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Abstract

This paper studies the equilibrating process of several implementation mecha-

nisms using naive adaptive dynamics. We show that the dynamics converge and are

stable, for the canonical mechanism of implementation in Nash equilibrium. In this

way we cast some doubt on the criticism of \complexity" commonly used against

this mechanism. For mechanisms that use more re�ned equilibrium concepts, the

dynamics converge but are not stable. Some papers in the literature on implemen-

tation with re�ned equilibrium concepts have claimed that the mechanisms they

propose are \simple" and implement \everything" (in contrast with the canoni-

cal mechanism). The fact that some of these \simple" mechanisms have unstable

equilibria suggests that these statements should be interpreted with some caution.
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1 Introduction

The theory of implementation tries to address the problem of designing games (which in

this literature are called mechanisms) whose equilibria satisfy certain socially desirable

properties but which do not necessitate vast amounts of knowledge by the authorities

to put them in place. Instead, these social arrangements should basically self police

themselves, and the government should only make sure that the rules of the game are

respected by the players.

In the last few years there have been impressive advances in the theory of implementation.

As Sj�ostr�om (1994) points out, `With enough ingenuity the planner can implement \any-

thing"'. This \ingenuity" often involves the construction of complicated games and the

use of re�ned equilibrium notions. As is often the case in economics, very little attention

has been paid to the issue of how equilibrium is reached, and whether it is stable. The

only exception we know of are the papers of Muench and Walker (1984) and de Trenqua-

lye (1988), who study the local stability of the Groves and Ledyard (1977) mechanism.

But we don't know of studies of more general mechanisms, either in Nash equilibrium

or in some re�nement of the Nash equilibrium concept; or studies of the issue of global

convergence. This situation is worrisome given the importance of the issues at hand and

the fact that the theory makes normative recommendations. It would not be sensible to

apply these social engineering recipes without �rst thinking about whether real people

will achieve the desired outcomes.

This paper tries to understand the e�ect of taking an adaptive (or evolutionary) dy-

namic approach for the implementation problem. The �rst result that we obtain is that

the canonical mechanism for implementation in Nash equilibria (see Maskin 1977, Re-

pullo 1987) has good dynamic properties under some additional assumptions about the

outcomes of the social choice correspondence. If agents play the game repeatedly and re-

place the strategies they use with strategies that obtained higher payo�s in the past, the

dynamics converge to the Nash equilibrium (so the social choice correspondence is imple-

mented) and once the dynamics converge to the equilibrium, they stay there. According

to Jackson (1992) `A nagging criticism of the theory is that the mechanisms used in

the general constructive proofs have \unnatural" features'. Moore (1992) also complains

that the mechanisms for Nash implementation are `highly complex -often employing some

unconvincing device such as an integer game'. Our result shows that unsophisticated

agents using very simple adjustment rules can reach the equilibrium of the mechanism,

and therefore it is possible that the criticism is misplaced. On the other hand it may be

that the critics are right. In this case we hope that our result encourages them to be more

speci�c about the \complexity" they criticize.

The intuition for why convergence can be achieved with the canonical mechanism is simple.

The structure of the general constructive mechanism is as follows. The agents have to

announce a state of the world, an outcome and an integer. If all agents agree on a state

and an outcome, the outcome is implemented. If one agent disagrees and proposes an
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alternative, there is a test that the alternative has to pass. If it passes the test, the

alternative outcome is implemented, otherwise it is not. A condition called monotonicity

(Maskin 1977) ensures that an alternative will only be proposed if the agents are lying.

The mechanism also speci�es what happens when more than one agent disagrees. In

these cases the mechanism gives the agent who proposed the largest integer her favorite

outcome given the state of the world she announces. It is clear that no situation with

more than one disagreer can be an equilibrium (if the best outcomes of the di�erent agents

are di�erent), all agents will try to announce higher and higher integers to obtain their

favorite outcomes. This use of integers is what the critics usually complain about.

Integer game constructions, however, help the process of convergence to equilibrium. Since

all disagreement outcomes are bad for somebody and there is an incentive for the harmed

to say the truth and obtain their favorite outcomes, they create a tendency towards

equilibrium. As for the other states, monotonicity destabilizes agreements on something

wrong but (when suitably strengthened) stabilizes agreements on the truth. Having un-

derstood that the \mission" of integer games is to make certain states unpleasant and to

direct the dynamics to the right path, it is not di�cult to see that the mechanism can be

modi�ed and the integer games can be substituted by something that plays their same

role. To show this we construct an alternative mechanism that makes use of penalties

and substitutes them for the integer game.

We also examine a mechanism that makes use of a more re�ned equilibrium concept. We

show that although convergence to the equilibria of these games can be achieved, they are

not very robust. The problem is that drift between strategies that have the same payo�

as the equilibrium payo� can destabilize the equilibrium outcome. This result is far from

being merely a theoretical curiosity. As Binmore and Samuelson (1996) point out, \the

experimental evidence is now strong that one cannot rely on predictions that depend on

deleting weakly dominated strategies", which is precisely what most of the mechanisms

that use re�ned equilibrium concepts do. The mechanism we study, which is the one

proposed by Abreu and Matsushima (1994), implements the social choice function in iter-

atively weakly undominated strategies. Besides being a good example of the literature on

implementation with re�ned equilibrium concepts, it has an additional interest because

it allows us to discuss the mechanism of Abreu and Matsushima (1992). This mechanism

virtually implements the social choice function (that is, it implements the social choice

function with arbitrarily high probability) in strategies that survive the iterative deletion

of strictly dominated strategies. This would seem to be a good mechanism from a dy-

namic perspective, given that iteratively strictly dominated strategies are asymptotically

eliminated for most adaptive dynamics (see Nachbar 1990, Samuelson and Zhang 1992

or Cabrales and Sobel 1992). The problem is that if the mechanism implements with

very high probability the social choice function, then it will do so in iteratively strictly

�-undominated strategies, for � very small. This implies that as the mechanism becomes

more e�ective in doing its job, it becomes closer to the one in Abreu and Matsushima

(1994) and thus it becomes open to the sort of instability problems which that mechanism

has. We think that this trade-o� between close implementability and stability needs to

3



be pointed out and we formalize it.

Section 2 describes the model and the dynamics we use. Section 3 studies the problem of

Nash implementation with adaptive dynamics, both with the canonical mechanism and

with an alternative that does not use integer games. Section 4 studies the dynamics of

the mechanisms of Abreu and Matsushima (1994) and Abreu and Matsushima (1992).

2 The model and the dynamics

There is a set I = 1; :::; n of agents, and the preferences of agent i 2 I are represented

with a (Von Neumann-Morgenstern) utility function vi : A��i ! R, where A is a �nite

set of alternatives and �i speci�es a �nite set of possible utility functions. An element

�i of �i is meant to represent the preferences of agent i over A. A preference pro�le is a

vector � = (�1; :::; �n), where �i 2 �i. The set of possible preference pro�les, denoted by

S, is a subset of � = �i2N�i. Since we are concerned with environments with complete

information, the preference pro�les will be common knowledge among the agents.

A social choice function is a (possibly multi-valued) mapping F : S ! A, where S � �

is the set of possible preference pro�les. A mechanism is a pair (M;g), where M =

M1 � :::�Mn and g : M ! A. Mi is the message space of agent i and g is the outcome

function. A mechanism and a preference pro�le de�ne a game.

Let M�i = M1 � ::: � Mi�1 � Mi+1::: � Mn. Given a mechanism (M;g) and a pref-

erence pro�le �, we will say that mi is a best response for player i, to m�i 2 M�i if

vi(g(mi;mi); �i) � vi(g(mi;m
0
i); �i) for all m

0
i 2 Mi. A message pro�le m is a Nash equi-

librium (NE) if mi is a best response to m�i for all i 2 N . Let NE(�) = fg(m)jm is a

NE at �g.

We say that a mechanism (M;g) implements a social choice function F in Nash equilibrium

if for all � 2 S, F (�) = NE(�).

The main claim of this paper is that the implementation games can only be relevant for

real individuals if one takes into account that an equilibrium of a game will be most of

the time the result of some trial and error process of learning by the agents. In general

there is no guarantee that an equilibrium will be the end product of such process. For

this reason one should study if adjustment processes converge to some equilibrium of

the implementation game. Furthermore, even if an equilibrium is attained it may be

unstable, and stability would also be a desirable characteristic of a game form that is

used to implement a social choice function.

We will assume now that the implementation game is played repeatedly by the agents and

that they can use the information obtained in previous periods to modify their behavior in

subsequent rounds of play. To keep the problem tractable we will make some assumptions

about the way in which the play and the updating takes place.
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Suppose that we have a population with L individuals playing the role of each agent

i, so that the population has a total of Ln individuals. All individuals in the ith role

are endowed with the same preferences �i. Let mki be the message sent by individual

k in the role of agent i. A population message pro�le s = (m11; :::;m1n; :::;mL1; :::;mLn)

speci�es a message for each individual in the population. A population message pro-

�le is homogeneous if mki is constant in k, that is, if all individuals in a certain role

use the same message. Let the set Shom be the set of all homogeneous message pro-

�les. Let si = (m1i; :::;mLi) and s�i = (s1; :::; si�1; si+1; :::; sn). For a certain mech-

anism (M;g), preference pro�le �, and message pro�le s let us denote uki(s; �i) =PL
k1=1

:::
PL

ki�1=1

PL
ki+1=1

:::
PL

kn=1
vi(g(mk11; :::;mki�1i�1;mki;mki+1i+1; :::;mknn; �i)

1
Ln�1

.

This utility function would obtain, for example, with uniform random matching, or (sub-

ject to renormalization) if every individual played with everybody else in the population,

before they could change their behavior.

We will say that message mki 2Mi improves upon strategy m0
ki given the message pro�le

s if uki(mki; s�i; �i) � uki(m
0
ki; s�i; �i). We say that mki is a best response to s�i if mki

improves upon m
0
ki for all m

0
ki 2 Mi. Let � > 0. We say that mki is an �-improvement

upon m
0
ki if uki(mki; s�i; �i)�uki(m

0
ki; s�i; �i) > ��U , where U is the maximumdi�erence

between payo�s for all � 2 �:

We assume that the population starts at some strategy pro�le and that before the game

is played again one member of the population is allowed to change her strategy. The

dynamics will be fully described when one identi�es the probability with which each

individual changes her message and the probability with which each message is chosen.

We will assume that the strategy shift will be made with a probability that depends

exclusively on the present state of the population, and that with positive probability only

one member of the population is allowed to change her strategy at any round of play.

Besides this we will use a few other assumptions.

(D1) All individuals change their strategies with positive probabilities.

(D2) Any strategy that improves upon the strategy currently in use is adopted with

positive probability.

(D3) A strategy that does not improve upon the strategy currently in use is adopted

with zero probability.

Two alternatives for assumptions (D2) will be used in sections

(D4) Any strategy that is a best response to the present population pro�le is adopted

with positive probability.
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(D5) Any strategy that is an �-improvement to the present population pro�le is adopted

with positive probability.

It is important for our results that probabilities be bounded away from zero. This is

implied by our assumptions when the strategy space and the population are �nite. In

section 3.1 the strategy spaces are in�nite. We will use a modi�cation of assumption

(D2) in that section to deal with that problem. These properties make our dynamics very

similar to the ones that Kim and Sobel (1995) use. The di�erence here is that (D1) is a

strengthening of their (N1) assumption. When assumption (D4) is used the dynamics are

closely related to the ones in Hurkens (1995), they are also a version for a discrete state

space of the dynamics proposed by Gilboa and Matsui (1991). Assumption (D5) will be

used in the discussion of virtual implementation.

Undoubtedly the dynamics described here are very crude, but one has to bear in mind that

the games we analyze may have very large strategy spaces and the analysis could be very

complicated without some drastic assumptions. We exploit a special characteristic that

the mechanisms that are commonly used in the literature usually have. For many strategy

pro�les there are many agents who have lots of alternative strategies that yield the same

payo�, and this payo� may be equivalent or even an improvement with respect to the

one they are presently using. Some degree of variability in the response at those states

will simplify convergence to an equilibrium. This variability is present if assumptions

(D1) and (D2) (or the alternatives to D2) are satis�ed. Assumption (D3) will make some

equilibria absorbing states. These assumptions permit us to obtain clear-cut results in a

relatively simple fashion. Other dynamics that are widely used in the literature may be

less tractable. Nevertheless, a necessary further step would be to study the robustness of

our conclusions to di�erent assumptions about the dynamics.

3 Nash implementation

In this section we will argue that the mechanisms that have been used to implement social

choice functions in Nash equilibria have good dynamical properties. In the �rst subsection

we will show that the dynamics described in section (2) converge and are stable for the

canonical mechanism. As we said in the introduction, this mechanism has been criticized

for being \highly complex". One can argue that if agents that are as unsophisticated as

the ones we model are able to converge to the equilibrium, the mechanism can hardly

be called \highly complex". We also show that the features that have given the Nash

mechanisms a bad name may not be necessary if the agents get to the equilibrium with

our dynamics. That is the content of the second subsection.
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3.1 The canonical mechanism (almost)

We say that F is monotonic if for all a; �; �0, with a 2 F (�) and a 62 F (�0) there is an i

and a
0 such that vi(a; �) � vi(a

0
; �) and vi(a

0
; �

0) > vi(a; �
0).

Let bi(�) be such that vi(bi(�); �) � vi(a; �) for all a 2 A.

Monotonicity is a necessary and almost su�cient condition for Nash implementation. We

will use somewhat stronger assumptions,

(N1) For all a; �; �0, with a 2 F (�) and a 62 F (�0) there is an i and a
0 such that

vi(a; �) > vi(a
0
; �) and vi(a

0
; �

0) > vi(a; �
0).

(N2) For all i, � and a 2 F (�) there is a
0 2 A such that vi(a; �) > vi(a

0
; �), and

vj(a
0
; �) � vj(a; �) for j 6= i.

(N3) For all �, a 2 F (�), for all j and for all i 6= j vi(a; �) � vi(bj(�); �).

Let us denote the agent i in assumption (N1) i(�; �0)1, and a0 be a0(�; �0). Agent i(�; �0) is

often called the test agent and a
0(�; �0) the test outcome in the implementation literature.

Let us also denote by a
0
i(a; �) the outcome a0 in assumption (N2).

Under our dynamics, all improving messages are chosen with positive probability. If the

Nash equilibrium of the mechanism were such that some agent had more than one best

response, it could be easily destabilized. To avoid this we will use two assumptions, (N1),

which demands that the test outcome be a strict improvement over the \status quo" and

(N2) by which it is always possible to punish a dissenter who has no reason to dissent

(she is not a test agent) and also make everybody else better o�. This will be possible

if, for example, there is a private good and one can levy �nes from one agent in terms of

the private good and distribute the proceeds among everybody else. (N3) says that the

social choice outcomes can be no worse for all agents i 6= j than the favorite outcome for

agent j. Suppose, for example, that there is a private good and consuming zero units of

this good is very bad for any agent. Assume also that the favorite outcome for agent j

assigns her all the group's endowment of the private good, and that all outcomes of the

social choice function assign a positive amount of the private good to all agents. In these

conditions assumption (N3) would be satis�ed. Since the mechanism involves that for

certain message pro�les an agent gets her favorite outcome, this assumption prevents the

dynamics from getting stuck at such a message pro�le.

We will use a slight variation of the canonical mechanism for implementation in Nash

equilibria, as described, for example in Repullo (1987).

1If there is more than one agent i which satis�es the condition, let i(�; �0) be the one with the lowest

index.
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Let Mi = A�S�N , so that each individual announces an outcome, a preference pro�le,

and a positive integer; and M = M1� :::�Mn, and let members of Mi and M be denoted

mi and m respectively. Let the �rst component of mi, that is, the outcome announced by

agent i be m1
i and the second component, the preference pro�le announced by agent i, be

m
2
i . Let i(m) be the individual who has the lowest index among those who announce the

highest integer in the message pro�le m.

To de�ne g, let's divide M into the following regions,

D1 = fmj9� 2 S; a 2 F (�) such that for all i; mi = (a; �; ni); for some ni 2 Ng

D2 = fmj8i 6= i(�; �0);mi = (a; �; ni)and mi(�;�0) = (a0(�; �0); �0; ni(�;�0))g

D3 = fmj8i 6= j;mi = (a; �; ni)mj 6= mi and either j 6= i(�; �0)

or j = i(�; �0) and mj 6= (a(�; �0); �0; ni(�;�0))g

D4 = fmjm 62 D1 [D2 [D3g

g(m) =

8>>>><
>>>>:

a if m 2 D1

a
0(�; �0) if m 2 D2

a
0
j(a; �) if m 2 D3

bi(m)(m
2
i(m)) if m 2 D4

This mechanism can be described in the following way. If everybody agrees on an outcome

and a state, then that outcome is implemented. If just one person disagrees with that

announcement, and this person is the test agent and it announces the test outcome, then

the test outcome is implemented. If just one person disagrees with that announcement,

and this person is not the test agent (or it is the test agent but she does not announce the

test outcome), then the dissenter is punished. If more than one person disagrees, then

the outcome is the favorite one for the agent who announces the largest integer.

The only di�erence between this mechanism and the one in Repullo (1987) is that in this

one we punish deviations from the equilibrium by agents other than the test agent, (and

even punish announcements by the test agent which are not part of the test pair).

3.2 The dynamics of Nash implementation

The main result in this section is that with the dynamics de�ned in section 2 for the

game that is de�ned by the mechanism in subsection 3.1 the population pro�le eventually

induces one of the outcomes that the designer wants to implement with probability one,

and that outcome is then implemented forever. In addition, if the initial state is homoge-

neous and none of the outcomes that the designer wants to implement are already being
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implemented, all outcomes in the social choice function are implemented with positive

probability.

As we said in section 2, we need to modify assumption (D2) to account for the fact

that the strategy spaces are in�nite since we need that some transition probabilities are

bounded away from zero. The strategies that improve upon the one currently in use can

be partitioned into a �nite number of sets in which the strategies only di�er with respect

to the integer that is named. We assume (only in this section) that at least one strategy

in each of these sets is used with a probability that is bounded away from zero.

De�ne the set Sa = fsj9�; such that 8a 2 F (�); i; and k;mik = (a; �; nik)g. The set Sa
is the set of population pro�les where in all games played in the population the message

pro�le is in the set D1, and the outcome is a.

Proposition 1. Let the true preference pro�le be �. Given dynamics that satisfy prop-

erties (D1), (D2), (D3), and given a social choice function that satis�es (N1), (N2), (N3);

(a) If s(0) is a homogeneous population pro�le such that s(0) 62 Sa for any a 2 �, then

for all a 2 � P (for some t0; s(t) 2 Sa8t � t
0) > 0.

(b) P ([a2F (�)ffor some t0; s(t) 2 Sa;8t � t
0g) = 1.

Proof: The proof will proceed through a series of lemmas. First we will show that for

any population pro�le the population can become a homogeneous population pro�le with

positive probability. Then we will show that a homogeneous population pro�le which does

not implement any social choice function outcome can lead to all homogeneous pro�les

whose outcomes are social choice function outcomes, and �nally we will show that a

population pro�le in Sa, where everybody announces the true preference pro�le cannot

exit that set.

Lemma 1: Let any s(t0). Then P (s(t) 2 Shom for some t > t
0) > 0.

Proof: By the de�nition of uik(s; �), uik1(s; �) = uik2(s; �), if mik1 = mik2, and therefore,

for any given pro�le s�i, the set of best responses for all individuals in role i is identical.

Suppose that all individuals in role 1 are called upon to move in sequence. This is an

event that has positive probability by property (D1). Since s�1 does not change along

that sequence of moves, the set of best responses for agents in role 1 does not change.

Suppose that they all change to the same best response m�
1. This has positive probability

by property (D2). There is also positive probability that an analogous succession of events

that lead to all agents in role 1 to play m
�
1 will lead to all individuals in role i to play

some m
�
i , without an intervening chance for individuals in roles j < i to change their

strategies. This will lead then with positive probability to a homogeneous pro�le s with

si = (m�
i ; :::;m

�
i ).2

Lemma 2: Let the true preference pro�le be � and let s(t0) 62 Sa and s(t0) 2 Shom. Then,

for all a 2 F (�), P (for some t > t
0
; s(t) 2 Sa) > 0.

Proof: Given a homogeneous population message pro�le s, let m(s) 2M be the message
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pro�le associated to the homogeneous pro�le s. In the proof this lemma, all the strategy

shifts that we will consider are shifts by all the individuals who are in the same role

in sequence. Therefore expressions like \agent i will update her message", have to be

understood as \all individuals in the role of agent i will update their message". The proof

will proceed by dividing the possible initial states into a series of subsets.

Claim 1. For a given �, if s(t0) 62 Sa, for any a 2 F (�) and s(t0) in Shom and m(s(t0)) 2 D1,

then P (for some t > t
0
; s(t) 2 Shom and m(s(t)) 2 D4) > 0.

Since s(t0) 2 D1 and s(t0) 62 Sa all agents must be announcing a preference pro�le �0 6= �.

By assumption (N1) and the de�nition of the mechanism, agent i(�; �0) can improve her

payo� by announcing �. Then with positive probability, by assumptions (D1) and (D2),

agent i(�; �0) will have a chance to update and will choose to announce �. After agent

i(�; �0) changes her announcement , any agent i 6= i(�; �0) announcing state � will move

the message pro�le to a state in D4. If at the same time she announces a high enough

integer so that i = i(m), then it will be advantageous to do so. Therefore this will happen

with positive probability by (D2).2

Claim 2. Let s(t0) in Shom and m(s(0)) 2 D2. Then P (for some t > t
0
; s(t) 2 Shom and

m(s(t)) 2 D4) > 0.

If m(s(t0)) is in D2, mi(s(t
0)) = (a0; �0; ni) for all i 6= i(�0; �00). Any agent other than

i(�0; �00) can move the message pro�le to D4 by announcing a di�erent outcome than a
0.

If she also chooses an integer high enough, and the true preference pro�le �, she can

obtain bi(�), which is a best response to s(t0). Assumptions (D1) and (D2) guarantee

that this happens with positive probability. 2

Claim 3. Let s(t0) in Shom and m(s(t0)) 2 D3. Then P (for some t > t
0
; s(t) 2 Shom and

m(s(t)) 2 D4) > 0.

If m(s(t0)) is in D3, mi(s(t
0)) = (a0; �0; ni) for all i 6= j. Any agent other than j can move

the message pro�le to D4 by announcing a di�erent outcome than a
0, and by choosing an

integer high enough, and the true preference pro�le � (which may or may not be equal to

�
0), she can obtain bj(�

0), which is a best response to s(t0). Assumptions (D1) and (D2)

guarantee that this happens with positive probability. 2

Claim 4. Let the true preference pro�le be � and a 2 F (�). Let s(t) in Shom and

m(s(t)) 2 D4. Then P (for some t0 > t; s(t0) 2 Shom and mi(s(t
0)) = (a; �; ni)) > 0.

If m(s(t)) 2 D4, there must be at least three di�erent messages, and at least two of them

have to be di�erent from (a; �). Call these reports, (a1; �1), (a2; �2), and the agents that

send these messages i1 and i2 respectively. Let agents i with i 6= i1 and i 6= i2, replace

their messages by (a; �). These replacements still give rise to pro�les in D4 and they are

best responses, provided that agents also announce the highest integer, thus assumptions

(D1) and (D2) guarantee that they are sent with positive probability. Now we have to

distinguish two cases.
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(a) i1 = i(�; �1), and (m1
i1
;m

2
i1
) = (a(�; �1); �1) and i2 = i(�; �2), and (m1

i2
;m

2
i2
) =

(a(�; �2); �2)

(b) i1 6= i(�; �1), or i1 = i(�; �1) and (m1
i1
;m

2
i1
) 6= (a(�; �1); �1); or i2 6= i(�; �2), or

i2 = i(�; �2) and (m1
i2
;m

2
i2
) 6= (a(�; �2); �2).

That is, either both i1 and i2 are test agents announcing test pairs, or one of them is not.

Let's start with case (b). Suppose i1 fails to be a test agent announcing a test pair (this

is without loss of generality). If agent i2 replaced her message with (a; �; ni2), this would

lead to a pro�le in D3, and the outcome would be a
0
i1
(a; �) (since there would be only

one dissenter, and this dissenter would not be a test agent announcing a test pair). But

by assumption (N2) agent i2 prefers a
0
i1
(a; �) to a and, by (N3) this is an improvement

over bj(m) for j(m) 6= i2, which is the current outcome, and thus i2 replaces her message

with (a; �; ni2) with positive probability. Once agent i2 announces (a; �; ni2) the outcome

is a0i1(a; �): If i1 then announces (a; �), the pro�le will be in Sa. By assumption (N2) this

is a best response for i1, since a
0
i1
(a; �) is worse than a for i1, so i1 will announce (a; �)

with positive probability.

In case (a) i1 can replace her announcement by (a0; �), with a
0 6= a. This preserves the

state in D4 and is a best response provided i1 announces the highest integer. But now we

are almost in the case (b) again. The only di�erence from case (b) is that i1 is choosing the

highest integer. But with positive probability some player other than i1 and i2 will move

now and announce the highest integer, (which is a best response) and then the state will

be like in case (b). At this point we can apply the argument in the previous paragraph

to show that the transition to Sa has positive probability. 2

Lemma 3: Let the true preference pro�le be � and let s(t) 2 Sa for a 2 F (�) and

m
1
ik(t) = �, for all i; k. Then s(t0) 2 Sa for all t

0
> t.

Proof: If s(t) 2 Sa, all message pro�les for all possible matches are in D1 and the out-

come is a. The only replacements that can change something (since only one individual

changes each time) will lead that game to a pro�le in D2 or D3. Since m
1
ik(t) = �, for all

i; k assumptions (N1) and (N2) guarantee that these replacements do not mean an im-

provement for any agent, since a test agent announcing a test outcome for another pro�le

�
0 will obtain vi(a(�; �

0); �) < vi(a
0
; �) by (N2) and any other deviating announcement

(a0; �0) obtains vi(a
0
i(a; �); �) < vi(a; �) by (N3). Since deviating messages produce strict

losses, assumption (D3) guarantees that they will not be made. 2

The combination of Lemmas 2 and 3 establishes part (a) of Proposition 1, since Lemma

2 shows that from any homogeneous pro�le the population reaches any Sa (for a 2 F (�))

with positive probability and Lemma 3 shows that once the population is in Sa it never

leaves the set. With the addition of Lemma 1 we have that from any state there is a

probability � > 0 of reaching [a2F (�)Sa and staying there forever in a number of steps

smaller than some �xed and �nite k. So the probability of not reaching [a2F (�)Sa in kn

steps is �kn. Since limn!1 �
kn = 0, part (b) follows.2
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3.3 A little further away from the canonical mechanism

Proposition 1 shows that the canonical game is not a bad idea from a dynamic point of

view. One may still question it, however, on the grounds that integer games and similar

constructions are very strange and they may not be \realistically implementable" (is there

enough time in the universe life span to describe any arbitrary integer?2)

From a purely dynamic point of view the assumption that all strategies that improve

weakly upon the presently used one are taken with positive probability seems suspicious,

especially given that strategies that do not improve are used with probability zero.

The answer to these questions is that under some assumptions on the permissible prefer-

ence pro�les one can construct a mechanism that does not use integer games and satis�es

the good dynamic properties of the canonical mechanism, even with more restrictive re-

quirements on the dynamics.

To be more precise, assumption (D2) will be replaced by assumption (D4). As for the

assumptions that the preferences have to satisfy, we will drop (N3) and will add two

others.

(N4) There exists an outcome P such that for all i; a; �, with a 2 F (�) vi(a; �) > vi(P; �).

(N5) For all �, �0, i 6= i(�; �0), vi(P; �) � vi(a
0(�; �0); �).

Assumption (N4) creates a punishment that is worse than anything the designer wants to

implement for everybody. We think of this as a kind of perverse \status quo" to which the

situation will revert if there is widespread disagreement among the agents. Assumption

(N5) tells us that if the test agent of the monotonicity condition denounces the other

members of the group, the test outcome is implemented, and this is at least as bad for

the \liars" as the P outcome.

LetMi = A�S, each individual announces an outcome and a preference pro�le. As before,

M = M1 � :::�Mn, and members of Mi and M are denoted mi and m respectively. The

�rst component of mi, that is, the outcome announced by agent i is m1
i and the second

component, the preference pro�le announced by agent i, is m2
i . To de�ne g, we divide M

into three regions,

D1 = fmj9� 2 S; a 2 F (�) such that for all i; mi = (a; �)g

D2 = fmj8i 6= i(�; �0);mi = (a; �)and mi(�;�0) = (a0(�; �0); �0)g

D3 = fmjm 62 D1 [D2g

2One should note that this criticism is not valid for mechanisms with `modulo' games, which have the

same dynamic properties as the canonical mechanism
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g(m) =

8><
>:

a if m 2 D1

a
0(�; �0) if m 2 D2

P if m 2 D3

The explanation of this mechanism is similar to the canonical mechanism. If everybody

agrees on an outcome and a state, that outcome is implemented. If just one person

disagrees with that announcement, and this person is the test agent and she announces the

test outcome, the test outcome is implemented. Otherwise, the outcome P is implemented.

One can see immediately that this mechanism does not implement the social choice func-

tion in Nash equilibria. Besides the equilibria that implement the social choice function,

there are many other equilibria whose outcome is P . However, we will show that all

equilibria, except the ones that implement outcomes of the social choice function, are

unstable.

It turns out that with the dynamics de�ned in section 2 (even if we replace assumption

(D2) for the harder to satisfy (D4)) the same conclusions obtained for Proposition 1 follow.

De�ne the set Sa = fsj9�; such that 8a 2 F (�); i; and k;mik = (a; �)g.

Proposition 2. Let the true preference pro�le be �. Given dynamics that satisfy prop-

erties (D1), (D2), (D4), and given a social choice function that satis�es (N1), (N2), (N4),

(N5);

(a) If s(0) is a homogeneous population pro�le such that s(0) 62 Sa for any a 2 �, then

for all a 2 � P (for some t0; s(t) 2 Sa8t � t
0) > 0.

(b) P ([a2F (�)ffor some t0; s(t) 2 Sa;8t � t
0g) = 1.

Proof: As with the proof of proposition 1, we will proceed through a series of lemmas.

Lemma 4: Let any s(t0). Then P (s(t) 2 Shom for some t > t
0) > 0:

Proof: Same as Lemma 1. 2.

Lemma 5: Let the true preference pro�le be � and let s(t0) 62 Sa and s(t0) 2 Shom. Then,

for all a 2 F (�), P (for some t > t
0
; s(t) 2 Sa) > 0.

Proof:

Claim 5. If s(t0) 62 Sa, for any a 2 F (�) and s(t0) in Shom and m(s(t0)) 2 D1, then

P (for some t > t
0
; s(t) 2 Shom and m(s(t)) 2 D3) > 0.

Since s(t0) 62 Sa and m(s(t0)) 2 D1 everybody must be announcing a preference pro�le

�
0 6= �. By assumption (N1), and by the de�nition of the mechanism, it is a best response

for agent i(�; �0) to announce �. Then with positive probability, by assumptions (D1)

and (D4), agent i(�; �0) will have a chance to update and will choose to announce �,

which moves the pro�le to D2. After agent i(�; �
0) changes her announcement, any agent

i 6= i(�; �0) announcing state � will move the message pro�le to a state in D3, and since
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she can only move the game to D3 or stay in D2, and P is a better outcome for i 6= i(�; �0)

by assumption (N5), announcing � is a best response . Therefore this will happen with

positive probability by (D4).2

Claim 6. Let s(t0) in Shom and m(s(t0)) 2 D2. Then P (for some t > t
0
; s(t) 2 Shom and

m(s(t)) 2 D3) > 0.

If m(s(t0)) is in D2, mi(s(t
0)) = (a0; �0) for all i 6= i(�0; �00). Any agent other than i(�0; �00)

can move the message to D3 by announcing a di�erent outcome than a
0, which is a best

response to s(t0), by (N5). Assumptions (D1) and (D2) guarantee that this happens with

positive probability. 2

Claim 7. Let the true preference pro�le be � and a 2 F (�). Let s(t0) in Shom and

m(s(t0)) 2 D3. Then P (for some t > t
0
; s(t) 2 Shom and mi(s(t)) = (a; �)) > 0.

We can distinguish two cases.

(a) There exists some i1 such that mi1 6= (a; �) and either ii 6= i(�; �1), for all �1 2 S or

mi1 6= (a(�; �1); �1).

(b) For all i, either i = (a; �), or i = i(�; �1), for some �1 2 S and mi1 = (a(�; �1); �1).

That is, of all the agents that are not already announcing (a; �), either there is one which

is not a test agent announcing a test pair or all are test agents and announce test pairs.

In case (a) if all agents other than agent i1 change their messages to (a; �), the outcome

is still P and it is a best response. If then i1 changes her message to (a; �), the outcome

is a and this is a best response by assumption (N4).

In case (b) there must be at least two agents that are test agents announcing test outcomes,

or m(s(t)) would not be in D3. Let one of them be i1, and let mi1 change to (�; a0) for

a
0 6= a. This keeps the pro�le in D3 and it is a best response. But now we are in case (a)

2.

Lemma 6: Let the true preference pro�le be � and let s(t0) 2 Sa for a 2 F (�) and

m
1
ik(t

0) = �, for all i; k. Then s(t) 2 Sa for all t > t
0.

Proof: Like Lemma 3. 2

The combination of Lemmas 5 and 6 establishes part (a) of Proposition 2, since Lemma

5 shows that from any homogeneous pro�le the population reaches any Sa (for a 2 F (�))

with positive probability and Lemma 6 shows that once the population is in Sa it never

leaves the set. With the addition of Lemma 4 we have that from any state there is a

probability � > 0 of reaching [a2F (�)Sa and staying there forever in a number of steps

smaller than some �xed and �nite k. So the probability of not reaching [a2F (�)Sa in kn

steps is �kn. Since limn!1 �
kn = 0, part (b) follows.2
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4 Re�ned and virtual Implementation

4.1 Implementation in iteratively undominated strategies

So far, we have only considered implementation in Nash equilibrium.What about more

sophisticated equilibrium concepts? Since the seminal work of Moore and Repullo (1988),

there has been considerable interest in implementation with more re�ned equilibrium con-

cepts. The main advantage of these mechanisms is that the conditions for implementation

are weaker. In particular monotonicity is no longer required. This is important since in

economic environments implementing a single-valued social choice function and requir-

ing monotonicity is equivalent to truthful implementation in undominated strategies (see

Moore 1992).

By comparison, implementation in undominated strategies requires basically no restric-

tions. Abreu and Matsushima (1994) show that \any social choice function is exactly

implementable in iteratively weakly undominated strategies", and Sj�ostr�om (1994) \in

economic environments any social choice rule can be implemented in undominated Nash

equilibria". An additional advantage of some of these mechanisms (notably those of Abreu

and Matsushima (1994) and Sj�ostr�om (1994)) is that \integer games" or \modulo games"

are not used.

The purpose of this section is to show that these advances should be viewed with some

suspicion if we believe that equilibrium is the outcome of a learning process, since the

adaptive dynamic process leads to undesired outcomes even asymptotically.

To focus the discussion we will concentrate on the mechanism proposed by Abreu and

Matsushima (henceforth AM) (1994), but the results can be extended to other mechanisms

based on re�nements that have been proposed in the literature.

We will begin by introducing some notation and describing the mechanism.

The �rst thing to notice is that AM (1994) only consider single-valued social choice

functions. Another important assumption is that there is a private good that can be used

to levy (small) �nes. Thus the utility function will be vi : A�R��i ! R . For simplicity

we will use (as AM (1994) does) the quasi linear utility function vi(a; t; �i) = ui(a; �i)+ti.

Besides the outcome function g(M) the mechanism speci�es a transfer rule, t = (ti)i2N :

M ! R
n. The message space will be,

Mi = �i � �i+1 � S � : : :� S = M
�1
i �M

0
i �M

1
i � : : :M

K
i ;

where K is an integer to be speci�ed. By the lemma in AM (1992) we have that there

exists a function fi : �i ! A, such that for every �i 2 �i,

ui(fi(�i); �i) > ui(fi(�
0

i); �i) for all �0i 2 �i=f�ig:

Let m = (m1; : : : ;mn), mi = (m�1
i ;m

0
i ; : : : ;m

n
i ), and m

h = (mh
1; : : : ;m

h
n). For any
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message pro�le m, the outcome function is,

g(m) =
e(m0

; : : : ;m
K)

n

X
i2I

fi(m
�1
i ) +

1 � e(m0
; : : : ;m

K)

K

KX
h=1

�(mh);

where for each h = 1; : : : ;K, we de�ne � :Mh ! A by

�(mh) =

(
F (�) if mh

i = � for at least (n� 1) agents

b otherwise;where b is an arbitrary element of A

and if we let � be a small positive number to be speci�ed later, and

~m0 = (m0
n;m

0
1; : : : ;m

0
n�1), we de�ne e :M

0 � : : :�M
K ! R by

e(mh) =

(
� if mh

i 6= ~m0 for some h 2 f1; : : : ;Kg and some i 2 I

0 otherwise

The outcome function g is a lottery with the following characteristics. With a probability

determined by the function e (which is nonzero when some agent's hth announcement

di�ers from ~m0) the favorite outcome of agent i, given her m�1
i announcement, is selected

with probability 1=n. With probability 1 � e another lottery is chosen which gives equal

weight to the K outcome functions given by the functions �(mh). This function says

that if all but one of the m
h
i announcements coincide on �, then F (�) is implemented,

otherwise an arbitrary outcome b is implemented.

To �nish the determination of the mechanism the penalty function has to be speci�ed.

Let 
; �; � be small positive numbers to be speci�ed later. Three possible penalties are

speci�ed for each player i.

1. 
 if his zeroth announcement di�ers from player (i+1)'s minusoneth announcement.

2. � if his hth announcement (h � 1) is the �rst to di�er from ~m0
: All players who are

�rst to deviate are punished.

3. � if his hth announcement is the only one to di�er from the other players' hth

announcements.

We will now give names to the �nes

� (m�1
i+1;m

0
i ) =

(
�
 if m�1

i+1 6= m
0
i

0 otherwise

di(m
0
; : : : ;m

K) =

8><
>:
��

if mh
i 6= ~m0 and m

h0

j = ~m0 for some h 2 f1; : : : ;Kg and

some i 2 I; all j 2 I; and all h0 2 f1; : : : ; h� 1g

0 otherwise
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�
h
i (m

h) =

(
�� if for some �; mh

i 6= �; but mh
j = � for all j 2 I=fig;

0 otherwise

The total �ne is thus ti(m) = � (m�1
i+1;m

0
i ) + di(m

0
; : : : ;m

K) +
PK

h=1 �
h
i (m

h):

To �nish with the description of the implementation game we need to de�ne the constants

K; �; �; � and 
. To do this de�ne �rst,

Ei(�i) = max
m�12M�1;mh2Mh

������
1

n

X
j2I

ui(fj(m
�1
j ); �i)� ui(�(m

h); �i)

������
Di(�i) = max

mh2Mh; �mh

i
2Mh

i

n
ui(�(m

h); �i)� ui(�(m
h
�i; �m

h
i ); �i)

o

Fix � (small) and K (large) and choose �; � and 
 to satisfy

Assumption AM1
� > �Ei(�i)

� >
1

K
Di(�i) + �


 > �Ei(�i) + �

With these three inequalities AM (1994) show the following lemmas,

Lemma 7. Under assumption AM1. Let any mi, and �mi = (�i;m
0
i ; : : : ;m

K
i ), then for

all m�i,

vi(g( �mi;m�i); t( �mi;m�i); �i) � vi(g(m); t(m); �i)

Lemma 8. Under assumption AM1. For all m with m
�1
i = �i for all i if we let �mi =

(�i; �i+1;m
1
i : : : ;m

K
i )

vi(g( �mi;m�i); t( �mi;m�i); �i) > vi(g(m); t(m); �i)

Lemma 9. Under assumption AM1. For all m with m
�1
i = �i, m

0
i = �i+1 and m

q
i = �

for all q 2 f1; : : : ; h� 1g, if we let �mq
i = m

q
i for all q 6= h and �mq

i = � then,

vi(g( �mi;m�i); t( �mi;m�i); �i) > vi(g(m); t(m); �i)

We now show that if the lemmas are true, dynamics like those described in section 2 will

go with positive probability to a state where the social choice function is implemented.

Proposition 3. Let the true preference pro�le be �. Given dynamics that satisfy

properties (D1), (D2), (D3), if Lemmas 7, 8 and 9 are satis�ed, P (for some t; s(t) 2

SF (�)) > 0.
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Proof: For this proof we �rst need some lemmas.

Lemma 10: Let any s(t0). Then P (for some t � t
0
; s(t) 2 Shom) > 0.

Proof: Same as Lemma 1. 2.

Lemma 11: Let s(t0) 2 Shom Then P (for some t � t
0
; s(t) 2 SF (�)) > 0.

Proof: Let s(t0) 2 Shom. Then with positive probability the players will change their

messages one by one so that m�1
ki (t

�1) = �ik for all i; k and some t�1 > t. That is, the

minusoneth announcement of all players will be their true preferences. This happens be-

cause by Lemma 7 announcing the agent's own type truthfully in the minusoneth position

is weakly dominant so assumptions D1 and D2 guarantee this will happen with positive

probability. Similarly Lemmas 8 and assumption D1 and D2 guarantee that with positive

probability there is a t
0
> t

�1 such that m�1
ki (t

0) = �i; m
0
ki(t

0) = �i+1 for all i; k and

Lemma 9 and assumption D1 and D2 guarantee that there is a sequence of time periods,

t
h
> t

q for q < h such that m�1
ki (t

h) = �i m
0
ki(t

h) = �i+1 m
q
ki(t

h) = � for all i; k and q < h

Let then t
0 = t

K
2

This shows that the mechanism of AM (1994) can lead to the social choice function to be

implemented. Unfortunately, it is also possible to diverge from the equilibrium in which

the social choice function is implemented.

Proposition 4. Let the true preference pro�le be �. Given dynamics that satisfy

properties (D1), (D2), (D3), if s(t) 2 SF (�), then P (for some t0 � t; s(t0) 2 SF ( ~�)) > 0 for

any ~�.

Proof: If s(t) 2 SF (�), then if agent n changes m�1
n to some �0n 6= �n, her payo� does

not change by the de�nition of the mechanism. D1 and D2 guarantee that this happens

with positive probability. Let ~� be such that ~�n = �
0 and ~�i = � for all i 6= n . Through

a series of claims we show that with positive probability the population message pro�le

goes to SF ( ~�) that is, F (
~�) is implemented.

Claim 1. If m�1 = ~�;m0
i = �i+1 for all i 2 I and m

h
i = � for all i 2 I and h � 1, then

vn�1(g( �mn�1;m�(n�1)); t( �mn�1;m�(n�1)); �n�1)� vn�1(g(m); t(m); �n�1) < 0

where �mn�1 = (~�n�1; ~�n; ~�; �; : : : ; �)

vn�1(g( �mn�1;m�(n�1)); t( �mn�1;m�(n�1)); �n�1)� vn�1(g(m); t(m); �n�1)

= �
 + x(�)�
�
�� + �

n

P
i2I f(

~�i) + (1 � �)x(�)
�
< 0

where the equality follows from the de�nition of the mechanism and the inequality follows

from Assumption AM1.2

Claim 2. If m�1 = ~�;m0
i =

~�i+1 for all i 2 I and m
1
i 2

n
~�; �

o
(with at least m1

n�1 =
~�)
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and m
h
i = � for all i 2 I and h � 2, then

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i) < 0

where �mi = (~�i; ~�i; ~�; �; : : : ; �)

If m1
i =

~� only for i = n� 1,

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i)

= �� + �

n

P
i2I f(

~�i) + (1 � �)x(�)�
�
�� + �

n

P
i2I f(

~�i) + (1� �)
�
K�1
K

x(�) + b

��
< 0

If m1
i =

~� for more than 1 but less than n� 2 individuals,

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i)

= �� + �

n

P
i2I f(

~�i) + (1 � �)
�
K�1
K

x(�) + b

�
�

�
�� + �

n

P
i2I f(

~�i) + (1� �)
�
K�1
K

x(�) + b

��
< 0

If m1
i =

~� for n � 2 individuals,

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i)

= �� + �

n

P
i2I f(~�i) + (1 � �)

�
K�1
K

x(�) + b

�
�
�
�� + �

n

P
i2I f(

~�i) + (1� �)
�
K�1
K

x(�) + x(~�)
��

< 0

If m1
i =

~� for n � 1 individuals,

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i)

= �� + �

n

P
i2I f(

~�i) + (1 � �)
�
K�1
K

x(�) + x(~�)
�

�
�
�� + �

n

P
i2I f(

~�i) + (1� �)
�
K�1
K

x(�) + x(~�)
��

< 0

where the equalities follow from the de�nition of the mechanismand the inequalities follow

from Assumption AM1.2

Claim 3. If m�1 = ~�;m0
i =

~�i+1 for all i 2 I and m
h
i = ~� for all i 2 I and h � p, and

m
h
i = � for all i 2 I and h > p, then

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i) < 0

where �mi is such that �m�1
i = ~�i; �m

0
i =

~�i+1 and �mh
i =

~� for all h � p+ 1 and �mh
i = � for

all h > p + 1,

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i)

= �
 + �

n

P
i2I f(~�i) + (1 � �)

�
K�p

K
x(�) + px(~�)

�
�
�
�� + �

n

P
i2I f(~�i) + (1� �)

�
K�p

K
x(�) + px(~�)

��
< 0
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where the equality follows from the de�nition of the mechanism and the inequality follows

from Assumption AM1.2

Claim 4. If m�1 = ~�;m0
i = ~�i+1 for all i 2 I and m

h
i = ~� for all i 2 I and h � p,

m
p+1
i 2

n
~�; �

o
(with at least one i such that m

p+1
i = ~�) and m

h
i = � for all i 2 I and

h > p+ 1, then

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i) < 0

where �mi is such that �m�1
i = ~�i; �m

0
i =

~�i+1 and �mh
i =

~� for all h � p+ 1 and �mh
i = � for

all h > p + 1,

If mp+1
i = ~� only for 1 individual,

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i)

= �� + �
n

P
i2I f(

~�i) + (1 � �)
�
K�p

K
x(�) + p

K
x(~�)

�
�
�
�� + �

n

P
i2I f(~�i) + (1� �)

�
K�p�1

K
x(�) + p

K
x(~�) + 1

K
b

��
< 0

If mp+1
i = ~� for more than 1 but less than n� 2 individuals,

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i)

= �� + �

n

P
i2I f(~�i) + (1� �)

�
K�p�1

K
x(�) + p

K
x(~�) + 1

K
b

�
��

�� + �

n

P
i2I f(~�i) + (1 � �)

�
K�p�1

K
x(�) + p

K
x(~�) + 1

K
b

��
< 0

If m1
i =

~� for n � 2 individuals,

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i)

= �� + �

n

P
i2I f(~�i) + (1 � �)

�
K�p�1

K
x(�) + p

K
x(~�) + 1

K
b

�
�
�
�� + �

n

P
i2I f(

~�i) + (1� �)
�
K�p�1

K
x(�) + p+1

K
x(~�)

��
< 0

If m1
i =

~� for n � 1 individuals,

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i)

= �� + �

n

P
i2I f(

~�i) + (1 � �)
�
K�p�1

K
x(�) + p+1

K
x(~�)

�
�
�
�� + �

n

P
i2I f(

~�i) + (1� �)
�
K�p�1

K
x(�) + p+1

K
x(~�)

��
< 0

where the equalities follow from the de�nition of the mechanismand the inequalities follow

from Assumption AM1.2

The claims show that SF ( ~�) is attained with positive probability because they show a

series of changes in the messages, all of which are improving. Thus assumptions D1 and

D2 guarantee that the sequence will take place with positive probability.
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We have shown that there is positive probability of a transition between SF (�) and SF ( ~�)

where ~� di�ers from � only in �0n 6= �n. But if the s(t) 2 SF ( ~�), it is costless for individual

n� 1 to change m�1
n�1 = �

0
n�1 6= �n�1. By applying analogs of Claims 1 through 4 we can

then show that with positive probability there is a time t0 such that s(t0) 2 SF ( ��), where

�� = (�1; : : : ; �
0
n�1; �

0
n). If we iterate this argument, the result follows.2

4.2 Virtual implementation

The idea behind virtual implementation is that to obtain implementability results un-

der weaker su�cient conditions one can relax the notion of implementation (instead of

strengthening the equilibrium concept). After all, the planner may well be satis�ed as

long as the social choice function is implemented with a high probability. AM (1992)

show that if the planner only requires that the social choice function is implemented with

arbitrarily high probability, basically any social choice function can be implemented, even

with such a simple solution concept as iterative strictly undominated strategies.

This result would appear to be very congenial with the spirit of this paper. Since the so-

lution concept is iterative strictly undominated strategies, both convergence and stability

would be expected not only under the dynamics of this paper, but in a variety of evolu-

tionary and learning models (see Nachbar 1990, Samuelson and Zhang 1992 or Cabrales

and Sobel 1992). There is a problem, however, if the planner wants to implement a social

choice function which is �-close to the original social choice function. In that case some

of the dominated strategies which have to be eliminated for the process to converge are

only �-strictly dominated. In fact we will show that if the agents are basically indi�er-

ent between strategies that give them utilities that are �-close, then the same instability

problems of the mechanisms of the previous subsection are reproduced here.

Following AM (1992), we say that a social choice function x and y are �-close if for all

preference pro�les x and y map to lotteries that are �-close. A social choice function x is

virtually implementable in iterative strictly undominated strategies if for all � > 0, there

exists a social choice function y which is �-close to x and which is exactly implementable

in iterative strictly undominated strategies.

To make the presentation a little simpler, we will not use the same mechanism that AM

(1992) use but a modi�cation based on AM (1994). As before we use the quasi linear utility

function vi(a; t; �i) = ui(a; �i) + ti. Besides the outcome function g(M) the mechanism

speci�es a transfer rule, t = (ti)i2N : M ! R
n. The message space will again be,

Mi = �i � �i+1 � S � : : :� S = M
�1
i �M

0
i �M

1
i � : : :M

K
i ;

Let m = (m1; : : : ;mn), mi = (m�1
i ;m

0
i ; : : : ;m

n
i ), and m

h = (mh
1; : : : ;m

h
n). The only
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change in the mechanism is that for any message pro�le m, the outcome function is now,

g(m) =
�

n

X
i2I

fi(m
�1
i ) +

1� �

K

KX
h=1

�(mh);

where for each h = 1; : : : ;K, we de�ne � : Mh ! A as before and � is a small positive

number as in the de�nition of virtual implementation. The penalty functions are also as

speci�ed before.

Note that with the modi�cation made in the mechanism Lemma 7 is now true with a

strict inequality.

Lemma 12. Under assumption AM1. Let any mi, and �mi = (�i;m
0
i ; : : : ;m

K
i ), then for

all m�6i,

vi(g( �mi;m�i); t( �mi;m�i); �i) > vi(g(m); t(m); �i)

Proof: Trivial from the proof of our lemma 7, and the de�nition of the mechanism.2

Lemma 12, plus lemmas 8 and 9 implies that implementation is in iterative strictly un-

dominated strategies. Note also that the function implemented now is not F exactly but

it is �-close to F . Since � can be made arbitrarily small, this mechanism virtually imple-

ments F . Let's denote the social choice function that is actually implemented for each

value of �, F�:

Proposition 5. Let the true preference pro�le be �. Given dynamics that satisfy

properties (D1), (D2), and (D3), if Lemmas 7, 8 and 9 are satis�ed, for all s(0) there

exists t0 such that P (for all t � t
0
; s(t) 2 SF�(�)) = 1.

Proof: A straightforward modi�cation of the proof of proposition 3 shows that with prob-

ability 1 there exists t0 such that s(t0) 2 SF�(�) and the message mi = (�i; �i+1; �; : : : ; �)

is sent by all players. Lemmas 12, 8 and 9 show then that for all �mi 6= mi;

vi(g( �mi;m�i); t( �mi;m�i); �i)� vi(g(m); t(m); �i) < 0

so by Assumption D3 P (for all t � t
0
; s(t) 2 SF�(�)) = 1:2

So, as mentioned earlier, the mechanism proposed guarantees very easily convergence and

stability to a message pro�le that implements the social choice function with arbitrarily

high probability, under assumptions (D1), (D2) and (D3).

The problem arises if assumption (D2) is replaced by (D5). We can then show,

Proposition 6. Let the true preference pro�le be �. Given dynamics that satisfy

properties (D1), (D3), (D5) if s(t) 2 SF (�), then P (for some t0 � t; s(t0) 2 SF ( ~�)) > 0 for

any ~�.

Proof: If s(t) 2 SF (�), then if agent n changes m�1
n to some �0n 6= �n, her payo� does

not change by more than �M by the de�nition of the mechanism. Thus, D1 and D5
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guarantees that this happens with positive probability. The rest of the proof retraces the

steps of proposition 4 closely.2

This result implies that the agents have to care about the outcomes of the implementa-

tion process orders of magnitude more than the planner to avoid the instability of the

mechanism. While this may be justi�ed under certain circumstances, it is by no means a

foregone conclusion.

5 Conclusions

The main message of this paper is that thinking explicitly about the equilibrating process

in the implementation problem can be a fruitful experience. For example, one possible

interpretation of the criticism of complexity that is levied against some general mecha-

nisms is that boundedly rational agents cannot successfully achieve the equilibrium of the

game. If this were the right interpretation, the criticism would be wrong, which at the

very least should challenge the critics into making the criticism more concrete.

A possible reply to this result could be that it doesn't matter very much since we know that

there are mechanisms that implement more things without using unnatural mechanisms.

Our answer to this is that these mechanisms are objectionable since under reasonable

dynamics the desired outcomes are not stable.

We hope that both of these results encourage more work into the implementation problem

using dynamic tools. An important question that should be answered is how sensitive are

our conclusions to the dynamics postulated. We suspect that the negative result about

implementation in undominated strategies is bound to be robust to modi�cations of the

dynamics. The result about the Nash mechanism may be more sensitive. In particular,

we have not answered the question about the speed of adjustment. Reaching the social

equilibrium may be irrelevant if it takes a very long time. It is possibly here where the

critics of \unnatural" mechanisms may �nd a defense for their positions.
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