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Abstract. We propose a novel measure of goodness of fit for stochastic choice mod-

els: that is, the maximal fraction of data that can be reconciled with the model. The

procedure is to separate the data into two parts: one generated by the best specifi-

cation of the model and another representing residual behavior. We claim that the

three elements involved in a separation are instrumental to understanding the data.

We show how to apply our approach to any stochastic choice model and then study

the case of four well-known models, each capturing a different notion of randomness.

We illustrate our results with an experimental dataset.
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1. Introduction

Choice data arising from either individual or population behavior are often proba-

bilistic in character. Currently, there is a renewed interest in finding better methods

for modelling stochastic behavior, and the literature offers a battery of models incor-

porating randomness in various different ways.1 This paper discusses a novel goodness

of fit measure for stochastic choice models; namely, the (tight) upper bound in the por-

tion of the data that can be reconciled with the model. This approach requires us to
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separate the data into two parts: that which is generated by a particular specification

of the model and which is to be maximized, and the remaining unstructured portion,

which is to be minimized. We refer to the first part as predicted randomness and to

the second as residual behavior.

The separation exercise highlights three key elements. The first is the maximal

fraction of data explained by the model, which we take as our goodness of fit measure.

This indicates the ability of the model to explain actual behavior. The second is an

optimal specification of the model, which, if it explains a large portion of the stochastic

data, is obviously a potentially useful tool in counterfactual scenarios, such as those

associated with prediction problems. The third is a description of residual behavior,

which aids understanding of the relationship between actual behavior and the choice

model, since it endogenously enables the identification of the menus and choices for

which the model deviates furthest from the data. This information may be relevant

when it comes to revising a model.

More formally, given the grand set of alternatives X, SCF denotes the set of all

stochastic choice functions, i.e., all possible descriptions of the choice probabilities of

each alternative in each menu within the domain. The aim is to explain data ρ, that is

taken to be a stochastic choice function, in the light of model ∆, which is defined as a

collection of stochastic choice functions. Model ∆ describes all the possible predictions

the analyst considers relevant. For example, it may encompass all the parametric

specifications of the analyst’s preferred choice model, including those accounting for

measurement error or unobserved heterogeneity. A triple 〈λ, δ, ε〉, where λ ∈ [0, 1],

δ ∈ ∆ and ε ∈ SCF, such that ρ = λδ + (1 − λ)ε describes a possible separation of

data ρ into a portion λ explained by the instance of the model δ and another portion

1 − λ which is the unstructured residual behavior ε. A separation is maximal if it

provides the maximal value of λ. As well as showing that, for any closed model ∆,

maximal separations always exist, Proposition 1 in Section 3 also characterizes their

structure. The result shows that maximal separations are identified by the following

maxmin operator, which begins by computing the minimum data-to-prediction ratio,

across all observations, for every instance of the model. The solution is then given by

the model instance that maximizes this ratio. This is a simple method, applicable to

any model, and potentially instrumental in the analysis of particular models, as will

be shown later.
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Section 4 analyzes four well-known stochastic choice models, each predicting ran-

domness in a very different way. In all four cases, we build on Proposition 1 in order

to provide tailored results describing the structure of the maximal separations of the

different models. By elaborating on the structural properties of the respective sto-

chastic choice model, this exercise complements the conceptual understanding of the

maximal separation approach, while also facilitating its practical implementation. We

start with the paradigmatic decision-making model in economics: the deterministic

choice model, where the individual always selects the alternative that maximizes a

preference relation, and hence there is no predicted randomness whatsoever. Thus,

when a stochastic choice function is analyzed from the perspective of the deterministic

model, any stochasticity in the data must be regarded as residual behavior. Given the

overwhelming use of this model, it seems appropriate that it should be the first in our

analyses of particular cases. Proposition 2 provides a simple recursive argument over

the cardinality of the menus for computing the maximal separation of the deterministic

model.

Next, we take three stochastic choice models, starting with the tremble model, where

randomness represents the possibility of choice errors. In the tremble model, the

decision-maker maximizes a preference relation with probability (1 − γ), and, with

probability γ, randomizes over all the available alternatives. Proposition 3 describes

how the technique developed for the deterministic model can be extended to this case.

We then analyze the model proposed by Luce (1959), also known as the logistic model.

The Luce model incorporates randomness in the utility evaluation of the alternatives.

Proposition 4 gives simplicity to the analysis of the Luce model by showing that the

observations yielding the minimum data-to-prediction ratio in a maximal separation

obey a particular structure. Finally, we study a class of random utility models incorpo-

rating randomness in the determination of the ordinal preference that governs choice.

In particular, we study the class of single-crossing random utility models (Apesteguia,

Ballester and Lu, 2017), which has the advantage of providing tractability, while also

being applicable to a variety of economic settings. Proposition 5 gives the corre-

sponding maximal separation, by applying a recursive argument over the collections of

preferences, that are in the support of the random utility model.

Section 5 reports on an empirical application of our approach. We use a pre-existing

experimental dataset comprising 87 individuals faced with binary menus of lotteries.

We take the aggregate data for the entire population and illustrate the practicality
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of our theoretical results, obtaining the maximal separation results for all the models

discussed in the paper. We first show that the maximal fraction of the data explained

by the deterministic model, that is, its goodness of fit, is 0.51, and that the preference

relation identified in the maximal separation basically ranks the lotteries from least to

most risky. The tremble model identifies exactly the same preference relation, together

with a tremble probability of 0.51, which increases the fraction of data explained to

0.68. The Luce model also increases the fraction of data explained to 0.74, and identifies

a utility function over lotteries that is ordinally close to the preference ranking of the

deterministic and tremble models. Finally, we implement the single-crossing random

utility model, assuming the utility functions given by CRRA expected utility. We

obtain that the fraction of data explained increases further to 0.78, with the largest

mass being assigned to a preference exhibiting high levels of risk aversion.

Section 6 compares the maximal separation approach with other goodness of fit

measures, such as maximum likelihood and least squares. We argue that, by focusing

on the largest deviations from the data, maximal separation is particularly accurate

in predicting low probabilties. We then use the experimental dataset to illustrate

this point empirically, and thus confirm the existence of important complementarities

between the maximal separation technique and standard techniques, when seeking a

deeper understanding of the data.

Section 7 concludes by discussing three aspects of the maximal separation approach.

We first briefly analyze the model selection issue by discussing the case of an analyst

wishing to compare the maximal fractions of data explained by different models. Sec-

ondly, we comment on the pros and cons of imposing further technical structure on the

stochastic choice models. Finally, we consider the case in which the notion of maximal

separation is slightly modified by restricting the space of possible residual behavior

that can be combined with the predicted randomness given by a model, and conclude

by suggesting some potentially fruitful ways of interpreting residual behavior.

2. Related literature

Rudas, Clogg and Lindsay (1994) developed a novel proposal in Statistics, in what

is now known as the mixture index of fit for contingency tables. Given a multivari-

ate frequency distribution, Rudas, Clogg and Lindsay (1994) suggest measuring the

goodness of fit of a given model using a two-point mixture, which entails calculating

the largest fraction of the population for which a distribution belonging to the model
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fits the data, while leaving the complementary fraction as an unstructured distribu-

tion. Rudas (1999) extends the use of the mixture index to continuous probability

distributions, and relates the optimal solution to minimax estimation.2 The maxi-

mal separation technique imports the same logic for the study of stochastic choice

functions, which differ from contingency tables in that they involve collections of inter-

related probability distributions, one for each available menu of alternatives, where the

interrelation is choice model dependent. Interestingly, Böckenholt (2006) claims that

new methodologies are needed to understand the systematic behavioral violations of

random utility models, and, without elaborating, suggests the mixture index of fit as a

potential tool for this purpose. In this paper, we undertake this challenge by extending

the methodology, not only to random utility models, but to every possible stochastic

choice model, and then incorporate these ideas into Decision Theory and Economics.

In Economics, Afriat (1973) made the first in a long history of proposals for indices

that measure the consistency of revealed preferences with the deterministic, rational

model of choice. Afriat’s suggestion for a consumer setting was to compute the minimal

monetary adjustment required to reconcile all observed choices with the maximization

of some preference; an idea later generalized by Varian (1990). Alternative sugges-

tions by Houtman and Maks (1985), and more recently by Dean and Martin (2016),

are to compute the maximal number of data points that are consistent with the max-

imization of some preference. Apesteguia and Ballester (2015) and Halevy, Persitz,

and Zrill (2018) suggest consistency measures to compute the minimal welfare loss

from inconsistent choices with respect to some preference. Relevantly, Apesteguia and

Ballester (2015) show axiomatically that all these measures have a common structure,

and search for a preference that minimizes a given loss function, ultimately providing

both a goodness of fit measure and the best possible description of behavior.3 The

maximal separation approach shares the spirit of all these consistency measures, since

it also provides a goodness of fit measure and the best description of behavior when

applied to the deterministic rational model. In Appendix D, we formally compare

2The statistical literature offers a number of applications of these ideas, and develops algorithms

for the implementation of the mixture index to contingency tables (see, e.g., Dayton, 2003; Liu and

Lindsay, 2009).
3Other influential approaches provide only a goodness of fit measure; these include Swofford and

Whitney (1987), Famulari (1995) and Echenique, Lee, and Shum (2011), whose proposal is to focus

on the number of violations of a rationality axiom, e.g. WARP, contained in the data.
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the maximal separation approach with the existing measures and show that it pro-

vides a distinctive, novel measure of rationality. Importantly, note that, while all these

measures pertain to the analysis of the deterministic rational model, the maximal sep-

aration approach is applicable to any possible rational or non-rational, deterministic

or stochastic model of choice.

Recently, Liang (2019) has explored whether the inconsistency part of a choice

dataset can be attributed to choice error or preference heterogeneity. More con-

cretely, Liang adopts the flexible multiple-preference framework of Kalai, Rubinstein

and Spiegler (2002), in which the individual can use different preferences in different

menus.4 Liang (2019) envisions inconsistencies as being driven by two different mech-

anisms: (i) preference heterogeneity, represented by a large fraction of choices being

explained by an, ideally small, set of the individual’s preferences á la Kalai, Rubinstein

and Spiegler (2002), and (ii) error, represented by a small fraction of choices being

captured by preferences outside that set. While we share with Liang (2019) an interest

in identifying the part of the data that is due to error, our approach differs in two

ways: firstly, by replacing the multiple-preference framework with a methodology that

applies to any stochastic choice model; and, secondly, as discussed above, by providing

both a goodness of fit measure and the best description of behavior.

3. Maximal separations

Let X be a non-empty finite set of alternatives. Menus are non-empty subsets of

alternatives and, in order to accommodate diverse settings, such as consumer-type

domains or laboratory-type domains, we consider a non-empty arbitrary domain of

menus D. Pairs (a,A), with a ∈ A and A ∈ D are called observations, and denoted by

O. A stochastic choice function is a mapping σ : O → [0, 1] which, for every A ∈ D,

satisfies that
∑

a∈A σ(a,A) = 1. We interpret σ(a,A) as the probability of choosing

alternative a in menu A. We denote by SCF the space of all stochastic choice functions.

The data are represented by means of a stochastic choice function, which we denote by

ρ and which we assume to be within SCF.5 That is, ρ(a,A) > 0 for every (a,A) ∈ O. A

4Crawford and Pendakur (2012) implement the approach of Kalai, Rubinstein and Spiegler (2002)

using a set of data on milk purchases, finding that five preferences are enough to fully rationalize the

data. Apesteguia and Ballester (2010) study the computational complexity of finding the minimal

number of multiple-preferences that rationalize the data.
5This assumption is for expositional convenience; the case of ρ in the boundary of SCF can be

dealt with trivially.
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model is a non-empty closed subset ∆ of SCF, representing all the possible stochastic

choice functions consistent with the entertained theoretical model. We emphasize that,

other than the considered model being closed, we make no further restrictions. Thus,

the model ∆ encompasses all the relevant randomness considered by the analyst. This

may include a base theoretical model, and considerations on measurement error or

unobserved heterogeneity. A model instance, that is, a particular member of the set of

theoretically admissible stochastic choice functions, is typically denoted by δ ∈ ∆.

We say that 〈λ, δ, ε〉 ∈ [0, 1] × ∆× SCF is a separation of data ρ whenever ρ =

λδ + (1 − λ)ε. In a separation, we write ρ as a convex combination of the stochastic

choice function δ, which contains randomness consistent with model ∆, and the sto-

chastic choice function ε, which represents unstructured residual behavior. The fraction

of data explained by the model in the separation is given by the parameter λ. We are

particularly interested in explaining the largest possible fraction of data using model

∆. We say that a separation 〈λ∗, δ∗, ε∗〉 is maximal if there exists no other separa-

tion 〈λ, δ, ε〉 with λ > λ∗. The following proposition shows the existence of maximal

separations and facilitates their computation.6

Proposition 1. Maximal separations always exist and are characterized by:

(1) λ∗ = max
δ∈∆

min
(a,A)∈O

ρ(a,A)
δ(a,A)

,

(2) δ∗ ∈ arg max
δ∈∆

min
(a,A)∈O

ρ(a,A)
δ(a,A)

, and

(3) ε∗ = ρ−λ∗δ∗
1−λ∗ .

In order to grasp the logic implicit in Proposition 1, let us consider the non-trivial

case where ρ 6∈ ∆. Consider any model instance δ ∈ ∆. Then, for 〈λ, δ, ε〉 to be a

separation of ρ, the residual stochastic choice function ε must lie on the line defined by

ρ and δ, with ρ in between δ and ε. Now, notice that we can always trivially consider

the separation 〈0, δ, ρ〉, where all data is regarded as residual behavior. To obtain larger

values of λ with instance δ, ε must deviate from ρ in the opposite direction to that

taken by δ. Ultimately, λ will be maximal when the residual behavior ε reaches the

frontier of SCF, i.e., when some observation has probability zero or one. Indeed, we only

need to consider the case ε(a,A) = 0, i.e., ρ(a,A) < δ(a,A) or, equivalently, ρ(a,A)
δ(a,A)

< 1,

6In order to avoid the discussion of indeterminacy in fractions throughout the text, we set the

ratio ρ(a,A)
0 to be strictly larger than any real number. This is a harmless convention, since we could

simply replace the expression min(a,A)∈O
ρ(a,A)
δ(a,A) with min(a,A)∈O,δ(a,A) 6=0

ρ(a,A)
δ(a,A) . Moreover, whenever

λ∗ = 1, ε∗ is any stochastic choice function. All proofs are given in the Appendix.
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because, if ε(a,A) = 1 for some observation, we must also have that ε(b, A) = 0 for

any other alternative b ∈ A \ {a}. Trivially, ε(a,A) = 0 is equivalent to λ = ρ(a,A)
δ(a,A)

and hence, the frontier will be first reached by the observation that minimizes the

ratio ρ(a,A)
δ(a,A)

. Since these observations will play a key role in our analysis, we provide a

formal definition here. Given instance δ, the set of observations that minimize the ratio
ρ(a,A)
δ(a,A)

are called δ-critical observations and are denoted by Oδ. Obviously, the maximal

fraction of data that can be explained with instance δ is min
(a,A)∈O

ρ(a,A)
δ(a,A)

, or, equivalently,

ρ(a,A)
δ(a,A)

for any (a,A) ∈ Oδ. When considering all possible instances of the model ∆, the

result follows.

As already mentioned, Proposition 1 works for arbitrary domains of menus. One

domain, which has received a great deal of attention in the stochastic choice literature,

is that of binary menus. Since we will also be using this domain in our experimental

application, it is worth mentioning that it is one in which Proposition 1 is particu-

larly simple to apply. In essence, notice that any model instance will over-predict the

probability of choice of one of the alternatives in each binary menu within the domain,

while under-predicting the other. Thus, one instance of the model is able to explain

a fraction of the data that can be computed by looking at the least over-predicted

alternative among all pairs.

4. Particular models of choice

Section 3 characterizes maximal separations for every possible model ∆. We now

work with specific choice models. In each case we use Proposition 1, together with the

particular structure of the model under investigation, to offer more targeted results

on maximal separations. The models we consider are the deterministic choice model,

and three stochastic choice models incorporating different forms of randomness: the

tremble model, the Luce model and the single-crossing random utility model. The

three stochastic choice models have the deterministic model as a special case, but are

mutually independent. Appendix B illustrates the application of each of the results

developed here using a simple example involving three alternatives.

4.1. Deterministic rationality. The standard economic decision-making model con-

templates no randomness whatsoever. Behavior is deterministic and described as the

outcome of the maximization of a single preference relation. Thus, in the light of the
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deterministic model, all behavioral randomness must be regarded as residual behav-

ior. Formally, denote by P the collection of all strict preference relations; that is, all

transitive, complete and asymmetric binary relations on X. Maximization of P ∈ P
generates the deterministic rational choice function δP , which assigns probability one

to the maximal alternative in menu A according to preference P . We denote this alter-

native by mP (A), i.e., mP (A) ∈ A and mP (A)Py for every y ∈ A \ {mP (A)}. Denote

by DET the model composed of all the deterministic rational choice functions.

The following result shows that the maximal separation for DET can be easily com-

puted using a simple recursive structure on subdomains of the data. For present-

ing the result, some notation will be useful. Given a subset S ⊆ X, denote by

D|S = {A ∈ D : A ⊆ S} and O|S = {(a,A) ∈ O : A ⊆ S} the corresponding

subdomains of menus and observations involving subsets of S. Then:

Proposition 2. Let {λS}S:D|S 6=∅ and P ∈ P satisfy

(1) λS = max
a∈S

min
{
{ρ(a,A)}(a,A)∈O|S , λS\{a}

}
,

(2) mP (S) ∈ arg max
a∈S

min
{
{ρ(a,A)}(a,A)∈O|S , λS\{a}

}
.7

Then, 〈λX , δP , ρ−λXδP1−λX
〉 is a maximal separation for the deterministic model.

Proposition 2 enables a recursive computation of maximal separations for DET. More

precisely, the algorithm constructs a maximal separation for each restriction of data

ρ to a subdomain of menus D|S, starting with subdomains in which D|S = {S}, i.e.,

menus for which there are no available data in proper subsets. In these menus, only the

highest choice frequency of an alternative must be considered. The maximal separation

can be constructed by considering the preference relation that ranks the alternative

with the highest choice frequency above all other alternatives. For any other subdomain

D|S, the algorithm must analyze the alternatives a ∈ S one by one, again considering

the consequences of placing a as the maximal alternative in S. It turns out that we

only need to consider the following values: (i) the choice frequencies of a in subsets

7Notice that equations (1) and (2) always compute a minimum over a non-empty collection of

values. This is because the computation only takes place when D|S is non-empty and, hence, either

a ∈ A for some A ⊆ S, or D|S\{a} 6= ∅.
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of S, and (ii) the previously computed maximal fractions over the subdomains where

alternative a is not present.8

4.2. Tremble model. In tremble models, behavioral randomness is interpreted as a

choice error. In the simplest version, the individual contemplates a preference relation

P . With probability (1− γ) ∈ [0, 1], the preference is maximized. With probability γ,

the individual trembles and randomizes among all the alternatives in the menu.9 This

generates the tremble choice function δ[P,γ](a,A) = γ
|A| whenever a ∈ A \ {mP (A)} and

δ[P,γ](mP (A), A) = 1− γ |A|−1
|A| . Denote by Tremble the model composed of all tremble

choice functions. The result below describes the maximal fraction of data explained

by Tremble and a maximal separation for Tremble.

Proposition 3. Let {λS(γ)}S:D|S 6=∅ and P (γ) ∈ P satisfy, for every γ ∈ [0, 1]:

(1) λS(γ) = max
a∈S

min
{
{ |A|ρ(a,A)

(1−γ)|A|+γ}(a,A)∈O|S , {
|A|ρ(b,A)

γ
}(b,A)∈O|S

b 6=a∈A
, λS\{a}(γ)

}
,

(2) mP (γ)(S) ∈ arg max
a∈S

min
{
{ |A|ρ(a,A)

(1−γ)|A|+γ}(a,A)∈O|S , {
|A|ρ(b,A)

γ
}(b,A)∈O|S

b 6=a∈A
, λS\{a}(γ)

}
.

Let γ∗ be the tremble value that maximizes λX(γ). Then, 〈λX(γ∗), δ[P (γ∗),γ∗],
ρ−λX(γ∗)δ[P (γ∗),γ∗]

1−λX(γ∗)
〉

is a maximal separation for the tremble model.

Given the immediate connection with the rational deterministic model, the intuition

of the result is analogous to that in Proposition 2.10

4.3. Luce model. Denote by U the collection of strictly positive utility functions u

such that, without loss of generality,
∑

x∈X u(x) = 1. Given u ∈ U , a strictly positive

Luce stochastic choice function is defined by δu(a,A) = u(a)∑
b∈A u(b)

with a ∈ A ∈ D. In

order to accommodate the Luce model within our framework, we consider the closure of

8A particularly interesting example involves binary domains in which some stochastic transitivity

property is satisfied. In this case, it is easy to see that the identified preference will be consistent with

the stochastic revealed preference.
9See Harless and Camerer (1994) for an early treatment of the trembling-hand concept in the

stochastic choice literature.
10As in the deterministic case with binary domains, where choice satisfies stochastic transitivity,

the maximal separation for the tremble model identifies the preference relation that is consistent

with the stochastic revealed preference. Hence, in this case, both the deterministic and the tremble

models identify the same preference relation. Interestingly, this is precisely the case in our empirical

application. However, as we show in Appendix B, generally speaking, the maximal separations for

the deterministic and tremble models do not necessarily identify the same preference relation.
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the set of strictly positive Luce stochastic choice functions, which we denote by Luce.11

We write δL to denote a generic, not necessarily strictly positive, Luce stochastic choice

function. However, as shown in the proof of Proposition 4, strictly positive instances of

the Luce model are always identified in maximal separations, and hence, the previous

assumption is inconsequential.

We now describe the structure of maximal separations of Luce. From Proposition

1 we know that the study of a particular instance of model δL requires us to analyze

its critical observations OδL . It turns out that, under the Luce model, we only need to

check for a simple condition on the set OδL .

Proposition 4. 〈min(a,A)
ρ(a,A)
δ∗L(a,A)

, δ∗L,
ρ−λ∗δ∗L
1−λ∗ 〉 is a maximal separation for the Luce model

if and only if Oδ∗L contains a sub-collection {(ai, Ai)}Ii=1 such that
⋃I
i=1{ai} =

⋃I
i=1Ai.

Proposition 4 provides a simple means to obtain maximal separations for the Luce

model, which entails checking whether the critical observations of a Luce stochastic

choice function satisfy a cyclical property. Consider a strictly positive instance of Luce

given by u ∈ U and its critical observations Oδu . Clearly, for another separation using a

different Luce vector v ∈ U to explain a larger fraction of the data, it should be possible

to improve critical observation (a1, A1) by reducing the predicted choice probability

of a1. This requires that one alternative in A1, say a2, is such that v(a2)/v(a1) >

u(a2)/u(a1). However, since there exists a critical observation of the form (a2, A2), we

need to find another alternative in A2, say a3, with v(a3)/v(a2) > u(a3)/u(a2). Given

that
⋃I
i=1{ai} =

⋃I
i=1 Ai, this process leads to a cycle, and consequently, the ρ/δ ratio

of all the critical observations of δu cannot be improved, and is therefore optimal. The

situation is entirely different when there is x ∈
⋃I
i=1Ai \

⋃I
i=1{ai}, suggesting that the

following simple algorithm identifies a maximal separation for the Luce model. Start

with any vector of weights u ∈ U . Take any x ∈
⋃I
i=1Ai \

⋃I
i=1{ai} and move the

utilities along the segment α1x+(1−α)u, where 1x is a function assigning a value 1 to

x and a value 0 to any other alternative. Eventually, this leads to a new Luce vector

which explains a strictly larger fraction of the data. This ascending algorithm yields

the maximal separation.

11Effectively, the added stochastic choice functions have zero choice probabilities in some obser-

vations, and Luce-type behavior otherwise. See Echenique and Saito (2019) and Horan (2019) for

studies of the treatment of zero choice probabilities in models à la Luce.
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4.4. Single-crossing random utility model. In random utility models (RUMs),

there exists a probability distribution µ over the set of all possible preferences P .

At the choice stage, a preference is realized according to µ, and maximized, thereby

determining the choice probabilities δµ(a,A) =
∑

P∈P:a=mP (A)

µ(P ), for every (a,A) ∈ O.

In other words, the choice probability of a given alternative within a menu is given by

the sum of the probability masses associated to the preferences where the alternative

is maximal within the menu.

The literature has often considered these models complex to work with, and offered

more easily applicable models in restricted domains. Here, we focus on single-crossing

random utility models (SCRUMs), which are RUMs over a set of preferences satisfying

the single-crossing condition.12 Formally, SCRUMs consider probability distributions µ

on a given ordered collection of preferences P ′ = {P1, P2, . . . , PT}, satisfying the single-

crossing condition Pj ∩ P1 ⊆ Pi ∩ P1 if and only if j ≥ i. That is, the preference over

a pair of alternatives x and y reverses once at most in the ordered collection of prefer-

ences. We denote the set of SCRUM stochastic choice functions by SC. Proposition 5

characterizes the maximal separations for SCRUMs.

Proposition 5. Let λ1 = min
A∈D

ρ(mP1(A), A) and δµ1 = δP1, and for every i ∈ {2, . . . , T}
define recursively

(1) λi = min
A∈D

{
ρ(mPi(A), A) + max

j:j<i,mPj (A)6=mPi (A)
λj

}
,

(2) δµi = (1− λi−1

λi
)δPi + λi−1

λi
δµi−1

.

Then, 〈λT , δµT ,
ρ−λT δµT

1−λT
〉 is a maximal separation for SCRUM.

Proposition 5 provides a smooth recursive method with which to obtain a maximal

separation. It basically computes the maximal fraction of data, λi, that can be ex-

plained by SCRUMs using preferences up to Pi. Trivially, the maximal fraction of data

explained by P1 is min
A∈D

ρ(mP1(A), A). Now consider any other preference Pi ∈ P ′ and

assume that every preference Pj, j < i, has been analyzed. With the extra preference

Pi, and for a given menu A, we can rationalize data ρ(mPi(A), A) together with any

other data ρ(x,A), x 6= mPi(A), that is rationalized by preferences preceding Pi. This

can be achieved by considering the appropriate linear combination of the constructed

SCRUM that uses preferences up to Pi−1 with preference Pi.

12See Apesteguia, Ballester and Lu (2017) for a study of this model. Other RUMs using restricted

domains are Gul and Pesendorfer (2006) and Lu and Saito (2018).
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5. An empirical application

Here we use an experimental dataset to operationalize the maximal separation results

obtained in the previous section.13 There are nine equiprobable monetary lotteries,

described in Table 1. Each of the 87 participants faced 108 different menus of lotteries,

including all 36 binary menus and a random sample of larger menus.14 There are two

treatments. Treatment NTL is a standard implementation, with no time limit on the

choice. In treatment TL, subjects had to select a lottery within a limited time. At the

end of the experiment, one of the menus was chosen at random and the subject was

paid according to his or her choice from that menu.15

Table 1. Lotteries

l1 = (17) l4 = (30, 10) l7 = (40, 12, 5)

l2 = (50, 0) l5 = (20, 15) l8 = (30, 12, 10)

l3 = (40, 5) l6 = (50, 12, 0) l9 = (20, 12, 15)

To ensure a sufficiently large number of data points per menu, we focus on the

choices made in the binary menus, which, when both treatments are aggregated, gives

a total of 87 data points per menu.16 Table 2 reports the choice probabilities in each of

the binary menus. It also reports the optimal and residual stochastic choice functions

identified in the maximal separation results, using the models described in the previous

section. In SCRUM we use the CRRA expected utility representation, which is by far

the most widely used utility representation for risk preferences.17 There are several

lessons to be learned from the table.

13We collected the experimental data together with Syngjoo Choi at UCL in March 2013, within

the context of another research project. This is the first completed paper to use this dataset. We are

very grateful to Syngjoo for kindly allowing us to use it.
14Menus of 2, 3 and 5 alternatives were presented one at a time, in a randomized order. No

participant was presented more than once with the same menu of alternatives. The location of the

lotteries on the screen was randomized, as was the location of the monetary prizes within a lottery.
15Specifically, subjects had 5, 7 and 9 seconds to choose from the menus of 2, 3, and 5 alternatives,

respectively.
16Due to the time limit in one of the treatments, the number is slightly lower for some menus.

Specifically, there are 18 menus with 87 data points, 12 with 86, 3 with 85 and 3 with 84.
17The CRRA Bernoulli function is x1−r

1−r , whenever r 6= 1, and log x otherwise, with x representing

money. We have also studied the cases of CARA expected utility, and mean-variance utility, and

obtained similar results, which are available upon request. Note that SCRUM with CRRA is but a
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Table 2. Data and Maximal Separations

DET TREMBLE LUCE SCRUM-CRRA

(a,A) ρ δ∗DET ε∗DET δ∗Tremble ε∗Tremble δ∗Luce ε∗Luce δ∗SC-CRRA ε∗SC-CRRA

(l1, {l1, l2}) 0.75 1.00 0.49 0.74 0.75 0.91 0.30 0.74 0.77

(l1, {l1, l3}) 0.60 1.00 0.19 0.74 0.29 0.71 0.28 0.55 0.78

(l2, {l2, l3}) 0.33 0.00 0.67 0.26 0.50 0.20 0.69 0.24 0.66

(l1, {l1, l4}) 0.53 1.00 0.05 0.74 0.07 0.62 0.27 0.47 0.75

(l2, {l2, l4}) 0.28 0.00 0.56 0.26 0.32 0.15 0.64 0.24 0.40

(l3, {l3, l4}) 0.43 0.00 0.86 0.26 0.78 0.40 0.50 0.42 0.46

(l1, {l1, l5}) 0.58 1.00 0.16 0.74 0.24 0.46 0.92 0.47 1.00

(l2, {l2, l5}) 0.25 0.00 0.51 0.26 0.25 0.08 0.73 0.26 0.23

(l3, {l3, l5}) 0.45 0.00 0.92 0.26 0.87 0.26 1.00 0.45 0.46

(l4, {l4, l5}) 0.49 0.00 0.99 0.26 0.98 0.34 0.89 0.53 0.33

(l1, {l1, l6}) 0.72 1.00 0.44 0.74 0.68 0.87 0.31 0.76 0.60

(l2, {l2, l6}) 0.44 0.00 0.89 0.26 0.84 0.42 0.51 0.42 0.53

(l3, {l3, l6}) 0.80 1.00 0.60 0.74 0.93 0.74 1.00 0.79 0.84

(l4, {l4, l6}) 0.76 1.00 0.51 0.74 0.79 0.81 0.62 0.76 0.76

(l5, {l5, l6}) 0.75 1.00 0.49 0.74 0.75 0.89 0.35 0.76 0.71

(l1, {l1, l7}) 0.63 1.00 0.25 0.74 0.38 0.77 0.23 0.74 0.22

(l2, {l2, l7}) 0.24 0.00 0.49 0.26 0.22 0.26 0.21 0.26 0.19

(l3, {l3, l7}) 0.48 0.00 0.96 0.26 0.94 0.57 0.20 0.53 0.27

(l4, {l4, l7}) 0.62 1.00 0.24 0.74 0.37 0.67 0.49 0.76 0.14

(l5, {l5, l7}) 0.63 1.00 0.26 0.74 0.40 0.79 0.18 0.76 0.18

(l6, {l6, l7}) 0.27 0.00 0.54 0.26 0.29 0.33 0.10 0.24 0.36

(l1, {l1, l8}) 0.64 1.00 0.27 0.74 0.42 0.67 0.57 0.76 0.21

(l2, {l2, l8}) 0.22 0.00 0.45 0.26 0.15 0.17 0.36 0.26 0.09

(l3, {l3, l8}) 0.36 0.00 0.73 0.26 0.58 0.45 0.12 0.45 0.03

(l4, {l4, l8}) 0.56 1.00 0.12 0.74 0.18 0.55 0.60 0.56 0.56

(l5, {l5, l8}) 0.62 1.00 0.23 0.74 0.36 0.70 0.40 0.76 0.13

(l6, {l6, l8}) 0.20 0.00 0.40 0.26 0.07 0.23 0.12 0.24 0.04

(l7, {l7, l8}) 0.49 0.00 1.00 0.26 1.00 0.37 0.83 0.42 0.77

(l1, {l1, l9}) 0.76 1.00 0.51 0.74 0.78 0.74 0.81 0.79 0.62

(l2, {l2, l9}) 0.28 0.00 0.56 0.26 0.32 0.23 0.42 0.28 0.28

(l3, {l3, l9}) 0.39 0.00 0.79 0.26 0.68 0.53 0.00 0.45 0.17

(l4, {l4, l9}) 0.55 1.00 0.08 0.74 0.13 0.63 0.32 0.53 0.60

(l5, {l5, l9}) 0.83 1.00 0.65 0.74 1.00 0.76 1.00 1.00 0.20

(l6, {l6, l9}) 0.22 0.00 0.44 0.26 0.14 0.29 0.02 0.26 0.08

(l7, {l7, l9}) 0.56 1.00 0.12 0.74 0.18 0.46 0.87 0.45 0.96

(l8, {l8, l9}) 0.64 1.00 0.26 0.74 0.41 0.58 0.78 0.53 1.00

λ∗∆ 0.51 0.68 0.74 0.78

Note: (a,A) denotes the observation referring to alternative a from menu A, ρ the observed frequency

of choosing lottery a from menu A, and 〈λ∗∆, δ
∗
∆, ε
∗
∆〉 the maximal separation of ρ for model ∆ ∈

{DET, Tremble, Luce, SC-CRRA}. Data entries in bold refer to the menus containing the critical observations

in the respective model.
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First, note that the maximal fractions of the data explained by the respective models

are successively increasing from the deterministic choice model, to the tremble model,

to the Luce model and, finally, to the SCRUM-CRRA model. It is worth noting that the

deterministic model already explains about half of the data, i.e., 0.51.18 The identified

optimal instance is the one associated with the preference l1Pl5Pl4Pl8Pl7Pl9Pl3Pl6Pl2.

The top alternative, lottery l1, is the safest, since it gives £17 with probability one.

The next is lottery l5, which has the second lowest variance at the expense of a very

low expected return. Lottery l2, the one with the highest expected value and highest

variance, is regarded as the worst alternative. Hence, the deterministic model depicts

a population that is essentially highly risk-averse. The model reaches its explanatory

limits with the critical observation (l8, {l7, l8}) where, by Proposition 1, the ratio of

observed to predicted probability is minimal. Specifically, the observed choice proba-

bility is 0.51 while the deterministic prediction is 1. The ratio of these two values gives

the fraction of data explained by the model, 0.51.

The tremble model identifies exactly the same preference as the deterministic model,

while increasing the maximal fraction of the data explained from 0.51 to 0.68. This

is the result of using a relatively large tremble probability, γ = 0.51. The tremble

model is characterized by critical observations (l8, {l7, l8}) and (l9, {l5, l9}). As in the

deterministic case, choice data is scarce for l8 versus l7, but the problem is less severe

thanks to the presence of a tremble, due to which, the individual is predicted to choose

l8 with a probability of only 0.74, which reduces the ratio of observed to predicted

probabilities to 0.68. This ratio cannot be improved beyond this point. Although a

higher tremble probability would increase this ratio, it would also decrease the ratio

of the other critical observation, (l9, {l5, l9}), which has the same value of 0.68. To see

this, notice that the choice prediction for alternative l9, being worse than alternative

l5, corresponds entirely to the tremble probability, and hence, an increase in tremble

would increase the predicted probability and thus decrease the ratio.

generalization of the random parameter model used in Apesteguia and Ballester (2018), in the sense

that the former imposes no probability distribution over the set of preferences.
18In order to put this result into perspective, consider Crawford and Pendakur’s (2002) analysis of

data from a Danish household survey on the purchase of six different types of milk. They find that

a single preference relation is sufficient to rationalize 64% of the data. The Houtman-Maks index

gives a consistency level of 66%. In Appendix D we review this index, arguing that it is slightly more

flexible than applying the maximal separation technique to the deterministic model, which explains

the higher consistency found in the data.
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The Luce model is able to explain close to three quarters of the data. The opti-

mal Luce utility values suggest a highly risk-averse population. Although u does not

represent PDET exactly, it represents a preference very close to it. Interestingly, we see

that the Luce model can accommodate a larger fraction of the data by allowing ran-

domness to depend on the cardinal evaluation of the alternatives. The model is hard

pressed to explain observations (l5, {l3, l5}), (l6, {l3, l6}), (l3, {l3, l9}) and (l9, {l5, l9}),
which have the type of cyclical structure described in Proposition 4. In each of these

observations, the ratio of observed to predicted probabilities is equal to 0.74, which is

the Luce critical value.

Finally, SC-CRRA explains 78% of the data. In so doing, it assigns positive masses

to 10 of the 30 possible CRRA preferences; the largest probability mass, 0.44, being as-

signed to the most risk-averse CRRA preference, i.e., preference l1Pl5Pl9Pl8Pl4Pl7Pl3Pl6Pl2,

which is again very close to PDET. Since each preference compatible with CRRA cor-

responds to an interval of risk-aversion levels, we can completely describe the optimal

SC-CRRA instance by reporting the values of the cumulative distribution function at

the upper bounds of these intervals. These are F (−4.15) = 0.205, F (−0.31) = 0.241,

F (−0.08) = 0.242, F (0.34) = 0.258, F (0.41) = 0.276, F (0.44) = 0.416, F (0.61) =

0.453, F (1) = 0.533, F (4.71) = 0.563 and F (∞) = 1. Notice that, in addition to ex-

plaining a large fraction of the data, SC-CRRA is also rich enough to show that a quarter

of the population is risk loving, F (−0.08) = 0.242. SC-CRRA reaches the limits of its ex-

planatory power at observations (l5, {l1, l5}) and (l9, {l8, l9}). On the one hand, lottery

l5 is preferred over lottery l1 by all CRRA levels below 2, which has an accumulated

mass of 0.533. Given the observed choices, this leads to a critical ratio for observation

(l5, {l1, l5}) of 0.78. Improving this ratio would necessarily require us to assign a higher

weight to risk-aversion levels higher than 2. However, this would immediately conflict

with the ratio of l9 to l8, since l9 is ranked above l8 at all risk-aversion levels higher

than 1. As the ratio of observed to predicted data for (l9, {l8, l9}) also has the critical

value of 0.78, no further improvement is possible.19

To conclude the discussion of Table 2, we would like to emphasize that the four

models are very consistent in their qualitative descriptions of the population, all judging

it to be highly risk averse. We then see that, by introducing different sources of

19In Appendix C we use this dataset to analyze the maximal separation using Gul and Pesendorfer’s

(2006) random expected utility model.
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randomness, it is possible to explain larger fractions of the data, and that the precise

source of randomness affects the fraction of the data explained.

6. Other goodness of fit measures

The maximal separation exercise identifies a best instance of the model δ∗ ∈ ∆ and

an expression of residual behavior ε∗ ∈ SCF which, combined at rates λ∗ and 1 − λ∗,
generate data ρ. The value λ∗ is a tight upper bound for the fraction of data that can

be explained by the model. Thus, the exercise provides a measure of the goodness of

fit of model ∆ to data ρ. There are other well-known measures in the literature that

partially share the structure of the maximal separation measure, in the sense that they

also identify one instance of the model that maximizes a notion of closeness to the

data.20 For the sake of comparison, we adopt the standard language of minimization

of loss functions in speaking of lack of fit all throughout the section.21

Formally, a loss function is a map L : ∆ × ρ → R+ that measures the deviation of

every instance δ ∈ ∆ with respect to data ρ. The lack of fit and the best instance

of the model follow immediately from the minimization of the loss function among

the different instances of the model.22 Now, in a maximal separation, the minimal

fraction of data unexplained, 1− λ∗, represents a measure of the lack of fit, which can

be written as the minimization of a loss function. From Proposition 1 we know that

1−λ∗ = 1−maxδ∈∆ min
(a,A)∈O

ρ(a,A)
δ(a,A)

= minδ∈∆[ max
(a,A)∈O

(1− ρ(a,A)
δ(a,A)

)] and hence, we can write

the maximal separation loss function as LMS(δ, ρ) = max
(a,A)∈O

[1− ρ(a,A)
δ(a,A)

].

Two other important goodness of fit measures are maximum likelihood and least

squares. The maximum likelihood exercise entails the minimization of the Kullback-

Leibler divergence from δ to ρ, which can be written as the minimization of the loss

20We say that the other measures partially share the structure of maximal separations because

they do not identify (minimal) expressions of residual behavior. This component, which we believe

potentially crucial for the understanding of actual behavior and revision of theoretical models, is

unique to maximal separations.
21By lack of fit, sometimes also known as badness of fit, we mean the mirror notion of goodness of

fit; basically, how poorly a model fits the data.
22Notice that, when the model ∆ is the deterministic rational model of choice, lack of fit merely

corresponds to a notion of irrationality of the data. As mentioned in Section 2, most measures of

irrationality, including Afriat, Varian, Houtman-Maks and the Swaps Index adopt this minimization

structure. For the specific case of the deterministic model, Appendix D formally compares the maximal

separation approach with other rationality measures.
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function LML(δ, ρ) =
∑

(a,A)∈O ρ(a,A) log ρ(a,A)
δ(a,A)

.23 Similarly, least squares entails the

minimization of the quadratic loss function LLS(δ, ρ) =
∑

(a,A)∈O(δ(a,A)− ρ(a,A))2.

On inspecting the loss functions, it becomes immediately clear that the maximal

separation measure is different from those defined by maximum likelihood and least

squares. Crucially, while the maximal separation is concerned with the largest devia-

tion between the data and the specified model, maximum likelihood and least squares

aggregate the deviations across the different observations. This has two implications.

Firstly, there should be datasets and models where maximal separation identifies dif-

ferent best instances of the model. Secondly, we should expect maximal separation to

provide more accurate over-estimations for those observations for which the observed

choice frequency is low, while the other measures would perform better on average. In

what follows, we use our experimental dataset to illustrate these two points empirically.

Table 3 illustrates the first point. It reports the instances of the models identi-

fied by the maximal separation and the maximum likelihood techniques over the entire

dataset.24 No difference whatsoever is observed with respect to the deterministic model;

the estimated preference relations are exactly the same. This ordinal equivalence is

preserved in the case of the tremble model, although our technique predicts a substan-

tially smaller trembling coefficient, 0.51 < 0.68. The intuition for this difference is

straightforward. Recall that, as mentioned above, (l9, {l5, l9}) is a critical observation

in the maximal separation exercise for Tremble. The observed probability in this ob-

servation is small, 0.17, and, due to the trembling parameter, the instance of the model

identified by our technique predicts a rather large relative frequency of 0.26. However,

the maximum likelihood exercise is not severely affected by this local consideration and

makes the estimation by simply averaging over all the observations. Consequently, the

estimation exercise in maximum likelihood is willing to sacrifice the predictive accuracy

of this extreme observation in order to better accommodate the more moderate ones.

This is done by substantially increasing the trembling parameter and, consequently,

the prediction in this particular observation (l9, {l5, l9}), which reaches a dispropor-

tionate value of 0.34, which is twice the observed value. Similar reasoning applies to

the comparison of the Luce and SC-CRRA cases.

23The Kullback-Leibler divergence can be interpreted as the amount of information lost due to the

use of δ instead of ρ
24In the ML calculations we impose a lower bound in the theoretical predictions, in order to ensure

strictly positive likelihoods. The results given by least squares are practically identical to those given

by maximum likelihood, and are therefore omitted.
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Table 3. Maximal Separation and Maximum Likelihood

Deterministic

MS P = [l1, l5, l4, l8, l7, l9, l3, l6, l2]

ML P = [l1, l5, l4, l8, l7, l9, l3, l6, l2]

Tremble

MS P = [l1, l5, l4, l8, l7, l9, l3, l6, l2]; γ = 0.51

ML P = [l1, l5, l4, l8, l7, l9, l3, l6, l2]; γ = 0.68

Luce

MS u = (0.22, 0.02, 0.09, 0.13, 0.25, 0.03, 0.07, 0.11, 0.08)

ML u = (0.18, 0.04, 0.1, 0.14, 0.17, 0.04, 0.11, 0.13, 0.09)

SCRUM-CRRA

MS F (−4.15) = 0.205, F (−0.31) = 0.241, F (−0.08) = 0.242, F (0.34) = 0.258, F (0.41) = 0.276

F (0.44) = 0.416, F (0.61) = 0.453, F (1) = 0.533, F (4.71) = 0.563, F (∞) = 1

ML F (−4.15) = 0.22, F (−0.31) = 0.287, F (0.44) = 0.442

F (1) = 0.506, F (4.71) = 0.563, F (∞) = 1

Note: MS and ML denote maximal separation and maximum likelihood, respectively. P denotes the preference identified in

each respective case, where the ranking declines from left to right, γ is the tremble probability in Tremble, u is the Luce utility

vector associated with Luce, where the i-th entry in u corresponds to the utility value of lottery li, and finally F (r) denotes

the cumulative probability masses associated with the upper bounds of the intervals of the relative risk-aversion coefficients r

consistent with those CRRA preference relations that have a strictly positive mass in the corresponding estimation procedure.

For a comparative illustration of the different approaches, we now perform an out-of-

sample exercise. This will also allow us to evaluate the second conjecture stated above.25

We take all the binary data except for one binary set, estimate the instances of the

models by maximal separation and maximum likelihood using these data, and use the

estimated instances to predict the behavior in the omitted binary set. We perform this

procedure on 36 binary sets, each with two cases: one in which both maximal separation

and maximum likelihood over-estimate the choice probability of the same alternative

in the binary menu, and another in which they over-estimate the choice probability of

different alternatives. By focusing on the first case, comparison of the predictive powers

25We complement this exercise in Appendix C by using the non-binary part of the dataset, while,

in Appendix B, we elaborate on the intuition behind this conjecture using a more theoretical approach

entailing the application of a particular data-generating process and the tremble model.
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Table 4. Forecasting Results of Maximal Separation and Maximum

Likelihood

Tremble Luce SCRUM-CRRA

(a,A) ρ MS ML (a,A) ρ MS ML (a,A) ρ MS ML

(l9, {l5, l9}) 0.17 0.28 0.35 (l9, {l5, l9}) 0.17 0.39 0.41 (l6, {l3, l6}) 0.20 0.21 0.27

(l6, {l3, l6}) 0.20 0.26 0.35 (l6, {l3, l6}) 0.20 0.27 0.32 (l6, {l6, l8}) 0.20 0.26 0.29

(l6, {l6, l8}) 0.20 0.26 0.35 (l6, {l6, l8}) 0.20 0.23 0.25 (l6, {l6, l9}) 0.22 0.26 0.29

(l6, {l6, l9}) 0.22 0.26 0.34 (l6, {l6, l9}) 0.22 0.29 0.34 (l2, {l2, l8}) 0.22 0.26 0.29

(l2, {l2, l8}) 0.22 0.26 0.34 (l2, {l2, l7}) 0.24 0.26 0.29 (l6, {l4, l6}) 0.24 0.24 0.29

(l6, {l4, l6}) 0.24 0.26 0.34 (l9, {l1, l9}) 0.24 0.26 0.36 (l2, {l2, l7}) 0.24 0.26 0.29

(l2, {l2, l7}) 0.24 0.26 0.34 (l3, {l3, l8}) 0.36 0.49 0.46 (l2, {l1, l2}) 0.25 0.26 0.29

(l9, {l1, l9}) 0.24 0.26 0.34 (l9, {l8, l9}) 0.36 0.42 0.43 (l2, {l2, l5}) 0.25 0.26 0.29

(l2, {l1, l2}) 0.25 0.26 0.34 (l3, {l3, l9}) 0.39 0.63 0.56 (l3, {l3, l8}) 0.36 0.47 0.45

(l2, {l2, l5}) 0.25 0.26 0.34 (l5, {l1, l5}) 0.42 0.58 0.50 (l9, {l8, l9}) 0.36 0.55 0.52

(l6, {l5, l6}) 0.25 0.26 0.34 (l9, {l7, l9}) 0.44 0.54 0.46 (l3, {l3, l9}) 0.39 0.45 0.48

(l3, {l3, l9}) 0.39 0.74 0.66 (l8, {l4, l8}) 0.44 0.45 0.49 (l3, {l1, l3}) 0.40 0.45 0.45

(l2, {l2, l6}) 0.44 0.74 0.66 (l8, {l7, l8}) 0.51 0.59 0.55 (l5, {l1, l5}) 0.42 0.56 0.56

(l4, {l4, l5}) 0.49 0.74 0.66 (l5, {l4, l5}) 0.51 0.68 0.54 (l9, {l7, l9}) 0.44 0.58 0.58

(l7, {l7, l8}) 0.49 0.75 0.66 (l1, {l1, l4}) 0.53 0.63 0.56 (l9, {l4, l9}) 0.45 0.47 0.50

(l7, {l3, l7}) 0.52 0.74 0.66 (l5, {l3, l5}) 0.55 0.78 0.65 (l4, {l1, l4}) 0.47 0.53 0.51

(l1, {l1, l4}) 0.53 0.74 0.66 (l4, {l4, l9}) 0.55 0.64 0.63 (l3, {l3, l7}) 0.48 0.53 0.51

(l5, {l3, l5}) 0.55 0.74 0.66 (l4, {l3, l4}) 0.57 0.60 0.60 (l4, {l4, l5}) 0.49 0.53 0.51

(l4, {l4, l9}) 0.55 0.74 0.66 (l1, {l1, l3}) 0.60 0.71 0.66 (l8, {l7, l8}) 0.51 0.61 0.57

(l7, {l7, l9}) 0.56 0.74 0.66 (l3, {l2, l3}) 0.67 0.80 0.71 (l5, {l3, l5}) 0.55 0.55 0.56

(l4, {l3, l4}) 0.57 0.74 0.66 (l4, {l2, l4}) 0.72 0.85 0.78 (l6, {l2, l6}) 0.56 0.58 0.56

(l1, {l1, l3}) 0.60 0.74 0.66 (l1, {l1, l6}) 0.72 0.87 0.83 (l5, {l5, l8}) 0.62 0.76 0.72

(l5, {l5, l8}) 0.62 0.74 0.66 (l1, {l1, l2}) 0.75 0.91 0.82 (l4, {l4, l7}) 0.62 0.79 0.75

(l4, {l4, l7}) 0.62 0.74 0.66 (l5, {l2, l5}) 0.75 0.92 0.80 (l1, {l1, l7}) 0.63 0.76 0.72

(l1, {l1, l7}) 0.63 0.74 0.66 (l5, {l5, l6}) 0.75 0.89 0.81 (l5, {l5, l7}) 0.63 0.76 0.72

(l5, {l5, l7}) 0.63 0.74 0.66 (l4, {l4, l6}) 0.76 0.83 0.78 (l1, {l1, l8}) 0.64 0.76 0.72

(l8, {l8, l9}) 0.64 0.74 0.66 (l3, {l2, l3}) 0.67 0.76 0.72

(l1, {l1, l8}) 0.64 0.74 0.66 (l1, {l1, l9}) 0.76 0.84 0.90

(l8, {l3, l8}) 0.64 0.74 0.66 (l5, {l5, l9}) 0.83 1.00 1.00

Note: (a,A) denotes the observation referring to alternative a from menu A such that a is the lottery where the

predictions of both maximal separation (MS) and maximum likelihood (ML) are above the observed choice data

ρ. Those observations for which one of the predictions of MS or ML is above the observed choice data and the

other below are not reported in the table. Then, for each one of the models, the binary menus of lotteries are

ordered from lower to higher observed choice probabilities. Bold entries refer to the cases where MS is closer to

the data and italicized entries refers to those cases where ML is closer to the data.

of maximal separation and maximum likelihood becomes straightforward; one of the
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methods is unambiguously more accurate than the other.26 We therefore focus our

comparison on these menus, since the conclusions may otherwise depend on the choice

of distance function. Table 4 reports the results.27 As advanced above, the analysis of

the loss functions entailed by the two techniques suggested a very intuitive conjecture.

Namely, that the maximal separation technique is very cautious and can therefore

be expected to perform better in observations with low choice probabilities. This

conjecture is largely confirmed in our analysis. In all three models, the over-estimation

of small probabilities is less problematic for the maximal separation technique, while

maximum likelihood deals better with the over-estimation of large probabilities. We

conclude from these results, therefore, that if the interest is in forecasting, it may be

worth applying both maximal separation and maximum likelihood to obtain a clearer

picture of the overall situation.

7. Discussion

We close this paper by commenting on three issues surrounding the notion of maximal

separation. We begin by discussing how to select one of the available existing models

by assigning a parsimony cost to each model. We then comment on the possibility of

assuming that the model ∆ is not only closed, but also convex. Finally, we discuss the

possibility of restricting the space of residual stochastic choice functions, and comment

on possible interpretations of residual behavior.

7.1. Model selection. The fraction of data explained in a maximal separation con-

stitutes an absolute performance measure, a concept in tension with the idea of over-

fitting, i.e., larger models are explanatorily superior simply because of their size. For a

direct example of this tension, notice that whenever ∆ ⊆ ∆′, the maximal fraction of

data explained by model ∆′ is, independently of ρ, larger than or equal to the maximal

fraction of data explained by model ∆. The natural reaction to this is to consider a

penalization of model ∆ that is monotonically dependent upon the size of the model.28

26Notice that, in binary menus, if one alternative is over-estimated, the other is under-estimated

and, for both observations, there is one method that is more accurate than the other. Thus, there is

no loss of generality in discussing the results for, say, the over-estimated alternatives.
27We do not report the results of the deterministic method, since, in this case, the maximal sepa-

ration and maximum likelihood predictions are exactly the same.
28Another approach would entail comparing the completeness of the different models, that is,

the amount of predictive variation rationalized by the model. See Fudenberg, Kleinberg, Liang and

Mullainathan (2019) for a recent formal treatment of the notion of completeness.
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Notice that the set of all stochastic choice functions can be obtained by taking the

product of |D| simplices. In other words, the set of all stochastic choice functions

can be seen as a subset of [0, 1]|O|−|D|. Since all relevant stochastic models have a

strictly lower dimensionality, they all have zero Lebesgue measure in the subspace of

all stochastic choice functions. Therefore, any measure based on the Lebesgue volume

of these models would regard all models as having the same size, and would differentiate

them only in terms of the fraction of the data they rationalize.29

An alternative approach, in the spirit of the Akaike information criterion, would be

to consider a cost dependent on the largest value of n, such that the model ∆ has non-

zero measure in the space [0, 1]n. The essence of this perspective is to count the number

of parameters in the model ∆. Of the models previously analyzed, the deterministic

choice model matches a finite subset of possible datasets and hence does not have a

strictly positive dimension. The tremble model involves one tremble parameter and

hence has dimension 1. The Luce model involves one utility value for each alternative

and, when normalizing the sum of utility values, involves as many parameters as the

number of alternatives minus 1. The single-crossing random utility model involves a

probability measure over a subset of T preferences. If all menus are available, the

dimension of this model is T − 1.

7.2. Convex models. We have assumed model ∆ to be closed, a basic property which

guarantees the existence of maximal separations. An obvious further property to be

considered is convexity, especially in relation to mixture models. These are common

when dealing with heterogeneity at the population level, and can also be used to

discuss intra-personal heterogeneity. In a mixture model, the researcher convexifies a

set of instances of a base model, allowing different subpopulations to be explained by

different instances of the model. Notice that our methodology directly enables this

type of analysis, since one can simply consider the desired, convexified, ∆ model as

the object of analysis. As an example of this approach, see the analysis of the single-

crossing random utility model in Section 4.4, which can be understood as the convex

hull of a subset of deterministic model instances.

29Another normalization that would not discriminate beyond absolute performance is λ∗−λmin

λmax−λmin ,

where λmax and λmin are a models’ maximum and minimum performance values when studying all

possible datasets. Clearly, λmax = 1 for all the models, and it can be easily shown that λmin = 0 for

all the models discussed in this paper.
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The convexity of ∆ may have useful implications. Given data ρ and model ∆,

consider two separations 〈λ, δ, ε〉 and 〈λ′, δ′, ε′〉, and let α ∈ [0, 1]. Clearly, αλ +

(1 − α)λ′ ∈ [0, 1] and αε + (1 − α)ε′ ∈ SCF, due to the convexity of [0, 1] and SCF.

Whenever model ∆ is convex, we also obtain that αδ + (1 − α)δ′ ∈ ∆, and hence,

α〈λ, δ, ε〉 + (1 − α)〈λ′, δ′, ε′〉 is also a separation, showing the convexity of the set of

all separations. This transforms the search for maximal separations into a convex

optimization problem.

It is important to note, however, that convex choice models are the exception rather

than the norm. It is immediately obvious, for example, that the deterministic model

is not convex. A mixture of two deterministic choice functions rationalized by two

different preferences will clearly lead to a stochastic choice function that cannot be

rationalized by any other preference. In a similar vein, it is well-known that the

Luce model represents another case of a non-convex model (see Gul, Natenzon and

Pesendorfer, 2014). Hence, the assumption of convexity, while not required for our

results, would come with some loss of generality.

7.3. Residual behavior. In our approach to finding the maximal fraction of the data

consistent with a model, we have given the best possible chance to the model by

leaving the space of possible residual behaviors completely unstructured. That is, we

have assumed that residual behavior ε can be selected from the whole set of stochastic

choice functions, SCF. Consequently, as the proof of Proposition 1 shows, a necessary

condition for a separation to be maximal is that residual behavior lies exactly on the

frontier of SCF. In other words, the residual behavior in a maximal separation imposes

zero choice probabilities for some observations, which we call critical observations.

Sometimes the interest lies in separations involving less extreme residual behaviors,

which might lead us to consider the possibility of imposing on the space of allowable

residual behaviors a particular minimal structure beyond that of a stochastic choice

function. The aim might be to consider the case in which residual behavior is in some

way similar in nature to the reference model ∆, while allowing for more flexibility.

A set of minimal assumptions is sufficient to guarantee that the logic behind our

methodology applies when considering restricted spaces of residual behavior, RB ⊆ SCF.

In particular, we only need to consider that: (i) the space of residual behaviors is a

relaxation of the model, i.e., ∆ ⊆ RB, (ii) the data belong to the space of residual

behaviors, i.e., ρ ∈ RB, and (iii) the space of residual behaviors has some technical

properties, such as closedness and convexity, similar to those of the SCF space. Under
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these conditions, the concept of separation can be reformulated, provided that 〈λ, δ, ε〉 ∈
[0, 1]×∆× RB. The logic of Proposition 1 remains valid and a necessary condition for

a separation to be maximal will be that residual behavior lies on the frontier of RB.

We conclude with some final comments on the interpretation of residual behavior,

where we distinguish three cases. First, consider the situation in which the residual

has the consistency properties typical of a noisy structure. To illustrate, consider

that the data ρ are generated exactly by the tremble model using a preference P

and tremble γ, but the analyst initially approaches the data from the deterministic

model perspective. The maximal separation will identify the true preference P and

the residual will have a very transparent structure: the optimal alternative in menu A

according to P is chosen with zero probability, while any other alternative is chosen

with probability 1
|A|−1

. Clearly, the structure of ε is very informative about the existing

behavioral noise, and the analyst may wish to adopt the tremble model instead of the

deterministic one.

Secondly, suppose that the residual has consistency properties typical of a competing

instance of the model or of a competing model. To illustrate, consider that the data ρ

are generated by a mixture of preferences P and P ′ (the former in larger proportion),

but the analyst initially approaches the data from the perspective of the deterministic

model. The maximal separation will identify preference P and the residual will have a

very clear structure: that of preference P ′. Clearly, the structure of ε is very informative

about the existing heterogeneity, and, again, the analyst may wish to reconsider the

choice of model for incorporating this heterogeneity into a mixture model. Similar

reasoning applies when the residual resembles an instance not of the model ∆ but of

some other reasonable model ∆′.

Finally, suppose that the residual is found to appear rather inconsistent. Here, a

potentially fruitful option would be to apply the maximal separation approach on ε

using some reasonable choice model, to assess the possibility of making any sense out

of the apparently chaotic behavior ε. That is, try to ascertain whether ε itself can

be understood, to a significant extent, as the combination of some choice model and

another expression of residual behavior.
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Appendix A. Proofs

Proof of Proposition 1: Consider first the case where ρ ∈ ∆. Then, 〈1, ρ, ρ〉 is

clearly a maximal separation. Moreover, given that min
(a,A)∈O

ρ(a,A)
δ(a,A)

= 1 if and only if

ρ = δ, the result follows.

Let us now consider the case of ρ 6∈ ∆. We start by claiming that, for a given

δ ∈ ∆, there exist λ ∈ [0, 1) and ε ∈ SCF such that 〈λ, δ, ε〉 is a separation if and only

if λ ≤ min
(a,A)∈O

ρ(a,A)
δ(a,A)

. To prove the ‘only if’ part, assume that 〈λ, δ, ε〉 is a separation.

Then, it must be the case that ρ = λδ + (1 − λ)ε, or equivalently, ρ−λδ
1−λ = ε ≥ 0.

This implies that ρ − λδ ≥ 0 and, ultimately, that λ ≤ ρ
δ
. Hence, it must be that

λ ≤ min
(a,A)∈O

ρ(a,A)
δ(a,A)

, as desired.30 To prove the ‘if’ part, suppose that λ ≤ min
(a,A)∈O

ρ(a,A)
δ(a,A)

.

We now prove that 〈λ, δ, ε = ρ−λδ
1−λ 〉 is a separation of the data. Since, by assumption,

δ ∈ ∆ and the construction guarantees that ρ = λδ+ (1− λ)ε, we are only required to

prove that ε ∈ SCF. We begin by checking that ε(a,A) ≥ 0 holds for every (a,A) ∈ O.

To see this, suppose by contradiction that this is not true. Then, there would exist

(b, B) ∈ O such that ρ(b,B)−λδ(b,B)
1−λ < 0. This would imply that ρ(b, B) − λδ(b, B) < 0

and hence, that δ(b, B) > 0, with ρ(b,B)
δ(b,B)

< λ ≤ min
(a,A)∈O

ρ(a,A)
δ(a,A)

, which is a contradiction.

Finally, it is also the case that
∑
a∈A

ε(a,A) =
∑
a∈A

ρ(a,A)−λδ(a,A)
1−λ = 1−λ

1−λ = 1 for every

A ∈ D. Therefore ε ∈ SCF and the claim is proved.

Now, the above claim shows that the maximal fraction that can be explained with

model {δ} is min
(a,A)∈O

ρ(a,A)
δ(a,A)

. This argument immediately implies the desired results on

∆, provided that maximal separations exist.

We now show the existence of maximal separations. Given the domain, any separa-

tion 〈λ, δ, ε〉 of ρ is a vector in Rn, with n = 2|O| + 1. We first prove that the set of

separations is a closed subset of Rn. Consider a sequence of separations 〈λt, δt, εt〉∞t=1

and suppose that this sequence converges in Rn. Given the finite dimensionality and

the closure of ∆ and SCF, we clearly have that limt λt ∈ [0, 1], limt δt ∈ ∆ and limt εt ∈
SCF and it is evident that 〈limt λt, limt δt, limt εt〉 is a separation of ρ. This proves that

the set of separations is closed and, being a subset of [0, 1]n, it is also bounded and

hence, compact. Since the maximal fraction of data explained can be thought of as

the result of maximizing, over the set of separations, the projection map assigning the

30Notice that, in dividing by δ, we are using the above-mentioned convention.
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first component of the separation, i.e., value λ, existence is guaranteed. �

Proof of Proposition 2: Let {λS}S:D|S 6=∅ and P ∈ P satisfy (1) and (2). For every

S such that D|S 6= ∅, denote by DETD|S the deterministic rational stochastic choice

functions defined over the subdomain D|S. Similarly, denote by ρ|S the restriction

of ρ to D|S. We start by proving, recursively, that the maximal fraction of data ρ|S
explained by model DETD|S is equal to λS. Consider any subset S for which D|S = {S}.
In this case, Proposition 1 guarantees that the maximal fraction of data ρ|S explained

by model DETD|S is max
δ∈DETD|S

min
(a,A)∈O|S

ρ|S(a,A)
δ(a,A)

= max
P∈P

min
(a,A)∈O|S

ρ(a,A)
δP (a,A)

= max
P∈P

min
a∈S

ρ(a,S)
δP (a,S)

=

max
P∈P

ρ(mP (S),S)
δP (mP (S),S)

= max
P∈P

ρ(mP (S), S) = max
a∈S

ρ(a, S) = max
a∈S

min
(a,A)∈O|S

ρ(a,A) = λS. Now

suppose that D|S 6= {S} and that the result has been proved for any strict subset of

S with non-empty subdomain. For any a ∈ S, denote by PaS the set of preferences

that rank a above any other alternative in S, i.e., PaS = {P ∈ P : a = mP (S)},
and by aS the subset of DETD|S generated by preferences in PaS. Trivially, DETD|S =⋃
a∈S

aS =
⋃
a∈S

⋃
P∈PaS

{δP}. Since the only observations for which δP has a non-null value

are those that take form (mP (A), A), Proposition 1 guarantees that the maximal frac-

tion of data ρ|S explained by model DETD|S is max
a∈S

max
P∈PaS

min
A∈D|S

ρ(mP (A), A). Since

P ∈ PaS, we obtain that mP (A) = a whenever a ∈ A and hence the latter value is

equal to max
a∈S

max
P∈PaS

min
{
{ρ(a,A)}(a,A)∈O|S , {ρ(mP (B), B)}B∈D|S\{a}

}
. This can be ex-

pressed as max
a∈S

min
{
{ρ(a,A)}(a,A)∈O|S , max

P∈PaS
min

B∈D|S\{a}
ρ(mP (B), B)

}
or, equivalently,

as max
a∈S

min
{
{ρ(a,A)}(a,A)∈O|S , min

B∈D|S\{a}
max
P∈PaS

min
C∈D|B

ρ(mP (C), C)
}

. Given that a 6∈ B,

it is clearly the case that max
P∈PaS

min
C∈D|B

ρ(mP (C), C) = max
P∈P

min
C∈D|B

ρ(mP (C), C) and, by

Proposition 1 and the structure of deterministic stochastic choice functions, the latter

is the maximal fraction of data ρ|B explained by model DETD|B , which is equal to λB by

hypothesis. Hence, the maximal fraction of data ρ|S explained by model DETD|S must

be also equal to λS, as desired. As a corollary, we have that the maximal fraction of

the data explained by the deterministic model is λX and the claim follows from the

construction. �

Proof of Proposition 3: Since the proof has the same structure as the proof of

Proposition 2, we skip some of the steps and use the same notation as before. We

start by (recursively) proving that the maximal fraction of data ρ|S explained by the
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collection of stochastic choice functions in TrembleD|S with a fixed degree of tremble

γ, which we denote by TrembleD|S(γ), is equal to λS(γ). We start with any subset S

for which D|S = {S}. The maximal fraction of data ρ|S explained by TrembleD|S(γ) is

max
δ∈TrembleD|S (γ)

min
(a,A)∈O|S

ρ|S(a,A)
δ(a,A)

= max
P∈P

min
{ ρ(mP (S),S)
δ[P,γ](mP (S),S)

, { ρ(b,S)
δ[P,γ](b,S)

}b∈S\{mP (S)}
}

=

max
P∈P

min
{ |S|ρ(mP (S),S)

(1−γ)|S|+γ , { |S|ρ(b,S)
γ
}b∈S\{mP (S)}

}
= max

a∈S
min

{ |S|ρ(a,S)
(1−γ)|S|+γ , {

|S|ρ(b,S)
γ
}b∈S\{a}

}
=

max
a∈S

min
{
{ |A|ρ(a,A)

(1−γ)|A|+γ}(a,A)∈O|S , {
|A|ρ(b,A)

γ
}(b,A)∈O|S

b 6=a
} = λS(γ). Whenever D|S 6= {S},

we can write the maximal fraction of data ρ|S explained by model TrembleD|S(γ)

as max
a∈S

max
P∈PaS

min
{
{ |A|ρ(mP (A),A)

(1−γ)|A|+γ }A∈D|S , {
|A|ρ(b,A)

γ
}(b,A)∈O|S ,b 6=mP (A)}. Notice that we can

decompose { |A|ρ(mP (A),A)
(1−γ)|A|+γ }A∈D|S into { |A|ρ(a,A)

(1−γ)|A|+γ}(a,A)∈O|S and { |B|ρ(mP (B),B)
(1−γ)|B|+γ }B∈D|S\{a} .

Similarly, we can decompose { |A|ρ(b,A)
γ
}(b,A)∈O|S ,b 6=mP (A) into components { |A|ρ(b,A)

γ
}(b,A)∈O|S

b 6=a∈A

and { |B|ρ(b,B)
γ
}B∈D|S\{a}
b 6=mP (B)

. By the same reasoning as in the proof of Proposition 2,

consideration of both { |B|ρ(mP (B),B)
(1−γ)|B|+γ }B∈D|S\{a} and { |B|ρ(b,B)

γ
}B∈D|S\{a}
b6=mP (B)

yields the value

{λB(γ)}B∈D|S\{a} . This proves the claim. From Proposition 2, the maximal separa-

tions for model TrembleD(γ) explain a fraction λX(γ) of the data. Since TrembleD =

∪γTrembleD(γ), one simply needs to consider the value γ∗ maximizing λX(γ) and the

result follows immediately from Proposition 1. �

Proof of Proposition 4: To prove the ‘if’ part let δL ∈ Luce and suppose that

there exists {(ai, Ai)}Ii=1 ⊆ OδL such that
⋃I
i=1{ai} =

⋃I
i=1 Ai. From Proposition

1, the maximal fraction that can be explained by model {δL} is min
(a,A)∈O

ρ(a,A)
δL(a,A)

. As-

sume, by way of contradiction, that δL is not part of a maximal separation for the

Luce model. Therefore, there exists 〈λ∗, δ∗L, ε∗〉 such that, for every i ∈ {1, 2, . . . , I},
ρ(ai,Ai)
δL(ai,Ai)

= min
(a,A)∈O

ρ(a,A)
δL(a,A)

< λ∗ = min
(a,A)∈O

ρ(a,A)
δ∗L(a,A)

≤ ρ(ai,Ai)
δ∗L(ai,Ai)

. For every i ∈ {1, 2, . . . , I},

we have that ρ(ai, Ai) > 0 and hence, since the ρ/δL ratio is minimized at OδL , it must

be that δL(ai, Ai) > 0, making ρ(ai,Ai)
δL(ai,Ai)

< ρ(ai,Ai)
δ∗L(ai,Ai)

equivalent to δ∗L(ai, Ai) < δL(ai, Ai).

Let {δ′vn}
∞
n=1 and {δun}∞n=1 be two sequences of strictly positive Luce stochastic choice

functions that converge to δ∗L and δL, respectively. Select an m sufficiently large

that δ∗L(ai, Ai) < δum(ai, Ai) holds for every i ∈ {1, 2, . . . , I}. Given m, now select

an m′ sufficiently large that, for every i ∈ {1, 2, . . . , I}, δ′vm′ (ai, Ai) < δum(ai, Ai)

holds. We then have that 1∑
x∈Ai

vm′ (x)

vm′ (ai)

=
vm′ (ai)∑
x∈Ai

vm′ (x)
= δ′vm′ (ai, Ai) < δum(ai, Ai) =
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um(ai)∑
x∈Ai

um(x)
= 1∑

x∈Ai
um(x)
um(ai)

, thus guaranteeing, for every i ∈ {1, 2, . . . , I}, the ex-

istence of one alternative x̄i ∈ Ai \ {ai} such that
vm′ (ai)
vm′ (x̄i)

< um(ai)
um(x̄i)

. Given that⋃I
i=1{ai} =

⋃I
i=1Ai, there exists a subcollection {aih}Hh=1 of {ai}Ii=1 with the fol-

lowing properties: (i) aih+1
∈ Aih , with h = 1, . . . , H − 1, and ai1 ∈ AiH , and

(ii)
vm′ (aih )

vm′ (aih+1
)
<

um(aih )

um(aih+1
)

with h = 1, . . . , H − 1 and
vm′ (aiH )

vm′ (ai1 )
<

um(aiH )

um(ai1 )
. Obviously,

1 =
vm′ (aiH )

vm′ (ai1 )
ΠH−1
h=1

vm′ (aih )

vm′ (aih+1
)
<

um(aiH )

um(ai1 )
ΠH−1
h=1

um(aih )

um(aih+1
)

= 1, which is a contradiction. This

concludes the ‘if’ part of the proof.

To prove the ‘only if’ part, suppose that δL belongs to a maximal separation for

the Luce model. Let [x] be the set of all alternatives x′ ∈ X for which there exists a

sequence of observations {(bj, Bj)}Jj=1, with: (i) x = b1 and x′ ≡ bJ+1 ∈ BJ , and (ii) for

every j ∈ {1, 2, . . . , J}, δL(bj, Bj) > 0 and δL(bj+1, Bj) > 0. If there is no alternative

for which such a sequence exists, let [x] = {x}. Clearly, [·] defines equivalence classes

on X. Whenever there exists A ∈ D with {x, y} ⊆ A and δL(x,A) > δL(y, A) = 0,

we write [x] � [y]. We claim that � is an acyclic relation on the set of equivalence

classes. To see this, assume, by contradiction, that there is a cycle of pairs {aq, bq},
menus Aq ⊇ {aq, bq}, and equivalence classes [xq], q ∈ {1, 2, . . . , Q}, such that: (i)

δL(aq, Aq) > δL(bq, Aq) = 0 for every q ∈ {1, 2, . . . , Q}, (ii) aq ∈ [xq] for every q ∈
{1, 2, . . . , Q}, and (iii) bq ∈ [xq+1] for every q ∈ {1, 2, . . . , Q− 1} and bQ ∈ [x1]. We can

then consider a sequence of stochastic choice functions {δun}∞n=1 that converges to δL.

Since bq and aq+1 belong to the same equivalence class [xq+1], either bq = aq+1 or there

exists a sequence of observations {(dj, Dj)}Jj=1 with: (i) bq = d1 and aq+1 = dJ+1 ∈ DJ ,

and (ii) for every j ∈ {1, 2, . . . , J}, δL(dj, Dj) > 0 and δL(dj+1, Dj) > 0 (and the same

holds for aQ and b1). Define the strictly positive constant Kq = 1 whenever bq = aq+1,

and Kq = 1
2
ΠJ
j=1

δL(dj ,Dj)

δL(dj+1,Dj)
otherwise (with a similar definition for KQ relating aQ and

b1). If bq = aq+1, then, trivially, un(bq) = un(aq+1) for every n. Otherwise, for a

sufficiently large n in the sequence {un}∞n=1, we have that un(bq)

un(aq+1)
= ΠJ

j=1
un(dj)

un(dj+1)
=

ΠJ
j=1

δum (dj ,Dj)

δum (dj+1,Dj)
≥ Kq. Hence, in any case, un(bq)

Kq
≥ un(aq+1) holds for any sufficiently

large n (and the same holds for bQ and a1). Also, since δL(aq, Aq) > δL(bq, Aq) = 0 for

every q ∈ {1, 2, . . . , Q}, we can find an n sufficiently large that un(aq) >
un(bq)

Kq
. Hence,

we can find an m that is sufficiently large that um(a1) > um(b1)
K1

≥ um(a2) > um(b2)
K2

≥
· · · ≥ um(aQ) >

um(bQ)

KQ
≥ um(a1). This is a contradiction which proves the acyclicity

of �. We can then denote the equivalence classes as {[xe]}Ee=1, where [xe] � [xe′ ]

implies that e < e′. For an equivalence class [xe], define the vector u[xe] ∈ U such that
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u[xe](y) = 0 if y 6∈ [xe] and,
u[xe](y)

u[xe](y
′)

= δL(y,A)
δL(y′,A)

whenever y, y′ ∈ [xe], δL(y, A) > 0 and

δL(y′, A) > 0. This is clearly well-defined due to the structure of Luce stochastic choice

functions. Now consider the sequence of Luce stochastic choice functions {δvn}∞n=1 given

by vn = (1−
∑E

e=2( 1
2e

)n)u[x1] +
∑E

e=2( 1
2e

)nu[xe], which clearly converges to δL. Consider

the following three collections of observations O1, O2 and O3. O1 is composed of

all observations (a,A) ∈ O such that A ⊆ [a]. O2 is composed of all observations

(a,A) ∈ O \ O1, such that b ∈ A, a ∈ [ai] and b ∈ [aj] imply i ≥ j. O3 is composed

of observations in O \ (O1 ∪ O2). Notice that, for an n sufficiently large, for every

(a,A) ∈ O1 we have that ρ(a,A)
δvn (a,A)

= ρ(a,A)
δL(a,A)

and for every (a,A) ∈ O2 we have that
ρ(a,A)
δvn (a,A)

> ρ(a,A)
δL(a,A)

. Also, for an n sufficiently large, (1
2
)n < min{ρ(a,A) : a ∈ A ∈ D},

and hence (a,A) ∈ O3 implies that ρ(a,A)
δvn (a,A)

≥ ρ(a,A)

( 1
2

)m
> 1. In this case, we can fix an

m sufficiently large that, from Proposition 1, min
(a,A)∈O

ρ(a,A)
δvm (a,A)

= min
(a,A)∈O1∪O2

ρ(a,A)
δvm (a,A)

≥

min
(a,A)∈O1∪O2

ρ(a,A)
δL(a,A)

≥ min
(a,A)∈O

ρ(a,A)
δL(a,A)

.31 Indeed, since δL belongs to a maximal separation

of the Luce model, it must be that min
(a,A)∈O

ρ(a,A)
δvm (a,A)

= min
(a,A)∈O

ρ(a,A)
δL(a,A)

, and hence O1 is

non-empty, with Oδvm ⊆ OδL ⊆ O1.

Assume, by way of contradiction, that there is no subcollection {(ai, Ai)}Ii=1 ⊆ OδL
such that

⋃I
i=1{ai} =

⋃I
i=1Ai. Then, for every subcollection {(ai, Ai)}Ii=1 ⊆ Oδvm it

must also be that
⋃I
i=1{ai} 6=

⋃I
i=1Ai. Hence, there must exist at least one alterna-

tive x such that x 6= a for every (a,A) ∈ Oδvm and x ∈ A for some (a,A) ∈ Oδvm .

Consider the segment α1x + (1 − α)vm, with α ∈ [0, 1]. Select the maximal sepa-

ration in this segment, which can be identified as follows. Partition the set of ob-

servations into two classes O′ = {(a,A) ∈ O, a 6= x ∈ A} and O′′ = O \ O′

and then select the Luce utilities defined by the unique value ᾱ ∈ [0, 1] that solves

min
(a,A)∈O′

ρ(a,A)
δα1x+(1−α)vm (a,A)

= min
(a,A)∈O′′

ρ(a,A)
δα1x+(1−α)vm (a,A)

. Notice that, given the structure of

the Luce model, the left-hand ratio increases with α, continuously and strictly, ap-

proaching infinity. At the same time, the right-hand ratio weakly decreases with α

continuously. Notice also that, for α = 0, the left-hand ratio is strictly lower than the

right-hand ratio. This is because there exists at least one observation on the left-hand

side that belongs to Oδvm . Thus, ᾱ must exist and Proposition 1 guarantees that this

provides the maximal separation in the segment. Then, consider the vector of Luce

utilities v = ᾱ1x + (1− ᾱ)vm. If alternative x is present in all the menus in Oδvm , then

31This shows, further, that there is always a strictly positive instance of Luce that is maximal.
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min
(a,A)∈O

ρ(a,A)
δv(a,A)

> min
(a,A)∈O

ρ(a,A)
δvm (a,A)

= min
(a,A)∈O

ρ(a,A)
δL(a,A)

, thus contradicting the maximality of

δL. If x is not present in some menu of Oδvm , it must be the case that Oδv ( Oδvm
and min

(a,A)∈O

ρ(a,A)
δv(a,A)

= min
(a,A)∈O

ρ(a,A)
δL(a,A)

. Given the finiteness of the data, we can repeat the

same exercise for δv and, eventually, contradict the optimality of δL. This concludes

the proof. �

Proof of Proposition 5: We start by proving that λT is lower than or equal to the

maximal fraction of the data that can be explained by SCRUM. By construction, it

is guaranteed that 1 ≥ λT ≥ λT−1 ≥ · · · ≥ λ1 ≥ 0. Whenever λT = 0, the result is

immediate. Assume that λT ∈ (0, 1). We prove that there exists a separation of ρ of the

form 〈λT , δµT ,
ρ−λT δµT

1−λT
〉. Since the construction guarantees that δµT ∈ SC, we only need

to prove that ε =
ρ−λT δµT

1−λT
∈ SCF. To see this, consider (a,A) ∈ O and denote by i and

ī the integers of the first and last preferences in P ′, such that a is the maximal element

in A. The construction also guarantees that ρ(a,A) ≥ λī−λi−1 = λT
λī−λi−1

λT
. Now, the

recursive equations can be written as µT (Pi) =
λPi−λPi−1

λT
for every i ∈ {1, 2, . . . , T},

with λ0 = 0 and hence, ρ(a,A) ≥ λT
∑ī

i=i µT (Pi) = λT δµT (a,A). This implies that

ε(a,A) ≥ 0. Notice also that
∑

a∈A ε(a,A) =
∑

a∈A
ρ(a,A)−λT δµT (a,A)

1−λT
= 1−λT

1−λT
= 1, thus

proving that ε ∈ SCF. This shows the claim and, hence, the desired inequality. Finally,

suppose that λT = 1. In this case, note, again, that the construction guarantees that

ρ = δµT ∈ SC, and the desired inequality follows.

We now show that λT is greater than or equal to the maximal fraction of the data that

can be explained by SCRUM. To show this let 〈λ, δµ, ε〉 be a separation for SCRUM.

We need to show that λT ≥ λ. We proceed recursively to show that λi ≥
∑i

j=1 λµ(Pj)

holds, and hence, λT ≥
∑T

j=1 λµ(Pj) = λ, as desired. Let i = 1 and A′ be a

menu solving min
A∈D

ρ(mP1(A), A). Hence, λ1 − λµ(P1) = ρ(mP1(A′), A′) − λµ(P1) ≥
ρ(mP1(A′), A′)− λ

∑
j:mPj (A′)=mP1

(A′) µ(Pj). By the definition of SCRUMs, the last ex-

pression can be written as ρ(mP1(A′), A′) − λδµ(mP1(A′), A′), or equivalently as (1 −
λ)ε(mP1(A′), A′). Since ε ∈ SCF, the latter expression must be positive, thus proving the

desired result. Suppose that the inequality is true for every Pj with j < i. We now prove

this for Pi. Let Ā be a menu solving minA∈D[ρ(mPi(A), A) + maxj:j≤i,mPj (A)6=mPi (A) λj].

Then, we have ρ(mPi(Ā), Ā) = λδµ(mPi(Ā), Ā)+(1−λ)ε(mPi(Ā), Ā) ≥ λδµ(mPi(Ā), Ā) =

λ
∑

P :mP (Ā)=mPi (Ā) µ(P ). If it is the case that {P : mP (Ā) = mPi(Ā)} ⊇ {P1, P2, . . . , Pi},
then clearly λi = ρ(mPi(Ā), Ā) ≥ λ

∑
P :mP (Ā)=mPi (Ā) µ(P ) =

∑i
j=1 λµ(Pj) and we have
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concluded the induction argument. Otherwise, the single-crossing condition guar-

antees that there exists j̄ ∈ {1, . . . , i − 1} such that {P : mP (Ā) = mPi(Ā)} ⊇
{Pj̄+1, Pj̄+2, . . . , Pi} and ρ(mPi(Ā), Ā) ≥

∑i
j=j̄+1 λµ(Pj). In this case, the induction

hypothesis also guarantees that λj̄ ≥
∑j̄

j=1 λµ(Pj). By combining these two inequali-

ties, we are able to conclude that λi ≥
∑i

j=1 λµ(Pj) and the induction step is complete.

This implies, in particular, that λ ≤ λT .

By combining the above two claims, we have shown that 〈λT , δµT ,
ρ−λT δµT

1−λT
〉 is a

maximal separation for SCRUM, which concludes the proof. �

Appendix B. Examples

We first propose a simple example of a stochastic choice function, and derive the

maximal separations for all the models studied in Section 4. We then use another

example to show that the maximal separations for the deterministic model and the

tremble model do not necessarily identify the same preference relations. Finally, we

propose a particular data-generating process and use the tremble model to illustrate

our conjecture on the differences between maximal separation and maximum likelihood

in the over-estimation of choice probabilities.

Table 5 reports a stochastic choice function ρ defined on every non-singleton subset

of X = {x, y, z}, i.e., D = {{x, y, z}, {x, y}, {x, z}, {y, z}}. Note that this stochastic

choice function involves behavior that is rather unstructured, in the sense that it does

not satisfy weak stochastic transitivity.

Table 5. A stochastic choice function ρ

x y z

{x, y, z} 0.15 0.6 0.25

{x, y} 0.25 0.75

{x, z} 0.7 0.3

{y, z} 0.4 0.6

We start with the deterministic model, where we can first calculate the maximal

fraction for every set for which D|S = {S}, i.e., the binary sets:

λ{x,y} = max{ρ(x, {x, y}), ρ(y, {x, y})} = 0.75,

λ{x,z} = max{ρ(x, {x, z}), ρ(z, {x, z})} = 0.7, and
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λ{y,z} = max{ρ(y, {y, z}), ρ(z, {y, z})} = 0.6.

We can then proceed to assign a value to menu X, for which we first analyze the

alternatives in X one-by-one, computing a minimum value for each, as follows. For

alternative x,
{
{ρ(x, {x, y}), ρ(x, {x, z}), ρ(x,X)}, λ{y,z}

}
= ρ(x, {x, y, z}) = 0.15; for

alternative y,
{
{ρ(y, {x, y}), ρ(y, {y, z}), ρ(y,X)}, λ{x,z}

}
= ρ(y, {y, z}) = 0.4; and

for alternative z
{
{ρ(z, {x, z}), ρ(z, {y, z}), ρ(z,X)}, λ{x,y}

}
= ρ(z, {x, y, z}) = 0.25.

Thus, we get

λX = max{0.15, 0.4, 0.25} = 0.4.

Notice that the final value is the same as that obtained with alternative y. In subset

X \ {y}, the alternative determining the value λ{x,z} is x. Hence, the second part of

Proposition 2 guarantees that δP with yPxPz conforms to a maximal separation of

ρ. From λX = 0.4, one can immediately obtain the corresponding residual behavior

as ε = ρ−0.4δP
0.6

, i.e., ε(x,X) = 1
4
, ε(y,X) = 1

3
, ε(x, {x, y}) = 5

12
, ε(x, {x, z}) = 1

2
, and

ε(y, {y, z}) = 0. To close the discussion of this example, notice from the residual be-

havior that the frontier of SCF is reached at (y, {y, z}). This is precisely the observation

where the identified instance δP fails most seriously. It also determines the maximal

fraction of data explained by DET, i.e., ρ(y,{y,z})
δP (y,{y,z}) = 0.4

1
= 0.4.

We now illustrate the treatment of the tremble model. After replicating the steps

taken in the analysis of DET, we conclude that yPxPz is the optimal preference relation

for every given value of γ.32 In seeking the optimal value of γ, note that there are only

two possible critical observations, depending on the value of γ. When γ is low, we know,

from the study of the deterministic case, that the critical observation is (y, {y, z}), with

a ratio of ρ to δ equal to 0.4
1−γ+ γ

2
. When γ is high the critical observation is (x, {x, y, z}),

with a ratio of ρ to δ equal to 0.15
γ
3

. By noticing that the first ratio is increasing and

starts at a value below the second ratio, which is decreasing, it follows that the maximal

fraction of data explained by the optimal tremble can be found by equating these two

ratios, which yields γ∗ = 0.72. Hence, the maximal fraction of data explained is 0.625,

obtained with the trembling stochastic choice function δ[P,0.72] and residual behavior

ε =
ρ−0.625δ[P,0.72]

0.375
, i.e., ε(x,X) = 0, ε(y,X) = 11

15
, ε(x, {x, y}) = 1

15
, ε(x, {x, z}) = 4

5
,

and ε(y, {y, z}) = 0. To conclude, notice that the explanatory power of the tremble

model is limited by the tension created by the two critical observations, (y, {y, z}) and

(x, {x, y, z}).
32In an example below we show that this is not necessarily the general case.
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As for the Luce model, consider the Luce utilities u = (1
3
, 1

3
, 1

3
). The value min

(a,A)∈O

ρ(a,A)
δu(a,A)

=

0.45 is obtained only for observation (x, {x, y, z}). Since {x, y, z} \ {x} = {y, z}
is non-empty, we can select one of the alternatives in {y, z}, say y, and move the

utility values within the segment α(0, 1, 0) + (1 − α)u = (1−α
3
, 1+2α

3
, 1−α

3
). In or-

der to select the appropriate value of α, we consider the observations (a,A) with

a 6= y ∈ A and the observations (y, A). Among the former, the minimal ratio of

the data to the Luce probabilities is obtained for (x, {x, y, z}), with value 0.45
1−α . In

the latter, the minimal ratio is reached at (y, {y, z}), with value 0.4(2+α)
1+2α

. Equation
0.45
1−α = 0.4(2+α)

1+2α
yields ᾱ = 1

4
, which leads to v = (1

4
, 1

2
, 1

4
). The value min

(a,A)∈O

ρ(a,A)
δv(a,A)

=

0.6 is obtained for pairs {(x, {x, y, z}), (z, {x, z}), (y, {y, z})}. Notice that the crit-

ical observations of δv have the cyclical structure described by Proposition 4, i.e.,

{x, y, z}∪{x, z}∪{y, z} = {x}∪{z}∪{y} and, as a result, the fraction of data explained

by the model of Luce cannot be increased further. We have then found the maximal

separation 〈λ∗, δ∗L, ε∗〉, with δ∗L = δv, λ
∗ = min

(a,A)∈O

ρ(a,A)
δ∗L(a,A)

= 0.6, and ε∗ =
ρ−λ∗δ∗L
1−λ∗ , that is

ε∗(x,X) = 0, ε∗(y,X) = 3
4
, ε∗(x, {x, y}) = 1

8
, ε∗(x, {x, z}) = 1, and ε∗(y, {y, z}) = 0.

We now illustrate how Proposition 5 works in the example of Table 5, with the

set of single-crossing preferences zP1yP1x, yP2zP2x, yP3xP3z and xP4yP4z, starting

with P1. The maximal fraction of data explained by P1 is λ1 = min
A⊆X

ρ(mP1(A), A) =

min{ρ(z,X), ρ(y, {x, y}), ρ(z, {x, z}), ρ(z, {y, z})} = min{0.25, 0.75, 0.3, 0.6} = 0.25,

where, trivially, µ1(P1) = 1. We then consider preference P2, where we have that λ2 =

min{ρ(y,X)+λ1, ρ(y, {x, y}), ρ(z, {x, z}), ρ(y, {y, z})+λ1} = min{0.6+0.25, 0.75, 0.3, 0.4+

0.25} = 0.3 with µ2(P1) = λ1

λ2
= 5

6
and µ2(P2) = 1

6
. For preference P3, we have that

λ3 = min{ρ(y,X) + λ1, ρ(y, {x, y}), ρ(x, {x, z}) + λ2, ρ(y, {y, z}) + λ1} = min{0.6 +

0.25, 0.75, 0.7 + 0.3, 0.4 + 0.25} = 0.65, with µ3(P1) = λ2

λ3
µ2(P1) = 5

13
, µ3(P2) =

λ2

λ3
µ2(P2) = 1

13
and µ2(P3) = 7

13
. Finally, we have that λ4 = min{ρ(x,X)+λ3, ρ(x, {x, y})+

λ3, ρ(x, {x, z}) + λ2, ρ(y, {y, z}) + λ1} = min{0.15 + 0.65, 0.25 + 0.65, 0.7 + 0.3, 0.4 +

0.25} = 0.65 and hence µ4 = µ3. Thus, we conclude that the maximal fraction of

the data that can be explained by SCRUM is 0.65, with maximal SCRUM δµ4 and

residual behavior ε(x,X) = 3
7
, ε(y,X) = 4

7
, ε(x, {x, y}) = 5

7
, ε(x, {x, z}) = 1, and

ε(y, {y, z}) = 0, with critical observations (x,X), (z, {x, z}) and (y, {y, z}). Note that

the example illustrates that the use of a superset of preferences does not necessarily

lead to a strict improvement in the goodness of fit.
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We now provide an example to illustrate that the deterministic model and the trem-

ble model do not necessarily identify the same preference relations.

Table 6. PDET and PTremble

x y z

{x, y, z} 0.39 0.55 0.06

{x, y} 0.6 0.4

{x, z} 0.95 0.05

{y, z} 0.95 0.05

Repeating the above logic, it is easy to see that the optimal preference relation

for the deterministic model is yPDETxPDETz, while the one for the tremble model is

xPTrembleyPTremblez with a tremble of 30/137.

Finally, in Section 6 we conjectured that, given the nature of maximal separations,

we can expect them to perform better in the over-estimation of low observed choice fre-

quencies, while maximum likelihood may perform better on average. We then saw this

conjecture reflected in the data. Here, we use a simple example involving a particular

data-generating process and the tremble model to provide a more formal illustration

of the content of our conjecture and the intuition behind it, and leave its further de-

velopment for future research.

Suppose that the individual has a preference P , and consider a set of binary menus

mi = {xi, yi} where xiPyi. The data-generating process entails the maximization of P

except for a small menu-dependent error εi of choosing alternative yi.

The log-likelihood of the data with respect to the tremble model is
∑

i(1−εi) log(1−
γ
2
) +

∑
i εi log γ

2
, and its maximization leads to

1− γ
2

γ
2

=
∑
i(1−εi)∑
i εi

= 1−ε̄
ε̄

, where ε̄ is

the average observed error. That is, maximum log-likelihood averages out the errors

observed across different menus, suggesting a tremble of γML = 2ε̄ and consequently,

a choice probability for the inferior alternative equal to ε̄. Now consider the maximal

separation of the data. For a given tremble γ, the only potentially critical observations

are those in which the mistake is greatest or least, that is either maxi εi or mini εi. In the

first case, the superior alternative has been chosen with probability 1−maxi εi and the

estimated tremble model will, by maximal separation, over-estimate this probability.

Obviously, the superior alternative in any other menu will be less over-estimated and
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cannot be critical. In the second case, likewise, the inferior alternative has been chosen

with probability mini εi and its maximal separation specification will over-estimate it

to a greater degree than any other inferior alternative within the remaining menus. In

order to find the maximal separation, we need to equalize these two observations, that

is
1− γ

2
γ
2

= 1−maxi εi
mini εi

.

For most data-generating processes, e.g. any symmetric distribution of error prob-

abilities, the following condition holds: 1−maxi εi
mini εi

> 1−ε̄
ε̄

. Whenever this happens, the

estimation of maximal separation will provide an estimated tremble γMS < γML, and

will therefore better accommodate the most extreme observations. The same logic ap-

plies to out-of-sample predictions. Consider a new menu with an error probability equal

to ε. If γMS < γML, there are three cases of interest: (i) ε < γMS

2
, (ii) γMS

2
< ε < γML

2

and (iii) ε > γML

2
. In the first and third cases, the estimations fail in the same way.

That is, they both over-estimate the choice probability of the inferior alternative (in

case (i)) or the choice probability of the superior alternative (in case (iii)). Clearly,

maximal separation does a better job in the first case, where the data are scarce (the

relevant alternative is inferior), while maximum likelihood does a better job in the

latter cases, and also on average.

Appendix C. Empirical application: further considerations

In this section we report on the application of the maximal separation approach to

random expected utility, and the out-of-sample results involving the 3- and 5-option

menus.

The random expected utility (REU) model proposed by Gul and Pesendorfer (2006)

is a key reference in the stochastic treatment of risk preferences. Here we discuss how

to use Proposition 1 in order to obtain its maximal separation using our experimental

dataset.

For the sake of consistency throughout the analysis in this paper, we impose the

requirement that all the relevant expected utility preferences be linear orders. Secondly,

given that we are working with binary menus, each particular instance of the REU

model can be understood as a probability distribution over the set of all preferences

satisfying the standard properties of independence and first order stochastic dominance.

Notice that, in our setting: (i) independence requires that liPlj if and only if li+4Plj+4

for i, j ∈ {2, 3, 4, 5}, and (ii) first order stochastic dominance requires that l5Pl9.
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Thus, a REU instance is merely a probability distribution over the set of linear orders

satisfying these conditions.

We can then use Proposition 1 to explain how the maximal separation of the data for

REU can be obtained. Consider, first, a case of independence, say, l4Pl5 if and only if

l8Pl9. This leads to the linearity property of REU where δ(l4, {l4, l5}) = δ(l8, {l8, l9}).
However, since ρ(l4, {l4, l5}) = 0.49 and ρ(l8, {l8, l9}) = 0.64, this is not observed

in the data. Finding the REU instance closest to these data entails finding a value

0.49 < x < 0.64 such that 0.49
x

= 1−0.64
1−x , which leads to x = 0.576. Then, by setting

δ(l4, {l4, l5}) = δ(l8, {l8, l9}) = 0.576 we obtain a ρ/δ ratio of 0.85, which means that

the maximal separation can explain no more than 85% of the data. It can be verified

that the other violations of independence are less severe, and hence the bound imposed

by independence is 0.85. Now consider the implications of stochastic dominance. This

requires that, for every instance of REU, it must be that δ(l5, {l5, l9}) = 1. However,

we observe that ρ(l5, {l5, l9}) = 0.83, thus yielding a ρ/δ ratio of 0.83. It turns out,

therefore, that this ratio determines the goodness of fit measure of the REU model in

our dataset. Clearly, the fraction of the data explained increases with respect to that

explained when using CRRA expected utilities, since the latter involve only a subset

of expected utilities.

Since REU has no uniqueness in a finite domain, one can find multiple instances

of the model for which 83% of the data are explained. We now construct one such

instance. Start with the set of lotteries {l3, l5, l7, l8, l9} and select the following four lin-

ear orders over it: (i) l8P1l3P1l7P1l5P1l9, (ii) l5P2l8P2l9P2l7P2l3, (iii) l3P3l5P3l7P3l9P3l8

and (iv) l5P4l9P4l7P4l3P4l8. Notice that they all place l5 above l9, and hence any RUM

using them will satisfy stochastic dominance. Notice, also, that the independence re-

lationship involving the lotteries l3, l5, l7 and l9 is always respected. Assign to the four

linear orders the probabilities pq, p(1 − q), (1 − p)q and (1 − p)(1 − q), respectively.

For each of these four linear orders, consider two linear orders, one with l1 at the top

and the other with l1 at the bottom, and assign to each of them the conditional prob-

abilities r and 1 − r, respectively. For each of these eight linear orders, we now place

l4 either at the top or at the bottom, while respecting independence. That is, for the

linear orders constructed on the basis of P1 and P2, independence requires that l4 must

be above l3 and l5 and hence, we place it at the top. Similarly, for the linear orders

constructed on the basis of P3 and P4, we place l4 at the bottom. Finally, for each of

these 8 linear orders, create one linear order with l2 at the top followed by l6, another
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with l6 at the top followed by l2, another with l2 at the bottom preceded by l6, and

another with l6 at the bottom preceded by l2. Notice that this respects independence

for any pair associated with l2 and l6. Assign to them the conditional probabilities

ts, t(1− s), (1− t)s, (1− t)(1− s). By direct application of Proposition 1, we can find

values of these parameters p, q, r, s, t which yield the maximal REU separation value

0.83, using the 32 expected utility linear orders described. For instance, p = 0.565,

q = 0.473, r = 0.705, s = 0.2, t = 0.5. The nature of the residual stochastic choice

function follows directly from this construction and Proposition 1.

Our experimental dataset involved the choices from 2-, 3- and 5-option menus. In

the main text, we have focused on the binary menus, since we have a relatively large

number of data points for each binary menu; that is, about 87 choices for each of

the 36. In contrast, each participant was confronted with 36 out of the possible 84

menus of 3 lotteries and 36 out of the possible 126 menus of 5 lotteries, all randomly

selected without replacement. This gives averages of 37 and 25 observations in the

3- and 5-option menus, respectively, which means markedly fewer data points per

menu. In this appendix, we use the data pertaining to the 3- and 5-option menus to

perform another out-of-sample exercise. We take the estimated models for maximal

separation and maximum likelihood using the binary data reported in Table 3 and

follow the methodology adopted in Section 6, evaluating the predictions of these models

and techniques using the observations from the non-binary menus. As in the main

text, we focus on those observations in which both maximal separation and maximum

likelihood over-estimate the observed choice frequencies, and evaluate the probability

of the maximal separation prediction being closer to the data than the maximum

likelihood prediction. The excessive number of observations makes it unfeasible to

report the results for each observation, as in Table 4.
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Table 7. Summary Statistics for the Forecasting Results for the 3- and

5-Option Menus

Tremble Luce SCRUM-CRRA

First quintile 100% 88% 59%

Second quintile 97% 78% 68%

Third quintile 46% 67% 80%

Fourth quintile 0% 34% 82%

Fifth quintile 0% 14% 49%

Average 49% 56% 68%

Table 7 reports some summary statistics. Focusing on those observations for which

both maximal separation and maximum likelihood over-estimate the observed choice

frequencies, and ranking the observations in ascending order of their observed choice

frequencies, the table reports, by quintiles and on average, the frequency with which

maximal separation is closer than maximum likelihood to the data. We see that, in

general, maximal separation is better than maximum likelihood for the low observed

choice frequencies. This is particularly true in the case of Tremble and Luce, but also

in SCRUM-CRRA when comparing the first quintile against the fifth one. We also

see that, on average, maximal separation does a remarkably good job: it is closer to

the observed choices than maximum likelihood in 49%, 56%, and 68% of all the over-

estimated cases. This may have to do with the fact that, in larger menus, the observed

choice probabilities are generally smaller, and thus better accommodated by maximal

separation. However, given the small number of observations for the 3- and 5-option

menus, these conclusions should be taken with a grain of salt.

Appendix D. Inconsistency indices

Starting with Afriat (1973), there is a literature on measuring deviations of actual

behavior with respect to the standard, deterministic, rational choice model. Formally,

an inconsistency index can be defined as a mapping I : SCF → R describing the

inconsistency of a dataset ρ ∈ SCF with the standard deterministic model, that is,

when the reference model is set as ∆ = DET. Most of the existing inconsistency indices

are obtained by means of the minimization of a loss function.33 We can then analyze

33See Apesteguia and Ballester (2015) for a characterization of this class and for a review of the

literature.
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the inconsistency index emerging from the maximal separation technique. Using the

loss function discussed in Section 6, and the insights obtained in Section 4.1, we have

IMS = 1− λ∗ = min
P

max
A

∑
a∈A:

δP (a,A)=0

ρ(a,A).

It is important to note that the nature of this index is unique in this literature.

To illustrate this more clearly, we now compare it with the well-known Houtman and

Maks (1985) inconsistency index, which is the closest to IMS. The Houtman and Maks

index measures the degree of inconsistency as the minimal number of observations that

would have to be removed for the remainder to be consistent with rational choice . The

key difference is that the Houtman-Maks index enables different proportions of data

to be removed from different menus of alternatives. Hence, using our notation, we can

write the Houtman-Maks index as

IHM = min
P

∑
A

∑
a∈A:

δP (a,A)=0

ρ(a,A).

These formulations provide a transparent comparison of the two approaches. Both

methods remove data minimally until the surviving data are rationalizable. In the case

of a maximal separation, since data must be removed at the same rate across all menus,

the index focuses on the most problematic one. In the case of Houtman and Maks,

different proportions of data can be removed from different menus, which results in an

aggregation across menus.

Table 8. IMS versus IHM

x y z

{x, y, z} 0.25 0.3 0.4

{x, y} 0.8 0.2

{x, z} 0.4 0.6

{y, z} 0.7 0.3

Table 8 reports an example of a choice function ρ with three alternatives and with

data on all the relevant menus of alternatives. Viewed from the IMS perspective, the

data show the optimal preference to be zPxPy, while from the IHM perspective it is

xP ′yP ′z.
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