
 
 
 
 
 

Economics Working Paper Series 
 

Working Paper No. 1800 
 
 
 
 
 

Evaluating forecast performance  
with state dependence 

 
Florens Odendahl, Barbara Rossi,  

and Tatevik Sekhposyan 
 
 
 
 
 

July 2021 
 

 

  



Evaluating Forecast Performance with State Dependence∗

Florens Odendahl1, Barbara Rossi2, and Tatevik Sekhposyan3

1Banco de España†
2Universitat Pompeu Fabra, Barcelona GSE and CREI‡

3Texas A&M University§

July 18, 2021

Abstract

We propose a novel forecast evaluation methodology to assess models’ absolute and relative
forecasting performance when it is a state-dependent function of economic variables. In
our framework, the forecasting performance, measured by a forecast error loss function, is
modeled via a hard or smooth threshold model with unknown threshold values. Existing
tests either assume a constant out-of-sample forecast performance or use non-parametric tech-
niques robust to time-variation; consequently, they may lack power against state-dependent
predictability. Our tests can be applied to relative forecast comparisons, forecast encompassing,
forecast efficiency, and, more generally, moment-based tests of forecast evaluation. Monte
Carlo results suggest that our proposed tests perform well in finite samples and have better
power than existing tests in selecting the best forecast or assessing its efficiency in the presence
of state dependence. Our tests uncover “pockets of predictability” in U.S. equity premia;
although the term spread is not a useful predictor on average over the sample, it forecasts
significantly better than the benchmark forecast when real GDP growth is low. In addition, we
find that leading indicators, such as measures of vacancy postings and new orders for durable
goods, improve the forecasts of U.S. industrial production when financial conditions are tight.
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1 Introduction

Decision-makers face an abundance of candidate forecasting models, and, starting with Diebold
and Mariano (1995) and West (1996), the literature has proposed a variety of forecast comparison
tests to guide forecasters in choosing the model. However, usually, no single model emerges
as the best overall; typically, the forecasting performance is prone to instabilities and, therefore,
depends on the sample. One possible explanation is that the economic mechanisms that generate
the data are time-varying such that a given model is better in some periods and worse in others,
resulting in a state-dependent (or more generally, non-linear) forecasting performance. These
empirical findings also hold when evaluating the absolute forecasting performance.

In this paper, we propose a new forecast comparison test as well as, more generally, moment-
based forecast evaluation tests (such as rationality, efficiency, and encompassing) that have
power against the alternative of state dependence in the forecasting performance. The state
dependence is assumed to take the parametric form of a threshold model, i.e. the relative
forecasting performance is a non-linear function of an economic observable variable and a
respective threshold. We consider both hard threshold models as well as logistic smooth threshold
and exponential smooth threshold models. Importantly, we allow the value of the threshold
to be unknown and estimate it alongside the testing procedure. Existing tests either focus on
constant relative out-of-sample performance (Giacomini and White, 2006) or use non-parametric
techniques to detect time-varying deviations from equal performance (Giacomini and Rossi, 2010;
Amisano and Giacomini, 2007); we show that the latter approaches may lack power against the
alternative of parametric state dependence.

Our paper is the first to model state dependence in the form of a hard or smooth threshold
model directly on the forecasting performance. While Hansen’s (1996b) test detects non-linearities
in-sample, our test instead allows forecasters to evaluate the out-of-sample predictive ability when it
may be state-dependent. Testing in the presence of an unknown threshold requires non-standard
statistics since the nuisance parameter (the threshold) is present only under the alternative;
therefore, the standard Wald, Likelihood ratio, and Lagrange multiplier tests do not have the
usual asymptotic chi-square distribution (Davies, 1977, 1987). While in some cases there might
be an economic justification for selecting an ad-hoc threshold value and treating it as known,
this is not generally the case, and allowing for an unknown threshold makes our approach
broadly applicable. There are several differences between our approach and Hansen’s (1996b): for
example, when evaluating the relative forecasting performance (i) we apply the threshold model
directly to the relative predictive performance, measured by the forecast loss differential, and (ii)
we test for a zero expected forecast performance differential, while Hansen (1996b) leaves the
expected value unspecified under the null hypothesis. Consequently, we jointly test whether the
out-of-sample average relative forecasting performance is different from zero as well as whether
it is state-dependent.

While our focus is on the loss differential, the leading evaluation approach in applied work,
our methodology more generally applies to other forecast evaluation tests that are implemented
with moment conditions. For instance, tests of efficiency and encompassing can be formulated in
terms of moment conditions.

We investigate the finite sample performance of our tests with Monte Carlo simulations. Our
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simulations suggest, for example, that our proposed tests are well-sized and have better power
against the alternative of an unequal and state-dependent forecasting performance relative to
the existing tests. These results continue to hold even when the state variable is observed with
measurement error (see in the Online Appendix).

There are several reasons why considering state dependence in the forecast error losses/loss
differentials is interesting. First, it allows the forecaster to impose the null hypothesis directly on
the object of interest. While it is true that the researcher can potentially consider state dependence
in the forecasting models directly, satisfactory in-sample fit does not necessarily translate to
satisfactory out-of-sample performance. Therefore, studying the object of interest (i.e. the forecast
error loss) directly is useful. Second, studying forecast error losses/loss differentials makes our
framework applicable to the case when the forecasting model is known as well as the case when
it is not known (as in widely used survey forecasts). Third, in the case of multivariate models or
models with many predictors, the researcher faces the problem of selecting the predictors that
are state-dependent; this problem does not arise when directly studying the losses with respect
to the target variable of interest. Last, parsimonious linear models are used extensively in the
forecasting literature. Our tests allow us to evaluate these models against state dependence in a
theoretically coherent framework. The test results guide the researcher on how to modify the
original forecasting models and their estimation technique, as well as on how to select models for
prediction at a given point in time.

Our paper contributes to the recent literature on forecast evaluation (Diebold and Mariano,
1995; West, 1996; Clark and McCracken, 2001; Clark and West, 2006, 2007; Giacomini and White,
2006; Giacomini and Rossi, 2010). In particular, Giacomini and White (2006) (GW henceforth)
show the validity of the asymptotic Normal distribution for the out-of-sample test of equal
predictive ability proposed by Diebold and Mariano (1995) (DM henceforth) when the underlying
forecasting models are estimated using a rolling window estimation scheme and the data satisfy
certain mixing properties.1 Following their framework, our testing procedure similarly relies on
a rolling window estimation scheme to preserve the parameter estimation error asymptotically.
Hence, we compare forecasting methods rather than forecasting models. However, while GW
focus on the null hypothesis of an equal out-of-sample predictive ability, on average, our test
allows for state dependence on the conditioning variables, i.e. we test for deviations from the
null hypothesis in sub-samples identified by state variables. Importantly, we do not require the
conditioning variable itself to explain the forecasting performance (although it could) but only to
indicate the state, i.e. the magnitude of the predictive ability within a state can be independent
of the conditioning variable. Our paper is also related to Giacomini and Rossi (2010), which
allows the relative forecasting performance to be prone to instabilities, using a non-parametric
time-variation approach based on the rolling/recursive window estimation of a local GW test.
As a result, their test has good power against smooth and persistent changes but, as we show, it
might lack power against the switches of a state-dependent model.

Several papers in the literature (Stock and Watson, 2009; Rapach et al., 2010; Neely et al., 2014;
Dotsey et al., 2018; Granziera and Sekhposyan, 2019) evaluate forecast performance in subsamples,
where the subsamples are identified conditional on some economic variable being smaller or
larger than an ad-hoc threshold. For instance, Stock and Watson (2009) analyze the forecasting

1Hereafter, we refer to the DM test under the conditions of Giacomini and White (2006) as the GW test.
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ability of Phillips curve models for U.S. inflation and conclude, from plotting the loss differential,
that the forecasting performance depends on the unemployment gap: “when the unemployment
gap exceeds 1.5 in absolute value, the Phillips curve forecasts improve substantially upon the
UC-SV [unobserved component with stochastic volatility] model.” (Stock and Watson, 2009).
Rapach et al. (2010) investigate equity return predictability during different states of the business
cycle by using the“good, normal, and bad times” classification of GDP growth from Liew and
Vassalou (2000). Our methodology, instead, systematically tests for potential state dependence
without having to know or assume the threshold value.

We demonstrate the usefulness of our methodology in two empirical applications. First, we
compare models that predict U.S. equity premia from 1966 to 2011. As noted in Pesaran and
Timmermann (1995) and Rapach and Wohar (2006), financial return predictability is typically
time-varying and appears only in sub-samples.2 Instabilities in forecasting performances in other
financial variables are widespread as well: Paye and Timmermann (2006), for instance, cannot
reject the presence of structural breaks in stock return predictive regressions and Rossi (2006,
2013b) finds similar results for exchange rate returns. As summarized in Timmermann (2008),
“... there appear to be pockets in time where there is modest evidence of local predictability;
(...) the best forecasting method can be expected to vary over time, and there are likely to be
periods of model breakdown where no approach seems to work”. In our empirical results, we do
find evidence of state-dependent predictive ability. When forecasting stock market returns, we
show the usefulness of our test statistic for detecting pockets of predictability. Furthermore, our
approach can shed light on which factors create such pockets. More in detail, our benchmark
model is an in-sample mean, re-estimated in real-time rolling windows, whereas the competitor
models use the financial variables from Welch and Goyal’s (2008) comprehensive dataset of
predictors. We find evidence of state dependence in the relative forecasting performance, where
the state dependence is a function of the business cycle, measured by the monthly real GDP
growth estimate of Koop et al. (2020): in periods of above-average GDP growth, the economic
model tends to underperform relative to the benchmark model. However, in periods of low
growth, forecasting with the term spread, defined as the difference between the long-term and
the T-bill yields, leads to forecast improvements. On the other hand, the GW and Fluctuation tests
cannot reject the null hypothesis of equal forecasting ability and fail to uncover such pockets of
predictability.3 Our result that the spread is a useful predictor during times of low GDP growth
is also in line with a recent study of Moench and Stein (2021), who reach a similar conclusion
using a very different approach.

Second, we evaluate U.S. industrial production forecasts from January 1971 to December 2019.
The choice of our state variable, the adjusted National Financial Conditions Index (ANFCI) com-
puted by the Chicago Fed, is motivated by the work of Adrian et al. (2019). They demonstrated the
importance of financial conditions for forecasting the distribution of output growth, particularly
tail risk, advocating for a non-linear relationship between financial stability and macroeconomic
performance. We find that certain leading indicators such as measures of vacancy postings and
new orders for durable goods are particularly useful (relative to parsimonious autoregressive
benchmarks) for forecasting U.S. industrial production when financial conditions, measured by

2See Goyal and Welch (2003); Welch and Goyal (2008) for a related discussion.
3Note that the forecasting gains using the financial predictors are small and that any large deviations from equal

predictive ability in favor of the economic models would imply strong violations of the rational expectations hypothesis.
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the ANFCI, are tight.
Our paper is further related to Harvey et al. (2021) and Inoue and Rossi (2015), who also

propose methodologies to study time-variation in predictive regressions. There are several
differences with their methodologies, however. As indicated before, our tests are designed for
out-of-sample forecast evaluation, while Harvey et al. (2021) and Inoue and Rossi (2015) consider
testing the significance of a specific predictor in-sample, which does not necessarily imply better
out-of-sample performance. Most importantly, our method allows the researcher to shed light
on the economic causes behind the changes in the models‘ predictive ability since the variation
in the forecasting performance is linked to the economic variables that define the states. On the
other hand, Harvey et al. (2021) and Inoue and Rossi (2015) propose a sequential procedure as
opposed to the one-shot evaluation proposed in this paper. The sequential procedure is tailored
to monitor the predictive performance in real-time. Our one-shot procedure, on the other hand,
evaluates the out-of-sample forecasting performance historically, yet still allows picking the best
performing model depending on the identified state at the end of the sample.

The paper is organized as follows. Section 2 formalizes our null hypothesis, introduces our
test statistics, and describes the challenges that arise when testing for state dependence in relative
forecasting performance. Section 3 evaluates the size and power of our proposed procedure in
finite samples via Monte Carlo simulations. Section 4 investigates the existence of pockets of
predictability in financial data and Section 5 investigates state dependence in the relative forecast
performance of models predicting U.S. industrial production. Section 6 concludes.

2 Testing for state dependence: methodology

We first describe the model and the null hypothesis. We further provide illustrative examples of
how state-dependence in forecast losses can arise. Then, we introduce the necessary notation, the
technical assumptions, and the test statistic.

2.1 The General framework

Let f̂ (1)t+h|t(At, At−1, ..., At−R+1; β̂
(1)
t,R) and f̂ (2)t+h|t(At, At−1, ..., At−R+1; β̂

(2)
t,R) denote two measurable

functions, which provide the forecasts of two competing models, labeled (1) and (2), where t
denotes the forecast origin, h denotes the forecast horizon, and the vector of stochastic processes
At = (Yt, Zt) contains the variable of interest Yt and the column vector of predictors Zt. In turn,
β̂
(i)
t,R denotes the vector of estimated parameters at time t of model “i”(i = 1, 2) using a rolling

window estimation scheme of size R ≤ R̄ < ∞ and data At, ..., At−R+1.4 Henceforth, we simply
write f̂ (1)t+h|t and f̂ (2)t+h|t. Importantly, note that the function f̂ (i)t+h|t can denote either a point or a

density forecast. Finally, let f (i)t+h|t denote the forecast under the true but unknown parameter

value β(i).
Let Lt+h|t

(
Yt+h, f̂ (i)t+h|t

)
denote a loss function, which evaluates the prediction f̂ (i)t+h|t of Yt+h.

The loss functions we allow for are quite general and encompass the quadratic loss (which gives
rise to a Mean Squared Forecast Error, MSFE, measure of predictive ability), asymmetric losses
(such as the lin-lin loss), as well as the log score and Continuous Rank Probability Score (CRPS)

4The window size R is assumed to be the same across the two models for notational convenience only.
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for density forecasts. We define the forecast error loss of interest to the researcher as Lt+h|t. Note
that Lt+h|t denotes our object of interest, which can be different from the loss function Lt+h|t(·)
itself. For instance, when the researcher is interested in the relative predictive ability under the
MSFE loss function, Lt+h|t is the difference of the squared forecast errors; while in the case of
forecast efficiency, Lt+h|t denotes the relevant moment condition. We describe this in more detail

below. Note that Lt+h|t is a function of the estimated parameters β̂
(i)
t,R and the rolling window size

R. As we assume that the parameters are estimated over a rolling and finite window size, the loss
differential compares forecasting methods rather than forecasting models.

We allow the forecast error loss to evolve over time according to a non-linear model (Teräsvirta,
2006):

Lt+h|t = X′tµ + X′tθ · G(St; ϕ) + ut+h, (1)

where Xt and St are explanatory variables, ϕ is a vector of parameters, ut+h is an error term and
G(·) is allowed to be a non-linear function. In eq. (1), µ and θ denote the parameters of interest,
the vector Xt is a k1 dimensional column vector that denotes economic observables and a constant,
St denotes the economic observable that introduces the state dependence, ϕ denotes the unknown
threshold, ut+h is the error term. For the remainder, St is assumed to be a scalar. In Appendix A.2
we discuss the possibility of several candidate variables for St and how to extend the testing
procedure to account for that. Potential serial correlation can be accounted for by including lags
of Lt+h|t, which are allowed, but not required, to also be a function of the threshold indicator. St

is a stochastic process, assumed to be continuous and allowed to be a subvector of Xt. Also note
that not all elements of Xt must enter the equation non-linearly.

The non-linear model in equation (1) allows for a wide range of models which includes time-
varying parameter models as long as the time-variation is a parametric function of an observable
St. Note that our framework does not allow St to be unobservable; for example, this rules out the
case of Markov switching models which we separately discuss in Section 2.5. We also show in
Monte Carlo simulations that our test has power in cases where only a noisy measure, S̃t, of St is
available; for instance, in the case where S̃t is an estimate of the true but unobserved variable St.

In particular, the model classes we consider encompass several interesting cases for G(St; ϕ).
The first case is a threshold regression (TR) model:

TR: G(St; ϕ) = 1 (St ≥ γ) , where ϕ = γ, (2)

i.e. the effect of Xt on Lt+h|t changes if St is above the threshold γ. The second case is the logistic
smooth threshold regression (LSTR) model:

LSTR: G(St; ϕ) =
(
1 + exp{−τ(St − γ)}

)−1, where ϕ = (γ, τ), (3)

with 0 < τ < ∞ and the effect of Xt on Lt+h|t changes smoothly if St is either above or below a
threshold γ and the smoothness of the function is controlled by τ. The third case is an exponential
smooth threshold regression (ESTR) model:

ESTR: G(St; ϕ) = 1− exp{−τ(St − γ)2}, where ϕ = (γ, τ), (4)

with 0 < τ < ∞ and the effect of Xt on Lt+h|t changes smoothly if St is either above or below a
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threshold γ, where τ controls the smoothness of the change. We give more details below about
how to choose the grid for γ. In the following, we refer to a smooth threshold regression model
(STR) whenever the function G(·) has no discontinuity.

Figure 1 plots the functional forms of the TR, LSTR, and ESTR models. The TR and LSTR
are similar, with the difference being that the LSTR is smooth and the TR has a kink at γ. Both
models are useful in cases where the delta losses change when the threshold indicator variable
is larger (smaller) than γ. For instance, Rapach et al. (2010) find pockets of predictability for
U.S. equity premia when U.S. GDP growth is low. The ESTR instead is most useful whenever
threshold effects are present for deviations from an “equilibrium condition”, independently of
the direction. For instance, Stock and Watson (2009) conclude from visual inspection that the
Phillips curve model outperforms a benchmark model whenever the unemployment gap deviates
strongly from its steady state value of zero, i.e. when the unemployment gap is particularly large
or small.

Figure 1: Functional forms of TR, LSTR, and ESTR

(a) TR vs. LSTR (b) TR vs. ESTR

Note: Panel (a) plots the LSTR, eq. (3), for two different values of τ against the TR, eq. (2). Panel (b) plots the ESTR, eq.
(4), for two different values of τ against the TR. γ is set equal to zero in both plots. The y-axis denotes the function
value, G(St; ϕ). The x-axis denotes the value of St.

We aim at evaluating forecasting models’ predictive performance while being able to detect
possible additive non-linearities in the form of a hard or smooth threshold model. Our null
hypothesis of equal predictive ability at each point in time is:

E
(
Lt+h|t|Xt, St

)
= 0 ∀t, (5)

versus the alternative
E
(
Lt+h|t|Xt, St

)
= X′tµ + X′tθ · G(St; ϕ). (6)

The null and alternative hypotheses involve µ and θ and become H0 : µ = θ = 0 and
HA : µ 6= 0, θ 6= 0 respectively. Note that the null hypothesis defined in eq. (5) holds conditionally
on Xt and St, and, therefore, by the law of iterated expectations, also unconditionally: E(Lt+h|t) = 0.
Our test has power against either µ or θ or both jointly deviating from zero under the alternative,
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i.e. either a constant non-equal predictive ability or a state-dependent (or non-linear) predictive
ability or both.5 Importantly, we allow the nuisance parameter ϕ to be unknown. Therefore,
testing for the null hypothesis described in equation (5) is subject to the problem of a nuisance
parameter that is present only under the alternative, which makes standard asymptotic inference
invalid (Davies, 1977, 1987; Hansen, 1996b).

Before describing our proposed test statistics, we want to emphasize two points. First, al-
though the assumption of an unknown ϕ comes at the cost of non-standard inference, it brings
the large benefit that it allows the researcher to test over a range of values, instead of having to
choose an arbitrary value. This is particularly important in practice because an ad-hoc choice for
ϕ can be detrimental to the power of detecting state dependence. In practice, when working with
the TR, LSTR or ESTR model, we recommend to formulate γ in terms of the empirical distribution
function Ξn(·) of St such that the indicator becomes 1

(
Ξn(St) ≥ γ

)
, with γ ∈ Γ = [0, 1] and

Ξ−1
n (γ) provides the threshold in units of St (Hansen, 1996b). This is particularly useful when

implementing the model in statistical programs, as it allows formulating a unit-free grid for γ.
Following Hansen (1996b) and others, we restrict γ to be away from the boundaries and choose,
for instance, Γ = [0.15, 0.85]. Therefore, when we express the bounds of the threshold value in
terms of St, its lower and upper bounds are St = Ξ−1

n (0.15) and S̄t = Ξ−1
n (0.85) respectively. In

other words, restricting the values of γ to Γ = [0.15, 0.85] refers to the lower 15th and upper 85th
percentile of the empirical cumulative distribution function (cdf) of St; importantly, the restriction
of Γ = [0.15, 0.85] does not refer to a time index where we have to leave the endpoints out, i.e.
detection of a change of the state is possible in real-time using our method.

Tests of equal predictive ability: Tests of equal predictive ability are implemented by letting

Lt+h|t = ∆Lt+h|t ≡ Lt+h|t

(
Yt+h|t, f̂ (1)t+h|t

)
− Lt+h|t

(
Yt+h|t, f̂ (2)t+h|t

)
. (7)

The following specification of eq. (1) is of particular interest in the forecast comparison case, as it
specifies state dependence that is a function solely of St and does not depend on any additional
observables Xt:

∆Lt+h|t = µ + θ · G(St; ϕ) + ut+h. (8)

The specification in eq. (8) contains as special cases the standard Diebold and Mariano (1995) and
Giacomini and White (2006) tests for equal predictive ability, and, unlike the latter, is capable of
detecting periods of unequal performance that depend on St in a non-linear fashion.

Tests of forecast encompassing: While our leading case is the loss differential, as it is widely
used in applied work, our methodology can also be applied to the moment conditions of forecast
encompassing tests. Let ε̂t+h|t,1 = Yt+h − f̂ (1)t+h|t and ε̂t+h|t,2 = Yt+h − f̂ (2)t+h|t. To test whether model
(1) encompasses model (2), we define

Lt+h|t = ENCt+h|t ≡ ε̂2
t+h|t,1 − ε̂t+h|t,1ε̂t+h|t,2. (9)

Then, to test our null hypothesis that the forecast of model one encompasses the forecast of

5Note that the case of µ = θ 6= 0 is a valid alternative and merely represents the joint presence of a non-equal and
non-linear predictive ability.
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model two, the following specification is of particular interest:

ENCt+h|t = µ + θ · G(St; ϕ) + ut+h. (10)

As in the case of the loss differential in eq. (8), the null and alternative hypothesis in the forecast
encompassing test in eq. (10) involve µ and θ and become H0 : µ = θ = 0 and HA : µ 6= 0, θ 6= 0
respectively.

Tests of forecast optimality: Tests of forecast optimality include tests of forecast unbiasedness
and efficiency. In those cases, only the forecast error loss of one model is evaluated (e.g. model
i). Tests of forecast unbiasedness and forecast efficiency, respectively, can be formulated as a
moment-based test by defining

Lt+h|t = UBt+h|t ≡ yt+h − f̂ (i)t+h|t and Lt+h|t = FEt+h|t ≡
(
yt+h − f̂ (i)t+h|t

)
· f̂ (i)t+h|t, (11)

and can be tested using the specification:

UBt+h|t = µ + θ · G (St; ϕ) + ut+h and FEt+h|t = µ + θ · G (St; ϕ) + ut+h. (12)

In both cases, the null hypothesis of unbiasedness and efficiency, respectively, is implemented
by µ = θ = 0. In the Online Appendix, we show Monte Carlo simulation results for forecast
efficiency tests.

2.2 Examples of thresholds in the loss differential

In this subsection, we discuss two simple analytical examples of how threshold-type effects in the
losses can arise.

Example one: A first example is based on a DGP that includes a common component. In
particular, two observable variables, yt and xt, are driven by a common component, ct, and
unpredictable idiosyncratic components, et and ηt, respectively:

yt+1 = α + ct+1 + et+1, xt+1 = ct+1 + ηt+1, ct+1 = ρct + vt+1, (13)

where α is a constant, et+1 ∼iid N(0, σ2
e ), ηt+1 ∼iid N(0, σ2

η), the subscript iid denotes inde-
pendently and identically distributed random variables, and |ρ| < 1. Importantly, vt+1 ∼
N(0, σ2

v,t+1), i.e. it is an independent variable and the variance is time-varying with σ2
v,t+1 =

σ2
v,1 + G(St+1; ϕ)σ2

v,2, where σv,1, σv,2 > 0, and σ2
v = E(v2

t ) is the unconditional variance of vt.
St ∼iid N(0, 1) determines the variance of the shocks to the common component and since σ2

v,t+1

is unobservable, St+1 is a proxy variable that is indicating the strength of the common component.
Let the two forecasts (calculated using the true parameter values) be

f (1)t+1|t = α and f (2)t+1|t = α + ρxt. (14)

Note that, unconditionally, E(c2
t ) = σ2

v /(1− ρ2). We start by considering the case where there
is no parameter estimation error such that the forecast error is given by εt+1|t,i = yt+1 − f (i)t+1|t.
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Then, the unconditional expected value of the squared forecast error difference takes the form

E[ε2
t+1|t,1 − ε2

t+1|t,2] = ρ2σ2
v /(1− ρ2)︸ ︷︷ ︸

misspecification of model one

− ρ2σ2
η .︸ ︷︷ ︸

misspecification of model two
(15)

In other words, if the models are equally misspecified, their expected squared forecast error
difference is zero.

Conditionally on St, we have that

E[ε2
t+1|t,1 − ε2

t+1|t,2|St] = ρ2(σ2
v /(1− ρ2)− σ2

η)︸ ︷︷ ︸
unconditional difference

+ ρ2(σ2
v,1 + G(St; ϕ)σ2

v,2 − σ2
v )︸ ︷︷ ︸

state-dependent difference

,
(16)

i.e. the conditional expected squared forecast error difference is a non-linear function of St,
independently of the expected value of the unconditional squared forecast error difference. In
other words, eq. (16) exemplifies how a loss differential with the dynamics proposed in eq. (8)
can arise.

In practice, the parameter estimation error affects forecast errors: let ε̂t+1|t,i = yt+1 − f̂ (i)t+1|t
denote the forecast error when parameters are estimated. In this case, we obtain the following
expected loss differential:

E(∆Lt+1|t) =E[ε̂2
t+1|t,1 − ε̂2

t+1|t,2] = ρ2(σ2
v /(1− ρ2)− σ2

η)︸ ︷︷ ︸
due to misspecification

+Πα̂t,R,(1)
−Πα̂t,R,(2)

−Πρ̂t,R,(2)︸ ︷︷ ︸
due to parameter estimation error

,
(17)

where Πα̂t,R,(1)
captures the contribution of the parameter estimation error6 associated with the

estimated constant of model (1) to the expected loss differential, and Πα̂t,R,(2)
and Πρ̂t,R,(2)

capture
the contribution of the parameter estimation error of the estimated constant and the slope
parameter of model (2); the expressions for Πα̂t,R,(1)

, Πα̂t,R,(2)
, and Πρ̂t,R,(2)

are given in the Online
Appendix.

The expected value of the loss differential is now a function of the relative model misspecifica-
tion as well as the parameter estimation error. For instance, a larger misspecification of model
(1), σ2

v /(1− ρ2) > σ2
η , can be compensated by a relatively smaller contributions of the parameter

estimation error, Πα̂t,R,(1)
< Πα̂t,R,(2)

+ Πρ̂t,R,(2)
, such that the expected loss differential is equal to

zero.
The expected value of the loss differential, conditionally on St, is then

E(∆Lt+1|t|St) =ρ2
(

σ2
v /(1− ρ2)− σ2

η

)
+ ρ2

(
σ2

v,1 + G(St; ϕ)σ2
v,2 − σ2

v

)
+ Π(St)

α̂t,R,(1)
−Π(St)

α̂t,R,(2)
−Π(St)

ρ̂t,R,(2)
+ Π(⊥St)

α̂t,R,(1)
−Π(⊥St)

α̂t,R,(2)
−Π(⊥St)

ρ̂t,R,(2)
,

(18)

where the superscripts (St) and (⊥ St) denote dependence on and independence of St, respec-
tively. Note that while the first line of eq. (18) is necessarily different from zero for some values
of St, the terms of the parameter estimation error in the second line may dampen or amplify
this effect. In particular, if Π(⊥St)

α̂t,R,(1)
−Π(⊥St)

α̂t,R,(2)
−Π(⊥St)

ρ̂t,R,(2)
is large relative to the other terms in eq.

6The component capturing the contribution of the parameter estimation error also contains the covariance of the
parameter estimation error and the misspecification.
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(18), the effect of the state-dependence on the expected loss differential could be small. In turn,
if Π(⊥St)

α̂t,R,(1)
−Π(⊥St)

α̂t,R,(2)
−Π(⊥St)

ρ̂t,R,(2)
is small relative to the other terms in eq. (18), the effect of state-

dependence on the expected loss differential remains large after taking the parameter estimation
error into account.

Example two: As a second example, consider the following DGP:

yt+1 = α + φzt + βG(St; ϕ)xt + et+1, (19)

with et+1 ∼iid N(0, σ2
e ), zt ∼iid N(0, σ2

z ), and xt ∼iid N(0, σ2
x). St and ϕ are the indicator variable

and parameters that govern the non-linear function G(·). The two competing forecasts (calculated
using the true parameter values) are:

f (1)t+1|t = α + φzt and f (2)t+1|t = α + φzt + βxt. (20)

In this framework, the variable xt enters non-linearly in the DGP, as a function of St and ϕ, but
the non-linear relationship is not accounted for in the forecasting model.

Again, we start by considering the case where there is no parameter estimation error such
that the squared forecast error of model one, ε2

t+1|t,1, minus the squared forecast error of model
two, ε2

t+1|t,2, is:

E[ε2
t+1|t,1 − ε2

t+1|t,2] = β2σ2
xE[G2(St; ϕ)]︸ ︷︷ ︸

misspecification of model one

− β2σ2
xE[G2(St; ϕ)] + 2β2σ2

xE[G(St; ϕ)]− β2σ2
x︸ ︷︷ ︸

misspecification of model two

= 2β2σ2
xE[G(St; ϕ)]− β2σ2

x︸ ︷︷ ︸
due to misspecification

,
(21)

such that E[ε2
t+1|t,1− ε2

t+1|t,2] is a function of St and ϕ. The term 2β2σ2
xE[G(St; ϕ)]− β2σ2

x measures
whether including xt as a linear predictor in the model improves the expected forecasting
performance relative to a model without xt. For instance, if G(St; ϕ) = 1 (St ≥ γ), with ϕ = γ,
then if E[St ≥ γ] = 0.5 we have that E[ε2

t+1|t,1 − ε2
t+1|t,2] = 0, i.e. the models forecast equally well

in expectations. However, if E[St ≥ γ] > 0.5 it follows that E[ε2
t+1|t,1 − ε2

t+1|t,2] > 0, i.e. model
two has a lower expected squared forecast error. This is because xt is present in the DGP more
than half of the time and, therefore, xt is a useful predictor despite the linear misspecification.
Conditionally on St we have

E[ε2
t+1|t,1 − ε2

t+1|t,2|St < γ] = −β2σ2
x and E[ε2

t+1|t,1 − ε2
t+1|t,2|St ≥ γ] = β2σ2

x , (22)

i.e. the loss differential is a threshold function of St and γ. In the case of forecast encompassing,
the moment condition takes the form:

E[ε2
t+1|t,1 − εt+1|t,1εt+1|t,2] = β2σ2

xE[G(St; ϕ)], (23)

which is again a non-linear function of St and ϕ.
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Again, in practice the parameter estimation error affects the expected loss:

E(∆Lt+1|t) =E[ε̂2
t+1|t,1 − ε̂2

t+1|t,2]

= 2β2σ2
x E[G(St; ϕ)]− β2σ2

x︸ ︷︷ ︸
due to misspecification

+Πα̂t,R,(1)
+ Πφ̂t,R,(1)

−Πα̂t,R,(2)
−Πφ̂t,R,(2)

−Πβ̂t,R,(2)
,︸ ︷︷ ︸

due to parameter estimation error

(24)

where Πα̂t,R,(1)
and Πφ̂t,R,(1)

capture the contribution of the parameter estimation error, associated
with the estimated constant and the slope coefficient of model (1), to the expected loss differential,
and Πα̂t,R,(2)

, Πφ̂t,R,(2)
, and Πβ̂t,R,(2)

capture the contribution of the parameter estimation error of the
estimated constant and the slope coefficients of model (2); their exact expressions are given in the
Online Appendix. As in the first illustrative example, the expected value of the loss differential
is a function of the relative model misspecification as well as the parameter estimation error.
The mean squared forecast error differential due to the misspecification of model (2) can be
compensated by the relative contributions of parameter estimation errors from the two models to
the MSFEs, such that the expected loss differential is equal to zero.

Continuing the example with G(St; ϕ) = 1 (St ≥ γ), conditionally on St we have

E(∆Lt+1|t|St < γ) = −β2σ2
x + Πα̂t,R,(1)

+ Πφ̂t,R,(1)
−Πα̂t,R,(2)

−Πφ̂t,R,(2)
−Πβ̂t,R,(2)

(25)

and
E(∆Lt+1|t|St ≥ γ) = β2σ2

x + Πα̂t,R,(1)
+ Πφ̂t,R,(1)

−Πα̂t,R,(2)
−Πφ̂t,R,(2)

−Πβ̂t,R,(2)
. (26)

Although the parameter estimation error, in this example, does not depend on St, it affects the
conditional expected loss differential. However, as long as the parameter estimation error is not
large relative to β2σ2

x , the state-dependence in the expected loss differential will be important
when testing for an equal predictive ability of model (1) and (2).

2.3 Test statistics

The parameter vector ϕ is an element of the compact set Φ which is a bounded subset of Rq. Let
Qt(ϕ) be a k-dimensional column vector that contains the explanatory variables of the threshold

model described in eq. (1), i.e. Qt(ϕ) =
[

X′t,
(
Xt · G(St; ϕ)

)′]′, and let Qt = supϕ∈Φ |Qt(ϕ)|. Let

ψ̂(ϕ) =
[
µ̂(ϕ)′, θ̂(ϕ)′

]′ denote the vector of OLS parameter estimates under the alternative, and
let ût+h = Lt+h|t − Qt(ϕ)′ψ̂(ϕ) denote the error term under the alternative. The score under
the alternative is then given by ŝt+h(ϕ) = Qt(ϕ)ût+h(ϕ). Let Hr denote a restriction matrix that
corresponds to the null hypothesis defined in eq. (5). For instance, for the model described in
eq. (8) without any additional regressors, we have that Hr = I2, where I2 is a two-dimensional
identity matrix.7 Let T denote the total sample size and P = T − R− h denote the out-of-sample
size, i.e. the number of observations of Lt+h|t. Let V̂P(ϕ) = 1

P ∑T−h
t=R ŝt+h(ϕ)ŝt+h(ϕ)′ denote the

variance-covariance matrix of the score, let V(ϕ) = E
(
st+h (ϕ) st+h (ϕ)′

)
be finite and positive

definite for st+h (ϕ) = Qt(ϕ)ut+h, and let V̂∗P (ϕ) = MP(ϕ, ϕ)−1V̂P(ϕ)MP(ϕ, ϕ)−1 be the robust
estimator of the variance-covariance matrix of ψ̂, with MP(ϕ1, ϕ2) = 1

P ∑T
t=R−h Qt(ϕ1)Qt(ϕ2)′,

and M(ϕ1, ϕ2) = E
(
Qt(ϕ1)Qt(ϕ2)′

)
; also, let KP(ϕ1, ϕ2) =

1
P ∑T−h

t=R st+h(ϕ1)st+h(ϕ2)′.

7If eq. (1) contains additional control variables, such as lags of Lt+h|t, that are not part of the forecast comparison
null hypothesis, the restriction matrix will not be equal to an identity matrix.
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We consider the following test statistics, based on Hansen (1996b) and Andrews and Ploberger
(1994), which we collectively refer to as the DMNL test:

DMNL: gΦ(WP) =


supϕ∈Φ WP(ϕ) (“sup-W”)∫

Φ WP(ϕ)dw(ϕ) (“ave-W”)
ln
( ∫

Φ exp( 1
2WP(ϕ))dw(ϕ)

)
(“exp-W”)

(27)

where w(ϕ) is a weighting function8 over ϕ ∈ Φ, ln(·) denotes the natural logarithm and WP(ϕ)

is defined as
WP(ϕ) = Pψ̂(ϕ)′Hr

[
H′rV̂

∗
P (ϕ)Hr

]−1H′rψ̂(ϕ). (28)

Henceforth, we let gΦ
(
WP
)

denote either of the three above mentioned functions, i.e. sup-W,
exp-W, and ave-W.

Establishing the uniform convergence of our test statistic requires an empirical process central
limit theorem (CLT) such that: (i) the regression score, st+h(·), is unbounded (since, for instance,
ut is unbounded) and, (ii), functional forms for G(·; ϕ) are allowed to be non-smooth in ϕ (since
we include a threshold model which is discontinuous around the threshold). As pointed out by
Andrews (1993) and Hansen (1996b,c), the work of Doukhan et al. (1995) provides an adequate
empirical process CLT. Other work, for instance, Andrews (1991) and Hansen (1996c), do not
require strict stationarity but impose smoothness conditions on the function G(·; ϕ) that are
violated by the discontinuity of the threshold model. In turn, that means that the regularity
conditions stated below are somewhat stricter than required for the smooth threshold models
since both Andrews (1991) and Hansen (1996c) provide milder assumptions for an empirical
process CLT of smooth functions G(·; ϕ). We derive the limiting distribution of DMNL under the
following assumptions:

Assumption A1 (i) (At, Xt, St) is strictly stationary and absolutely regular with mixing coefficients
η(m) = O(m−δ) for some δ > v/(v− 1) and v > 1. (ii) The estimation window size, R, is finite and the
estimation scheme is a rolling window estimation.

Assumption A2 For r > v > 1, E|Qt|4r < ∞, E|ut|4r < ∞, and infϕ∈Φ det
(

M(ϕ, ϕ)
)
> 0.

Assumption A3 (i) Let ξt(ϕ) ≡ X′tG(St; ϕ); for some B < ∞ and λ > 0,
∣∣∣∣(ξt(ϕ1)− ξt(ϕ2)

)
ut+h

∣∣∣∣ <
B
∣∣∣∣ϕ1 − ϕ2

∣∣∣∣λ. (ii) MP(ϕ1, ϕ2) and KP(ϕ1, ϕ2) converge almost surely to M(ϕ1, ϕ2) and K(ϕ1, ϕ2),
uniformly in ϕ1, ϕ2 ∈ Φ.

Assumption A4 f (i)t+h|t(.) is a measurable function of lags of At, for i = 1, 2.

A1 limits the dependence and time-variation allowed in the loss differential under the null. A2
ensures that the explanatory variables in eq. (1) has more than 4r finite moments and that the
variance-covariance matrix of Xt and St is non-singular for all ϕ. A3 (i) imposes a continuity
assumption on the element of the score associacted with the non-linear function G(·), and A3
(ii) ensures uniform convergence of MP(·) and KP(·) over ϕ ∈ Φ. A4 is an assumption on the
functional form of the forecast itself, and ensures measurability of Lt+h|h. Then, the asymptotic
distribution in eq. (27) can be described as follows.

8Throughout the paper we use an equal weighting, i.e. w(ϕ) = ϕ.
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Proposition 1 Let gΦ(Wp) be either supϕ∈Φ WP(ϕ),
∫

Φ WP(ϕ)dw(ϕ) or ln
( ∫

Φ exp( 1
2WP(ϕ))dw(ϕ)

)
,

where Φ is compact and WP(ϕ) = Pψ̂(ϕ)′Hr
[
H′rV̂∗P (ϕ)Hr

]−1H′rψ̂(ϕ), and ψ̂ (ϕ) =
[
µ̂ (ϕ)′ , θ̂ (ϕ)′

]′
is estimated from eq. (1). Then, under A1 to A4 and H0 defined in eq. (5): E

(
Lt+h|t

)
= 0 for all

t = R + h, ..., T and
lim

P→∞
gΦ
(
WP
)
→
d

gΦ
(
χ2), (29)

where χ2 is a chi-square distribution with degrees of freedom rank(Hr), and gΦ
(
χ2) can be completely

characterized by its covariance kernel K(ϕ1, ϕ2). The test rejects H0 defined in eq. (5) when gΦ
(
WP
)
> φα,

where φα is the critical value (for a nominal size of α) that can be simulated according to Algorithm 1 below.

The proof of Proposition 1 is provided in Appendix A.1.

2.4 Practical implementation

The asymptotic distribution in eq. (29) is not nuisance parameter free and cannot be tabulated
except for special cases.9 Therefore, we follow Hansen (1996b) to propose an algorithm that can
be used to simulate the critical values and which we report here for the readers’ convenience.
Loss differentials may exhibit serial correlations since it is a function of forecast errors, which are
serially correlated for h > 1. To deal with potentially unaccounted serial correlation in the loss
differential, i.e. an autocorrelated ut+h in eq. (1), we adjust the original algorithm for simulating
the asymptotic distribution proposed by Hansen (1996b). The adjustment is based on a suggestion
of Hansen (1996a).

Simulation Algorithm 1 Let ŝt+h(ϕ), MP(ϕ, ϕ), V̂∗P (ϕ), and Hr be as defined in Section 2.3. Let
B = (4(P/100)(2/9) + 1) be the bandwidth parameter of the Bartlett kernel used in the simulation
algorithm. Then, for each j = 1, ..., J do the following steps:

1. Draw a set of standard Normal random variates {vt,j}T−h+B
t=R :

(a) Calculate λ̂
j
P(ϕ) = 1√

P
1√

1+B ∑B
b=0 ∑T−h

t=R ŝt+h(ϕ)vt+b,j;

(b) Calculate W j
P(ϕ) = λ̂

j
P(ϕ)′MP(ϕ, ϕ)−1Hr

[
H′rV̂∗P (ϕ)Hr

]−1H′r MP(ϕ, ϕ)−1λ̂
j
P(ϕ);

(c) Repeat (a)-(b) for all ϕ ∈ Φ;

2. Compute gj
P = gΦ

(
W j

P
)
.

After J iterations, we obtain a set of {gj
P}

J
j=1 draws from the conditional distribution of the test

statistic; the approximate critical values are obtained by calculating the relevant quantiles.

For instance, for the case of the threshold model with G(St; ϕ) = 1(St ≤ γ) the algorithm
iterates over different values of γ ∈ Φ. In the case of a smooth threshold model, the algorithm
iterates over different values of the pair ϕ = (γ, τ) ∈ Φ.

The adjustment for serial correlation in the simulation of the asymptotic distribution does
not specify a specific process for the serial correlation and is, therefore, suited for a variety of
possible autocorrelations structures in the loss differential. If the researcher has reason to believe

9See Hansen (1996b) for a discussion.
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that there is no autocorrelation, for instance, in the case of h = 1, she can set B = 0 which reduces
Simulation Algorithm 1 to the original algorithm proposed in Hansen (1996b).

Our analysis focuses on a loss differential approach to formally test predictive ability. The
reason why we focus on the loss differential is because our goal is to directly evaluate the out-of-
sample performance of the forecasts based on the loss function preferred by the researcher. There
are several advantages in working directly with the loss function approach to model evaluation,
as opposed to testing the model’s parameters. One advantage is that in our framework we can
directly analyze the predictive performance even when the underlying forecasting models are
unknown, for instance, in the case of using survey data, Greenbook forecasts, or the forecasts
published by institutions. A second advantage is that estimating a threshold regression requires
some potentially complicated choices regarding the model specification. For instance, in a model
with many predictors, the researcher has to decide which variable is subject to the threshold effect
and which one isn’t. This problem does not arise when testing for non-linearities directly in the
forecast error losses.

When our test rejects the null hypothesis, it is important to analyze why: this could be due to
either the fact that a model performing worse/better while the performance of the other model
remained the same, or that both models forecasting performance deteriorated/improved. To
further investigate the reasons behind the time-varying performance, the researcher can compute
the MSFE of each model in the different regimes identified via our methodology. Then, he/she
can compute the overall ratio of the MSFEs of the two competing models, as well as ratios in the
respective sub-samples identified by our test. While not a formal test, this provides evidence to
answer the questions posed above: did one model get worse, or both models but one less so, or
did one model get better and the other worse. We discuss such an approach in the Monte Carlo
simulations in Section 3.

2.5 State dependence via Markov switching

An alternative approach to model state dependence is Markov switching (Hamilton, 1989). Unlike
the threshold model, the regime changes in the Markov switching model depend upon an
unobserved (latent) Markov chain, St. Testing in the presence of Markov switching also requires
non-standard statistics as it is subject to two problems. The first problem is again the presence of
nuisance parameters that are only identified under the alternative; in this case, the state-to-state
transition probabilities and the coefficients that switch. The second problem is that, under the null,
the score of the restricted parameters is identically zero, which violates the regularity conditions
that are imposed to derive the asymptotic chi-square distribution of the finite-dimensional LR
(Wald, LM) statistic by a first-order approximation. Therefore, the procedure proposed in Hansen
(1996b), which deals with a nuisance parameter present only under the alternative, does not
readily apply to the case of Markov switching models. Instead, Hansen (1992); Garcia (1998); Cho
and White (2007); Carrasco et al. (2014) and Qu and Zhuo (2020) provide a variety of solutions
that address both problems.

We propose a test for predictive ability in the presence of Markov switching based on Carrasco
et al. (2014) in the Online Appendix and investigate its size properties as well. However, the
test, like all the tests for Markov switching listed above, relies crucially on a correctly specified
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distribution under the null hypothesis.10 A misspecified likelihood under the null will generally
lead to size distortions. For instance, consider the case where the true but unknown distribution
is a Student’s t with no Markov switching. The researcher assumes a Gaussian distribution with
no Markov switching under the null and a Markov switching model with regime dependent,
conditional Gaussian distributions under the alternative. Then, despite the absence of Markov
switching in the data generating process, the mixture property of the Markov switching model
under the alternative may approximate the Student’s t distribution better than the Gaussian
model under the null hypothesis. Unreported results show that this leads to an over-rejection of
the null hypothesis of no Markov switching.

While the assumption of Normality may be justified when applying tests for Markov switching
models directly on economic observables, the distribution of a loss differential is generally
unknown and may exhibit fatter tails than a Normal distribution (e.g. when using a quadratic loss).
Consequently, the above-described problem is more severe in the case of forecast comparisons,
and testing for Markov switching in this framework may be very sensitive to the choice of the
parametric distribution. In contrast, and as outlined in Section 2.3, threshold models do not rely
as heavily on the parametric assumptions on the error terms ut, and testing is, therefore, more
robust in practice.

3 Monte Carlo simulation analysis

In this section, we explore the size and power of our proposed tests in a series of Monte Carlo
simulation exercises. We consider both nested and non-nested forecasting models as well as a
variety of data generating processes (DGPs).

First, in Section 3.1 we investigate the size of our proposed DMNL tests for point forecasts. We
consider threshold, logistic smooth threshold as well as exponential smooth threshold regression
specifications. Additional size results for alternative DGPs as well as density forecasts can be
found in Appendix B.1. We also consider forecast encompassing as well as moment-based tests of
forecast efficiency in Appendix B.2 and in the Online Appendix, respectively. In all cases, the
tests are well-sized for moderate sample sizes.

In Section 3.2, we focus on the power properties of the tests. We consider both cases where
the specification of the loss differential under the alternative is aligned with the true DGP as well
as situations where it is not. For example, we let the true relative forecasting ability evolve over
time according to a threshold model; however, in one case the researcher specifies a threshold
model in the loss differential, and thus the specification under the alternative is aligned with the
DGP, while in a second case the researcher specifies a smooth logistic threshold model, in which
case the alternative and the DGP are not aligned. We also consider situations where the true DGP
involves constant deviations from equal predictive ability.

While Section 3.1 and Section 3.2 consider DGPs directly modeled on the forecast error losses,
in Section 3.3 we consider DGPs where the non-linear behavior in the forecast loss is generated
from a primitive specification of the true underlying data, which allows us to consider both
nested and non-nested forecasting models.

10Under the assumption of normality, the power of the test of Carrasco et al. (2014) relies on serial correlation in the
error terms, instead of other deviations from the distribution specified under the null.
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Finally, in all the power exercises in the main paper, we consider the case in which the state
St is observed. However, our test also has power in case the researcher only observes a noisy
estimate of St — for example, when St is a latent variable. As we discuss in Section 3.1 and
Section 3.2, our results are robust to situations in which the true state is unobserved and only a
noisy estimate is available.

The horizon we consider is one (h=1), and the number of Monte Carlo replications is 3,000.
For all Monte Carlo results we specified γ ∈ [0.15, 0.85], denoted in terms of the the empirical cdf
of St, and τ ∈ [0.1, 5]. Results are not sensitive to reasonable changes in the domain of γ and τ.

3.1 Size results

The underlying data for the point forecast comparison are generated by

yt+1 = ν + δ1zt,1 + δ2zt,2 + et+1, (30)

where ν = δ1 = δ2 = 1, et ∼iid N(0, 1), zt,1 ∼iid N(0, 1), and zt,2 ∼iid N(0, 1). The parameter
vector β̂

(j)
t = [ν̂t,j, δ̂t,j] denotes the OLS estimator β̂

(j)
t =

(
∑t

i=t−R+1 z(j)′

i−1z(j)
i−1

)−1
∑t

i=t−R+1 z(j)′

i−1yi,

where z(j)
t = [1, zt,j]. The two point forecasts, both of which are misspecified, are denoted by:

f̂ (1)t+1|t = z(1)t β̂
(1)
t , and f̂ (2)t+1|t = z(2)t β̂

(2)
t . As the misspecification of the two models is symmetric, it

is straightforward to show that they have the same predictive ability in expectation. That is, the
loss differential, given by

∆Lt+1|t =
(
yt+1 − f̂ (1)t+1|t)

2 − (yt+1 − f̂ (2)t+1|t
)2, (31)

is zero in expectation: E(∆Lt+1|t) = 0 for all t = R + 1, ..., T.
We generate time series of ∆Lt+1|t based on eq. (31) for several values of R and P: R =

[25, 50, 100] and P = [50, 100, 200, 1000]. Then, we estimate the following model on the loss
differential to investigate size:

∆Lt+1|t = µ + θ · G(St; ϕ) + ut+1, (32)

where G(·) indicates the functional form of the TR, LSTR or ESTR models, described in eq. (2),
(3), and (4); St ∼iid N(0, 1) and we treat ϕ as unknown.

Table 1 shows results for point forecast comparison for the null hypothesis defined in eq. (5)
for the three different test statistics: sup-W, exp-W, and ave-W. The size results are very similar
for the TR, ESTR, and LSTR specifications. Overall, the ave-W has the best size properties and
delivers size results that are good for P > 50 and R > 25 for both the threshold model and the
smooth threshold model(s). The results of the exp-W test are similar to the ave-W; however, size
distortions are slightly bigger in small samples than in the ave-W case. While the sup-W test
works well in large samples (P > 100), it somewhat over-rejects in smaller samples. The fact that
the ave-W has the smallest size-distortions and that the exp-W has smaller size distortions than
the sup-W is a property also present in the original test of Hansen (1996b), who found similar
results in a small Monte Carlo study for his null hypothesis.11

11In an unreported Monte Carlo study, we confirm the finding that in the original test of Hansen (1996b), the smallest
empirical rejection frequencies tend to be found for the ave-type test and the largest for the sup-type test.
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Table 1: Size results from a comparison of point forecasts

Panel A. ave-W

TR ESTR LSTR
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.099 0.074 0.072 0.063 0.097 0.077 0.066 0.065 0.098 0.070 0.069 0.061
50 0.102 0.073 0.071 0.062 0.092 0.072 0.070 0.056 0.101 0.081 0.073 0.055
100 0.103 0.069 0.060 0.059 0.097 0.069 0.065 0.056 0.096 0.078 0.069 0.054

Panel B. exp-W

TR ESTR LSTR
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.112 0.072 0.067 0.062 0.099 0.077 0.064 0.055 0.103 0.072 0.069 0.059
50 0.118 0.083 0.066 0.059 0.105 0.069 0.077 0.055 0.103 0.085 0.071 0.056
100 0.118 0.074 0.063 0.057 0.105 0.073 0.060 0.056 0.101 0.076 0.070 0.052

Panel C. sup-W

TR ESTR LSTR
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.126 0.081 0.065 0.062 0.124 0.084 0.061 0.058 0.111 0.078 0.068 0.057
50 0.140 0.090 0.071 0.060 0.126 0.081 0.072 0.059 0.103 0.091 0.073 0.059
100 0.142 0.079 0.066 0.058 0.134 0.080 0.063 0.050 0.114 0.074 0.066 0.053

Note: The table displays empirical rejection frequencies of the null hypothesis H0 : µ = θ = 0 for the DMNL test for point
forecasts evaluated with the MSFE loss function. The nominal size is 5%. Panels A to C show the results for the ave-W,
exp-W, and the sup-W for the threshold model (TR), and the smooth threshold model using an exponential (ESTR) and a
logistic (LSTR) function. The results are based on 3,000 Monte Carlo replications.

As previously mentioned, size results for nested models and density forecasts, as well as
moment-based tests (such as forecast encompassing and efficiency), are discussed in Appendix B.1,
Appendix B.2, and the Online Appendix, respectively.

3.2 Power results

In this section, we investigate the power properties of the threshold and logistic smooth threshold
regression models. In particular, we specify three different alternatives for the loss differential
defined in equation (31). The first alternative investigates the power of the proposed test statistics
for detecting state dependence (θ 6= 0). The second alternative investigates the empirical rejection
frequency when both µ 6= 0 and θ 6= 0. The third alternative investigates power against a constant
deviation from the null of equal predictive ability (µ 6= 0).

In order to conduct the power analysis we proceed as follows. Let ∆L(0)
t+1|t be the loss

differential obtained from one Monte Carlo draw of eq. (31), normalized by its sample standard
deviation (to ensure that the magnitude of the alternative is constant relative to the variation in
∆Lt+1|t). For all simulations we use St ∼i.i.d. N(0, 1) and γ = 0.12 In particular, we define the loss
differential under the first alternative, Alternative (1), as

∆L(1)

t+1|t(c) = ∆L(0)
t+1|t + µc + θc · 1(St ≥ γ), (33)

12Note that St is re-drawn in each Monte Carlo iteration for each alternative; we suppress the respective subscripts
for notational convenience.
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where c = 1, 2, ..., 14 with µ1 = 0, µ2 = 0.085, µ3 = 0.170, ..., µ14 = 1.10, and θc = −2µc. Note that
γ = 0 implies that E(St ≥ γ) = 1

2 . Therefore, it follows that Et∆L(1)

t+1|t = µc + E(St ≥ γ)θc =

µc − 1
2 2µc = 0, i.e. the overall sample has a zero mean and the magnitude of the state-switching

coefficient is 0.17 times the standard deviation of ∆L(0)
t+1|t, and so forth. In the case where c = 1,

µ1 = θ1 = 0 implies that the joint null, defined in equation (5), holds. The design of Alternative
(1) aims at isolating the power against the threshold alternative only, i.e. keeping the expected
value over the full sample at zero. This enables us to compare the power of our tests to the
power of the existing Fluctuation and GW test under non-linear alternatives. Therefore, we set
the parameter values as described above to leave the expected value of the ∆L(1)

t+1|t(c) over the full
sample at zero.

For Alternative (2), the values of µc are unchanged but θc = −µc, which implies that
Et∆Lt+1|t 6= 0. In other words, Alternative (2) is a case where both state-dependence and a
constant deviation from the null hypothesis are present:

∆L(2)

t+1|t(c) = ∆L(0)
t+1|t + µc + θc · 1(St ≥ γ). (34)

Alternative (3) considers constant deviation from the null hypothesis, i.e. θc = 0 ∀c:

∆L(3)

t+1|t(c) = ∆L(0)
t+1|t + µc, (35)

with µ1 = 0, µ2 = 0.085, µ3 = 0.170, ..., µ14 = 1.
We then estimate two specifications of the model given in eq. (8): the TR model and the LSTR

model. For both models, we treat ϕ as unknown and we test the null hypothesis defined in eq.
(5) using the DMNL test defined in eq. (27). Note that since the alternative with state-dependence
takes the form of a threshold model, the TR model is aligned with the DGP under the alternative.
However, the LSTR is not aligned with the DGP under the alternative, which allows us to assess
power in the case of misspecification. In the Online Appendix, we show results of the reverse
type of misspecification, i.e. where the DGP under the alternative is a smooth logistic threshold
model such that the TR is misspecified.

Figure 2 shows size-adjusted power for the three alternatives defined in equations (33) to
(35). We compare the performance of our DMNL with that of Giacomini and White (2006) (GW,
who formalized Diebold and Mariano, 1995) and the Giacomini and Rossi (2010) Fluctuation test.
The solid lines with markers “+” and “o” display the ave-W results for the threshold model and
logistic smooth threshold model, and the dashed and dotted lines show the results for the GW
and Fluctuation test, respectively.13 The three figures in Panel (a) show results for Alternative (1),
i.e. state dependence without a constant deviation. As we can see, the size-adjusted power of our
DMNL increases quickly with the magnitude of the alternative as well as with the size of P. Since
the DGP under the alternative is a threshold model, the LSTR exhibits rejection frequencies that
are smaller than those of the TR but nonetheless high. In turn, the GW and Fluctuation tests have
no power to detect the lack of equal predictive ability arising from the state dependence in the
relative forecasting performance, and their power remains flat around the nominal size.14

The three figures in Panel (b) show results for Alternative (2), i.e. the case of a constant devia-

13Results for the exp-W and sup-W are virtually identical and available upon request.
14Note that the Fluctuation test might have better power in cases where St is a persistent variable.
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Figure 2: Size-adjusted power results from a comparison of point forecasts

P = 50, R = 50

(a) Alternative (1)

P = 100, R = 50 P = 200, R = 50

P = 50, R = 50

(b) Alternative (2)

P = 100, R = 50 P = 200, R = 50

P = 50, R = 50

(c) Alternative (3)

P = 100, R = 50 P = 200, R = 50

Note: On the y-axis the figures display size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test for point forecasts evaluated with the MSFE loss function. The x-axis displays the magnitude
of the alternative in units of c. The nominal size is 5%. The solid lines with markers “+” and “o” display the ave-W
test results for the TR and LSTR models, respectively. The dotted line displays the results of the Fluctuation test by
Giacomini and Rossi (2010) and the dashed line displays the results of the GW test. The results are based on 3,000
Monte Carlo replications.

tion and state-dependence. The ave-W test of the TR and LSTR show again good size-adjusted
power properties, and due to the presence of a constant deviation, the GW and Fluctuation
rejection frequencies also increase as a function of the alternative’s magnitude, although they
reject less.

The three figures in Panel (c) show results for Alternative (3), i.e. a constant deviation without
state-dependence. As expected, the GW test tends to be the most powerful test in this scenario;
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however, the power of the ave-W for both the TR and LSTR is very similar to that of the GW test.

3.3 Power for DGPs resulting in state-dependent forecast error losses

In the previous section, the alternative was modeled directly as a non-linear function of ∆Lt+1|t.
In this section, we investigate power in two additional cases where the threshold behavior in the
loss differential or the forecast encompassing loss is the result of non-linearities in the underlying
data.

Common component DGP:
In our first example, two observable variables, yt and xt, are driven by a common component, ct,
and unpredictable idiosyncratic components, et and ut, respectively:

yt+1 = α + ct+1 + et+1, xt+1 = ct+1 + ηt+1, ct+1 = ρct + vt+1,

where α is a constant, et+1 ∼iid N(0, 1), ηt+1 ∼iid N(0, 1), and et+1, ηt+1, and vt+1 are mutually
independent. Importantly, vt+1 ∼ N(0, σ2

v,t+1), i.e. the variance is time-varying such that

σv,t+1 =

σv,L if St ≥ γ

σv,H if St < γ,

where σv,H > σv,L, i.e. the variance of the common component is a threshold-function of the state
St. In other words, one can interpret xt as a proxy for the common cycle and St as a proxy for the
unobserved strength of the common cycle.

In fact, in periods when St < γ, the shocks to the common component have a larger variance
then in periods when St ≥ γ, which increases the importance of the common cycle relative to the
idiosyncratic error and, therefore, increases the comovement between xt and yt+1.15

The benchmark forecasting model is the simple historical average while the competitor model
uses xt as a predictor:

f̂ (1)t+1|t =
1
R

t

∑
i=t−R+1

yi and f̂ (2)t+1|t = α̂t,R + β̂t,Rxt, (36)

where α̂t,R, β̂t,R are estimated by regressing yt+1 on a constant and xt, using a rolling window
estimation scheme of size R. These forecating models are similar to the ones that we consider in
the empirical analysis in Section 4.

Notice how the threshold in the volatility of the common component generates time-variation
in the relative forecasting performance: when St ≥ γ, the comovement between yt+1 and xt is
weaker such that xt is a very noisy predictor. However, when St < γ, the forecasting model
using xt (the observable proxy of the common cycle) outperforms the historical mean prediction
because the cyclical component dominates in these periods. Due to the autocorrelation in ct, this
effect will last for some periods even after St falls below the threshold again.

For the Monte Carlo study, we set α = 0.5, ρ = 0.8, and σv,L = 0.1. The small value
for σv,L implies that during calm periods, i.e. when St ≥ γ, the common component is of

15Lagged values of xt+1 are correlated with yt+1 due to the persistence in the cycle.
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negligible importance for the forecasting performance; the idiosyncratic and unpredictable error
et dominates. In turn, all else equal, the comovement of yt+1 and xt increases in σv,H such that the
competitor model’s relative performance in periods of St < γ also increases in σv,H. Therefore,
to investigate the power of our methodology to detect periods of predictability, we let σv,H vary
over a grid of equally spaced points in the interval [0.1, 1.6].16 The threshold variable we use is
the same as in our empirical application of Section 4, that is the monthly U.S. real GDP growth
estimate of Koop et al. (2020), which ranges from 1960:M6 to 2020:M12 (see Section 4 for more
details on the variable). We set the true threshold value in the simulations to γ = 1, and treat it as
unknown in the estimation of the threshold model on the loss differential and encompassing loss.
The in-sample estimation size is R = 240 (as in our empirical application in Section 4), which
leads to an out-of-sample size of P = 487.

Figure 3 displays the results. Panel (a) shows the power of the DMNL ave-W test for a threshold
regression model (TR, solid line with “+” markers) and a logistic smooth threshold regression
model (LSTR, solid line with “o” markers), as well as for the Giacomini and White (2006) (dashed
line) and Fluctuation tests (dotted line). The x-axis displays the grid of values of σv,H and the
y-axis shows the rejection frequency at the 5% percent nominal level. We observe that our
proposed methodology has better power than the GW and Fluctuation tests as σv,H increases. This
is because, for large values of σv,H, the relative performance of the competitor model improves
in periods when St < γ (the persistence in ct controls how the superior performance of the
competitor model smoothes out over time). Therefore, in these periods, the mean squared forecast
error (MSFE) of the competitor model is lower than that of the historical average.

Panel (b) shows the power of the DMNL ave-W test for forecast encompassing, i.e. whether the
first model encompasses the second model (again, the solid line with “+” markers denote the TR
specification and the solid line with “o” markers denote the LSTR specification), as well as of
the Giacomini and White (2006) (dashed line) and Fluctuation tests (dotted line). Our proposed
methodology and Giacomini and White (2006) have very similar power.

Panel (c) shows one draw of the simulated loss differentials (solid line) alongside St (dashed
line) and the value of γ = 1 (dotted line). When the dashed line is below the dotted horizontal
line, we have that σv,t+1 = σv,H, i.e. the signal of the common component is relatively stronger.
In turn, grey shaded areas indicate periods for which our threshold model, estimated on the
loss differential, assigns a superior predictive ability to the competitor model. In other words,
comparing periods where the dashed line is below the horizontal dotted line with the grey shaded
areas provides a visual inspection of whether our modeling strategy of the loss differential can
identify actual periods of superior predictive ability in the simulated data. As the figure shows,
the grey shaded areas coincide with periods where St < γ in the underlying DGP, indicating that
our methodology can recover such periods.

16Note that a null hypothesis of equal predictive ability or forecast encompassing does not hold for any of the values
for σv,H because even for σv,H = 0.1 the common component is present in the DGP although with very small signal to
noise ratio.
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Figure 3: Common component DGP: power

(a) Equal predictive ability (b) Forecast encompassing

(c) Draw of simulated loss differential

Note: Panel (a) shows the power of the equal predictive ability test of the DMNL ave-W as well as of the Giacomini
and White (2006) and Fluctuation tests. Panel (b) shows power for the forecast encompassing test of the DMNL ave-W
as well as for the Giacomini and White (2006) and Fluctuation tests. The x-axis displays the grid of values of σv,H
and the y-axis shows rejection frequencies at a 5% percent nominal level. Panel (c) shows a draw of a simulated loss
differential (solid line, positive numbers indicate a better forecast of the model using xt) alongside St (dashed line),
and the value of γ = 1 (dotted line). Grey shaded areas indicate periods where our estimated threshold model assigns
a superior predictive ability to the model that uses xt as a predictor.
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Threshold regression DGP:
In our second example, there is a threshold relationship present in the underlying data that is
unknown to the forecaster and, therefore, not modeled in either of the competing prediction
models. This translates into a threshold relationship in the loss differentials (encompassing loss).
Specifically, the underlying data, yt, is generated by

yt+1 = α + ρyt + θ1zt,1 + θ2zt,2 + β · 1(St ≥ γ)xt + et+1, (37)

with et, zt,1, zt,2 ∼iid N(0, 1), xt = ρxxt−1 + ηt, with ηt ∼iid N(0, 2), and St and γ are the indicator
variable and threshold value that we specify below. The variable xt is only present in the DGP in
periods for which St is bigger than the threshold γ.

We first consider the case where the two competing forecasting models used to compute
the loss differential for conditional mean predictions, labeled benchmark and competitor model
respectively, are non-nested17:

f̂ (1)t+1|t = α̂1,t,R + ρ̂1,t,Ryt + θ̂1,t,Rzt,1 and f̂ (2)t+1|t = α̂2,t,R + ρ̂2,t,Ryt + θ̂2,t,Rzt,2 + β̂2,t,Rxt, (38)

where α̂1,t,R, ρ̂1,t,R, and θ̂1,t,R are estimated by regressing yt on a constant, yt−1, and zt−1,1; and
α̂2,t,R, ρ̂2,t,R, θ̂2,t,R, and β̂2,t,R are estimated by regressing yt on a constant, yt−1, zt−1,2, and xt−1.
Note that the non-linear relationship β · 1(St ≥ γ)xt is unknown to the forecaster. All parameters
are estimated using a rolling window of size R, given below.

For the forecast encompassing test, the two competing forecasting models are nested18, such
that:

f̂ (1)t+1|t = α̂1,t,R + ρ̂1,t,Ryt and f̂ (2)t+1|t = α̂2,t,R + ρ̂2,t,Ryt + β̂2,t,Rxt, (39)

where the parameter are estimated as before but excluding zt−1,1 and zt−1,2, respectively, from the
regressions.

Notice that the competitor model will outperform the benchmark model when St ≥ γ, since it
incorporates information from xt into the forecast. However, the competitor model uses xt as a
predictor independently of the value of St and, therefore, performs worse than the benchmark
when St < γ. The larger is β, all else equal, the more the relative performance of the two
competing models differs in the two states St ≥ γ and St < γ. Therefore, in our Monte Carlo
study, we set α = ρ = ρx = θ1 = θ2 = 0.8, and let β vary over a grid of equally spaced points
in the interval [0, 1.4]. For the threshold indicator variable St we use the adjusted National
Financial Conditions Index (ANFCI), computed by the Chicago Fed (see the empirical application
in Section 5 for details), from 1971:M1 to 2019:M12. In the simulation of the DGP in eq. (37), we
set the true threshold value γ to zero, and treat it as unknown when estimating the threshold
model on the loss differential and the encompassing loss. We set R = 120 (as in our empirical
application in Section 5) for the in-sample estimation window size of the models in eq. (38) and
(39), which results in P = 480 given the ANFCI sample.

Figure 4 displays the results. Panel (a) shows the power of the DMNL ave-W test (solid line

17Since the common component DGP’s forecasting models were nested and because it is known that GW performs
better in finite sample when using non-nested models, we added the predictors zt,1 and zt,2.

18We dropped zt,1 and zt,2 from the predictions to avoid rejections of the null of “no forecast encompassing” due to
zt,1 or zt,2.
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Figure 4: Threshold regression DGP: power

(a) Equal predictive ability (b) Forecast encompassing

(c) Draw of simulated loss differential

Note: Panel (a) shows the power of the equal predictive ability test of the DMNL ave-W as well as of the Giacomini and
White (2006) and Fluctuation tests. Panel (b) shows power for the forecast encompassing test of the DMNL ave-W as
well as for the Giacomini and White (2006) and Fluctuation tests. The x-axis displays the grid of values of β and the
y-axis shows rejection frequencies at a 5% percent nominal level. Panel (c) shows a draw of a simulated loss differential
(solid line, positive numbers indicate a better forecast of the model using xt) alongside St (dashed line) and the value
of γ = 0 (dotted line). Grey shaded areas indicate periods where our estimated threshold model assigns a superior
predictive ability to the model that uses xt as a predictor.
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with “+” markers for TR, solid line with “o” markers for LSTR) for equal predictive ability, as
well as for the Giacomini and White (2006) (dashed line) and Fluctuation test (dotted line). The
x-axis displays the grid of values of β and the y-axis shows the rejection frequency at a 5% percent
nominal level. We observe that our proposed DMNL ave-W test statistic substantially outperforms
the Giacomini and White (2006) and Fluctuation test as β increases.

Panel (b) shows power results for the forecast encompassing test, i.e. whether the first model
is encompassing the second model in eq. (39). Again, our threshold model outperforms the GW
and Fluctuation tests as β increases.

Panel (c) shows an example of simulated loss differentials (solid line) alongside St (dashed
line) and the value of γ = 0 (dotted line). The grey shaded areas again denote periods when the
competitor model predicts better than the benchmark according to the estimated threshold model.
If the grey shaded areas coincide with periods when the true state is such that St ≥ γ (and some
periods thereafter due to the persistence in yt), our estimation strategy on the loss differential
identified the periods where the competitor model forecasts better than the benchmark. Figure 4
provides visual evidences that this is clearly the case.

The case of state variables observed with measurement error:
In the Monte Carlo results shown above, the state St is observed. However, in practice, the true
state variable may be latent and, therefore, only available with measurement error, a case which
we investigate in the Online Appendix.

In particular, we consider the scenario where the researcher does not observe St but only a
noisy measure S̃t = St + ξt, with ξt ∼ N(0, σ2

ξ ). Therefore, when estimating the threshold model
on the loss differential (or forecast encompassing moment), the researcher has to condition on S̃t

instead of St itself:
E(∆Lt+1|t|St) = µ + θ · 1

(
S̃t ≥ γ

)
.

We find that, when setting the standard deviation of the noise term to a quarter of the standard
deviation of the “signal” St, power results are still very good using our DMNL test.

4 Empirical application: uncovering pockets of predictability in eq-
uity premia

Financial return predictability is typically time-varying and elusive. As noted by Pesaran and
Timmermann (1995), Rapach and Wohar (2006), and Rapach and Zhou (2013), the predictability of
stock market returns appears only when focusing on special sub-samples; Goyal and Welch (2003);
Welch and Goyal (2008) similarly find that predictors that successfully forecast equity premia,
the U.S. returns or dividend price ratios typically change over time. Instabilities are widespread:
Paye and Timmermann (2006), for example, cannot reject the presence of structural breaks in
stock return predictive regressions in several countries and Rossi (2006, 2013b) find similar results
for exchange rate returns. As summarized in Timmermann (2008), “... there appear to be pockets
in time where there is modest evidence of local predictability; (...) the best forecasting method
can be expected to vary over time, and there are likely to be periods of model breakdown where
no approach seems to work”. It is then inevitable that one must confront time variation when
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evaluating financial models’ predictive ability in an attempt to track their ”local” forecasting
performance.

As discussed in Timmermann (2008) and Paye and Timmermann (2006), the predictability of
equity premia could be caused by market inefficiencies. If that is the case, then rational investors
will take the opportunity to trade and make profits. However, if a large number of investors
engage in taking advantage of the predictability, their behavior will eventually eliminate the
predictability altogether. This implies the existence of short windows of time in which equity
premia are predictable, but a low (or no) predictability in the rest of the sample.

In what follows, we attempt to uncover pockets of predictability in U.S. equity premia in
out-of-sample. We consider several of the classic economic predictors considered in Welch and
Goyal (2008): the book to market ratio (calculated as the ratio of the book value and the market
value of the Dow Jones Industrial Average and labeled “BookToMarket”); the default yield spread
(calculated as the difference between BAA and AAA-rated corporate bond yields and labeled
“DFY”); a monthly inflation measure based on the Consumer Price Index (labeled “Inflation”); a
stock variance measure computed as the sum of squared daily returns (labeled “StockVar”); the
long-term government bond yield (labeled “LongYield”); the short-term government bond yield
(labeled “Tbill”); and the term spread (calculated as the difference between the long-term yield
on government bonds and the Tbill and labeled "Spread").19

Then, the economic models are as follows:

Et−1rt = ν + δzt−1, (40)

where rt is the equity premium, zt−1 is the lagged economic predictor and ν is the intercept.
As the benchmark model, we focus on the historical mean. All models are estimated using a
window of the past twenty years of data, i.e. R = 240, producing a series of rolling one-step-ahead
out-of-sample forecasts.20

We estimate the ”local” forecasting performance using a non-linear model in the loss differ-
ences, where the loss difference is the difference in the squared out-of-sample forecast error of
the benchmark (historic rolling mean) minus that of the economic model (eq. 40):

E(∆Lt+1|t|St) = µ + θ · 1 (St ≥ γ) . (41)

Following the existing literature on the countercyclicality of equity premia, we use a measure
of monthly real GDP growth, computed by Koop et al. (2020), as our indicator variable. Koop
et al. (2020) impute a “true", yet unobserved, monthly real GDP growth series based on a mixed-
frequency Bayesian Vector Autoregression (BVAR), using accounting identities as well as GDP
expenditure-side and GDP income-side estimates as observables. Their monthly GDP growth
series ranges from 1960:M6 to 2020:M12.21

We chose output growth as the state variable since stock returns are linked, by the net present

19The data are from A. Goyal’s website: http://www.hec.unil.ch/agoyal/.
20Welch and Goyal (2008) use 20 years of monthly data and Harvey et al. (2021) use around 20 years of monthly

data for their results, both based on a rolling window estimation scheme. We provide robustness results for different
window sizes below.

21We are using the January 2021 vintage of Koop et al. (2020), who update the monthly real GDP growth series
when new data become available. In unreported results, we find that using other vintages available from Koop et al.
(2020) leads to the same results as presented here.
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value theory, to current and future output growth. Using a similar argument, Neely et al. (2014)
and Henkel et al. (2011), for example, show that return predictability is linked to economic
recessions. In fact, equity premia are countercyclical (Campbell and Cochrane, 1999; Bekaert
et al., 2009) and return predictability is correlated with the business cycle (Neely et al., 2014;
Dangl and Halling, 2012; Henkel et al., 2011; Rapach et al., 2010). In particular, when predicting
monthly equity premia, Neely et al. (2014) find that economic predictors, especially the term
spread and default yield spread, as well as technical indicators, beat the benchmark mean forecast
during NBER-dated recession periods. Relative to Neely et al. (2014) and Henkel et al. (2011), our
analysis has the advantage that we can formalize the link between predictability and the business
cycle using a non-linear model for the forecast error loss.

The idea, formalized in eq. (41), is to capture Timmermann’s (2008) ”pockets of predictability”,
where the pockets of predictability depend on the state of the business cycle. That is, the relative
performance of the models changes over time depending on whether real GDP growth is higher
(or lower) than an unknown threshold value. Note that a positive loss differential implies that the
economic model is better than the benchmark (the historical mean).

In addition, we are interested in testing for forecast encompassing; in fact, it could be the case
that some of the predictors result in forecasts that are similar to the mean forecast in terms of
accuracy but nonetheless have predictive power that is neglected by the benchmark model. To
assess whether the benchmark forecast encompasses the forecast using an economic predictor in
a state-dependent manner, we estimate:

E(ε̂2
t+1|t,1 − ε̂t+1|t,1ε̂t+1|t,2|St) = µ + θ · 1 (St ≥ γ) , (42)

where ε̂t+1|t,1 denotes the forecast error of the mean model, and ε̂t+1|t,2 denotes the forecast error
of the model with the economic predictor.

Table 2 reports the results of equal predictive ability (Panel A) and the forecast encompassing
tests (Panel B). Since our forecasting exercise is most closely related to Neely et al. (2014), our
baseline results use the same out-of-sample period as Neely et al. (2014), from 1966:M1 to
2011:M12; results for alternative samples are similar and shown in the Online Appendix. For each
predictor, listed in the first column, we report the p-values for the sup-W, ave-W, and exp-W test.
In addition, we report the p-value of the Giacomini and White (2006) (GW) and the Fluctuation
tests, and the out-of-sample size (for the Fluctuation we only indicate whether the p-value is
smaller or larger than 0.10 or 0.05). For the case where the DMNL tests reject the null hypothesis
of equal performance/forecast encompassing, we report the estimated parameters of the model
defined in eq. (41) in Table 3. In addition, Table 3 reports the results of t-tests on the parameters,
a Wald test on the sum of the parameters, the estimated threshold parameter, and the frequency
of the states.

Panel A of Table 2 shows that we find evidence of pockets of predictability when forecasting
using the term spread. The estimate of µ, shown in Table 3, is positive indicating that the loss
difference is positive when real GDP growth is lower than the threshold value, in which case the
economic model has a better predictive ability than the benchmark model. However, when real
GDP growth is high, the loss difference becomes negative. That is, the spread adds noise to the
prediction of the returns during periods of at least moderate GDP growth, while the opposite
is true when GDP growth is low. Panel B of Table 2 shows that the results regarding the term
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spread hold when testing for forecast encompassing as well.
Notice that, unlike our proposed tests, the GW test does not find significant differences

between the model with the spread and the benchmark. This is because our test is more powerful
to detect pockets of predictability when there are instabilities associated with non-linearities.
Notice that the Giacomini and Rossi (2010) Fluctuation test statistic is not bigger than the critical
value in the case of the spread either; hence, even though the Fluctuation test is robust to
instabilities in the relative forecasting performance, it is nevertheless less powerful than the test
proposed in this paper and, in our data, never finds evidence of predictive ability, possibly due to
its sporadic appearance over time.

Our results are related to previous work, for instance, Neely et al. (2014), who found evidence
that the term spread is capable of predicting equity premia during economic recessions. However,
they differ in two important ways. Firstly, our paper is the first to use a monthly real GDP growth
series and formally test for non-linearity in the loss differentials; in fact, previous papers relied
on pre-defined NBER recession dummies or quarterly GDP data (Rapach et al., 2010). Secondly,
using monthly real GDP growth in combination with our methodology, we find that the pockets of
predictability are correlated with, but are not limited to, recessionary periods. In particular, there
are 148 months that our model identified as pockets of predictability but which are not classified
as NBER recession dates. Our results, therefore, suggest that the pockets of predictability are not
only correlated with the business cycle but also present outside NBER recession dates.

Table 4 sheds further light on what drives the relative forecasting performance. It shows
the two competing forecasts’ MSFEs for different subsamples: the full out-of-sample as well as
the two subsamples identified by St ≥ γ̂ and St < γ̂. In periods of high real GDP growth, i.e.
when St ≥ γ̂, the performance improves for both forecasts relative to the full sample, but less
so for the forecast obtained with the spread as a predictor. In turn, during periods of low real
GDP growth, i.e. when St < γ̂, both the simple mean as well as the forecast obtained with the
economic predictor perform worse, but the latter less so.

We further conducted a number of robustness checks. In the first robustness check, we
increased (decreased) R, the in-sample estimation window size, to 300 (180) observations. Results
are reported in Appendix C — in particular, see Table C.1, for the test of equal predictive ability,
and Table C.2, for the forecast encompassing test. The results are similar even with different
in-sample estimation window sizes.

In the second robustness check, reported in Table C.3, we add monthly real GDP growth as a
linear control variable in eq. (41), i.e. E(∆Lt+1|t|St) = µ + θ · 1 (St ≥ γ) + φSt, and test µ = θ = 0.
As in the baseline result in Table 2, our test rejects the null hypothesis for the spread, pointing out
that a simple linear conditional test would not be sufficient to uncover the non-linear relationship
between GDP growth and the pockets of predictability.

In the third robustness exercise, reported in the Online Appendix, we show that our results
are robust to specifying the out-of-sample period as 1966:M1 to 2006:M12 (pre-financial crisis),
1966:M1 to 2017:M12 (the end of the Welch and Goyal, 2008 dataset), or 1960:M6 (the start of the
monthly GDP series) to 2011:M12.

For the spread, for which we found that the economic model performs sometimes better than
the benchmark, Figure 5 reports the loss differences (∆Lt+1|t, solid line) over time, together with
the monthly real GDP growth series (St, dashed line) that triggers the state-switching. Shaded
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areas depict periods where the economic model has, on average, a lower squared forecast error
than the benchmark model (the loss difference is positive on average). Periods that are not shaded
indicate times in which the benchmark model performs better than the economic model. The
figure shows that there are several pockets of predictability, where the economic model predicts
slightly better than the benchmark. Furthermore, these pockets persist for a few periods and are
interrupted by periods when the economic model performs worse than the benchmark, causing
the average performance of the model to be poor over the entire sample.

Farmer et al. (2019) also find evidence in favor of pockets of in-sample predictability in U.S.
equity premia using the term spread. Their methodology is very different from ours, as they
employ a time-varying parameter model estimated non-parametrically while we model directly
the forecast loss differential. In addition, they focus on equity premia at a daily frequency, while
we have data at a monthly frequency. Despite these differences, several of their identified pockets
are similar to ours.

In particular, our pockets identified for the beginning of the 1970s, the mid-1970s, and the
beginning of the 1980s coincide with the in-sample findings of Farmer et al. (2019) for the term
spread. Moreover, Farmer et al. (2019) show out-of-sample results for daily data using a bivariate
model with the term spread and the Tbill as predictors. Again, the pockets they find at the
beginning of the 1970s, the mid-1970s, and the beginning of the 1980s coincide with ours for the
term spread.

Table 2: State-dependence in equity premium forecasts

Variable Name DMNL Alternative statistics Sample size

Panel A. Loss differential
sup-W ave-W exp-W GW Fluct. P

DFY 0.144 0.278 0.242 0.523 < 0.10 552
Inflation 0.586 0.538 0.539 0.602 > 0.10 552
StockVar 0.515 0.463 0.469 0.238 > 0.10 552
LongYield 0.855 0.729 0.743 0.700 > 0.10 552
Spread 0.020 0.031 0.020 0.570 > 0.10 552
Tbill 0.774 0.724 0.734 0.896 > 0.10 552
BookToMkt 0.408 0.156 0.194 0.070 < 0.10 552

Panel B. Forecast encompassing
sup-W ave-W exp-W GW Fluct. P

DFY 0.453 0.458 0.465 0.416 > 0.10 552
Inflation 0.034 0.021 0.024 0.054 < 0.05 552
StockVar 0.576 0.566 0.575 0.504 > 0.10 552
LongYield 0.768 0.449 0.507 0.260 > 0.10 552
Spread 0.002 0.001 0.001 0.002 < 0.05 552
Tbill 0.396 0.129 0.165 0.073 > 0.10 552
BookToMkt 0.460 0.270 0.307 0.163 > 0.10 552

Note: The table shows p-values of tests of equal predictive ability (Panel A) and forecast encompassing
(Panel B) using the DMNL, the GW, and the Fluctuation test (for the Fluctuation test we only indicate
whether the p-value is smaller or larger than 0.10 or 0.05). Boldface numbers indicate significance at the
10% level. The in-sample estimation window size, R, is 240.
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Figure 5: Pockets of predictability using the term spread

Note: The figure shows the estimated ∆Lt+1|t (solid line, positive numbers indicate that the economic model forecasts
better than the mean model) together with the monthly real GDP growth measure St (dashed line), which triggers
the state-switching, for the term spread as the predictor. Shaded areas indicate periods where the economic model
performs better than the benchmark, i.e. they show the pockets of predictability.

Table 3: State-dependent estimates: eq. (41) and (42)

Predictor Parameter estimates Parameter tests State characteristics
µ̂ θ̂ µ̂ + θ̂ γ̂ µ̂ = 0 θ̂ = 0 µ̂ + θ̂ = 0 S̄ P(St ≥ γ̂)

Panel A. Loss differential
Spread 0.190 −0.284 −0.093 0.779 3.793 −3.248 1.554 0.922 0.592

Panel B. Forecast encompassing
Spread 0.288 −0.274 0.014 0.779 6.113 −2.819 0.027 0.922 0.592
Inflation −0.006 0.092 0.086 0.086 −0.221 0.501 0.223 0.922 0.842

Note: The table shows the parameter estimates associated with the equation in (41) and (42). The columns µ̂, θ̂, µ̂ + θ̂, and
γ̂ show the parameter estimates associated with the sup-W statistic. The columns µ̂ = 0, θ̂ = 0, and µ̂ + θ̂ = 0 show the
values of the statistic when using a t-test or a Wald test respectively, for testing the hypothesis that the parameters, or their
sum, are equal to zero. The critical values of a Wald test, with one restriction, at the 5% and 10% level are 2.706 and 3.842.
Boldface numbers indicate a rejection at the 10% level. The column S̄ shows the average value of the conditioning variable
St, and P(St ≥ γ̂) shows the relative frequency of being in the state where both µ and θ are present.

Finally, note that, in this paper, we focus on detecting “pockets of predictability” in historical
data and linking it to the time-variation in an economic threshold variable. For readers interested
in methodologies specifically tailored for real-time detection, Inoue and Rossi (2015) and Harvey
et al. (2021) propose monitoring procedures to detect structural changes. They suggest sequentially
repeating t-tests over short time periods and control the overall rejection rates. For example, in
their application to predictive regressions, Harvey et al. (2021) find that the one-month ahead
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equity premium had been predictable at several points in time and that such episodes could
have been detected in real-time by their methodology. Unlike us, Harvey et al. (2021) do not find
pockets for the term spread as a predictor. As pointed out by Harvey et al. (2021) themselves
when comparing their results to Neely et al. (2014), these differences can stem from the longer
sample of the data we are using and the fundamental difference between an ex-post analysis of
predictability, which is our approach, and the real-time monitoring approach of Harvey et al.
(2021).

Table 4: Mean squared forecast errors in subsamples identified by the state variable

Predictor Mean forecast (MF) Economic predictor (EP) Rel. MSFE:
EP/MF

Full St < γ̂ St ≥ γ̂ Full St < γ̂ St ≥ γ̂ St < γ̂ St ≥ γ̂
Spread 1.000 1.347 0.761 0.992 1.283 0.792 0.952 1.041

Note: The column labeled “Full” shows the MSFEs over the full out-of-sample period. The column
labeled St < γ̂ (St ≥ γ̂) shows the MSFE in the subsample where St is lower (greater) than the
threshold value. The columns labeled “Rel. MSFE: EP/MF” show the ratio of the MSFE of the
economic model and the mean model in the respective subsamples; a number smaller than one
indicates a superior performance of the economic model. To ease the comparison between the
subsamples, we normalized all values by the MSFE of the mean forecast in the full sample.

5 Empirical application: forecasting industrial production

Non-linearities are also widespread in macroeconomic forecasting. As the literature has shown,
the relative forecasting performance of the models is unstable and varies over time (see Rossi,
2013a for a reference). Moreover, while parsimonious statistical models tend to forecast well in
regular times, models that use economic predictors are more accurate in disruptive times, such as
during recessions and financial crises (see Chauvet and Potter, 2013).

In this section, we investigate the state dependence in models’ relative forecasting performance
when predicting U.S. industrial production (IP). Adrian et al. (2019) demonstrate the importance
of financial conditions when forecasting the distribution of output growth, particularly tail
risk, advocating for a non-linear relationship between financial stability and macroeconomic
performance. They suggest that financial conditions can be important for growth for two
reasons. In structural models, frictions in either the supply of or the demand for credit can result
in non-linear equilibrium relationships between financial conditions and growth (see He and
Krishnamurthy, 2011 and Brunnermeier et al., 2013, among others). On the other hand, financial
variables, by virtue of being fast-moving variables, can provide more timely signals about negative
shocks to the economy. Granziera and Sekhposyan (2019) further show that financial conditions
can be useful for model selection when forecasting industrial production.

Motivated by the evidence above, we model the state-dependence in the relative forecasting
performance of models of IP growth in terms of financial conditions and use the Chicago Fed’s
adjusted National Financial Conditions Index (ANFCI) as an indicator for the state. The ANFCI
is a financial conditions indicator constructed as a weighted average of 105 measures of financial
activity, adjusted to remove the variation associated with economic activity and inflation. By
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construction, values above zero indicate financial conditions that are tighter than average. We
obtained the series from the database FRED of the Federal Reserve Bank of St. Louis. The relative
forecasting performance, however, could vary over time not only when the ANFCI is greater
than zero, but also when it is above/below some other threshold value. We let the threshold be
unknown and estimate it using our procedure. Our proposed tests detect the thresholds in the
models’ relative forecasting performance across financial cycles.

The forecasting environment is similar to Granziera and Sekhposyan (2019). The benchmark
is an autoregressive model of order p (AR(p)):

yt+1 = α + ρ(L)yt + et,

where yt is industrial production growth, ρ(L) = ρ + ρ1L + ... + ρpLp is a lag-polynomial with a
lag length of p, chosen by the BIC, which is re-estimated at each point in time. The competitor is
an autoregressive-distributed lag model (ADL(p,q)) using one economic predictor at-a-time:

yt+1 = α + ρ(L)yt + φ(L)xt + et,

where φ(L) = φ + φ1L + ... + φqLq. The lag length p of the autoregressive component is given
from the AR(p), and we (re-)estimate q via the BIC, again, at each point in time.

We consider four macroeconomic variables and four financial variables as predictors (label
and FRED mnemonics are reported in parentheses): new privately-owned housing units started
(labeled “Housing Starts," HOUST), the non-farm vacancies divided by the number of unemployed
(labeled “VacancyToUr", HelpHWIURATIO), the employment level (labeled “Employment",
CE16OV), new orders of durable goods (labeled “New Orders”, AMDMNOx), outstanding
consumer credit, measured by outstanding total nonrevolving credit owned and securitized
(labeled “Consumer Credit”, NONREVSL), the spread between the one-year Treasury rate minus
the Federal Funds rate (FFR) (labeled “One Year Spread”, T1YFFM), the spread between the
ten-year Treasury rate and the FFR (labeled “Ten Year Spread”, T10YFFM), and the Moody’s Baa
Corporate Bond rate minus the FFR (labeled “Credit Spread”, BAAFFM). These indicators are
broadly considered to be leading indicators for real economic activity. The data are from the
FRED-MD database of McCracken and Ng (2016) and ranges from January 1959 to December
2019. We transform the data as recommended in McCracken and Ng (2016) to ensure stationarity.

The forecasting horizon we consider is one month. The parameters α, ρ(L), and φ(L) are
estimated using a rolling window of 10 years, i.e. 120 observations. Given the one-step-ahead
forecasts of the AR(p) and ADL(p,q), we compute the loss differential, ∆Lt+1|t, as the difference
between the squared forecast error of the AR(p) and the squared forecast error of the ADL(p,q).
Then, we model the loss differential as

E(∆Lt+1|t|St) = µ + θ · 1 (St ≥ γ) , (43)

and we test the null hypothesis H0 : µ = θ = 0. Since the ANFCI series starts in 1971:M1, our
out-of-sample size is 587 observations.

Table 5 shows results for our test statistics. When we use the VacancyToUR, New Orders, and
Consumer Credit as predictors, our sup-W, ave-W, and exp-W reject the null hypothesis of equal
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predictive ability. The GW test rejects equal predictive ability in these cases as well, yet it is not
suitable to shed light on the presence of state-dependence. The Fluctuation test (Fluct.), on the
other hand, does not reject equal predictive ability.

Table 5: State-dependence in industrial production forecasts

Variable Name DMNL Alternative statistics Sample size

sup-W ave-W exp-W GW Fluct. P
Housing Starts 0.135 0.148 0.135 0.641 > 0.10 587
VacancyToUr 0.021 0.022 0.023 0.045 > 0.10 587
Employment 0.218 0.309 0.294 0.362 > 0.10 587
New Orders 0.004 0.003 0.003 0.039 > 0.10 587
Consumer Credit 0.027 0.049 0.043 0.020 > 0.10 587
Ones Year Spread 0.598 0.668 0.681 0.430 > 0.10 587
Ten Year Spread 0.755 0.641 0.666 0.422 > 0.10 587
Credit Spread 0.523 0.733 0.719 0.740 > 0.10 587

Note: The table shows p-values of tests of equal predictive ability using the DMNL sup-W, ave-W, exp-W
tests as well as GW and Fluctuation test (for the Fluctuation test we only indicate whether the p-value is
smaller or larger than 0.10 or 0.05). Boldface numbers indicate significance at the 10% level. The in-sample
estimation window size, R, is 120.

The coefficient estimates of the threshold model for cases where the test rejects are reported
in Table 6. The estimates strongly suggest the presence of state-dependence for the VacancyToUR
index and New Orders. Whenever financial conditions are sufficiently tight, i.e. St ≥ γ̂, the
models using either the VacancyToUR or the New Orders as a predictor perform better, as
indicated by θ > 0 and θ > |µ|. Moreover, the estimated threshold value, γ̂, is 0.767 for the New
Orders. The fact that γ̂ is considerably above zero, the ad-hoc threshold at which the ANFCI
indicates tighter financial conditions, shows the usefulness of our method since our method does
not rely on the ad-hoc threshold value, and, in fact, the estimated threshold value is much larger.
Note that when using a GW test on the subsample of the loss differential for which St ≥ 0, we
cannot reject the null hypothesis of equal predictive ability (the value of the test statistic of 0.264);
when using the GW test on the subsample identified by St ≥ 0.767, the value of the test statistic
is 2.168. In other words, using the value of zero as a threshold would not have allowed us to
identify the periods of superior predictability when using the New Orders as a predictor.

For Consumer Credit, we find that the AR(p) always outperforms the ADL(p,q) model, as
both µ̂ as well as µ̂ + θ̂ are negative, albeit only statistically so in regular times. When financial
conditions are tight, there is little statistical difference between the ADL(p,q) model relative to
the parsimonious autoregressive benchmark. In addition, across all these models, the identified
thresholds are different, yet capture states that dominate at most 35% of the sample period.
Furthermore, St and the identified threshold enable the researcher to select models and pick the
next period’s most accurate model.

Given that our test rejects the null hypothesis, Table 7 investigates which model performs
the best in the presence of state-dependence (that is when the predictors are VacancyToUr and
New Orders). The table shows the MSFE of the two competing models for the full out-of-sample
period as well as the out-of-sample periods where St < γ̂ and St ≥ γ̂. Moreover, in the columns
labeled “Rel. MSFE ADL(p,q)/AR(p),” the table shows the relative MSFE of the two models over
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Table 6: Parameter estimates given the presence of state dependence

Frequency Parameter estimates Parameter tests State freq.

µ̂ θ̂ µ̂ + θ̂ γ̂ µ̂ = 0 θ̂ = 0 µ̂ + θ̂ = 0 P(St ≥ γ̂)
VacancyToUR −0.009 0.096 0.087 −0.050 −0.270 2.867 70.628 0.359
New Orders −0.028 0.082 0.054 0.767 −0.862 2.469 44.570 0.160
Consumer Credit −0.022 0.005 −0.017 0.136 −4.035 0.422 2.145 0.290

Note: The table shows the parameter estimates associated with eq. (43). The columns labeled µ̂, θ̂, µ̂ + θ̂, and γ̂ show the
parameter estimates associated with sup-W. The columns µ̂ = 0, θ̂ = 0, and µ̂ + θ̂ = 0 show the values of the statistic
when using a t-test (F-test) for testing the hypothesis that the parameters (or their sum) are equal to zero. The critical
values of the F-test with one restriction at the 5% and 10% level are 2.706 and 3.842. Boldface numbers indicate a
rejection at the 10% level. P(St ≥ γ̂) shows the relative frequency of being in the state where both µ and θ are present.

the two sub-samples. We report relative MSFEs, where the MSFEs have been normalized by the
full sample MSFE of the AR(p) model. The first row shows the results for VacancyToUr: the
MSFE of both the AR(p) and ADL(p,q) increase during times of financial stress (where St ≥ γ̂);
however, the increase in the MSFE of the ADL(p,q) is smaller than the increase for the AR(p)
model. In other words, while both models have a higher MSFE during times of financial stress,
the information in the Help-Wanted Index ratio helps reduce the increase in the MSFE. The
pattern is the same for new orders.

Figure 6 plots the estimated ∆Lt+1|t, highlighting the periods where the economic model
performed better (shaded areas). Note that, while the shaded areas coincide with several
recessions, they are not necessarily limited to recessionary dates. For instance, the VacancyToUr
improved the predictive performance in the mid-1980s and pre-2000s, i.e. outside and before
recessions. Thus, the non-linear dependence is not necessarily tied to the state of the business
cycle.

Table 7: MSFEs in subsamples identified via the threshold model

Frequency AR(p) ADL(p,q) Rel. MSFE:
ADL(p,q)/AR(p)

FS St < γ̂ St ≥ γ̂ FS St < γ̂ St ≥ γ̂ St < γ̂ St ≥ γ̂
VacancyToUr 1.000 0.642 1.634 1.003 0.700 1.539 1.091 0.942
New Orders 1.000 0.648 2.824 1.040 0.713 2.736 1.101 0.969
Consumer Credit 1.000 0.631 1.898 1.020 0.662 1.891 1.049 0.996

Note: The column labeled “Full” shows the full out-of-sample MSFEs. The column labeled St < γ̂ (St ≥ γ̂)
shows the MSFE in the subsample where St is lower (greater) than the threshold value. The columns labeled
“Rel. MSFE: ADL(p,q)/AR(p)” show the ratio of the MSFE of the ADL(p,q) and AR(p) model in the respective
subsamples; a number smaller than one indicates a superior performance of the ADL(p,q). To ease the
comparison between the subsamples, we normalized all values by the MSFE of the full sample of the AR(p)
forecast.

The appendix shows that our results are largely robust to the choice of the in-sample estimation
window (see Table D.1 in Appendix D) or including the ANFCI as a linear control variable (see
Table D.2 in Appendix D).
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Figure 6: State dependence in the relative forecasting performance

(a) Predictor: VacancyToUr

(b) Predictor: New Orders

Note: The figure shows ∆Lt+1|t (solid line, positive numbers indicate that the ADL(p,q) forecasts better than the AR(p))
together with the state variable, ANFCI (dashed line). Grey shaded areas highlight periods where the ADL(p,q) model
outperforms the AR(p) benchmark. Panel (a) shows the results when using VacancyToUr as the predictor. Panel (b)
shows the results when using New Orders as the predictor.
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6 Conclusion

We have developed methodologies that allow researchers to test for the presence of non-linearities
in the relative and absolute forecast error losses. Non-linear changes in the forecasting per-
formance could be, for example, naturally generated in the presence of models with omitted
non-linearities. For example, if the true data generating process is a threshold model, the forecast
error loss of a model with constant parameters may feature non-linear, threshold-type time-
variation. Hence, our paper is useful in situations where the researcher expects the forecast
performance to be state-dependent. Currently, the only approach available to researchers is
Giacomini and Rossi (2010), and, as we show, it is not the best approach to handle non-linear
forecast error losses when the non-linearity is a function of an observable variable.

Our testing framework assumes that the parameters of the forecasting models are estimated
using a rolling window scheme, i.e. we evaluate forecasting methods rather than forecasting
models, and we allow for nested and non-nested models. Results from a Monte Carlo study
indicate good size and power properties of the test statistics for moderate and large sample sizes.

In the first empirical application, we document the existence of state dependence in the relative
forecasting performance when predicting stock returns. In particular, a model that only uses the
historical mean as a predictor performs better during times of high real GDP growth, whereas
a model that uses the term spread as a predictor has a better forecasting performance during
times of low real GDP growth. Hence, our results link predictability in returns to current output
growth. Existing tests, such as the Giacomini and White (2006) and Giacomini and Rossi (2010)
tests, cannot detect these “pockets of predictability” as they lack power against state-dependence.

Since non-linearities are also widespread in macroeconomic forecasting, in the second empiri-
cal application we investigate the relative forecasting performance of an autoregressive versus an
autoregressive-distributed lag model for forecasting U.S. industrial production. The choice of
our state variable, the adjusted National Financial Conditions Index, is motivated by Adrian et al.
(2019) who demonstrated the importance of financial conditions for forecasting the distribution
of output growth, particularly tail risk, advocating for a non-linear relationship between financial
stability and macroeconomic performance. Our proposed test detects state-dependence in the
loss differentials of several predictors, indicating that the additional predictors used by the
autoregressive-distributed lag model help forecasting U.S. industrial production during times of
tight financial conditions.
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A Theory

A.1 Proof of Proposition 1

Proof of Proposition 1. According to Theorem 3.49 in White (2001), if At is α-mixing (or strong
mixing) with coefficients of size −δ, δ > 0, so is any measurable function of a finite number of
lags of At. Under A1(i), δ > ν/ (ν− 1) and ν > 1, such that δ > 0, and as absolute regularity
implies α-mixing, A1(i) implies that any measurable function of a finite number of lags of At is
absolutely regular. By A1(ii) and A4, Lt+h|t and Xt are measurable functions of a finite number
of lags of At, and thus, under A1(i), they are absolutely regular with coefficients of size −δ.
Consequently, (Lt+h|t, Xt) is strictly stationary and absolutely regular with mixing coefficients
η (m) = O

(
m−δ

)
for some δ > ν/ (ν− 1) and ν > 1, and thus satisfying assumption 1(i) in

Hansen (1996b). Further, A2 implies that assumptions 1(ii)-(iii) in Hansen (1996b) hold, and A3
that assumptions 2 and 3 in Hansen (1996b) are satisfied. Thus, under A1 to A4, the result follows
from Theorem 1 of Hansen (1996b).

A.2 The case of multiple threshold variables

For now, we have treated the threshold variable St as known, and only the threshold γ as
unknown. As noted by Hansen (1996b), in practice, the researcher might have several potential
threshold variables St at hand and needs to decide which variable to include. This case can
be naturally accommodated in our framework of the threshold regression model, i.e. when
G(St; γ) = 1{St ≥ γ}, and we sketch the procedure in the following.

Let D denote a finite set of index numbers, from 1 to d̄, for candidate threshold variables, such
that St(d), d ∈ D, denotes the candidate threshold variable indexed by d. Eq. (1) then becomes

Lt+h|t = X′tµ + X′tθ · 1{St(d) ≥ γ}+ ut+h. (44)

Conditional on a value (γ, d) ∈ (Γ x D), the estimation of eq. (44) is analog to that in the model
described in eq. (1). Further, and to simplify notation, let all terms of Section 2.3 that are a
function of γ be defined analogously as a function of (γ, d). Further, let

DMNL
Γ,D : gΓ,D(Wp) =


supd∈D supγ∈Γ WP(γ, d)
1
D ∑D

∫
Γ WP(γ, d)dw(γ, d)

ln
( 1

D ∑D
∫

Γ exp( 1
2WP(γ, d))dw(γ, d)

) (45)

denote the test statistic defined on the parameter space of both γ ∈ Γ and d ∈ D. It is straight-
forward to show that the test statistic in eq. (45) has as an asymptotic distribution for point and
density forecasts that is analogue to that derived in Proposition 1. We now state the necessary
assumptions and then the corollary that accommodates the case of testing for a threshold model
when there is more than one candidate threshold variable.

Assumption A.A1 (i) For all d ∈ D, where D is a finite set of index numbers, (At, Xt, St(d)) is strictly
stationary and absolutely regular with mixing coefficients η(m) = O(m−δ) for some δ > v/(v − 1)
and v > 1. (ii) The estimation window size (R) is finite and the estimation scheme is a rolling window
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estimation.

Assumption A.A2 For r > v > 1, E|Qt|4r < ∞, E|ut|4r < ∞, infd∈D infγ∈Γ det
(

M(γ, γ, d, d)
)
> 0.

Assumption A.A3 Let r > v and let St have a density function g(St) such that sups∈Rd̄ g(s) = ḡ < ∞.

Assumption A.A4 f (i)t+h|t (.) is a measurable function of lags of At, for i = 1, 2.

Corollary 1 Let gΓ,D(Wp) be one of the statistics defined in eq. (45) . Then, under A.A1 to A.A4 and H0

defined in eq. (5): E
(
Lt+h|t

)
= 0 for all t = R + h, ..., T, we have

lim
P→∞

gΓ,D
(
WP
)
→ gΓ,D

(
χ2), (46)

where χ2 is a chi-square distribution with degrees of freedom rank(Hr), and gΓ,D
(
χ2) can be completely

characterized by its covariance kernel K(γ1, γ2, d1, d2).

Given A.A1 to A.A4, the proof of Corollary 1 follows from Proposition 1, invoking Theorem 3 of
Hansen (1996b). The algorithm to simulate the critical values is similar to the algorithm described
in Section 2.4, and is given below.
Draw a set of standard Normal random variates {vt,j}T−h+B

t=R :
Simulation Algorithm 2. For each j = 1, ..., J, do the following steps:

1. Draw a set of standard Normal random variates {vt,j}T−h+B
t=R :

(a) Select a threshold variable St(d), d ∈ D.

i. Calculate λ̂
j
P(γ, d) = 1√

P
1√

1+B ∑B
b=0 ∑T−h

t=R ŝt+h(γ, d)vt+b,j;

ii. Using λ̂
j
P(γ, d), calculate:

W j
P(γ, d) = λ̂

j
P(γ, d)′MP(γ, γ, d, d)−1Hr

[
H′rV̂∗P (γ, d)Hr

]−1H′r MP(γ, γ, d, d)−1λ̂
j
P(γ, d);

iii. Repeat (i)-(ii) for all γ ∈ Γ;

(b) Repeat (a) for all d ∈ D;

2. Compute gj
P = gΓ,D

(
W j

P
)
.

After J iterations, we obtain a set of {gj
P}

J
j=1 draws from the conditional distribution of the test

statistic; the approximate critical values are obtained by calculating the relevant quantiles. In
particular, the approximate p-value is given by p̂(J) = 1

J ∑J
j=1 1(gΦ(WP) > gj

P), where gΦ(WP)

denotes the value of the test statistic computed using the actual data.

B Additional Monte Carlo results

B.1 Nested models and density forecasts

In this section, we explore the finite sample size of our test statistic in the case of a point forecast
comparison of nested models and a density forecast comparison for non-nested models in a series
of Monte Carlo simulation exercises.
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Point forecast comparison - nested models:
The underlying data for point forecasts of nested models is generated by

yt = β + et, (47)

with et ∼iid N(0, 1) and β is a constant parameter. Let β̂t,R = 1
R ∑t

i=t−R+1 yi denote the OLS
estimate of β. The two point forecasts are f̂ (1)t+1|t = 0, and f̂ (2)t+1|t = β̂t,R respectively. For β = 1√

R
,

the expected squared forecast error difference is zero in expectation, i.e. the loss differential

∆Lt+1|t =
(
yt+1 − f̂ (1)t+1|t)

2 − (yt+1 − f̂ (2)t+1|t
)2, (48)

is zero in expectation: E(∆Lt+1|t) = 0 for all t = R + 1, ..., T.

Density forecast comparison:
The data for the density forecasts comparison is generated by the DGP in eq. (30). The two
competing density forecasts are both based on a normal density, given by φ(x|b, σ2), where x
denotes the value at which the density is evaluated, b denotes the conditional mean forecasts,
and σ2 the conditional variance forecast. The two conditional means of the normal densities
are the same as the point forecasts in PF1, i.e. b̂(1)t+1|t = z(1)t β̂

(1)
t,R, and b̂(2)t+1|t = z(2)t β̂

(2)
t,R, with β̂

(j)
t,R =(

∑t
i=t−R+1 z(j)′

i−1z(j)
i−1

)−1
∑t

i=t−R+1 z(j)′

i−1yi and z(j)
t = [1, zt,j]. In turn, the variance forecasts are based

on the in-sample estimate of the error variance: σ̂2(j)

t+1|t =
1
R ∑t

i=t−R+1
(
yi − z(j)

i−1 β̂
(j)
t,R
)2. The two den-

sity forecasts, both of which are misspecified, are denoted by: f̂ (1)t+1|t(yt+1) = φ
(
yt+1

∣∣b̂(1)t+1|t, σ̂2(1)
t+1|t

)
,

and f̂ (2)t+1|t(yt+1) = φ
(
yt+1

∣∣b̂(2)t+1|t, σ̂2(2)
t+1|t

)
. The loss differential is then given by

∆Lt+1|t = log
(

f̂ (1)t+1|t(yt+1)

)
− log

(
f̂ (2)t+1|t(yt+1)

)
, (49)

and is zero in expectation: E(∆Lt+1|t) = 0 for all t = R + 1, ..., T.

The model we use for evaluating the size of the DMNL is given in eq. (32). Table B.1 shows
results for point forecasts of the nested models. We observe some under-rejections, which are in
line in terms of their magnitude with the results of McCracken (2019) for nested models. The
results of the density forecast comparison, displayed in Table B.2, are overall good; we observe
some under-rejection for R = 25, as well as some over-rejection for P ≤ 100, but well-sized results
for R = 100 and P ≥ 200.
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Table B.1: Size results from a comparison of point forecasts of nested models

Panel A. ave-W

TR ESTR LSTR
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.082 0.061 0.042 0.032 0.084 0.051 0.044 0.027 0.089 0.054 0.044 0.035
50 0.094 0.058 0.047 0.035 0.093 0.067 0.041 0.026 0.094 0.060 0.043 0.024
100 0.104 0.062 0.050 0.027 0.100 0.063 0.046 0.031 0.108 0.069 0.048 0.035

Panel B. exp-W

TR ESTR LSTR
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.100 0.069 0.045 0.036 0.099 0.058 0.046 0.033 0.094 0.059 0.044 0.036
50 0.110 0.064 0.050 0.035 0.109 0.070 0.049 0.035 0.099 0.061 0.044 0.025
100 0.127 0.071 0.049 0.037 0.115 0.069 0.052 0.034 0.115 0.071 0.049 0.037

Panel C. sup-W

TR ESTR LSTR
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.125 0.084 0.053 0.042 0.135 0.077 0.057 0.041 0.109 0.067 0.048 0.040
50 0.137 0.078 0.057 0.040 0.141 0.074 0.056 0.040 0.107 0.070 0.048 0.034
100 0.152 0.085 0.060 0.044 0.150 0.082 0.058 0.039 0.131 0.077 0.050 0.039

Note: The table displays empirical rejection frequencies of the null hypothesis H0 : µ = θ = 0 for the DMNL test for equal
predictive ability of point forecasts of nested models evaluated with the MSFE loss function. The nominal size is 5%. Panels
A to C show the results for the three DMNL tests: the ave-W, sup-W, and exp-W. The results are based on 3,000 Monte Carlo
replications.

Table B.2: Size results from a comparison of density forecasts

Panel A. ave-W

TR ESTR LSTR
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.095 0.059 0.039 0.026 0.083 0.058 0.038 0.023 0.091 0.060 0.048 0.030
50 0.114 0.069 0.050 0.036 0.105 0.072 0.055 0.035 0.110 0.078 0.058 0.036
100 0.113 0.078 0.059 0.053 0.111 0.078 0.062 0.050 0.115 0.085 0.067 0.048

Panel B. exp-W

TR ESTR LSTR
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.121 0.070 0.051 0.032 0.109 0.070 0.046 0.034 0.097 0.062 0.050 0.032
50 0.149 0.081 0.058 0.041 0.129 0.077 0.062 0.043 0.119 0.080 0.061 0.037
100 0.129 0.083 0.060 0.053 0.129 0.079 0.065 0.051 0.119 0.086 0.068 0.048

Panel C. sup-W

TR ESTR LSTR
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.150 0.080 0.056 0.040 0.146 0.084 0.057 0.042 0.111 0.075 0.052 0.037
50 0.180 0.103 0.064 0.046 0.161 0.093 0.074 0.050 0.136 0.088 0.067 0.037
100 0.152 0.102 0.064 0.056 0.153 0.088 0.076 0.054 0.131 0.095 0.075 0.044

Note: The table displays empirical rejection frequencies of the null hypothesis H0 : µ = θ = 0 for the DMNL test for equal
predictive ability of density forecasts evaluated with the log-score loss function. The nominal size is 5%. Panels A to C show
the results for the three DMNL tests: the ave-W, sup-W, and exp-W. The results are based on 3,000 Monte Carlo replications.
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B.2 Forecast encompassing test

In this section, we show Monte Carlo results that investigate the finite sample size of a forecast
encompassing test. The DGP we assume in our simulations is

yt =

et for t ≤ R

βt−1xt + γt−1zt + et for t > R,

where R is the in-sample estimation size and et ∼iid N(0, 1), xt ∼iid N(0, 1), and zt ∼iid

N(0, 1). The coefficients βt and γt are given by βt = (∑t
i=t−R+1 xiyi

)
/
(

∑t
i=t−R+1 x2

i
)

and γt =

(∑t
i=t−R+1 ziyi

)
/
(

∑t
i=t−R+1 z2

i
)
. The two competing forecasting models that produce one-step-

ahead predictions are f̂ (1)t+1|t = 0 and f̂ (2)t+1|t = β̂txt+1, where β̂t,R = (∑t
i=t−R+1 xiyi

)
/
(

∑t
i=t−R+1 x2

i
)
.

The two forecast errors are given by ε̂t+1|t,1 = yt+1− f̂ (1)t+1|t and ε̂t+1|t,2 = yt+1− f̂ (2)t+1|t. The moment
condition to test for forecast encompassing can be expressed as ENCt+1|t = ε̂2

t+1|t,2− ε̂t+1|t,1ε̂t+1|t,2,
and we model ENCt+1|t as

ENCt+1|t = µ + θ · G(St; ϕ) + ut+1,

where G(·) takes the form of the TR, LSTR, or ESTR model, and we test for the null hypothesis of
forecast encompassing: µ = θ = 0. Table B.3 shows the results — the size results are good for
P ≥ 100 and comparable to the Monte Carlo results for the loss differential. For the sup-W, the
test is slightly undersized for R = 25 and P = 1000, but the rejection frequency is close to the
nominal size for R = 50 and R = 100.

Table B.3: Size results from a forecast encompassing test

Panel A. ave-W

TR ESTR LSTR
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.084 0.064 0.051 0.051 0.082 0.054 0.047 0.053 0.071 0.062 0.051 0.052
50 0.085 0.066 0.055 0.050 0.083 0.058 0.055 0.051 0.087 0.064 0.059 0.050
100 0.083 0.068 0.059 0.060 0.089 0.062 0.055 0.057 0.084 0.063 0.059 0.055

Panel B. exp-W

TR ESTR LSTR
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.098 0.054 0.044 0.044 0.087 0.056 0.045 0.041 0.074 0.061 0.051 0.049
50 0.095 0.066 0.049 0.046 0.084 0.050 0.050 0.045 0.091 0.062 0.055 0.048
100 0.091 0.067 0.053 0.056 0.093 0.060 0.051 0.052 0.084 0.060 0.060 0.055

Panel C. sup-W

TR ESTR LSTR
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.112 0.059 0.046 0.036 0.104 0.055 0.045 0.032 0.078 0.054 0.042 0.045
50 0.109 0.071 0.048 0.042 0.098 0.055 0.048 0.043 0.101 0.069 0.051 0.042
100 0.112 0.074 0.052 0.055 0.114 0.067 0.051 0.051 0.090 0.062 0.055 0.052

Note: The table displays empirical rejection frequencies of the null hypothesis H0 : µ = θ = 0 for the DMNL test for forecast
encompassing. The nominal size is 5%. Panel A to C show the results for the three DMNL tests: the ave-W, sup-W, and
exp-W. The results are based on 3,000 Monte Carlo replications.
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C Additional results: pockets of predictability

Table C.1: Loss differential: alternative sizes of R

Variable Name DMNL Alternative statistics Sample size

Panel A. R = 180
sup-W ave-W exp-W GW Fluct. P

DFY 0.411 0.453 0.468 0.619 > 0.10 612
Inflation 0.850 0.848 0.852 0.803 > 0.10 612
StockVar 0.427 0.278 0.325 0.104 > 0.10 612
LongYield 0.330 0.334 0.334 0.464 < 0.10 612
Spread 0.038 0.099 0.040 0.810 < 0.05 612
Tbill 0.286 0.246 0.254 0.445 > 0.10 612
BookToMkt 0.406 0.154 0.197 0.070 > 0.10 612

Panel B. R = 300
sup-W ave-W exp-W GW Fluct. P

DFY 0.054 0.095 0.076 0.224 < 0.05 492
Inflation 0.333 0.542 0.524 0.864 < 0.10 492
StockVar 0.569 0.426 0.451 0.162 > 0.10 492
LongYield 0.649 0.560 0.584 0.477 > 0.10 492
Spread 0.038 0.084 0.053 0.770 > 0.10 492
Tbill 0.757 0.692 0.703 0.587 > 0.10 492
BookToMkt 0.158 0.111 0.117 0.087 < 0.10 492

Note: The table shows p-values of tests of equal predictive ability using the DMNL, the GW, and the
Fluctuation test (for the Fluctuation test we only indicate whether the p-value is smaller or larger
than 0.10 or 0.05). Boldface numbers indicate significance at the 10% level. The in-sample estimation
window size, R, is 180 and 300, respectively.
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Table C.2: Forecast encompassing: alternative sizes of R

Variable Name DMNL Alternative statistics Sample size

Panel A. R = 180
sup-W ave-W exp-W GW Fluct. P

DFY 0.342 0.267 0.283 0.248 > 0.10 612
Inflation 0.106 0.066 0.085 0.094 < 0.05 612
StockVar 0.685 0.774 0.767 0.782 > 0.10 612
LongYield 0.767 0.650 0.671 0.382 > 0.10 612
Spread 0.020 0.008 0.008 0.009 < 0.05 612
Tbill 0.405 0.229 0.274 0.106 > 0.10 612
BookToMkt 0.755 0.495 0.533 0.266 > 0.10 612

Panel B. R = 300

DFY 0.292 0.476 0.455 0.950 > 0.10 492
Inflation 0.019 0.024 0.024 0.088 < 0.05 492
StockVar 0.762 0.815 0.819 0.751 > 0.10 492
LongYield 0.910 0.824 0.838 0.570 > 0.10 492
Spread 0.027 0.023 0.026 0.027 < 0.10 492
Tbill 0.535 0.411 0.445 0.249 > 0.10 492
BookToMkt 0.210 0.199 0.205 0.169 > 0.10 492

Note: The table shows p-values of tests of forecast encompassing using the DMNL, the GW, and the
Fluctuation test (for the Fluctuation test we only indicate whether the p-value is smaller or larger
than 0.10 or 0.05). Boldface numbers indicate significance at the 10% level. The in-sample estimation
window size, R, is 180 and 300, respectively.
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Table C.3: Testing for state dependence: including the indicator as a linear control
variable

Variable Name DMNL Alternative statistics Sample size

Panel A. Loss differential
sup-W ave-W exp-W GW Fluct. P

DFY 0.565 0.758 0.721 0.523 < 0.10 552
Inflation 0.790 0.904 0.904 0.602 > 0.10 552
StockVar 0.281 0.194 0.214 0.238 > 0.10 552
LongYield 0.846 0.783 0.817 0.700 > 0.10 552
Spread 0.144 0.021 0.054 0.570 > 0.10 552
Tbill 0.808 0.885 0.891 0.896 > 0.10 552
BookToMkt 0.383 0.129 0.204 0.070 < 0.10 552

Panel B. Forecast encompassing
sup-W ave-W exp-W GW Fluct. P

DFY 0.324 0.414 0.443 0.416 > 0.10 552
Inflation 0.430 0.441 0.466 0.054 < 0.05 552
StockVar 0.384 0.342 0.349 0.504 > 0.10 552
LongYield 0.709 0.515 0.561 0.260 > 0.10 552
Spread 0.011 0.000 0.003 0.002 < 0.05 552
Tbill 0.489 0.263 0.343 0.073 > 0.10 552
BookToMkt 0.574 0.192 0.287 0.163 > 0.10 552

Note: The table shows p-values of tests of equal predictive ability (Panel A) and forecast encompassing
(Panel B) using the DMNL, the GW, and the Fluctuation test (for the Fluctuation test we only indicate
whether the p-value is smaller or larger than 0.10 or 0.05). When using the DMNL test, we additionally
included the indicator variable St (monthly real GDP growth), as a linear control. Boldface numbers
indicate significance at the 10% level. The in-sample estimation window size, R, is 240.
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D Additional results: industrial production forecasts

Table D.1: Loss differential: alternative sizes of R

Variable Name DMNL p-values Alternative Statistics Sample Size

Panel A. R = 60

sup-W ave-W exp-W GW Fluct. P
Housing Starts 0.079 0.208 0.102 0.731 > 0.10 587
VacancyToUr 0.061 0.033 0.037 0.050 > 0.10 587
Employment 0.389 0.749 0.643 0.820 > 0.10 587
New Orders 0.018 0.043 0.033 0.068 < 0.10 587
Consumer Credit 0.187 0.142 0.154 0.054 > 0.10 587
One Year Spread 0.871 0.925 0.921 0.951 > 0.10 587
Ten Year Spread 0.486 0.390 0.436 0.178 > 0.10 587
Credit Spread 0.670 0.591 0.602 0.811 > 0.10 587

Panel B. R = 180

sup-W ave-W exp-W GW Fluct. P
Housing Starts 0.049 0.057 0.055 0.538 > 0.10 538
VacancyToUr 0.045 0.072 0.056 0.212 < 0.05 538
Employment 0.235 0.504 0.454 0.725 > 0.10 538
New Orders 0.115 0.182 0.195 0.155 > 0.10 538
Consumer Credit 0.001 0.005 0.003 0.040 > 0.10 538
One Year Spread 0.417 0.584 0.585 0.441 > 0.10 538
Ten Year Spread 0.551 0.736 0.737 0.529 > 0.10 538
Credit Spread 0.327 0.267 0.281 0.188 > 0.10 538

Note: The table shows p-values of tests of equal predictive ability using the DMNL, the GW, and the
Fluctuation test (for the Fluctuation test we only indicate whether the p-value is smaller or larger than
0.10 or 0.05). Boldface numbers indicate significance at the 10% level. The in-sample estimation window
size, R, is 60 and 180, respectively.
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Table D.2: Testing for state dependence: including the indicator as a linear control
variable

Variable Name DMNL p-values Alternative statistics Sample Size

sup-W ave-W exp-W GW Fluct. P
Housing Starts 0.335 0.262 0.270 0.641 > 0.10 587
VacancyToUr 0.163 0.043 0.096 0.045 > 0.10 587
Employment 0.386 0.395 0.444 0.362 > 0.10 587
New Orders 0.136 0.053 0.102 0.039 > 0.10 587
Consumer Credit 0.098 0.046 0.057 0.020 > 0.10 587
One Year Spread 0.329 0.703 0.644 0.430 > 0.10 587
Ten Year Spread 0.374 0.473 0.462 0.422 > 0.10 587
Credit Spread 0.663 0.809 0.804 0.740 > 0.10 587

Note: The table shows p-values of tests of equal predictive ability using the DMNL, the GW, and the
Fluctuation test (for the Fluctuation test we indicate whether the p-value is smaller or larger than 0.10 or
0.05). When using the DMNL test, we additionally included the indicator variable St (ANFCI), as a linear
control. Boldface numbers indicate significance at the 10% level. The in-sample estimation window size,
R, is 120.
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