction matrix of the invader population of the form A(δ) = (a1+δ
ij ).

We can then determine the macroscopic variables for the variant population as with the incumbent

population, so that setting g∗ = g(δ), σ∗2 = σ2(δ), and H∗ = H(δ), we get:

(c) ∆g = g(δ)− g(0) ≈ Φδ

(d) ∆σ2 = σ2(δ)− σ2(0) ≈ γδ

44



(e) ∆H = H(δ)−H(0) ≈ −σ2δ.

For small δ ∈ R, this readily gives ∆g∆H ≈ −Φσ2δ2 and ∆σ2∆H ≈ −γσ2δ2, and hence the following

relations:

(f) Φ < 0⇒ ∆g∆H > 0 and Φ > 0⇒ ∆g∆H < 0

(g) γ > 0⇒ ∆σ2∆H < 0 and γ < 0⇒ ∆σ2∆H > 0.

These will play an important role in the derivation of the main results.

A.4 A Simple Model for Pre-Modern Economies

To give a more structural derivation of the matrix A that might work for various types of pre-modern

societies, we postulate a simple not necessarily linear model, which implies a steady state as in Eq. (3),

and under further assumptions, also of the more specific form of Eq. (18). More concretely, we assume

production functions that are homogeneous of degree 1.29

Assume the society consists of two groups, i = 1, 2, that can also be thought of as extended families.

Let xi(t) denote what is actually produced in period t by group i (e.g., amount of food over a year measured

with a common numeraire); let yi(t) denote what is obtained in terms of consumption goods in period t

by group i (this is what we refer to as income); and let hi(t) denote a measure of capital in period t

by group i (e.g., Borgerhoff Mulder et al. [20] distinguish three types of capital, embodied, relational and

material capital; our measure can be viewed as a compound measure of the three). We assume the following

equations:

x1(t) = α11h1(t)α12h2(t)1−α12 (22)

x2(t) = α21h1(t)1−α22h2(t)α22 (23)

y1(t) = ρ11x1(t) + ρ12x2(t) (24)

y2(t) = ρ21x1(t) + ρ22x2(t) (25)

h1(t) = β11h1(t− 1) + β12y1(t− 1) (26)

h2(t) = β21h2(t− 1) + β22y2(t− 1) (27)

where all coefficients are nonnegative, and 0 ≤ α12, α22 ≤ 1.

Eqs. (22) and (23) capture how consumption goods (mainly food) are produced by means of capital and

labor from both groups, where labor, being constant in our model, is reflected in the coefficients α11 and

α21.30 To the extent that the capital variables incorporate embodied capital, allows them to also reflect

technology and skills and hence also labor productivity. Importantly, Eqs. (22) and (23) are homogeneous

of degree one, somewhat similar to Borgerhoff Mulder et al. [20]. Eqs. (24) and (25) capture actual income

or total consumption goods obtained by groups 1 and 2. Again, group 1 might directly give goods to group

2 and vice versa. Finally, Eqs. (26) and (27) capture how capital is transmitted from one period to the

next, in a way that depends on the levels of own capital and consumption of the previous period.

29Solow and Samuelson [71] show that allowing for equations that homogeneous of degree 1 (and hence not
necessarily all linear) leads to a steady state where all variables grow at the same rate. We follow their approach
in deriving such a steady state with a Cobb-Douglas type production functions.

30To keep the model simple, labor and population, but also natural resources are not explicitly modeled and are
assumed to be indirectly reflected in the equations, and ultimately in the coefficients of the matrix A.
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We now sketch how Eqs. (22) to (27) together imply a process for y1(t), y2(t) as the one of Eq. (18)

and a fortiori of Eq. (3). For simplicity and to keep the notation as close as possible to the one of the

examples of Section 5, we make the following assumptions:

ρ11 = 1− ρ1, ρ21 ≡ ρ1 and ρ12 ≡ ρ2, ρ22 = 1− ρ2,

as well as:

β11 = β21 ≡ β1 and β12 = β22 ≡ 1− β,

which implies symmetry of the capital transmission, Eqs. (26) and (27). Furthermore, assume:

α11 ≡ η, α21 = 1 and α12 = α22 ≡ α.

This yields the following equations:

x1(t) = ηh1(t)αh2(t)1−α (28)

x2(t) = h1(t)1−αh2(t)α (29)

y1(t) = (1− ρ1)x1(t) + ρ2x2(t) (30)

y2(t) = ρ1x1(t) + (1− ρ2)x2(t) (31)

h1(t) = β1h1(t− 1) + β2y1(t− 1) (32)

h2(t) = β1h2(t− 1) + β2y2(t− 1) (33)

Under the above assumptions, we can derive a steady state approximation of the linear form y(t) =

Ay(t − 1) as in Eqs. (3) and (18). For this, we substitute equations (32), (33) into equations (28), (29)

and subsequently equations (28), (29) into equations equations (30), (31) to get a system of four difference

equations for the yi’s and hi’s. Next, we can write the steady state relation between hi(t) and yi(t) as

hi(t) = β2+λ
β1

yi(t). This reduces the system to one of two difference equations, which can be linearized at

the steady state to obtain equations of the form y(t) = Ay(t− 1). To illustrate this, consider two cases:

Case 1. α = 1
2 :(
y1(t)

y2(t)

)
=

(
1
2 (β1 + β2χ) η(1−ρ1)+ρ2

2(ηρ1+(1−ρ2)) (β1 + β2χ)
ηρ1+(1−ρ2)

2(η(1−ρ1)+ρ2) (β1 + β2χ) 1
2 (β1 + β2χ)

)(
y1(t− 1)

y2(t− 1)

)
, (34)

where here χ =
√

(η(1− ρ1) + ρ2))(ηρ1 + (1− ρ2)) (note that χ ≈ √η ≈ 1 for η ≈ 1 and ρ1 ≈ ρ2; and

β1 + β2χ ≈ 1 if furthermore β1 + β2 ≈ 1).

Case 2. α = 1: (
y1(t)

y2(t)

)
=

(
η(1− ρ1) (β1χ+ β2) ρ2 (β1χ+ β2)

ηρ1 (β1χ+ β2) (1− ρ2) (β1χ+ β2)

)(
y1(t− 1)

y2(t− 1)

)
, (35)

where χ = 2
(
η(1− ρ1) + (1− ρ2) +

√
(η(1− ρ1) + (1− ρ2))2 − 4(1− ρ1 − ρ2)

)−1

(note that χ ≈ 2
1+η ≈ 1

for η ≈ 1 and ρ1 ≈ ρ2; and β1χ+ β2 ≈ 1 if furthermore β1 + β2 ≈ 1).

These two cases are examples of a generalization of the matrices postulated in Examples 2 and 3 of

Section 5. The forms of Eqs. (34) and (35) allow us to better interpret the elements of the matrix A in two

different cases. In Case 1 production depends symmetrically on both groups’ capital (α = α12 = α22 = 1
2 )

46



and can be seen as a case of joint production. It is usually associated with a dispersing process, especially

if the productivity variable η is not too large and the parameters ρ1, ρ2 not too small or asymmetric. It

can represent cases of rice agriculture or of hunter gatherer societies. Case 2 reflects a case where group

i’s production depends only on i’s own capital (since α = α12 = α22 = 1). This is a situation that for

sufficiently large η and sufficiently small ρ1, ρ2 can qualify as a concentrating process (as in Example 3-B).

However, as, for example, ρ1, ρ2 increase, can become dispersing. It can represent cases of wheat agriculture

but also of hunter gatherer societies (e.g., for ρ1, ρ2 ≈ 1
2 as in Example 3-A) and horticultural societies

(e.g., for ρ1, ρ2 ≈ 1
4 as in Example 3-C). Of course, horticultural societies (as also rice, wheat and hunter

gatherer societies) could also be represented by cases that are intermediate between Cases 1 and 2.

Finally, Example 2 of Section 5, which can be seen as a special case of Case 1 (for η = 5
4 among

other restrictions), also shows how to interpret the perturbations of the matrices A in the context of the

model above. Namely, they can be interpreted as small changes in the parameters ρ1 and ρ2. Figure 5

shows directions for successful perturbations, starting from the original matrices A(1), A(2) and A(3), and

consistent with the postulated perturbations of the form A(1)(δ), A(2)(δ) and A(3)(δ), respectively.

A.5 Proof of Proposition 1

We need to show that ∆T∆H ≤ 0, with strict inequality if ∆T,∆H 6= 0. Consider again the following

measure of entropy, which can be viewed as a measure of equality:

HEQ(v) = −
d∑
i=1

vi log vi, 0 ≤ HEQ(v) ≤ log d,

where in the steady state v is the normalized eigenvector of A so that vi is the share of income of class i.

Then it is easy to see that HEQ(v) and T (v) are related as follows,

T (v) = log d−HEQ(v),

so that ∆HEQ∆T ≤ 0, with strict inequality if ∆HEQ,∆T 6= 0, where ∆HEQ = HEQ(v(δ))−HEQ(v(0))

and where v(0) = v and v(δ) are the (normalized) eigenvectors of A and A(δ), respectively.

Because ∆HEQ∆T ≤ 0, to show that ∆T∆H ≤ 0, it suffices to show that ∆HEQ∆H ≥ 0, with strict

inequality if ∆HEQ,∆H 6= 0, for δ ∈ R small. Now, it can be shown that, for δ small, the (normalized)

eigenvector v(δ) satisfies:

vi(δ) ≈
v1+δ
i∑d

j=1 v
1+δ
j

≈ vi(1 + δ log vi)∑d
j=1 vj(1 + δ log vj)

. (36)

We work with the latter approximation formula, with which we compute:

HEQ(v(δ)) ≈ −
d∑
i=1

vi(1 + δ log vi)∑d
j=1 vj(1 + δ log vj)

log
vi(1 + δ log vi)∑d
j=1 vj(1 + δ log vj)

.

Since we know that for δ small we have ∆H(δ) ≈ −σ2δ, it suffices to show that ∆HEQ(v(δ)) can also be

written as ∆HEQ(v(δ)) ≈ −ψδ for some ψ > 0 and δ ∈ R small. To see this we compute the derivative of
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∆HEQ(v(δ)) at δ = 0. This gives:

∂∆HEQ(v(δ))

∂δ
|δ=0 = −

d∑
i=1

vi(log vi)
2

d∑
j=1
j 6=i

vj +

d∑
i=1

vi log vi

d∑
j=1
j 6=i

vj log vj ,

where we use the fact that at δ = 0, we have
∑d
j=1 vj(1 + δ log vj) = 1. We proceed by induction to show

that the expression is non-positive. Notice first that the expression can be rewritten as:

∂∆HEQ(v(δ))

∂δ
|δ=0 = −

d∑
i=1

vi log vi

d∑
j=1
j 6=i

vj (log vi − log vj) .

For d = 2, it is easy to check that this expression is negative for any values of the vi’s except for vi = 0, 1
2

or 1, where it is zero. Next, for general d, the expression can be written in two parts as the sum of the

above term with d = d − 1 and another term, which is clearly negative (except for some boundary cases

where it is zero):

∂∆HEQ(v(δ))

∂δ
|δ=0 = −

d−1∑
i=1

vi log vi

d−1∑
j=1
j 6=i

vj (log vi − log vj)− vd
d−1∑
i=1

vi (log vi − log vd)
2
.

From here it is clear that, assuming the expression is negative for d = d−1, then it is negative for general d

(except for some boundary cases where it is zero). This shows that the above derivative is negative locally

around δ = 0. Hence we can write ∆HEQ(v(δ)) ≈ −ψδ for some ψ > 0. This implies that ∆HEQ(v(δ)) has

the same sign as ∆H(δ), or in other words, ∆HEQ(v(δ))∆H(δ) ≥ 0, which in turn shows that ∆T∆H ≤ 0

given that ∆T∆HEQ ≤ 0. It remains to show that the approximation for v(δ) used in Eq. (36) is valid.

This can be checked by computing A(δ)v(δ) for the approximation in Eq. (36) and showing that it is equal

to λ(δ)v(δ) again for the approximation in Eq. (36), for δ ∈ R small.

A.5.1 Proof of Proposition 2

This follows from Proposition 1 after noticing that for δ ∈ R small, the eigenvector v(δ) corresponding to

the perturbed matrix A(δ) = (a1+δ
ij ) satisfies

v (δ/2) ≈ v(δ) + v(0)

2
.

This implies that T ( v(δ)+v(0)
2 ) − T (0) has the same sign as ∆T and the opposite sign as E(v(δ), v(0)).

Hence (T ( v(δ)+v(0)
2 ) − T (0))∆H ≤ 0 with strict inequality if T ( v(δ)+v(0)

2 ) − T (0)),∆H 6= 0, and also

E(v(δ), v(0))∆H ≥ 0 with strict inequality if E(v(δ), v(0)),∆H 6= 0.
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SUPPLEMENTARY APPENDIX (Not for Publication)

Proof of Theorem 1

We show the main steps of the argument. For a detailed proof, we refer the reader to Demetrius et al. [36].

Consider the aggregate production of the incumbent population, described by Y (t) (which is derived

from A and (Ω, µ, ϕ))) and satisfies Eq. (21) above, and that of the variant population Y ∗ (which is derived

from A∗ and (Ω, µ∗, ϕ∗)) and satisfies Eq. (37) below. Let Z(t) = Y (t) + Y ∗(t) denote total aggregate

production. The share of aggregate production of the variant population can be written as:

p(t) =
Y ∗(t)

Z(t)
.

We are concerned with the evolution of this ratio.31

As mentioned in the text, the matrix A∗ is given as the perturbation A∗ = A(δ) = (a1+δ
ij ) of the original

matrix A = (aij), for δ ∈ R small in absolute value. Let g∗ = g(δ), H∗ = H(δ), Φ∗ = Φ(δ), σ∗2 = σ2(δ),

κ∗ = κ(δ), and γ∗ = γ(δ) be corresponding macroscopic parameters. Similarly to the process Y (t), the

density f∗(Y ∗, t) of the income process Y ∗(t) is also characterized by the Fokker-Planck equation,

∂f∗

∂t
= −g∗ ∂(f∗Y ∗)

∂Y ∗
+
σ∗2

2

∂2(f∗Y ∗)

∂Y ∗2
.

Again, we can characterize Y ∗(t) respectively as the solution to the stochastic differential equation

dY ∗(t) = g∗Y ∗(t)dt+ σ∗
√
Y ∗(t)dW ∗(t), (37)

where we assume the processes Y (t) and Y ∗(t) evolve simultaneously and stochastically independently, so

that the Brownian motion W ∗(t) is independent of W (t).

It can be shown (see Demetrius et al. [36], Theorem 7.2) that equations (21) and (37) are equivalent

to the system of stochastic differential equations,

dZ(t) = (g + p(t)∆g)Z(t)dt+ σ
√

(1− p(t))Z(t)dW (t) + σ∗
√
p(t)Z(t)dW ∗(t), (38)

and

dp(t) = p(t)(1− p(t))
(

∆g − ∆σ2

Z(t)

)
dt− σp(t)

√
(1− p(t))
Z(t)

dW (t) + σ∗(1− p(t))

√
p(t)

Z(t)
dW ∗(t). (39)

We need to solve this for the process p(t). Assuming total aggregate production is constant, Z(t) = Y ,32

31Initially, the share p(t) is small and the two populations evolve independently of each other. The invader
population can be seen as drawing from resources not used or available to the incumbent. Then, as the invader
population grows, the two populations compete for resources. We assume the two populations are in steady state
assuming indirectly that the convergence to steady state is much faster than the selection process. This also justifies
focusing on the case where the overall production is fixed (Z(t) = Y ); see also Demetrius et al. [36], Section 2.

32Strictly speaking, we need only to assume that this holds for t > t0 for some t0 that represents the instant
where the exploitation competitive interaction between incumbent and invader population begins; this is consistent
with the case we consider, where resources are finite and limited. See Demetrius et al. [36], Section 2, for further
discussion on this point.
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then the process p(t) can be shown to be a diffusion process with drift,

α(p(t)) = p(t) (1− p(t))
(

∆g − ∆σ2

Y

)
,

and variance,

β(p(t)) =
p(t)(1− p(t))

Y

(
σ2p(t) + σ∗2(1− p(t))

)
;

and that the process p(t) has density ψ solving the Fokker-Planck equation (see Demetrius et al. [36],

Theorem 7.3),
∂ψ

∂t
= −∂[α(p)ψ]

∂p
+

1

2

∂2[β(p)ψ]

∂p2
,

with natural boundary conditions, ψ(0, t) = 0, ψ(1, t) = 1, that correspond to the cases p = 0 (when the

variant population becomes extinct) and p = 1 (when the incumbent population becomes extinct). Notice

that we set α(p) ≡ α(p, Y ) and β(p) ≡ β(p, Y ), so that α(0) = α(1) = 0 and β(0) = β(1) = 0. This implies

a unique solution for any initial value ψ(p, 0).

Letting p0 = p(0) denote the initial frequency of the mutant and letting ρ(p0) denote the probability

that the diffusion process leads to an absorption in the state p = 1 (extinction of the incumbent population),

appealing to the backward Kolmogorow equation,

∂ψ

∂t
= α(p)

∂ψ

∂p
+

1

2
β(p)

∂2ψ

∂p2

and integrating, one shows that the invasion probability ρ(p0) can be written as,

ρ(p0) =
1−

(
1− ∆σ2

σ∗2 p0

) 2Y s
∆σ2 +1

1−
(
1− ∆σ2

σ∗2

) 2Y s
∆σ2 +1

,

where s = ∆g− ∆σ2

Y (again, see Demetrius et al. [36], Section 7). The sign of the expression s thus becomes

crucial in determining whether a variant is successful in invading or not. Except for the degenerate case of
2Y s
∆σ2 + 1 = 0, we have ρ′(·) 6= 0, and it is easy to show that convexity or concavity of ρ(·) is determined by

s alone, namely,

s > 0⇒ ρ(·) is convex, s < 0⇒ ρ(·) is concave.

The exact curvature of ρ(·) then depends on the magnitude of s and hence on the values of ∆g,∆σ2, and

Y . The exact relations between these variables in determining the sign of s and their effect on the invasion

probability provides the conditions under which an invader’s level of entropy should be higher or lower

than H in order to be successful.

Now, consider initial values p0 close to zero, then the solution p(t) is absorbed in state p = 0 (extinction

of the invader population) for any small perturbation, if

∆g < 0,∆σ2 ≥ 0 or ∆g ≤ 0,∆σ2 > 0. (40)

Under these conditions, one of the following two cases occurs,

(I) Φ < 0, γ ≥ 0, or Φ ≤ 0, γ > 0;

(II) Φ > 0, γ ≤ 0, or Φ ≥ 0, γ < 0.
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In case (I), condition (40) for all perturbations is equivalent to ∆H < 0 (the variant population has lower

entropy; and the incumbent population with higher entropy takes over; recall that, Φ < 0 ⇒ ∆r∆H > 0

and γ > 0 ⇒ ∆σ2∆H < 0); in case (II), it is equivalent to ∆H > 0 (the variant population has higher

entropy; and the incumbent population with lower entropy takes over; recall that, Φ > 0 ⇒ ∆g∆H < 0

and γ < 0⇒ ∆σ2∆H > 0); (see [36], Theorem 7.4). This yields the more general formula for the selective

advantage

s = −
(

Φ− γ

Y

)
∆H,

where ∆H = H∗ −H.

In the limit, as Y → ∞, the diffusion equation for p degenerates to a linear differential equation, and

the convexity criterion in terms of s reduces to the growth rate differential ∆g. In this case, we have,

Φ < 0 ⇐⇒ ∆H < 0 and Φ > 0 ⇐⇒ ∆H > 0, and the sign of the productive potential alone determines

the selective advantage for the entropy (again, see Demetrius et al. [36], Section 7).

Proof of Theorem 3

We here provide a sketch of the main steps, and refer to Demetrius et al. [35], Section 3, for more details.

We need to show ∆H∆R > 0. We first recall the definition of our robustness measure R. Fix ε > 0 and

define the probability that the sample mean differs from the value Φ by more than ε,

Pε(n) = µ

{
x ∈ Ω

∣∣∣∣ ∣∣∣∣ 1nSnϕ(x)− Φ

∣∣∣∣ > ε

}
,

where, as we saw, the sample mean is given by,

Snϕ(x) =

n−1∑
j=0

ϕ(τ jx)

= log ax0x1
+ log ax1x2

+ . . .+ log axn−1xn

= log ax0x1
ax1x2

· · · axn−1xn ,

and is such that limn→∞ Snϕ(x) =
∫
ϕdµ = Φ.

By the ergodic theorem, limn→∞ Pε(n) = 0; moreover, the convergence rate is at least exponentially

fast, so that there exist constants, c0, c1 > 0, such that,

µ

{
x ∈ Ω

∣∣∣∣ ∣∣∣∣ 1nSnϕ(x)− Φ

∣∣∣∣ > ε

}
≤ c0 exp−c1n .

This motivates the robustness measure given by the fluctuation decay rate,

R ≡ Rε = − lim
n→∞

[
1

n
logPε(n)

]
,

which characterizes the asymptotic value of the probability of the set of trajectories that deviate from the

typical trajectory by ε or less.

In order to better characterize R, consider the more general decay measures,

R(ϕ,E) = − 1

n
lim sup
n→∞

µ
x ∈ Ω

∣∣∣∣∣∣ 1

n

n−1∑
j=0

ϕ(τ jx) ∈ E



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and

R(ϕ,E) = − 1

n
lim inf
n→∞

µ
x ∈ Ω

∣∣∣∣∣∣ 1

n

n−1∑
j=0

ϕ(τ jx) ∈ E


 ,

where E stands for arbitrary subsets of the real line. (Later we will be interested in sets of the form

E = {s ∈ R : |s− Φ| > ε}.)
Next, one defines the function

kϕ(s) = g − s− sup
ν

{
Hν(τ)

∣∣∣∣ ν invariant under τ and

∫
ϕdν = s

}
.

Then we have,

R(ϕ,E) ≥ − inf{kϕ(s) | s ∈ E } for every open set E,

and

R(ϕ,E) ≤ − inf{kϕ(s) | s ∈ E } for every closed set E.

Moreover, kϕ(s) is continuous and satisfies kϕ(Φ) = 0 by the variational principle of Eqn. (20). Hence,

R = R(ϕ,E) = R(ϕ,E) = − inf{kϕ(s) : s ∈ E} = −min{kϕ(Φ− ε), kϕ(Φ + ε)},

and actually attains its minimum.

Now consider perturbations of the form A(δ) = (a1+δ
ij ) corresponding to ϕ(δ) = (1 + δ)ϕ, where again,

ϕ = log ax0x1 . One can then define R(δ) using ϕ(δ) instead of ϕ and show that

R(δ) = −min{kϕ(δ)(Φ(δ)− (1 + δ)ε), kϕ(δ)(Φ(δ) + (1 + δ)ε)},

where limn→∞ Snϕ(δ)(x) =
∫
ϕ(δ)dµ(δ) ≡ Φ(δ). Also, H(δ) = Hµ(δ)(τ), where µ(δ) is the measure

corresponding to ϕ(δ).

Finally, one shows,

kϕ(δ)(Φ(δ)− (1 + δ)ε) = H(δ) + (1 + δ)ε− sup

{
Hν(τ)

∣∣∣∣ ν invariant under τ and

∫
ϕdν = Φ− ε

}
kϕ(δ)(Φ(δ) + (1 + δ)ε) = H(δ)− (1 + δ)ε− sup

{
Hν(τ)

∣∣∣∣ ν invariant under τ and

∫
ϕdν = Φ + ε

}
.

This readily implies that, from ∆R = R(δ)−R and ∆H = H(δ)−H, we have,

∆H − δε ≤ ∆R ≤ ∆H + δε,

and hence (for ∆H bounded away from zero) we obtain ∆H∆R > 0.

52




