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Abstract

Complexity, resulting from interactions among many components, is a characterizing property of healthcare

systems and related decisions. Such complexity scales up quickly in the face of pandemics, where multiple

sources of uncertainty are involved and various contextual factors interacting with policy parameters yield

outcome distribution. This paper presents a unified framework to assist and inform policy decisions in

confronting pandemics. The general framework consists of a model of contagion that makes the policy-

relevant variables explicit and exogenous, establishes links between them and the main features of the

environment in which the policy is going to be implemented, and treats various sources of uncertainty at

different layers of the system. At the macro level, special attention is devoted to the network structure,

for which we provide a simple characterization based on two constructive factors. Our results show that

by conditioning on these two factors, a large proportion of the stochasticity resulted from the inherent

randomness in the network can be captured. Components of the model are synthesized in a broader agent-

based model that enables accounting for heterogeneous individual-level attributes that collectively yield the

macro-level outcomes. Using several stylized examples and a comprehensive controlled experiment, insights

on the overall tendency of the complex system in terms of multidimensional outputs are derived across a

range of scenarios and under various types of policy conditions.
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1. Introduction

The novel coronavirus disease (Covid-19) outbreak has been declared as a public health emergency

of international concern by the World Health Organization (WHO). The pandemic has challenged

the governments, public, and private sectors by its multifaceted impacts. On one hand, the rapid

spread of the disease has oppressed the public health system, which in response to, different inter-

vention strategies across the countries have been adopted, for the most part, based on containment

and non-pharmaceutical measures such as household quarantine, workplace closure, and mobility

restrictions. On the other hand, the pandemic and adopted confrontation strategies have caused

serious economical damages and raised concerns regarding their long-lasting impacts, for instance,

declines in employment, disrupting global supply chains, negative supply shocks, and demand short-

age (Fornaro and Wolf 2020, McKibbin and Fernando 2020, Fernandes 2020), with asymmetric

influences across sectors (Guerrieri et al. 2020). Although the Covid-19 pandemic has received sub-

stantial global attention due to ample media coverage, it is only one of the many disease outbreaks

in recent decades, for instance, Ebola in 2014 or influenza in 2009, among others. While wishful, but

unfortunately it is unrealistic to expect similar incidents to be rare in the coming years, especially

in view of accelerated growth of worldwide transportation which facilitates the rapid circulation of

goods and people, but also infectious diseases. Hence, developing effective intervention strategies

to mitigate the impacts of a pandemic is a top global priority now.

Deciding upon elements of an effective response in confronting pandemics, however, is a highly

complex task for at least three main reasons. First, a high level of uncertainty involved, and a lack

of sufficient data available, impede reliable predictions on the effectiveness of alternative strategies.

Moreover, the multidimensional nature of the consequences of intervention methods, from the

healthcare, economic, and social perspectives, escalates the complexity of the task since it requires

to make a compromise between various types of conflicting criteria.

Second, assessing the efficacy of alternative policy choices in relation to one another is a cum-

bersome task. For example, concerning the popular intervention methods based on self-isolation,



despite that they contribute in detaining the virus spread, nevertheless, they also cause substantial

and inevitable economic damages. In this case, for policymaking purposes, it is crucial to have an

idea on their extent of effectiveness, especially compared to alternative intervention methods such

as healthcare capacity expansions, health service quality improvements, testing capacity enlarge-

ments, extensive and regular public area decontamination, or any combination of those options

subject to the budget constraints. Specifically, it is essential to develop insights on how different

intervention methods compare and how they interact if were to combine in a unified response plan.

Third, the efficacy of an intervention method might be largely determined by the environment in

which it is embedded. The mechanism under which the policy parameters affect the outcome dis-

tribution can, to a considerable extent, be shaped by the dynamic characteristics of the embedding

environment. For instance, the patterns of contacts among individuals combined with heterogeneous

social distancing behavior would control the frequency of contacts between pairs of individuals,

hence determining the infection transmission rate. Similarly, population overall health status and

healthcare capacity combined with the total number of hospitalized individuals, which in turn

is determined by the infection transmission rate and policy parameters such as testing capacity,

control the load on healthcare system which affects the health service quality and subsequently

influences the mortality rate. From this perspective, contextual factors such as population overall

health status, patterns of contacts among individuals, current healthcare system characteristics,

and even income distribution in the population, interact with the policy parameters and determine

the elements of an effective response plan.1 In the same vein, the level of heterogeneity among the

population is among other influential factors interacting with the policy parameters. For instance,

some views speculate that remaining at home as a policy is only accessible to those with income

above a certain level, hence individuals’ ability to self-isolate differs across the population (Chiou

and Tucker 2020), making low-income citizens more prone to the crisis and invoking heterogeneous

1In Europe, for instance, different countries have adopted different strategies in response to the health crisis

caused by Covid-19, with some relying largely on extensive testing strategy, e.g. Germany, some others focusing on

strict household isolation measures, e.g Spain, and some choosing other different paths, e.g. Sweden.



response to the adopted measures. An enhanced understanding of the contingent relationships

between features of the intervention strategies and characteristics of the population, as well as con-

textual factors that shape the environment in which the strategy would be implemented, is essential

for policymaking. Likewise, the sensitivity of different strategies to the changes in such factors,

thus robustness of the adopted intervention method, has clear implications for policymaking. For

instance, it is important to understand how the effectiveness of a strategy based on confinement

would be undermined if a small fraction of the population breach.

This paper contributes to the above challenges by presenting a general model that integrates

policy-relevant variables in a unified framework with various components describing idiosyncratic

features of the environment and population. The model is primarily intended to inform policy deci-

sions for developing effective solutions that are customized to the characteristics of the population

and features of the context. To this objective, a probabilistic contagion model is developed where

dissemination of infection throughout the population is determined by various types of policy-

relevant variables which are projected on a network representing patterns of physical contacts

between individuals (also known as network structure) in the population. The role of the network

is captured through two primary exogenous factors characterizing its structure, namely centrality

in its topology and sparsity in its connections. Components of the model are synthesized in a

broader agent-based model that enables accounting for heterogeneous individual-level attributes

that collectively determine the macro-level outcomes.

It is important, however, to note that the objective of this framework is not to make accurate

numerical predictions regarding the specific outcomes by using historical data but to produce

insights regarding the overall tendency of the complex system under various conditions. To this aim,

stylized examples are presented and an extensive controlled experiment is conducted. From this

perspective, the model is suggestive and directional, rather than conclusive. With this clarification,

caution is advised when projecting directly the derived quantities.



2. Related Literature

Perhaps the most well-known compartmental model of infectious disease is the class of SIR mod-

els (Kermack and McKendrick 1927) that examines the flow of a population among the three

phases– susceptible, infected, and recovered.2 This class of models are deterministic nonlinear

based on differential equations and can be used to describe the spread of a virus, to compute the

total number of people infected, and to estimate various epidemiological parameters such basic

reproduction number (Hethcote 2000). Recent extensions of the model include attempts to enable

accounting for intervention policies and make inferences on their consequences in such context. For

instance, Atkeson (2020) examines the effectiveness of quarantine measures, Berger et al. (2020)

considers the role of testing and diagnosis, Obiols-Homs (2020) accounts for social distancing by

placing an upper limit on the number of interactions between individuals. In order to make pre-

dictions regarding the total number of infected or recovered individuals, these models build on

assumptions that impose specific mechanisms of transmission between the phases.

The model presented in this paper is developed based on a stochastic agent-based model so as

to account for major sources of uncertainty and capture heterogeneity in individuals attributes.

In the context of social epidemiology and public health, agent-based modeling is used to pro-

mote population-level inference from micro-level rules in simulated populations over time and

space (Bonabeau 2002, Epstein 2006, Rahmandad and Sterman 2008, El-Sayed et al. 2012, Tracy

et al. 2018). Contrary to the contagion models based on differential equations that assume homo-

geneity and perfect mixing within compartments (Riley 2007, Mahajan 2010), agent-based models

allow including heterogeneity in individuals attributes (Rahmandad and Sterman 2008), such as

social distancing behavior, health status, and network structure of their interactions. Such flexibil-

ity, moreover, enables us to treat the transmission probabilities between phases and epidemic dura-

tion as endogenous variables that are determined by the policy in place combined with additional

2Several variants of the basic SIR model have been developed, where one of the most well-known among which is

the SEIR model that considers an exposed state between the susceptible and infected states.



contextual factors.3 The questions posed in this paper, therefore, are closer to those of Piguillem

et al. (2020) and Obiols-Homs (2020), for instance, whether and to what extent sever social dis-

tancing or testing should be considered in the design of an optimal response to infectious disease.

The present model considers a broad range of policy-relevant parameters in a unified framework,

hence enables exploring a wide range of policies such as decisions related to healthcare capacity and

health service improvements, investment in testing and diagnosis, or even public areas decontami-

nation. Furthermore, by accounting for heterogeneity in individuals attributes, we aim to produce

more realistic insights. For instance, individuals exhibit a heterogeneous response to self-isolation

measures since the method is not equally accessible to everyone depending on several factors includ-

ing income (Chiou and Tucker 2020).4 Moreover, accounting for heterogeneity is crucial in policy

analysis for developing robust strategies, for instance, to understand how the effectiveness of costly

measures based on self-isolation diminishes when a small fraction of population breach as opposed

to when the entire population fully collaborate. Similar to other agent-based models, however, the

outputs of our model should be interpreted purely at the qualitative level (Bonabeau 2002), hence

applicable for deriving insights and deciding on general directions of the policies.

Our model is related to the literature on network theory and random graphs (Gilbert 1959,

Easley et al. 2010, Abbe 2017), which are leveraged to account for structured interaction pat-

terns among individuals. The prevailing importance of network structure and its impacts have

been demonstrated in various contexts including social contagion, epidemiology, and diffusion pro-

cess (Davis 1991, Abrahamson and Rosenkopf 1997, Rahmandad and Sterman 2008, El-Sayed et al.

3Agent-based models, however, are computationally and cognitively demanding, both at the level of model design

since it should be built at the right level of description, with just the right amount of detail (Bonabeau 2002), and

the level of results interpretation and linking the behavior of the model to its structure (Rahmandad and Sterman

2008). Moreover, the computational cost of agent-based models limits the size of the population in analysis–e.g. few

hundreds compared to some millions in the case of differential equation based models (Rahmandad and Sterman

2008).

4In somewhat related work, Van den Bulte and Stremersch (2004) discuss the role of income heterogeneity and

cultural dimensions in the diffusion of new products and social contagion.



2012, Muller and Peres 2019, Manshadi et al. 2020). In the spread of disease, individuals contact

network plays an important role since it directly influences patterns of interactions among indi-

viduals and hence transmission rate of infections. For instance, in contact networks consisting of

several linked communities, the pace and scale of the spread might be different depending on the

community-size distribution and population density within each community. Moreover, the topol-

ogy of the network can have a large impact too (Davis 1991, Muller and Peres 2019, Manshadi

et al. 2020). For instance, the presence of a large central component in the network, e.g. social

hubs (Goldenberg et al. 2009, Muller and Peres 2019), versus a decentralized network consisting of

several fairly equal-in-size communities might exhibit different patterns of spread. This has clear

implications for policy analysis, especially for developing context-sensitive solutions.

In the present paper, a random network model is used to represent human contact networks.

While many types of real networks have been constructed empirically, for instance in the diffusion

of innovation or opinion through social contagion (Iyengar et al. 2011), with diseases, on the other

hand, the process is sufficiently complex and unobservable at the person-to-person level that it

is most useful to model it as random (Easley et al. 2010, pages 568-569). The random network

model considered in this paper first generates a random community-size distribution based on the

literature in integer partitioning problem from number theory (Fristedt 1993) and by introducing

a new algorithm. It then constructs the network within each community according to the Erdős-

Rényi random graph model (Erdős and Rényi 1960, Gilbert 1959) and links the communities based

on a stochastic block model (Abbe 2017).

The intra-community connections resulted from the Erdős-Rńyi model leads to a Binomial degree

distribution within the community. Recent literature in network science has approached this prop-

erty with skepticism since it has been observed that several types of empirical networks follow

a different pattern of the degree distribution, namely power-law distributions in scale-free net-

works (Barabási and Albert 1999, Barabási et al. 2000, Barabási and Bonabeau 2003). In such

networks, it is asserted that the fraction of nodes with degree k follows a power law k−α, a prop-

erty that has broad implications for the structure of the network. While such patterns ostensibly



appear in many types of networks such as world wide web, online social networks, citation net-

works, networks of organizations, or biological networks (Albert et al. 1999, Barabási et al. 2000,

Newman 2003b), nevertheless, many others refute their assumptions and challenge their credibility

on statistical and theoretical grounds (Broido and Clauset 2019, Willinger et al. 2009). On the

other hand, assumptions of Erdős-Rńeyi combined with stochastic block models appear plausi-

ble for representing networks of human contacts, especially that in our model heterogeneity in

the degree distribution is directly invoked by the dispersion in community-size distribution– see,

for instance, (Newman 2003a, Karrer and Newman 2011). For a review of the models of network

structure, see Burt (1980); for a detailed survey of statistical network models, see Goldenberg

et al. (2010); for a general discussion on models of random networks, see Newman (2018) and sec-

tions 4.1-4.2 in Jackson (2010).

3. Model Construction

Let I be a finite set of individuals and T = {1,2, · · · , |T |} be a finite set of time periods with an

unknown size. At any time t, an individual i’s state, denoted by the random variable Sit, can take

one of the five possible values–susceptible, infected, detected, recovered, and perished. By default,

the neutral state of an individual is susceptible, i.e healthy or uninfected, analogous to the näıve

or uninformed individual in the context of new product diffusion in marketing, and is indicated by

Sit = 0. A susceptible person can become infected if he interacts with an infectious agent. The state

of an infected (informed) individual is indicated by Sit = 1. Every time a susceptible individual i

meets an infectious agent j, the infection would transmit with a probability δ. Hence, the infection

transmission in direct contact occurs according to a Bernoulli experiment with a parameter δ.

If the two individuals meet multiple times within a specific period, each experiment takes place

independently of the others. Formally, suppose that individual i, Sit = 0, meets individual j, Sjt = 1,

for Yijt times in time period t. Assuming independence, and conditional on Yijt, the binary random

variable Zijt, with Zijt = 1 indicating transmission of infection from individual j to individual i at

time period t, follows a Bernoulli distribution with parameter 1− (1− δ)Yijt , i.e.

Zijt|Yijt ∼Bern
(
1− (1− δ)Yijt

)
. (1)



In turn, number of direct contacts between two individuals i and j at a time period t, i.e. Yijt,

is a random variable itself and its realized value at each trial depends on the distance between

the two individuals. The distance, on the other hand, depends on the network structure and social

distancing behavior of the two individuals. Therefore, notion of distance here serves as a latent

factor that links social network structure and social distancing behavior to the frequency of direct

contacts between two individuals in a unit of time. Construction process of these two components

will be discussed in the next subsection. At this stage, suppose that the vector Yit, with its jth

component representing Yijt, follows an arbitrary discrete joint probability mass functions Git. The

infection risk for i, therefore, is obtained as following:

Pr
(
Sit+1 = 1|Sit = 0

)
= 1−

∑
yit

∏
j∈I\i

(
I[Sjt = 0] + (1− δ)yijtI[Sjt = 1]

)
G(yit) (2)

where I[.] is an indicator function that takes value 1 if its input argument hold true, and 0 other-

wise.5

Proof: By conditioning on Y ,

Pr
(
Sit+1 = 0|Sit = 0, Yijt = yijt

)
=
∏
j∈I\i

(
1− [1− (1− δ)yijt ]I[Sjt = 1]

)
⇒ Pr

(
Sit+1 = 1|Sit = 0

)
= 1−

∑
yit

∏
j∈I\i

(
1− [1− (1− δ)yijt ]I[Sjt = 1]

)
G(yit).

By expanding the argument under the product, and considering that 1− I[Sjt = 1] = I[Sjt = 0],

equation (2) is derived. QED

The main assumptions in (2) are that, in a given t, the Yijt Bernoulli trials are independent from

each other, and Zijt random variables are independent across j. In other words, the outcome of

Zijt is not informative to Zikt for k 6= j. The interaction patterns of i in the network, however, are

represented by the joint probability mass function G. From this perspective, G is the main source

of differentiation among members of the population when updating the individual’s status. Such

differentiation is based on the network structure and social distancing behavior, where the two

5Note that the product in (2) is taken over all the population, because if yijt = 0 for some j, then the resulting

value would be equal to I[Sjt = 0] + I[Sjt = 1] = 1 which is a neutral element of multiplication.



factors collectively determine the likelihood of contact between an individual i and other members

of the population.

An infected individual i remains asymptomatic for a random period of Ti, before been detected.6

A detected individual is separated from the population, i.e. hospitalized or quarantined, for a

random period of Hi before turning to either recovered or perished. Recovered individuals remain

immune to the infection during the time window of the analysis.

3.1. Social Distancing

The frequency of direct contact between two individuals depends on whether they are directly linked

in the social network or not, and on their social distancing behavior. Let us denote by d∈R+ the

distance between two individuals i and j, and suppose that the number of direct contacts between

i and j in a single period of time is inversely related to the square of dij. If the two individuals

are not linked in the network, then dij→∞. Conversely, dij→ 0 when the two individuals meet an

infinite number of times in a period, e.g. living together. Assuming independence of the number of

direct contacts in any non-overlapping subperiods within a time interval, by the law of rare events

the number of direct contacts between i and j would follow a Poisson distribution, i.e.

Yijt|i and j directly linked ∼ Poisson(λij) (3)

where λij ∝ 1/d2ij.

The distance between two individuals is not only determined by whether they are directly linked

in the network or not, but by their respective social distancing behavior. For two individuals

linked in the network, the distance is mainly determined by the one with a greater degree of social

distancing. Let us denote by αi ∈ (0,1) the degree of social distancing for an individual i, where a

larger αi implies a greater degree of social distancing by i∈ I. For i, j ∈ I that are directly linked

in the network, if αi → 0 and αj → 0, then dij → 0. On the other hand, if max(αi, αj)→ 1, it

means that at least one of the two is practicing a strict self-isolation, hence dij→∞. Moreover, for

6Note that the stochastic incubation period varies across the individuals.



identification purpose, the middle point on the scale of α is presumed to correspond, in expectation,

to one direct contact in a unit of time, i.e. E(Yijt) = 1 when max(αi, αj) = 1/2. Following this

standardization, the scaling factor between the Poisson parameter and distance vanishes, hence

λij = 1/d2ij. The following specification for d satisfies the above properties:

dij =
max(αi, αj)

1−max(αi, αj)
· (4)

The above specification relies solely on the largest of the two social distancing parameters when

determining the distance between two individuals, thus does not differentiate, for instance, between

(αi, αj) = (0.1,0.9) and (0.8,0.9). Nevertheless, one might expect the distance in the latter case

to be slightly smaller than the other. For this reason, in our simulation computations, the max

function is replaced by the smooth approximation max(αi, αj) = (αie
nαi + αje

nαj )/(enαi + enαj ),

where n is a smoothing factor and the approximation error becomes smaller as n grows.7

Individuals in the network are different in terms of practicing social distancing behavior. Such

heterogeneity can have a large impact on the overall outcome of the system. Moreover, the effec-

tiveness of a response to the virus spread might heavily rely on effective collaboration among

individuals. In such settings, it is important to examine how the outcomes vary by the level of

heterogeneity in individuals’ social distancing behavior.8 To capture this phenomenon, parameter

α is modeled as a finite mixture of Beta distributions with support (0,1). The parameters of the

components of this mixture distribution are defined in such a way that each corresponding density

function is either strictly increasing or decreasing. This way, by varying the model parameters, the

individuals’ degree of social distancing can be pushed towards one of the extremes of the support

7n= 10 in our computational analysis, which provides a very accurate approximation of the max function within

the range of parameters values.

8A good proxy for such heterogeneity may be the income differences across the population (Chiou and Tucker

2020), which can be accounted for using the macro-level indicators such as Gini index (Van den Bulte and Stremersch

2004). Further empirical investigations are needed in this direction for a more comprehensive characterization of this

component.



range without a mass concentration in the vicinity of the middle point, hence directly controlling

the heterogeneity in social distancing behavior. Specifically,

αi ∼ πBeta(a,1) + (1−π)Beta(1, a′) (5)

in which 0≤ π ≤ 1 is the mixing factor and represents a fraction of the population that exercises

a large degree of social distancing, including a within-group variation controlled by a ∈ Z, a > 1.

The second component, with a population fraction of 1−π, represents the sub-population that do

not conform to the social distancing behavior, with a′ ∈Z, a′ > 1 being the shape parameter of the

distribution. Density function of the first (second) component is strictly increasing (decreasing)

in a (a′). By varying a and a′, compliance with the social distancing behavior within each group

can be modeled, whereas π controls the social conformity level to the social distancing behavior.

The larger value of π, the greater is collaboration level among the population in practicing social

distancing.9

3.2. Stochastic Incubation

An important characteristic in the spread of many types of infectious disease, including Covid-

19, is the presence of a notable incubation period.10 In the case of Covid-19, for instance, many

people become symptomatic only after several days of being transmitters, and few others might

even remain asymptomatic til recovered. While the incubation period differs largely among people,

depending on various factors such as their demographics and health status, testing capacity plays

an important role in shortening this period. Extensive testing as a containment strategy helps to

detect and isolate asymptomatic infectious agents, hence curb the spread of the virus.

9The density function for αi, given π, is fαi|π(x) = πaxa−1 + (1− π)a′(1− x)a
′−1. By deriving first and second

moments of αi, it can be shown that E(αi) = πµ+ (1−π)µ′, and V ar(αi) = πσ2 + (1− π) σ′
2

+π(1−π)(µ−µ′)2,

where µ = a
a+1

and σ2 = µ(1−µ)
a+2

are, respectively, the mean and variance of the first component of the mixture

distribution. Similarly µ′ = 1
a′+1

and σ′ = µ′(1−µ′)
a′+2

are mean and variance of the second component, respectively.

10This is related to the concept of time-delay in diffusion and social contagion, which can introduce a memory

element to the contagion process and produce non-Markovian characteristic.



Let us denote by Ti the incubation period of the infectious agent i. An infectious agent is disclosed

according to a Bernoulli trial at the end of each time period. Therefore, Ti follows a geometric

distribution, i.e.

Ti|i infected ∼Geometric(τ) (6)

where parameter τ reflects the testing capacity. The larger value of τ , the shorter is likely to be

the incubation period Ti. One way to interpret the parameter τ is to imagine that there is a test

center that in each period randomly selects some individuals, each with a probability τ , for test.11

Now by doubling the testing capacity, there will be two identical centers which, for simplicity,

operate independently and select individuals with replacement, hence changing the parameter of

the geometric distribution to 1− (1− τ)2. In general, raising the testing capacity by a factor of n

will change the distribution parameter in (6) from τ to 1− (1− τ)n.

3.3. Hospitalization and Recovery Chance

An infected individual i, if detected, would be hospitalized for a period of Hi. Similar to incubation

period, Hi differs across the population, i.e.

Hi|i detected ∼Geometric(η)· (7)

At the end of hospitalization period, individual i is dismissed either as recovered or perished,

according to a Bernoulli trial with individual-specific parameter.12 The recovery chance depends

on the general health status of the individual, denoted by θi, and contribution of the healthcare

system and health service quality, denoted by φ. The value of θi can be interpreted as the recovery

chance of the individual without receiving any health service, i.e. self-recovery chance. Suppose that

11We assume that there is no error in the test results, i.e. an infected individual will certainly be detected if tested,

and a negative case is certainly uninfected.

12It is assumed that the recovered cases are no longer susceptible to the virus during the time window of the

analysis. This can produce the so-called herd immunity that occurs when the immune proportion exceeded (1−1/R0),

where R0 is the reproduction number and represents the average number of people to which a single infectious agent

will transmit the virus. An epidemic with a reproduction number below 1 will gradually disappear.



θi ∼Beta(θ0, θ1), hence parameters θ0 and θ1 reflecting the overall health status of the population.

The health service contributes to the recovery chances by adding φ× (1−θi) to these probabilities.

The parameter φ represents the reduction percentage in mortality risk of an infected individual

when receiving health service.13

The better the health service quality, φ, the greater would be the chance of recovery for a hospi-

talized individual. However, health service quality would deteriorate as the number of hospitalized

individuals increases. To account for this endogenous effect, health service quality is discounted

with respect to the extent of demand overload:

Pr
(
Sit+Ti = recovered |i detected at t

)
=Bern

(
θ′it+Ti

)
θ′it+Ti = θi +φefft+Ti

(1− θi),

φefft+Ti
= φ · (max{

∑
i∈I I[Sit+Ti= hospitalized ]

C·|I| ,1})−1

(8)

where φefft is the effective health service quality at time t, and C is the health service capacity.14

The health service quality, hence, has an adaptive property and is corrected via a discounting

factor that captures the demand overload on the healthcare system at any time. Therefore, the

healthcare system contributes to the recovery rate through two main factors: service quality and

service capacity. The above formulation allows us to disentangle the effects of these two factors. As

a strategic decision, therefore, the policymakers might decide to improve the health service quality

(φ), e.g. investing on new medical equipment and medical training programs, or to increase the

healthcare capacity (C), e.g. constructing additional hospitals so to be able to cope with demand

shock without compromising the health service quality.15

13In other words, φ = (1−θ′)−(1−θ)
1−θ , where θ and θ′ are the recovery chance without and with receiving health

service, respectively. For instance, if an infected individual’s mortality risk is 30%, i.e. θ = 0.70, by receiving health

service of quality φ= 0.8, his mortality risk will be reduced by 80%, i.e. from 30% to 6%, hence a θ′ = 0.94.

14Precisely, C · |I is defined as demand that can be responded without overloading the healthcare system.

15Note that healthcare capacity C does not necessarily need to be equal to the total physical capacities of the

hospitals since not all the detected cases are hospitalized. Many detected cases, if not in a severe condition, might be

advised to self-isolate themselves at home till full recovery. Hence, this parameter may be construed as an adjusted



4. Network Topology

Individuals’ physical contacts network is modeled as a random network consisting of communities

of different sizes, where intra-community densities are larger than inter-community densities. The

network is constructed based on the following three main steps. First, community-size distribution

and number of communities are randomly generated. For this purpose, an algorithm for random

integer partitioning is developed. Second, each community, given its size from the previous step,

is constructed according to the Erdős-Rényi random graph model. Finally, the overall network

is constructed by linking the communities based on a stochastic block model, specifically the

assortative planted partition model.

In this section, an algorithm for partitioning |I| into some positive integers is introduced, where

the number of parts is itself a random variable. Specifically, the objective is to generate positive

integer numbers i1 ≥ i2 ≥ · · · ≥ iK , where K is a random number, representing the total number of

communities, ik is the size of community k, and |I|=
∑K

k=1 ik. This is one of the classical NP-hard

problems of combinatorial optimization.

In our model, the network of contacts is characterized based on two factors, namely variation in

the community size distribution, i.e. dispersion of ik values, and the density of links within each

community. Moreover, we would like to avoid generating communities with absurdly small sizes,

hence a lower bound on ik values is at work. To generate a random partition of |I| that satisfies

the above properties, the following probabilistic algorithm is used.

Suppose that there are |I| baskets, labeled 1 to |I|, each containing a single ball. Given the

parameter values for the variation in the community-size distribution and lower bound on ik, we aim

to redistribute the balls among the baskets in such a way that i) the number of non-empty baskets

represents the number of communities K, and ii) the number of balls in each basket represents

the size of the corresponding community, ik. This is performed based on the following stages. At

value concerning the fraction of the detected cases that are required to be hospitalized. If in a city, for instance,

only 5% of the detected cases are hospitalized, then the value of the parameter C reflects the total physical capacity

multiplied by 20.



the first stage, each ball placed in the baskets 2 to |I| is transferred to basket 1 with a probability

λ, and then basket 1 will be closed. At the second stage, each ball placed in the baskets 3 to |I|,

if any, is transferred to basket 2 with a probability λ, and then basket 2 will be closed too. The

process continues until all the remaining open baskets are empty. The empty baskets are removed

and the closed ones are sorted, in descending order, based on the number of balls in them. The

sorted baskets are labeled as [1], [2], · · · , [n], n≤ |I|, where basket [1] contains the greatest number

of balls and basket [n] contains the smallest number of balls.

Now let imin be the a lower bound on the admissible parts, i.e. constraint ik ≥ imin∀c. In other

words, imin represents the smallest admissible size for a randomly generated community. To satisfy

the constraint, the number of balls in basket [n] is compared with imin. If the constraint is satisfied,

i.e. i[n] ≥ imin, then the process terminates. Otherwise, all the balls in the basket [n] are transferred

to basket [n − 1], and basket [n] is dismissed. The process is repeated for basket [n − 1] with

an updated number of balls in it, and if this number is smaller than imin, all the balls in this

basket will be transferred to basket [n − 2], and basket [n − 1] will be dismissed. The process

continues until all baskets contain at least imin balls. At this stage the algorithm terminates, the

number of remaining baskets in the process represents the number of communities, i.e. K, and the

number of balls in each basket specifies the size of each community, i.e. i1 ≥ i2 ≥ · · · ≥ iK . This

procedure is described in Algorithm 1, which takes as input the population size, network centrality

parameter γ, and minimum community size imin, and returns the number of communities and

community-size distribution, satisfying the constraint on the community minimum size, and that

parts sizes sum up to |I|. The parameter γ controls variation in the community-size distribution.

For instance, for |I|= 1000 and imin = 10, two generated instances of (i1, · · · , iK) by Algorithm 1

when γ = 0.7 are (725,191,56,17,11) and (720,193,54,33), while an instance when γ = 0.3 is

(318,176,140,98,72,60,43,33,20,19,11,10)16.

16The numbers are reproducible in Matlab by setting the random number generator to the default seed, i.e. 0.



Algorithm 1 Random integer partitioning with restricted dispersion

1: procedure CommunityGeneration

Input: |I|, γ, imin

Output: K, i1 ≥ i2 ≥ · · · ≥ iK ≥ imin

2: X← ones(|I|)

3: for all j < i≤ |I| do

4: r←Rand(0,1)

5: X[i]←X[i] + I[r < γ] ∗ (X[j]> 0)

6: X[j]←X[j]− I[r < γ] ∗ (X[j]> 0)

7: end for

8: X← sort(X, descend)

9: X[X == 0]← [ ]

10: while X[end]< imin do

11: X[end− 1]←X[end− 1] +X[end]

12: X[end]← [ ]

13: X← sort(X, descend)

14: end while

15: X← sort(X, descend)

16: K← |X|, (i1, · · · , iC)←X

17: Return K, i1, · · · , iK

18: end procedure

Finally, to construct the entire network, the random adjacency matrix A of size |I| × |I| is

generated where A[ij] = 1, i < j, indicates that individuals i and j are directly linked in the network.

It is important to note that a link between two individuals does not necessarily imply friendship

or any association between the two individuals, except for the possibility of physical contact. Two

individuals can be linked in the network because they might visit the same supermarket in a



neighborhood, use the same bus, or cash note within a reasonably short period of time, hence

capable of transmitting the virus directly to one another. The matrix A is divided into K parts

where the first i1 rows and columns correspond to the individuals in the first community, the

next i2 rows and columns correspond to the individuals in the second community, and so on. The

submatrix Ak, corresponding to community k with size ik, has an Erdős-Rény distribution, with

Ak[ij]
iid∼ Bern(p), i < j. In other words, any two individuals within the community are linked

according to an independent Bernoulli trial with a parameter p. Two individuals i and j from two

different communities, on the other hand, are directly linked according to a Bernoulli trial with

parameter q, q < p. An illustration of the generated networks with centrality parameters γ = 0.7 and

0.3 is presented in Figure 1 by setting p= 0.20, and q = p/100 or q = p/20 for the same generated

community-size distribution.

4.1. a Prototype Analysis

In this section, a series of sequentially related examples are presented to illustrate the model’s

usefulness in a set of selected settings. The objectives of these examples are threefold. First, to

demonstrate the model flexibility in capturing and disentangling the effects of various components

of the complex system. Second, to illustrate the types of outcomes that can be expected from the

model. Third, to instantiate types of what-if analyses that can be performed using the model to

inform policy analysis and decision making.

Consider a population of |I|= 1000 individuals, distributed in a decentralized network, γ = 0.3,

and imin = |I|/100, with densely connected within-community individuals, p= 0.50, and sparsely

connected communities, q = p/100. In terms of behavioral aspects, suppose that the population

exercises a great degree of social distancing and with a relatively low level of within-group variation,

hence large value for the parameter a in (5). First, we assume a high degree of social conformity, i.e.

π= 1. Later, for the same generated network, we compare the results in presence of a small hetero-

geneity, i.e. π < 1, depicting a scenario where a small fraction of the population breach (π = 0.95,

a′ = 5). At this stage, let us assume αi ∼Beta(5,1). This would result in an average of λ≈ 0.03 times



Figure 1 Constructed random networks using Algorithm 1 for different network structures (left: decentralized –

γ = 0.3, right: centralized – γ = 0.7) and different levels of inter-community connections (left: densely

connected communities – q = p/20, right: sparsely connected communities – q = p/100), and fixed

intra-community intensity (p= 0.20).

of physical contacts in a single time period between two directly linked individuals in the network,

and with an average of ≈ 0.28 number of interactions for an individual in the 5% rightmost extreme

of the distribution.17 In terms of population characteristics, suppose that θ ∼ Beta(8,2), i.e. 80%

chance of self-recovery, in expectation, with a moderate heterogeneity, and Hi ∼Geommetric(0.5),

17Precisely, define Fλ(x) = Pr(λ ≤ x) and Qλ(p) = inf{x : Fλ(x) ≥ p}. Then, in the above example,

E (λ | λ≥ Qλ(0.95))≈ 0.28. Note that the number of physical contacts between two individuals i and j in a time

period t, i.e. Yijt, is determined by the latent distance dij that, in turn, depends on max(αi, αj). Hence, assum-

ing that the two individuals are directly linked in the network, the expected value of Yijt can be approximated

numerically using the distribution of max(αi, αj), derived, e.g., in Sculli and Wong (1985). Specifically, suppose that

α=max(αi, αj), then 1/dij = (1−α)/α, hence E(λij) = E(1/d2ij) = 1 +E(1/α2)− 2E(1/α). These expectations, and

other quantities with respect to λij , can be approximated numerically using Monte Carlo simulation and drawing

from the distribution of max(αi, αj), which is known under the iid assumption.



i.e. two weeks of hospitalization in expectation. In terms of contagion characteristic, assume that

δ = 0.2, i.e. 20% risk of transmission in a direct contact. Finally, in terms of the healthcare sys-

tem, assume a high level of healthcare quality, φ= 0.8, a large healthcare capacity, H = 50, and a

relatively low testing capacity, τ = 0.30, i.e. more than 3 time periods in expectation to detect an

infectious agent. For the initial condition, suppose that at time t= 0 there are 5 infectious agents

in the population. The computations continue until no infected or hospitalized case remains in the

system, hence the epidemic duration, |T |, is determined endogenously.

Holding the generated network constant and repeating the simulation several times, we can

compute various types of outputs together with their uncertainty levels, hence accounting for the

inherent stochasticity in the system. Thus, computations for the above setting are repeated 50

times, where each time several types of outputs are measured, including the fraction of population

infected or perished, as well as epidemic duration. In each round of the simulation, the total number

of infected, detected, recovered, and perished cases are calculated for each period. Moreover, the

new number of infected cases at each time, as well as the total number of active cases, i.e. infected

but not detected, are stored. Besides, the basic reproduction number (R0) that is the average

number of people to which a single infected person will transmit the virus is calculated and stored

for each period. This is a widely used metric in epidemiology for tracking the pace of the virus

spread. Finally, the epidemic recovery pace, defined as the proportion of time between the epidemic

peak to the system full recovery with reference to the total epidemic duration, is measured for each

setting. This measure is important because it indicates the relative position of maximum load on the

healthcare system over the entire period. To enhance the practical relevance of this measure, a peak

time in our analysis is identified using the detected cases, instead of infected cases, since the former

is observable while the other is latent. Specifically, the peak time is defined as tpeak := sup{τ : dτ ≥

dt ∀t ∈ T }, where dt is the number of new detected cases in a time period t. Subsequently, the

ratio ν = tpeak/|T | indicates the recovery speed of the system. For instance, ν = 0.5 indicates that

the recovery time is of the same length as the time duration of the epidemic from its start to its



peak in terms of detected cases, while ν = 0.2 indicates that the recovery duration is 4 times longer

than start to the peak duration of the epidemic. For all these measures, 99% confidence intervals

are computed by bootstrapping, using the bias-corrected and accelerated percentile method and

10,000 bootstrap samples. Results for the above setting are presented in Figure 2– top row (note

different right-side vertical axis units for perished cases).

Figure 2 (Color online) Results of the simulation corresponding to setting 1 (top) and setting 4 (bottom) in

the prototype analysis. The leftmost figure represents the generated random network, held constant

in the 50 replications. The other figures visualize the state of the network over time and represent,

respectively from left to right: population fraction that is infected, detected, recovered, or perished

at each period (note different right-side vertical axis units for the perished cases); population fraction

that is active, i.e undetected infectious agents, at each time; basic reproduction number at each time.

Shaded areas and grey dashed line intervals represent 99% bootstrap confidence intervals, computed

using the bias-corrected and accelerated percentile method, and 10,000 bootstrap samples.

In the setting described above, the epidemic lasts, in expectation, for |T |= 42.8 periods (with a

99% confidence interval of 38.6 to 46.8) and in total affects 45.4 percent of the population (with a

99% confidence interval of 39.1 to 47.7), resulting to passing of 2.7 percent of the population (with

a 99% confidence interval of 2.3 to 3.0). Moreover, the recovery pace is as small as 0.27 (with a 99%

confidence interval of 0.24 to 0.30). Even though the basic reproduction number barely exceeds its

critical value of 1, nonetheless the combination of a considerable incubation period and low testing

capacity leads to an outbreak.



In the next stage, we depict a setting related to the previous one by holding constant all the

characterizing parameters of the setting, as well as the generated random network, but assuming

a low level of heterogeneity in practicing social distancing behavior, specifically assuming that

5% of the population breach (π = 0.05). By conducting the same analysis as in the previous set-

ting, results indicate a moderate increase in the total number of infected cases (∼ 15%), but a

dramatic increase in the number of perished cases (∼ 50%).18 Moreover, the epidemic duration is

decreased (∼ 0.18%), while the recovery pace remains unchanged. For the same setting, increasing

testing capacity fourfold, i.e. τ = 1− (1− 0.3)4 = 0.76, compensates the small heterogeneity intro-

duced in the system in terms of the number of perished cases, brings this number down to 2.5 (99%

confidence interval 2.1 to 2.8) that is close to the full social conformity results in the previous

setting 1. Moreover, this change further reduces the number of infected cases (30 versus 45.4 in

setting 1) and shrinks the epidemic period (19.2 versus 42.8 in setting 1), also slightly increases

the recovery pace. Detailed descriptions of the settings and summaries of the results are presented

in Tables 1 and 2, respectively. Changes at each stage are highlighted.

Network structure Infection Health status Healthcare system Social distancing
Setting γ p q δ θ0 θ1 η τ φ C a a′ π
1 0.3 0.50 p/100 0.2 8 2 0.5 0.30 0.8 50 5 5 1
2 0.3 0.50 p/100 0.2 8 2 0.5 0.30 0.8 50 5 5 0.95
3 0.3 0.50 p/100 0.2 8 2 0.5 0.76 0.8 50 5 5 0.95
4 0.7 0.50 p/100 0.2 8 2 0.5 0.76 0.8 50 5 5 0.95
5 0.7 0.50 p/100 0.2 8 2 0.5 0.76 0.8 100 5 5 0.95
6 0.7 0.25 p/100 0.2 8 2 0.5 0.76 0.8 100 5 5 0.95
7a 0.7 0.25 p/100 0.2 8 2 0.5 0.76 0.8 100 5 5 1
7b 0.7 0.25 p/100 0.2 8 2 0.5 0.76 0.8 100 5 5 0.80

Table 1 Parameter values of the sequentially related settings, identical except for the highlighted values, in the

prototype analysis (|I|= 1000).

18In order to be able to attribute the changes in the outcomes to the change in the parameter value, before

simulating the system we have restored the random number generator seed, hence the two scenarios and all the

generated random numbers are identical in all aspects except for the modified parameter value.



Infected (%) Perished (%) Epidemic duration |T | Recovery pace ν

Setting
Condition
change

Mean 99% Conf. Int. Mean 99% Conf. Int. Mean 99% Conf. Int. Mean 99% Conf. Int.

1 — 45.4 39.1 47.7 2.7 2.3 3.0 42.8 38.6 46.8 0.27 0.24 0.30
2 π : 1.00→ 0.95 51.8 50.8 52.7 4.0 3.7 4.3 36.3 34.6 38.5 0.27 0.25 0.30
3 τ : 0.30→ 0.76 30.0 26.1 31.4 2.5 2.1 2.8 19.2 18.0 20.5 0.34 0.30 0.39
4 γ : 0.3 → 0.7 57.1 56.3 57.8 7.7 7.4 8.2 18.0 17.1 18.9 0.27 0.25 0.29
5 C : 50 → 100 58.2 57.5 59.2 5.9 5.6 6.2 17.4 16.8 18.3 0.26 0.25 0.28
6 p : 0.50 → 0.25 43.2 42.0 44.2 3.0 2.8 3.3 18.0 17.2 18.8 0.29 0.27 0.31
7a π : 0.95→ 1.00 37.0 32.7 38.2 2.1 1.8 2.3 19.0 17.7 20.1 0.34 0.31 0.36
7b π : 0.95→ 0.80 55.6 54.9 56.4 5.6 5.3 5.9 16.4 15.5 17.5 0.24 0.22 0.26

Table 2 Results summaries of the sequentially related settings, identical except for the parameter in condition

change column, in prototype analysis (|I|= 1000). The 99% confidence intervals are computed by bootstrapping

and using the bias-corrected and accelerated percentile method, and 10,000 bootstrap samples.

In the next stage, let us project the previous setting to a centralized network, hence maintaining

all the parameter values constant except for changing γ from 0.3 to 0.7. Such a configuration in

a centralized network leads to a very different picture than its decentralized counterpart. Specifi-

cally, by changing the parameter value, we observe a dramatic increase in the number of infected

and perished cases, doubled and tripled respectively. Nevertheless, the epidemic duration remains

unchanged. For a better comparison, additional details are provided in Figure 2– bottom row (note

different scale ranges compared to the top row). It is observed that the number of active cases, i.e.

undetected infectious agents, grows faster and reaches a higher peak in the centralized network,

which is also reflected by the values of the basic reproduction number over time. These results

demonstrate the prominent role of network structure. While variations in outputs due to stochas-

ticity in agents’ behavior are marginal (narrow confidence intervals), variations due to changes in

the network structure are of the order of magnitude.

In the subsequent stages, different public health intervention alternatives are explored, one at

each stage, so to mitigate the adverse impacts introduced by the increased network centrality. At the

first stage, the merits of increasing healthcare capacity are explored via doubling C, i.e. changing

from 50 to 100. This has reduced the number of perished cases by about 23% while had no impact

on the number of infected cases, epidemic duration, or recovery pace. Since a major cause of the

scaled-up numbers in a centralized network might be attributed to the shorter paths length between



pairs of individuals, due to the presence of a ”hub”, weakening contact connections in the network

might be an effective response. Therefore, in the next step, constant decontamination of surfaces

and public areas is considered. This would decrease the rate of mediated virus transmission since

a method of communication of the virus from one person to another is through physical contact

to common objects and surfaces. Hence, such intervention should be translated into the parameter

related to the intra-community density p. Changing p from 0.50 to 0.25, not only resulted in a

decline in the number of infected cases, as was expected, also substantially reduced the number of

perished cases (∼ 50%).

In the next stage, in addition to the previous measures, surveillance is tightened by enforcing

maximal conformity to social distancing, hence updating π from 0.95 to 1 (setting 7a). In a parallel

opposite scenario, we look into the results of a further de-escalation of social distancing restrictions,

changing π from 0.95 to 0.80 (setting 7b). In contrast to the decentralized environment, tightening

surveillance had no impact on epidemic duration, but increased the recovery pace. It implies that a

small heterogeneity in social distancing can shift the peak time to the left side in both centralized

and decentralized networks, but the shift in the centralized network is attributed to diminishing

recovery pace, while in the decentralized network it is due to shortening the epidemic duration–

see Figure 3.

The above results exhibit the interrelated complex nature of the interactions between the contex-

tual factors and policy parameters, as well as the nonlinear behavior of the system. Nevertheless,

these results are obtained by holding constant the generated random network for each setting. Even

though relatively narrow confidence intervals demonstrate low variation in the measured outputs

due to agents’ stochastic behavior and attributes, to enhance the external validity of the results,

randomness in the generated network must be accounted for, conditioning on the network structure

parameters. This is discussed in the next session where each setting is repeatedly analyzed, in the

same way as before, but also across a range of randomized manifestations of the network.



Figure 3 (Color online) Mean value of active cases over the time for settings 1 and 2, red solid and dashed

lines, respectively, corresponding to π= 1 and π= 0.95 in decentralized network; as well as settings 7a,

6, and 7b, solid, dashed, and dash-dotted lines, respectively, corresponding to π = 1, 0.95 and 0.80 in

centralized network. Note that red and blue lines should not be compared in absolute values since they

differ in other setting parameters too.

5. Experimental Analysis

This section presents an extensive experimental analysis. The main objective of this analysis is

to examine interrelationships among the characterizing parameters of the system and its outputs,

hence to derive insights for informing policy decisions across a range of settings. The design param-

eters of the experiment and their corresponding levels are provided in Table 3. For each network

structure, characterized by the triple 〈γ, p, q〉, the baseline condition is defined as (θ0, θ1) = (5,5),

τ = 0.30, φ = 0.40, C = 50, and π = 0.80. Since we are interested in the improvements, in the

respective measures, made by various health intervention methods, rather than the absolute values

per se, the outputs of each setting are compared with its respective baseline condition in the same

network, thus differences in the values are stored for further analysis. More importantly, such a

measurement method enables us to obtain consistent estimates of the intervention effects by elim-

inating the idiosyncratic impacts of the specific generated random network in each instance of a

scenario.



Network structure Infection Health status Healthcare system Social distancing
γ p q δ (θ0, θ1) η τ φ C a a′ π

{ 0.30,
0.70 }

{ 0.25,
0.50 } p/100 0.20

{ (5, 5),
(8, 2) } 0.50

{ 0.30,
0.76 }

{ 0.40,
0.80 }

{ 50,
100 } 5 5

{ 0.80,
0.95, 1 }

Table 3 Parameters and their levels in the experimental analysis (|I|= 1000).

Throughout the analysis, population size is fixed at |I| = 1000. Each setting is specified by a

combination of the above levels. The experiment is performed based on the following main steps.

Step 1: Specify γ and imin = |I|/100, and generate number of communities, K, and community-

size distribution, i1, · · · , iK , according to Algorithm 1. Moreover, specify p and q.

Step 2: Generate a random network based on the stochastic block model. Hold the generated

network constant in steps 3 and 4.

Step 3: Set π and generate individual-specific social distancing parameter values αi by drawing

from the distribution in 5. Set θ0 and θ1 and generate individual-specific self-recovery chance

parameter values θi. Set τ and η and generate incubation and hospitalization period values for

each individual, i.e. Ti and Hi, respectively. Finally, specify value of φ, that is the health service

quality in the absence of demand overload, and C, that is the healthcare system capacity. Simulate

the system and compute total fraction of infected and perished cases, as well as epidemic duration

and recovery pace.19 Hold the generated network constant and repeat the analysis 50 times and

store the mean values of the respective outputs over the 50 replications.

19For each time period t in the time window t= 1, · · · , |T | do the followings. Construct I′ ⊆ I by excluding the

recovered and perished cases from I. Count the number of currently hospitalized individuals and update φefft and θ′it

according to (8). For each pair of individuals i, j ∈ I′ with Sit = 0 (i is healthy at t) and Sjt = 1 (j is infected but not

detected at t) generate number of physical contacts between them at period t, only if they are directly linked in the

generated network, according to Yijt ∼ Poisson(λij), λij = 1/d2ij , and dij =
αie

nαi+αje
nαj

enαi+e
nαj−αienαi+αje

nαj , and update

the status of i according to Bern(1− (1− δ)Yijt). For an already infected individual j, Sjt = 1, update the status to

Detected if incubation period Ti has been reached and update the number of hospitalized individuals. For a detected

individual j, update the status if time period Hi of been hospitalized has been reached, to recovered with probability

θ′it, or perished with a probability of 1− θ′it. Update I′.



Step 4: Repeat step 3 for all the configurations defined by the levels of the parameters that

are required to be specified at that step, including the baseline condition. Compute and store

differences in the measured outputs with reference to the baseline condition.

Step 5: Repeat steps 2 to 4 for 20 times, each time with a different generated network.

Step 6: Go back to step 1, update levels of the parameters that are required to be specified in

that step, i.e. network structure parameters, and repeat steps 2 to 5.

Technical details: Overall, 192,000 instances of scenarios were simulated. All simulations were

implemented in MATLAB R2019b. The computations were performed on a computer cluster with

27 computing nodes (all nodes connect to IBM Spectrum Scale with Infiniband), with a total of

720 cores, and approximately 7.4 TB of RAM. Total execution time was 355 hours.

5.1. Results

This section presents the main results of the experimental analysis. The impacts of the policy

parameters, for example, enforcing social distancing or expanding testing capacities, on each of the

four measures that are used describe the epidemic outcome, for example, population fraction of

perished cases or epidemic duration, are estimated using ordinary least squares regression. As men-

tioned before, the measurements of the above outcomes are performed with reference to the baseline

condition, specified above, hence the parameters estimates represent changes in improvements in

the respective outputs obtained by adapting a health intervention method.

Results for reductions in the number of perished cases and the number of infected cases, in terms

of population percentages, are summarized in Figures 4 and 5, respectively. The results concerning

the perished cases are separated across the four types of network structure, based on levels of

network centrality and community sparsity, and also for the population’s overall health status.

For the infected cases, similar patterns were observed for the healthy and frail populations, hence

parameters are estimated by combining observations from both these groups. The same holds for

the results of the epidemic duration, presented in Table 4, implying that the impact of intervention

methods on epidemic duration is not contingent on the population’s overall health status. For



Figure 4 (Color online) Coefficient plots of OLS parameter estimates of the impact of intervention methods on

reduction in the total number of perished cases (cutback in the number of perished cases with reference

to the baseline condition). Sample size n= 460 for each of the 4 regression models corresponding to the

frail population, and n= 480 for each of the 4 regressions corresponding to the healthy population. The

99% confidence intervals are computed by bootstrapping and using the bias-corrected and accelerated

percentile method and 1000 bootstrap samples. Models’ R2 corresponding to decentralized networks:

for dense, 92% and 90%, and for sparse, 87% and 82%, for healthy and frail population respectively.

These values are ∼ 92% for all the 4 models corresponding to the centralized networks.

Figure 5 (Color online) Coefficient plots of OLS parameter estimates of the impact of intervention methods on

reduction in the total number of infected cases (cutback in the number of infected cases with reference

to the baseline condition). Sample size n= 940 for all the 4 models. The 99% confidence intervals are

computed by bootstrapping and using the bias-corrected and accelerated percentile method and 1000

bootstrap samples. Model R2 ≥ 98% for all the 4 models.



Decentralized Centralized
Sparse Dense Sparse Dense

Est. 99% Conf. Int. Est. 99% Conf. Int. Est. 99% Conf. Int. Est 99% Conf. Int.
SD Full conformity 6.5 5.1 7.9 7.6 6.7 8.5 6.9 6.2 7.7 3.8 3.2 4.4
SD Low heterogeneity 4.9 3.4 6.1 4.1 3.5 4.8 3.6 2.8 4.3 2.3 1.8 2.9
Many Tests -15.6 -16.7 -14.5 -14.6 -15.2 -14.0 -14.2 -14.9 -13.5 -13.5 -14.0 -12.9
SD Full conformity × Many tests -11.3 -13.0 -9.8 -5.0 -6.0 -4.0 -4.6 -5.5 -3.8 -0.8 -1.4 -0.1
SD Low heterogeneity ×Many tests -6.0 -7.4 -4.5 -2.1 -3.0 -1.3 -1.9 -2.7 -1.1 -0.8 -1.4 -0.2

Table 4 OLS parameter estimates of the impact of intervention methods on changes in epidemic duration

(change in |T | with reference to the baseline condition). Model R2 ≥ 98% and sample size n= 940 for all the 4

models.

Decentralized Centralized
Est. 99% Conf. Int. Est. 99% Conf. Int.

SD Full conformity 11 10.1 12.0 4 3.7 4.6
SD Low heterogeneity 8 7.1 8.6 3 3.0 3.6
Many Tests 9 8.4 9.8 8 7.2 7.9
SD Full conformity × Many tests -9 -10.6 -8.1 2 1.6 3.0
SD Low heterogeneity ×Many tests -5 -6.1 -4.1 1 0.1 1.1

Table 5 OLS parameter estimates (×102) of the impact of intervention methods on changes in recovery pace

(change in ν with reference to the baseline condition). Model R2 = 93% for centralized, and 72% for decentralized

setting, and sample size n= 1880 for both models.

the recovery pace, on the other hand, the only factor introducing contingencies to the impact of

intervention methods was the network centrality– see Table 5.

Concerning the population fraction of perished cases, it can be observed that, in general, a

system with frail populations, e.g. with a constrictive population pyramid, is more responsive to

the health intervention methods. Results show that as network centrality and community density

increase, importances of healthcare quality and capacity increase too, while that of social distancing

decreases unless it is combined with a large testing capacity. This is particularly important given

the trouble and considerable economical and social consequences of enforcing social distancing in

centralized and dense networks. In other words, such a costly intervention method, when network

centrality and community density increases, can be justified only in the presence of an extensive

testing capacity. Moreover, it is observed that the joint effect of social distancing combined with

many tests in the centralized networks decreases by 25% when only 5% of the population stop

complying with the social distancing requirements. Moreover, this observation is valid for both

healthy and frail populations. Hence, these results suggest shifting the focus toward healthcare



capacity and quality when operating in a more centralized network and with denser communities.

Furthermore, in such contexts, when measures based on social distancing are going to be adopted,

first, they must be combined with expanding testing capacities, second, they must be implemented

with strict surveillance.

The results demonstrate several important direct and indirect benefits of investing in expanding

testing capacity. It can be observed that, despite the other intervention methods, the direct impact

of increasing the number of tests is independent of the population health status in all the respective

measures used to describe epidemic behavior. Notably, while the direct impact of increasing the

number of tests on reduction in the number of perished cases is relatively small, yet it is a highly

effective intervention method since it moderates the impact of social distancing; plays an important

role in reducing the number of infected cases and increasing the recovery pace, e.g. shifting the

peak to the right side of the time scale. Moreover, it remains the prevailing factor in reducing

epidemic duration across all types of networks, which is essential to mitigate the adverse economical

consequences of a strict self-isolation policy.

6. Conclusion

An effective response to the outbreak of infectious disease requires a meticulous consideration of

the features of the embedding environment. In such domains, contextual factors such as charac-

teristics of the population, their overall health status, compliance behavior, patterns of contacts,

as well as the level of heterogeneity in individual-level attributes largely interact with the policy

parameters to yield the outcome. Policy measures, on the other hand, can alter some features of

the environment, at least partly, such as by enforcing compliance behavior via punitive methods.

From this perspective, there is no one-size-fits-all solution, and elements of an effective strategy

should be designed in the light of interrelationships among these groups of factors.

This paper presents a unified framework that integrates key components of the contagion process

with the key characteristics of the embedding environment and by accounting for heterogeneity

in individual-level attributes, as well as sources of uncertainty in different layers of the system.



The model is primarily intended to serve as a tool for informing policy decisions concerning public

health interventions; an objective that establishes the main rationale behind the model construction

process. To this aim, the main features of the contagion model are integrated with the charac-

teristics of the environment and the relevant policy parameters. Components of the model are

subsequently synthesized in a broader agent-based model that enables accounting for heterogeneity

in individual-level attributes that collectively yield the macro-level outcomes.

Among the contextual factors, special attention is devoted to the critical role of the patterns of

contacts between individuals, i.e. network structure. First, such patterns directly control the virus

transmission disease spread in the population. Secondly, supported by our results, network structure

largely interacts with policy parameters, making their effectiveness contingent on the characteristics

of the network. In our model, the network structure is characterized by two simple factors, namely

the degree of centrality in the network topology, and density of connections within components of

the network called communities. Conditioning on these two factors, random networks are generated

using an algorithm that is introduced in this paper. Our empirical results, with reasonably narrow

confidence intervals when conditioning on centrality and density, show that these two factors can

capture a large proportion of the variation in the outcome stemming from the inherent randomness

in the network. The results demonstrate the critical role of the network structure as a substantial

element in the design of an effective response to the outbreak of infectious diseases.

Aside from the methodological contributions, we presented a series of stylized examples to illus-

trate the applicability of the model and conducted an extensive controlled experiment to derive

insights concerning the overall tendencies of various types of outcomes and effectiveness of dif-

ferent types of policy parameters in relation to the contextual factors. The results highlight the

substantial importance of social distancing and self-isolation but also showing that when network

centrality and density increase, its impact progressively becomes contingent on the presence of a

large testing capacity. Moreover, the results suggest that expanding testing capacity is essential

in order to mitigate the inevitable impact of social distancing on epidemic duration, which sub-

sequently might translate into economic losses. Finally, in terms of the number of perished cases,



we observed that when network centrality and density increase, healthcare system capacity and

care quality dominate other factors, while social distancing prevails in decentralized and sparse

networks.

Beyond what has been discussed in this paper, the proposed framework can be extended in var-

ious directions. A specifically interesting venue is to incorporate macro-level covariates to explain

heterogeneity in the individual-level attributes. Among those, income distribution, population pyra-

mid type, access to, and usage patterns of high-speed internet, lifestyle parameters and dimensions

of national culture in the same manner measured by the Hofstede model, might be among the

propitious candidates. Other important directions for future research include improving the com-

putational demand of the model, which arguably is a major limitation of the practical use of

agent-based models as a whole. Moreover, most recent criticisms towards the agent-based modeling

paradigm are directed to the calibration and validation challenges, which can restrict the scope

of its finding to qualitative and suggestive levels (Leombruni and Richiardi 2005, Marks 2007).

This is a promising direction to explore. In this regard, there is a growing body of research focus-

ing on the estimation techniques based on simulated minimum distance (Fabretti 2013). These

methods attempt to minimize a type of distance between the observed and simulated data, e.g.

as in (Marks 2013), and they usually involve a considerable computational cost. In the context

of the model developed in this paper, it would be interesting to exploit the method of simulated

moments (McFadden 1989, Banerjee et al. 2013) and explore potentials of nonparametric simulated

maximum likelihood combined with Bayesian inference due to the computational benefits and the

possibility to fully exploit informational content of the data (Grazzini et al. 2017, Kukacka and

Barunik 2017).
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