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Abstract

Model mis-specification remains a major concern in macroeconomics, and policy mak-
ers must often resort to heuristics to decide on policy actions; combining insights from
multiple models and relying on judgment calls. Identifying the most appropriate, or
optimal, policy in this manner can be challenging however. In this work, we propose a
statistic —the Optimal Policy Perturbation (OPP)— to detect “optimization failures”
in the policy decision process. The OPP does not rely on any specific underlying eco-
nomic model, and its computation only requires (i) forecasts for the policy objectives
conditional on the policy choice, and (ii) the impulse responses of the policy objec-
tives to shocks to the policy instruments. We illustrate the OPP in the context of
US monetary policy decisions. In forty years, we only detect one period with major
optimization failures; during 2010-2012 when unconventional policy tools should have
been used more intensively.
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Although contention about the appropriate model of the economy and its microe-

conomic foundations continues, macroeconomic policy decisions have to be made.

Blanchard and Fischer (1989)

1 Introduction

Despite impressive recent progress in structural macro modeling, model misspecification re-

mains a major concern, and policy makers often rely on heuristics to determine how to

optimally balance conflicting objectives; combining insights from different models and rely-

ing on judgement calls.1 This practical approach has benefits in terms of robustness to model

mis-specification, but a major downside is that it can be difficult to identify the most appro-

priate course of policy: without a comprehensive quantitative framework some opportunities

for improvement could be left on the table.

In this work, we propose a statistic – the Optimal Policy Perturbation, OPP – to detect

“optimization failures” in the policy decision process, failures that could arise whenever the

underlying economic model is unknown or too complex to write down, as is often the case

in practice. The OPP can be applied to a broad range of policy problems, notably macroe-

conomic stabilization objectives, such as a central bank with a dual inflation-unemployment

mandate or a government interested in smoothing business cycle fluctuations but concerned

about excessive deficits.

Our starting point is a high-level quadratic loss function, as specified by a policy maker,

for instance a central banker interested in minimizing the squared deviations of inflation and

unemployment from some target levels. The objective function can depend on multiple ob-

jectives over arbitrary horizons and can have multiple policy instruments as argument. The

idea underlying our approach is to explore whether deviating from the current policy choice

is desirable, i.e., whether a perturbation to the policy choice can lower the loss function.

The specific policy perturbation that we consider, the OPP, only depends on (i) the

1See e.g., Svensson (2003), Blanchard (2016).
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expectations for the policy objectives —the targets— conditional on the policy choice, and

(ii) the impulse responses (IRs) of the targets to shocks to the policy instruments. In fact,

calculating the OPP boils down to an OLS regression where we regress the conditional

expectations for the targets on their impulse responses to policy shocks. Intuitively, recall

that the IRs capture how perturbations to the policy instruments affect the targets. When

the policy is optimal, the IRs should be orthogonal to the expected paths of the mandates:

there is no combination of the IRs, i.e, no adjustment to the instruments, that can better

stabilize the expected paths of the mandates. In contrast, when the policy is not optimal,

a regression of the conditional expectations for the targets on the IRs can, under a linearity

assumption, determine how to use the IRs to minimize the sum-of-squared deviations of the

targets, i.e., how to optimally adjust the instruments.

Specifically, the OPP does not rely on any specific underlying economic model, but the

properties of OPP depends on how policy affects the targets. When the effect is linear, the

OPP is optimal in the sense that adjusting the current policy choice by the OPP leads to a

policy choice that is guaranteed to minimize the loss function.2 When the policy effects are

mildly nonlinear, or when the current policy choice is in the neighborhood of the optimum,

adjusting the policy by the OPP brings the policy closer to the optimum. Finally, in the

most general setting, i.e., even with highly nonlinear effects of policy, a non-zero OPP implies

that the current policy choice is non-optimal.3

To assess the optimality of a policy using the OPP, we must confront two practical

issues: (i) the impulse responses need to be estimated and thus face estimation uncertainty,

and (ii) the conditional expectations are oracle forecasts, i.e., optimal forecasts that can

generally only be approximated by the policy makers. Because of these two sources of error

—IR estimation error and model misspecification error—, one could wrongly conclude that

a policy is not optimal. To guard against such risks, we derive confidence bands around the

2This case covers most macro models, such as vector autoregressive models, linearized DSGE models and
linear state space models.

3In particular, this most general case is immune to the Lucas critique whereby policy perturbations could
prompt regime changes.
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OPP. These bands allow the researcher to state the level of confidence attached with any

assessment of optimality.

To showcase the usefulness of the OPP and illustrate its practical implementation, we re-

visit past US monetary policy decisions. We discuss the results from two different exercises.

First, we consider a number of past Fed decisions where policy was not always set optimally.

These examples illustrate how our methodology can identify deviations from optimality, the

reasons for these deviations and the effects of parameter uncertainty and model misspecifi-

cation on these conclusions. Second, we use our framework to systematically re-assess past

Fed policies, and we study the optimality of the Fed policy over 1980-2018 without imposing

any modeling restriction on the Fed’s decision making process.

To implement these exercises we require forecasts for inflation and unemployment and

estimates of the impulse responses to monetary policy shocks. We obtain conditional FOMC

forecasts from historical records of monetary reports to Congress from 1980 until 2018. These

projections are conditional on the Fed following an optimal policy, as judged by the FOMC

members, which allows us to measure the distance to optimality of the Fed’s actions back

to 1980. We then group the Fed’s monetary policy instruments into two groups: a first

one captures conventional monetary policy and operates through the fed funds rate; and a

second one, available since 2007, captures a broad class of unconventional monetary policies

that operate through the slope of the yield curve, as in Eberly, Stock and Wright (2019).

We estimate the impulse responses of interest with local projection instrumental variable

methods (Jordà, 2005; Stock and Watson, 2018), using external instruments derived from

changes in asset prices around FOMC announcements (Kuttner, 2001; Gürkaynak, Sack and

Swanson, 2005).

We find that the Fed monetary policy has been remarkably close to optimal. Specifically,

we cannot discard optimality of the fed funds rate in all but three periods, the early 1980s

when policy was too tight, in 2003 when the fed funds rate could have been lowered further4,

4As we discuss in the main text, this conclusion holds for a central bank with a dual inflation-
unemployment mandate. With additional objectives, e.g., limiting excessive growth in domestic debt, we
cannot reject that the fed funds rate was set optimally.

4



and in 2008 when the Fed should have lowered the fed funds rate faster. At other times, the

magnitude of the deviations from optimality are not only non-significant but also relatively

minor, averaging only about a quarter percentage point. Since the Fed only moves the

short term rate in quarter percentage points, this implies that, except for these three time

periods, the fed funds rate OPPs typically round to zero over the past 40 years. In contrast,

for the slope instrument, which only operates after 2007, the optimality deviations are large,

peaking at -2ppt at the onset of the crisis, and we can reject optimality over 2009-2012. This

suggests that unconventional monetary policy measures —LSAP or QE— could have been

used more aggressively to bring the slope down in line with optimality.

While the detection of optimization failures has received limited attention in the litera-

ture, the policy perturbation approach has important links to several large literatures.

First, the OPP goes back to the work of Tinbergen (1952) in that we do not evaluate the

full-fledged social welfare function, but instead focus on a simpler high-level macro welfare

function, as specified by the policy maker. While the micro-foundation of the loss function

can be crucial in certain policy contexts, representing the preferences of the policy makers

with a quadratic loss function can yield great benefits when, as is often the case in macroe-

conomic applications, the underlying economic model is so complicated that policy makers

must rely on heuristic methods to approximate the optimal policy. The OPP preserves

the simplicity and transparency of the Tinbergen rule, but generalizes it to any dynamic

context.5

In a public finance context, the OPP shares important similarities with the sufficient

statistic approach (e.g. Chetty, 2009), in that both methods exploit the fact that the “wel-

fare” consequences of a policy can be derived from (estimable) high-level elasticities, in our

case the IRs to policy innovations. The two approaches differ in that the sufficient statistic

approach builds on a micro-founded welfare function, whereas the OPP approach starts from

5The Tinbergen rule states that “to reach any number of independent policy objectives, the government
needs are least an equal number of policy instruments”. The OPP shows that in a dynamic world where
policy transmits to the economy, this is not as simple, because any instrument will move the targets over
multiple horizons, leading to within-mandate trade-offs, i.e., trade-offs across horizons.
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a high-level quadratic loss function, as specified by the policy maker. Since the OPP does

not rely on any envelope condition (unlike the sufficient statistic approach, e.g., Chetty,

2009, , section 4.1), the OPP method does not require knowing the underlying model. As

we illustrate in this paper, this is of particular interest in the context of macro-economic

stabilization, which has been little studied by the sufficient-statistic literature.

Second, the OPP is complementary to the large literature on optimal policy making, see

for many examples the textbooks of Ljungqvist and Sargent (2004), Woodford (2003) and

Bénassy-Quéré et al. (2018). Unlike the optimal policy literature focused on deriving optimal

policy rules —formulas for setting the policy instrument as a function of other variables—,

the OPP is a statistic designed to detect optimization failures. Its strength is that it does

not rely on any underlying model, but this is also its limitation as its lack of theoretical

foundation limits its applicability as a general policy rule. However, the OPP can be seen as

a key element of the forecast-targeting rules used in monetary policy making (e.g., Svensson,

2019). A forecast targeting rule is a general approach to policy making that consists in

selecting a policy rate and policy-rate path so that “the forecasts of the target variables

look good, meaning appears to best fulfill the mandates and return to their target at an

appropriate pace” (Svensson, 1999, 2017b, 2019).6 However, a limitation is that the “looking

good” criterion is imprecise and leaves the policy maker uncertain about the optimality of

the policy choice. The OPP provides a precise quantitative condition for optimality, and can

thus be seen as providing a quantitative foundation for forecast-targeting rules.7

A large literature on optimal policy has aimed at deriving simple and robust optimal

policy rules in the form of simple interest rate rules that deliver good performances across a

6As argued by Svensson, the forecast targeting approach is attractive for its flexibility and capacity
to incorporate all relevant information and to accommodate judgment adjustments. This is in contrast to
Taylor-type rules that can be “too restrictive and mechanical, not taking into account all relevant information,
and the ability to handle the complex and changing situations faced by policy makers” (Svensson, 2017b).

7For instance, the OPP is immediately applicable to the Fed “policy rule” described by Bernanke (2015):
“The Fed has a rule. The Fed’s rule is that we will go for a 2percent inflation rate; we will go for the natural
rate of unemployment; we put equal weight on those two things; we will give you information about our
projections, our interest rate. That is a rule and that is a framework that should clarify exactly what the
Fed is doing.” In that context, the OPP can be used to assess whether the Fed is optimally balancing the
expected paths of inflation and unemployment.
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broad range of models.8 In practice policy makers do not rely on Taylor-type rules. Instead,

a more accurate representation of the reaction function is in terms of a forecast-targeting

rule. For instance, central bank provide forecasts that converge to the policy objective at

some “appropriate” rate. EU countries who deviate from the 3 percent Maastrict deficit rule

do not abide by that rule, but instead provide deficit forecasts that converge to (less than)

3 percent at some “appropriate” rate.9 Our paper fits into this practical representation of

policy making, by providing a statistic that can help understand, quantify and communicate

what constitutes an “appropriate” convergence rate.

From a general macro-econometrics perspective, while the structural impulse response

literature (e.g. Ramey, 2016) has focused on estimating impulse responses to shocks in order

to guide model building (e.g., Christiano, Eichenbaum and Evans, 2005), our paper provides

a novel and important role for impulse response estimates: as a testbed for the optimality of

policy. And while econometricians shied away from using optimal control theory to devise

policy rules since the Lucas critique, the OPP shows that econometrics can play a major

role in the optimal policy literature. Two core econometric tasks —economic forecasting

and structural IR estimation— are central to the OPP, and progress in IR estimation preci-

sion and in forecasting performance will directly improve our ability to detect optimization

failures.

The remainder of this paper is organized as follows. In the next section we introduce the

environment in which the policy maker and the researcher operate. Section 3 presents the

OPP statistic and discusses its properties and underlying intuition. The confidence bands

for the OPP statistic are derived in Section 4. In Section 5 we apply our methodology to

study monetary policy decisions from the US. Section 6 concludes.

8As Gaĺı (2015) puts it “an interest rate rule is generally considered “simple” if it makes the policy
instrument a function of observable variables only, and does not require any precise knowledge of the exact
model or the values taken by its parameters. The desirability of any given simple rule is thus given to a large
extent by its robustness, i.e., its ability to yield a good performance across different models and parameter
configurations.”

9In the case of Portugal for instance, the Council of the European Union stated that “in order to bring the
headline government deficit below the 3 percent-of-GDP reference value by 2015 in a credible and sustainable
manner, Portugal was recommended to bring the headline deficit to 5,5 of GDP in 2013, 4,0% of GDP in
2014 and 2,5% of GDP in 2015.” ( Economic and Financial Affairs Council, 12 July 2016)
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2 Environment

In this section we describe the environment and the policy maker’s problem. In general,

there are three players in our setting: the policy maker that makes an initial policy choice,

the researcher that aims to verify whether the policy maker’s choice is optimal, and nature

that determines the distribution of the variables.

The policy maker acts under discretion and has M mandates that span H horizons. The

horizon H is arbitrary and can be considered infinite. Let ym,t+h denote the value of the

variable that corresponds to mandate m and horizon h. The current time period is indexed

by t and the target value for ym,t+h is denoted by y∗m. To incorporate preferences across

mandates and horizons, let λm be the fixed preference parameter for mandate m and let βh

be the discount factor for horizon h. The policy maker considers a loss function of the form

Lt = Et
H∑
h=0

M∑
m=1

λmβh (ym,t+h − y∗m)2 , (1)

where the expectation is conditional on the time t information set Ft, e.g. Et(·) = E(·|Ft),

and with respect to the true distribution of the target deviations ym,t+h − y∗m.10

The K policy instruments that are available to the policy maker are denoted by pt =

(p1,t, . . . , pK,t)
′. For instance, if the policy maker is a central bank pk,t may correspond to

the short term nominal interest rate it, or alternatively pk,t may correspond to a forward

guidance announcement. In general, the objective of the policy maker is to minimize the

loss function (1) using its instruments pt.

For convenience, we stack all re-weighted deviations from the targets in the M(H+1)×1

vector Yt = [
√
λjβh(ym,t+h−y∗m)]m=1,...,M,h=0,...,H and simply refer to this vector as the targets.

We consider the following generic model for the targets

Yt = ft(pt, Xt, ξt) , (2)

10The target value y∗m can equally well be considered horizon dependent, e.g. y∗m,t+h instead of y∗m.

8



where Xt is a vector of Ft measurable random variables,11 and ξt is an arbitrary vector of

future shocks that are unknown at time t. The function ft is assumed to be differentiable

with respect to the policy choice pt.

With these definitions we summarize the policy makers’ problem as the following least

squares problem12

min
pt∈D

Et ‖Yt‖2 , with Yt = ft(pt, Xt, ξt) , (3)

where D ⊂ RK . Problem (3) can be thought of as a static representation of a dynamic policy

problem. Forecast horizons and mandates enter in a symmetric fashion (after reweighting

by preferences and discount factors) and the policy maker has K instruments to hit the

(H + 1)M static targets collected in Yt. Since K is generally smaller then (H + 1)M , the

solution to the policy problem implies a set of trade-offs across horizons and mandates.

The possibility of optimization failures

The policy makers’ perceived solution to problem (3) is denoted by p0
t and we do not make

any assumptions on how the policy choice is determined.

In practice, the policy makers’ choice p0
t may not be optimal —a case of optimization

failure in the policy decision process— for a number of reasons.

The most immediate one is simply a policy mistake. This is possible, but this is not the

main idea of this paper. Another reason is that the policy maker does not have the correct

model of the economy, i.e., she uses a mis-specified representation of ft(.). This is possible,

and we will consider this possibility later in Section 4, but this is also not the main idea of

this paper.

Instead, our idea is that the policy maker has access to the true underlying model ft

but at a very high cost. Specifically, the underlying model is so complex that it cannot be

11For instance, Xt can include expected, current and lagged values of yt or of any other set of relevant
variables.

12We consider the usual vector norm where for any a ∈ Rn we have that ‖a‖ =
√∑n

t=1 a
2
t .
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written down explicitly and computing Etft(pt, Xt, ξt) for a given pt is a very costly process: it

requires many iterations of smaller models, discussions among staff members and judgement

calls.13

With a high cost of computing ft, the policy maker is only able to compute Etft(pt, Xt, ξt)

for a small set of values for pt, i.e., for a small number of alternative policy strategies. This

heuristic approach amounts to an incomplete grid search that can leave the policy maker

unsure of having set the optimal policy, even if she has access to the true model.14 To

help improve the policy decision process, we will propose a statistic that can help detect

optimization failures at no additional computing cost.

3 Optimal Policy Perturbations

In this paper, we take the perspective of a researcher interested in assessing whether the

policy maker’s choice p0
t is optimal, i.e. in detecting a possible optimization failure.

To assess optimality, our simple starting idea is to study how the loss function (1) changes

when we modify the policy choice to p0
t + δt, where δt = (δ1,t, . . . , δK,t)

′ is a vector of policy

perturbations. If the loss function is lower for some δt we may conclude that the choice p0
t

was not optimal.

While many perturbations are possible, in this work we propose the Optimal Policy

Perturbation, or OPP for short, which is defined as

δ∗t = −(R′tRt)
−1R′tEtY 0

t , (4)

13A telling example are the massive resources devoted by the Board of Governors to (i) assess the cur-
rent state of the economy (historically called the Greenbook, Part 2), and (ii) construct forecasts for key
macroeconomic variables (historically called the Greenbook, Part 1). Every FOMC cycle (8 times a year),
the writing of the Greenbook involves a substantial share of the Board staff.

14In the context of monetary policy for instance, the central bank staff can only consider a limited number
of alternative interest paths; e.g., the Bluebook of the Fed lists only 3 or 4 alternative monetary strategies
for consideration for the FOMC members.
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where

Rt =
∂ft(p

0
t + δt, Xt, ξt)

∂δ′t

∣∣∣∣
δt=0

and EtY 0
t = Etft(p0

t , Xt, ξt) .

The M(H + 1) × K matrix Rt denotes the impulse responses of the targets to the policy

perturbation δt evaluated at δt = 0, while EtY 0
t are the forecasts for the targets given the

policy choice p0
t .

Note that computing the OPP does not require knowing ft(.) and instead only requires

two typically known or estimable quantities: (i) the forecasts EtY 0
t which are routinely

published by policy makers, and (ii) the impulse response matrixRt, which can be estimated.

Indeed, policy makers, such as central banks or fiscal authorities, routinely provide their

forecasts to make their policy decisions transparent (e.g., the Survey of Economic Projections

from the Fed’s FOMC members) and there is a large literature on the estimation of impulse

response (e.g., Ramey, 2016). We discuss inference for the OPP in Section 4, but for now

we assume that δ∗t is known to the researcher.

3.1 Intuition

Before stating the formal properties of the OPP, we provide a heuristic discussion that

clarifies why δ∗t is an attractive perturbation to consider. We discuss the intuition behind

the OPP from two perspectives; first from an optimization perspective and then from an

econometrics perspective. Finally, we provide some illustrations to clarify the workings of

the OPP.

An optimization perspective

The policy maker’s problem (3) can be seen as an optimization problem where the objective

function is costly to compute, making a grid search prohibitively expensive. In this context,

the idea of the OPP is to build on the optimization literature and exploit the attractive

properties of the Gauss-Newton (GN) optimization algorithm, a line-search algorithm de-

signed to minimize quadratic loss functions (e.g., Nocedal and Wright, 2006). In fact, the
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OPP δ∗t is precisely the first iteration of a GN algorithm pt = p0
t + δ∗t with p0

t the starting

vector and pt the updated vector.

Like many optimization algorithms, the GN algorithm is based on the property that at

the optimum, the gradient of the loss function should be zero, or in our case

∂Lt
∂δt

∣∣∣∣
δt=0

= 2R′tEtY 0
t = 0 ,

which implies that the OPP must satisfy δ∗t = −(R′tRt)
−1R′tEtY 0

t = 0 at the optimum. This

orthogonality condition will form the basis of our approach to detect optimization failures

under very mild regularity conditions.

With more assumptions, specifically when the effect of policy is close to linear or when the

initial policy choice is close to being optimal, we can go further and use the OPP to improve

the initial policy choice. Specifically, the Gauss-Newton algorithm is based on a standard

Newton line-search algorithm,15 but with the specificity that the Hessian is approximated

with first-derivatives only. When that Hessian approximation is good, which happens when

non-linearities are mild or when we are already close to the optimum, the GN algorithm

is known to converge to a minimum, in which case the OPP will improve the initial policy

choice.

To illustrate this point, imagine that p0
t is close to the optimum or that non-linearities

are mild so that we can approximate ft with the first order Taylor expansion of ft around

δt = 0:

Yt ≈ Y 0
t +Rtδt (5)

When that approximation is exact, policy has linear effects and the GN algorithm actually

converges in one step to the minimum:16 the OPP will make policy optimal. For intermediary

cases where the approximation (5) is good but not exact, the OPP will not make policy

15In a Newton line-search algorithm, the iteration is of the form pt = p0t + δt with δt = −(∇2Lt)−1∇Lt
with ∇Lt the gradient of the loss function evaluated at p0t and ∇2Lt the corresponding Hessian.

16In the linear case, the second derivatives of the loss function with respect to δt are zero, and the GN
Hessian approximation is exact.
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optimal but it will bring it closer to optimality.

An econometrics perspective

From an econometrics perspective, note how the expression for the OPP looks like the formula

of an OLS regression. In particular, δ∗t is minus the coefficient estimate of a regression of

EtY 0
t on Rt. To get the intuition behind this OLS interpretation, go back to the case where

policy has a linear effect on the targets so that

Yt = Y 0
t +Rtδt. (6)

In that case, the set of impulse responses Rt captures the effect of a change in the policy

instrument on the policy maker’s objectives.17 The goal of the optimal perturbation δ∗t is

then to use the impulse response (Rt) in order to minimize the squared deviations of Yt.

This is nothing but an OLS regression of Y 0
t on Rt, except one with a minus sign in front of

the coefficient estimate since the goal is not to best fit the path for Y 0
t , but instead to best

“undo” Y 0
t .

Now, since the future value of Y 0
t is unknown the policy maker aims to minimize ex-

pected squared deviations, and hence the OPP aims to undo EtY 0
t , the expected path for Y 0

t

conditional on the policy choice p0
t . This gives the OLS-type formula (4). A benefit of this

regression interpretation is that it will help understand not only when but also why a policy

choice is not optimal, i.e., which trade-offs may have been overlooked when setting policy.

Illustration

To make the discussion more concrete, we consider three simple scenarios that illustrate the

workings of the OPP. We consider a policy maker with a single instrument.

For now, the policy maker has a single mandate: to close the gap y over the next H

17 In other words, this setting accommodates commonly used linear models such as vector autoregressive
models, linearized DSGE models and linear state space models, as well as non-linear models for small
perturbations δt around the policy choice p0t .
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periods. The loss function is thus Lt = Et ‖Yt‖2 with Yt = (yt − y∗, . . . , yt+H − y∗)′ a vector

of future gaps. For instance, the policy maker could be a central bank with an inflation

target of 2 percent, in which case Yt is a vector of inflation gaps. In that case, the policy

maker’s instrument could be the short term interest rate.

Figure 1 depicts graphically two hypothetical scenarios. The top row reports the policy

makers’ expected future gaps conditional on the policy choice p0
t , that is EtY 0

t , and the

bottom row reports the impulse response Ry
t for each scenario. The expected path for

the gaps is identical in the two scenarios—policy makers expect y to run over its target

for some time—, but the impulse response Ry
t differs across scenarios. In the first scenario

(left-column) the instrument has a delayed effect on the gap variable —Ry
t is relatively back-

loaded—, but in the second scenario (right-column) the instrument has a relatively rapid

effect on the gap variable —Ry
t is relatively front-loaded—.

The goal of the optimal adjustment is to explore whether a small change to the policy

rate could further stabilize the path of the target variable y. In other words, the goal of the

optimal adjustment is to use the impulse response Ry
t —the effect on y of an infinitesimal

change in the instrument— in order to minimize the squared deviations of the future gaps.

In the first scenario, the instrument’s effect is so delayed that there is little more the

policy maker can do to stabilize the short-lived y. In other words, the impulse response is

orthogonal to the expected path of the gap (Ry′

t EtY 0
t = 0), and there is no adjustment to

the policy rate that can better stabilize the target variable. In that case, δ∗t = 0, and we

cannot discard optimality.

In the second scenario, the impulse response shows a faster reaction —the instrument

has a faster effect on y—, and the impulse response actually overlaps with the expected

path of the gap. In that case, δ∗t 6= 0, and the policy is not optimal: the policy maker can

use the impulse response Ry
t to bring y down faster by raising the level of its instrument.

As illustrated in Figure 1, adjusting the policy choice by δ∗t > 0 will effectively trade off a

smaller positive gap now for a slightly negative gap later —a trade-off across horizons—, and

in doing so will lower the sum-of-squared gaps. In the linear case, the adjustment needed

14



to make the policy optimal is given by the OLS regression of EtY 0
t on −Ry

t . After this

adjustment, the expected path for the gap becomes EtYt = EtY 0
t + δ∗tR

y
t , and EtYt will be

(by construction) orthogonal to Ry
t : the necessary condition for optimality (Ry′

t EtYt = 0)

will then be satisfied.

Figure 2 considers a third scenario where the policy maker has a dual mandate to stabilize

two targets Y and Z, that is a loss function of the form Lt = Et ‖Yt‖2 + λEt ‖Zt‖2. While

one can think of Y and Z as inflation and unemployment in the case of a central bank with

a dual mandate, this example works generally for any policy maker with two mandates.

The first mandate y (left-column, in red) has the same expected path as in the two

earlier scenarios, while the second mandate z (right-column, in blue) sees a similar transitory

positive gap. As in the first scenario, there is little the policy maker can do about EtY 0
t with

Ry
t (the instrument takes too long to have any effect), but in this case the policy maker

can use Rz
t to reduce the positive z gap faster. In this case, the trade-off is not so much a

trade-off across horizon but rather a trade-off between mandates: by lowering z faster now

(top-right panel), the policy maker will incur a larger y gap later (top-left panel).18

3.2 Properties of OPP

In this section we formalize the properties of the OPP as defined in equation (4). In par-

ticular, we give the (increasingly stronger) conditions under which the OPP can be used to:

(i) reject that the policy choice p0
t is optimal, (ii) bring p0

t closer to the optimal policy and

(iii) make policy optimal.

(i) Discarding optimality

In order to use the OPP to discard that p0
t is optimal, we essentially only require that the

underlying model is well defined and that it is continuously differentiable with respect to the

policy choice. Formally, we make the following assumption.

18In other words, the policy is not optimal because the policy maker could lower its loss function by trading
off one mandate versus another.
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Assumption 1. Let Xt ∈ X and ξt ∈ Ξ be random vectors and D an open convex subset of

RK. We assume that

1. ft : D × X × Ξ → RM(H+1) is continuous and there exists a random variable Zt such

that ‖ft‖ ≤ Zt uniformly with E(Zt) <∞.

2. there exists a function Rt ≡ ∂ft/∂pt such that uniformly we have (a) Rt is independent

of ξt, (b) Rt has full column rank and (c) ‖Rt‖ ≤ ∆ for some finite constant ∆.

These assumptions are mild. In words they imply that the underlying true model is con-

tinuously differentiable with respect to the policy choice and that there exists a dominating

measure which effectively ensures that we can interchange differentiation and integration.

Further, the impulse responses Rt do not depend on future shocks, have full column rank

and are bounded. These conditions are easily satisfied for commonly encountered impulse

responses in macro economics. Note that the OPP formula involves Rt = Rt(p
0
t , Xt), as the

OPP is computed using the impulse responses evaluated at p0
t .

The assumptions ensure that Lt is continuously differentiable with respect to pt and that

the policy problem has a well defined solution on the set D. Formally, we define the optimal

policy solution, denoted by popt
t , as follows

Et‖ft(popt
t , Xt, ξt)‖2 ∈ inf

pt∈D
Et‖ft(pt, Xt, ξt)‖2

which exists under Assumption 1. The following proposition formalizes the notion of dis-

carding optimality using the OPP.

Proposition 1. Given Assumption 1, we have that δ∗t 6= 0 implies p0
t 6= popt

t .

All proofs are presented in the appendix.

The proposition implies that p0
t is not optimal if δ∗t is not equal to zero. Note that the

converse is not implied: it is not necessarily true that p0
t is optimal if δ∗t = 0. For this we

need additional conditions as we show below.
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Importantly, assumption 1 allows the impulse responses Rt to be an essentially arbitrary

function of the policy choice pt. This implies that Proposition 1 is immune to the Lucas

(1976) critique, in the sense that it allows for feedback effects from the policy choice to the

impulse responses, and hence detecting optimization failures can be carried out in a robust

manner. Intuitively, to discard optimality we only have to consider the effect Rt of an

infinitesimally small perturbation for which regime change is not an issue.

(ii) Improving policy

Next, we formalize the conditions under which the perturbation δ∗t can bring p0
t closer to

the optimum popt
t . To do so let µmin be the smallest eigenvalue of Rt(p

opt
t , Xt)

′Rt(p
opt
t , Xt)

uniformly over Xt ∈ X , and note that µmin > 0 by Assumption 1 part 2(b). With this

notation we make the following additional assumption.

Assumption 2. We assume that

1. ‖(Rt(pt, Xt)−Rt(p
opt
t , Xt))

′Etft(popt
t , Xt, ξt)‖ ≤ c‖pt−popt

t ‖, with constant c < µmin for

all (pt, Xt) ∈ D × X

2. Rt is Lipschitz continuous with respect to pt on D with parameter γ.

The first part of the assumption ensures that the loss function is not too nonlinear in

the neighborhood of popt
t . The second part imposes a smoothness condition on the impulse

responses.

The assumption allows us the formalize the following notion of a policy improvement.

Proposition 2. Given Assumptions 1 and 2 we have there exists ε > 0 such that for all

p0
t ∈ N (popt

t , ε) we have19

‖p0
t + δ∗t − p

opt
t ‖ ≤ ‖p0

t − p
opt
t ‖

The proposition states that, if the policy choice of the policy maker is in the neighborhood

of the optimal policy, the OPP will bring p0
t closer to the optimum. Importantly, as we show

19The neighborhood N (poptt , ε) is defined in the usual way: N (poptt , ε) = {pt ∈ D : ‖pt − poptt ‖ < ε}.
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in the proof of the proposition, the “size” ε of the neighborhood N (popt
t , ε) depends on the

degree of non-linearity in the effects of policy. The more non-linear the effect of policy —the

more non-linear the function Rt—, the smaller the neighborhood has to be.20

While the Assumption 1 imposed virtually no restrictions on the functional form of

Rt(pt, Xt), Assumption 2 restricts the effect of pt on Rt. Therefore Proposition 2 is not

entirely immune to the Lucas (1976) critique. Instead it formalizes a notion of modest

policy interventions where small perturbations, i.e. those close to the optimum, can improve

the policy choice. Such modest policy interventions have been previously characterized,

within the context of a structural model by Leeper and Zha (2003). Assumption 2 quantifies

the idea of modest policy interventions and generalizes it to a large class of models.

(iii) Getting to the optimal policy

Finally, we describe the conditions under which the OPP brings us directly to the optimal

policy choice. This happens when policy has a linear effect on the targets. Note that

commonly used models in empirical macroeconomics, such as vector autoregressive models

and linear Gaussian state space models, fall into this category (see Ljungqvist and Sargent,

2004, for many examples).

To facilitate a comparison with the previous assumptions, we formalize this last require-

ment as follows:

Assumption 3. Rt is independent of pt.

When compared to assumptions 1 and 2 assumption 3 rules out any dependence of the

impulse responses on the policy choice. Given this assumption we obtain the following result.

Proposition 3. Given Assumptions 1 and 3, we have p0
t + δ∗t = popt

t

In words, if there are no regime changes following a policy change, adjusting the policy

choice by the optimal policy perturbation minimizes the loss function. This follows from

20Note that for any specific model ft the neighborhood can be determined exactly.
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Assumption 3, because in that case the policy problem (3) is strictly convex and there exists

a unique minimizer popt
t which can be reached in one-step regardless of the starting point p0

t .

4 Inference for OPP

The computation of the OPP requires two statistics: (i) the impulse responses Rt, and (ii)

the conditional expectations EtY 0
t . While the previous section treated these statistics as

given, in practice (i) the researcher does not know the true impulse responses Rt and (ii)

the optimal forecasts EtY 0
t cannot be computed by the policy maker.

In this section we extend our framework to capture these practical constraints. First, we

take into account that the impulse responses need to be estimated by the researcher and thus

face estimation uncertainty. Second, we take into account that the policy makers’ forecasts

can only approximate the conditional expectation EtY 0
t (e.g. Hansen and Sargent, 2008).21

Because of these two sources of error —IR estimation error and conditional expectation

error—, the researcher could wrongly conclude that there was an optimization failure.22 To

guard against such a risk, we derive confidence bands around the OPP. These bands allow

the researcher to state the level of confidence attached with detection of an optimization

failure.

Importantly, we do not take a stance on how impulse responses should be calculated

or how forecast errors should be assessed. Different policy problems are likely to require

different methods that to some extent will depend on data availability. Moreover, there

already exists a large econometric literature that discuss impulse response estimation (e.g.

Stock and Watson, 2016; Ramey, 2016) and forecast evaluation (e.g. Elliot and Timmermann,

2016). Instead, we merely provide a general methodology that illustrates how to combine

21The conditional expectations EtY 0
t can generally only be approximated for two reasons: (i) the model

ft may be incorrectly specified, e.g. a case of function mis-specification and/or (ii) the measure underlying
Et may be incorrectly specified, e.g. a case of distribution mis-specification.

22We take a conservative approach here in the sense that we aim to guard against incorrect rejections of
optimality. Depending on the researcher’s taste or objective one could argue that incorrectly not-rejecting
optimality is also undesirable. However, similarly to hypothesis testing one cannot generally guard against
both types of errors. The analogy with hypothesis testing is useful for conceptualizing, but formally incorrect
as the OPP is a function of the optimal forecast which is a random variable and not a parameter.
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impulse response and model mis-specification uncertainty to conduct inference for the OPP.

Impulse response uncertainty

To capture impulse response uncertainty, let rt = vec(Rt) and let r̂t denote the vector of

impulse response estimates of the researcher. We assume that we can approximate the

distribution of rt by

r̂t ∼ N(rt,Ωt) , (7)

where Ωt is the variance matrix of all impulse responses: across all horizons and mandates.

The normality assumption can be justified from a frequentist perspective by asymptotic

arguments for different estimators when taking the sample size to infinity.23 Further, we

posit that there exists a consistent estimate for Ωt that we denote by Ω̂t.
24

Alternatively, when considering a Bayesian approach to estimation, as is often done in

macroeconomics, we may postulate that the researcher is able to obtain the approximation

rt|Yt ∼ N(r̃t, Ω̃t) ,

where Yt denotes the data used and r̃t and Ω̃t are the posterior mean and variance, respec-

tively. We continue our discussion using the frequentist approximation (7), but emphasize

that the Bayesian perspective follows similarly.

Model misspecification uncertainty

To capture model misspecification uncertainty, let Ŷt|t denote the forecast of the policy maker

that we regard as an approximation to the conditional expectation EtY 0
t . In practice, we

23Suppose that the researcher uses {y1,s, . . . , yM,s, ps, ws}ts=t−n, with ws control variables or instruments,
to estimate the impulse responses. Then several estimators, such as those based on local projections and

structural vector autoregressive models, satisfy
√
n(r̂t − rt)

d→ N(0,Avar(r̂t)). This implies that if we let
Ωt = 1√

n
Avar(r̂t) we obtain (7).

24These assumptions are mild. For instance, in our empirical work below we rely on local projections with
instrumental variables to estimate the impulse responses (e.g. Jordà, 2005; Stock and Watson, 2018). The
corresponding estimator r̂t is approximately normal under standard textbook assumptions (White, 2000)

and Newey and West (1994) methods deliver a consistent estimator Ω̂t for Ωt.
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do not observe the historical misspecification errors {EsY 0
s − Ŷs|s}t−Hs=t−n as the true model

is unknown, and we cannot exploit such sequence to predict the distribution of EtY 0
t − Ŷt|t.

Instead, we take a conservative approach and rely on the historical forecast errors to construct

upper-bounds for the confidence interval for EtY 0
t .

Specifically, we have

Yt − Ŷt|t︸ ︷︷ ︸
forecast error

= Yt − EtY 0
t︸ ︷︷ ︸

future error

+ EtY 0
t − Ŷt|t︸ ︷︷ ︸

misspecification error

.

First, we assume that the misspecification error Et|t = EtY 0
t − Ŷt|t follows a normal distribu-

tion.25 Second, we upper bound the variance of Et|t with the variance of the forecast errors,

which are observable.26

With these assumptions in place we approximate the distribution of EtY 0
t by

EtY 0
t ∼ N

(
Ŷt|t, Σ̂t|t

)
, (8)

where Σ̂t|t is an (upper-bound) estimate for the mean squared forecast error Σt|t = Et(Yt −

Ŷt|t)(Yt − Ŷt|t)′ that we obtain from the historical forecast errors

Σ̂t|t =
1

n−H

n−H∑
s=1

(Ys − Ŷs|s)(Ys − Ŷs|s)′ . (9)

In specific applications there might be additional information available about historical mis-

specification errors. This would allow to further sharpen the approximation (8).

25Since the true model is not known to the researcher, bootstrap methods, as in Wolf and Wunderli (2015),
cannot be adopted, and we must resort to the classical construction of the prediction interval (e.g. Scheffe,
1953), which is based on a normality assumption. Note also that, as argued in Wolf and Wunderli (2015),
asymptotic arguments cannot be used to justify the normal approximation. It is an assumption in our
setting.

26This requires the assumption that the covariance between the future error and the misspecification error
is zero.
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Confidence interval for the OPP

Having characterized approximating distributions for Rt and EtY 0
t we are able to construct

a confidence interval for the OPP. In particular, we use the distributions (7) and (8) to

approximate the distribution of δ∗t = −(R′tRt)
−1R′tEtY 0

t . To do so we compute by simulation

{
δ

(j)
t , j = 1, . . . , B

}
, with

δ
(j)
t = −

(
R(j)′

t R
(j)
t

)−1

R(j)′

t Y
(j)
t|t , r

(j)
t ∼ N

(
r̂t, Ω̂t

)
, Y

(j)
t|t ∼ N

(
Ŷt|t, Σ̂t|t

)
,

(10)

where B is the number of independent draws from the approximating distributions. In our

empirical work we report the median and the upper and lower bounds of the simulated

distribution {δ(j)
t , j = 1, . . . , B}.

A Brainard conservatism principle for the OPP

An interesting point is that, the mean of the distribution {δ(j)
t , j = 1, . . . , B}, say δ̂t, does

not correspond to (R̂′tR̂t)
−1R̂′tŶt|t. The latter would be an intuitive plug-in estimator, at

least from a frequentist perspective, as asymptotically the impulse response estimates are

consistent. However, in finite sample the variance of the impulse response estimates shows

up in the inverse of the OPP.

In particular, with approximations (7) and (8) we have

δ̂t = (R̂′tR̂t + Ω̂t)
−1R̂′tŶt|t , (11)

where Ω̂t can be thought of as capturing an attenuation bias coming from measurement error

in the impulse response estimates.

This result is analog to the seminal Brainard (1967) conservatism principle. Brainard’s

principle states that in the face of parameter uncertainty, a policy maker should be more

conservative in its use of the policy instruments and refrain from fulling minimizing the loss

function. A similar logic is at work in our context: a researcher that faces uncertainty in its
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estimate of the effects of policy (uncertainty in the IRs) needs to be more conservative – on

average – when aiming to reject that the current policy choice is non-optimal.

5 Optimal perturbations for monetary policy

In this section we apply our optimal perturbation framework to study monetary policy

decisions in the United States. Here the policy maker is the Fed which aims to fulfill a

number of mandates like stable inflation and stable unemployment and possibly others such

as financial stability. The central bank has a number of instruments: the current short term

interest rate, the expected path of the short-term rate —forward-guidance— as well as more

unconventional policies such as the size of the balance sheet, Quantitative Easing, LSAP

or maturity management (see e.g., Eberly, Stock and Wright, 2019). Inspired by Eberly,

Stock and Wright (2019), we group the Fed’s instruments into two broad categories, defined

from their intended effect on the yield curve: (i) the current fed funds rate —conventional

monetary policy—, which affects the short-end of the yield curve and (ii) policies that affect

the slope of the yield curve —slope policy—.

We conduct two different exercises. First, to illustrate the workings of our method, we

consider a number of past Fed decisions where policy was not always set optimally.27 These

examples illustrate how our methodology can clarify the monetary trade-offs at play and

help identify opportunities for policy improvements.

Second, we use our framework to systematically re-assess past Fed policies, and we study

the optimality of the Fed policy over 1980-2018 without imposing any modeling restriction

on the Fed’s decision making process.28

Before describing these exercises, we first detail the datasets and methods that we use to

calculate the optimal perturbations. The OPP requires two pieces of information to assess

27In our analysis of past Fed decisions, it is important to keep in mind that we have the benefit of hindsight
in that our estimates of the effects of policy changes (the impulse responses) are drawn from evidence that
was not necessarily available at the time.

28This is in contrast to earlier studies that rely on a model to construct forecasts for inflation and unem-
ployment and thus implicitly assume that their model was the forecasting model that the Fed adopted in
the past (e.g. Rudebusch and Svensson, 1999; Sack, 2000; Rudebusch, 2002).
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the optimality of the Fed policy over time: (i) the Fed’s projections for the target variables

(e.g., inflation and unemployment) conditional on policy makers’ desired policy path and

(ii) the impulse responses of the target variables to the monetary perturbations.

5.1 Data and impulse response estimation

FOMC projections over 1980-2018

Since the passage of the Full Employment and Balanced Growth Act of 1978 (also known

as Humphrey-Hawkins), federal law requires the Federal Reserve Board to submit written

reports to Congress containing discussions of “the conduct of monetary policy and economic

developments and prospects for the future”. As part of this report, the Fed provides a

summary of Federal Open Market Committee (FOMC) participants’ projections for the un-

employment rate and inflation (among other variables): the Survey of Economic Projections

(SEP).

The data were manually extracted from digital records from the archives of the House

Financial Services Committee. We obtained bi-annual SEP data for the median forecasts

of FOMC members for inflation and unemployment at one- and two-year ahead horizons

over the period 1980-2006.29 After 2006, SEP data are published four times a year and

additionally include the median forecasts at a three-year ahead horizon. In addition, we

complement these forecasts with the median FOMC estimate of the “long-run” projections

for inflation and unemployment. We set the horizon for the “long-run” FOMC projections

to equal 5 years.30 The SEP reports the long-run forecasts of inflation and unemployment

only after 2007, so for the pre-2007 period we use real-time estimates of the natural rate

of unemployment constructed by (Orphanides and Williams, 2012) and long-run inflation

expectations from the Federal Reserve Board “PTR” variable, which is a measure a long-run

29The price index underlying the inflation measure has changed over time, ranging from the GNP deflation,
CPI to PCE in the more recent period. Using a linear model of the form πpcet = α+βπxt +εt with x denoting
the underlying price index, we adjusted the different inflation measures to make them consistent with a
PCE-based measure.

30We obtain very similar results using instead a convergence time of 10 years.
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inflation expectations derived from the Survey of Professional Forecasters (SPF). Since the

SEP projections are annual, we linearly interpolate them in order to project them on the

quarterly impulse responses to monetary shock.

Estimation of impulse responses

Following the works of Gürkaynak, Sack and Swanson (2005), Lakdawala (2019) and more

closely Eberly, Stock and Wright (2019), we estimate the impulse responses to (i) innovations

to the current Fed funds rate, (ii) innovations to the slope of the yield curve, where the slope

is the spread between the yield on 10-year Treasuries and the Fed funds rate.

In our analysis we assume that the impulse responses are constant over the 1980-2018

period, i.e. we have that Rt = R for all t. While this assumption is made for simplicity

here,31 it is actually consistent with the widely held belief that, at least since 1985, the US

economy has evolved in a stable monetary regime with anchored inflation expectations.

The impulse responses for the different targets y = π, u horizons h and perturbation

types k = i0,∆i, with i0 indicating the fed funds rate and ∆i the slope of the yield curve,

are defined as follows.

Ry
k,h = E(yt+h|εkt = 1, ct)− E(yt+h|εkt = 0, ct) ,

where εkt corresponds to a structural monetary policy shock of type k = i0,∆i and ct is a

vector of control variables. These impulses are the elements of the matrix R defined above.

To estimate the impulse responses we use local projections with external instruments

(Jordà, 2005; Stock and Watson, 2018). For the Fed funds shock, the instrument is the

difference between the target decision and the expectation implied by current-month Federal

funds futures contracts, constructed as described by Kuttner (2001). For the slope shock,

the instrument identifies policy induced changes in the slope of the Interbank/Treasury term

structure, holding constant changes in the Fed funds rate. To this end, the slope instrument

31While outside the scope of this application section, one could envision estimating time-varying (Primiceri,
2005) or state dependent impulse responses (e.g., Tenreyro and Thwaites, 2016).
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is the residual from a regression of announcement-window changes in the ten-year on-the-run

Treasury yield onto the fed funds rate shock.

The local projections, for y = π, u, h = 0, . . . , H and k = i0,∆i, are given by

yt+h = xktR
y
k,h + c′tγ

y
k,h + νk,yt+h , (12)

where xkt = i0,t,∆it the fed funds rate or the slope of the yield curve, and ct a set of

control variables consistent of lags of y and x. We estimate the impulse responses using

observations from 1990 until 2007 for the fed funds rate instrument and observations from

2007 until 2018 for the slope instrument, consistent the time frame over which the Fed used

forward-guidance (e.g. Eberly, Stock and Wright, 2019). We compute the variance matrix

of the impulse response estimates using Newey and West (1994).

5.2 Illustrative case studies

We first consider some concrete examples where we assess the optimality of past Fed deci-

sions. For clarity purposes, in the first examples we ignore the effects of uncertainty and

treat the impulse responses as given and the FOMC forecasts as capturing the conditional

expectations. That is we act as if δ∗t is known with certainty. Later examples discuss the role

of uncertainty. For our analysis, we take an horizon of H = 5 years and consider discount

rates βh = 1 for all h.

5.2.1 On the optimality of the level of the fed funds rate

One mandate: We start with a central bank with a unique inflation mandate and a unique

instrument; the fed funds rate. In this scenario the policy makers’ problem is given by

min
i0t∈R
Lt , Lt = Et ‖Πt‖2 , (13)

where Πt = (πt − π∗, . . . , πt+H − π∗)′ is the vector of inflation gaps with target π∗ = 2.
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The optimal perturbation is given by the scalar δ∗πt = −
(
Rπ′Rπ

)−1Rπ′EtΠ0
t , which

measures the adjustment to the fed funds rate that minimizes the sum-of-squares of the

expected inflation gaps.

Figure 3 depicts graphically all the information needed to assess the optimality of the fed

funds rate in 1990-M6. The top-left panel reports the expected paths for inflation conditional

on the current policy choice, including the current level of the fed funds rate. Note how lighter

colors denote forecasts at more distant horizons. The bottom-left panel reports the impulse

responses of inflation to a 1ppt innovation to the current fed funds rate, that is it reports

Rπ.

To illustrate the regression interpretation, Figure 4 combines all the previous informa-

tion in one scatter plot of the inflation forecast (EtΠ0
t ) against the negative of the impulse

responses of inflation (−Rπ). To denote the time dimension, recall that we use lighter colors

to indicate horizons farther away in the future: that way, we can visualize how the forecast

and the impulse response co-move over the forecast horizon h. There is no new information

in Figure 4, but the scatter plot captures all the information needed to compute the OPP

and thereby discard (or not) optimality. Indeed, recall that the OPP for a strict inflation

targeter is given by a regression of the conditional forecast for inflation (EtΠ0
t ) on the (neg-

ative) IR of inflation to a policy shock (−Rπ). Thus, the slope of the best linear fit for that

scatter plot is δ∗πt , the OPP for a strict inflation targeter (dashed-red line).32

The scatter plot helps understand the determinants of the regression line, and thus which

trade-offs may have been overlooked when setting policy. Informally speaking, dots close

to the x-axis mean that the target is already close to zero and thus with little room for

improvement, while dots close to the y-axis cannot be influenced by the central bank’s

instrument. Thus, the room for improvements comes from the dots around the 45 degree line

where the deviations are not only substantial but also “influentiable” with the instrument.

32The OPP is given by the regression of EtΠ0
t on the negative of Rπ, because the goal of the OPP is not to

best fit the expected path for inflation with the impulse response, but instead to best “undo” it. By having
−Rπ on the x-axis, the slope of the best fit line is directly the OPP, which helps with the interpretability of
the figure.
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Since the Fed traditionally moves in steps of quarter percentage points, the shaded grey

area depicts the region where we cannot discard optimality, because the optimal adjustment

is below 12.5 basis points (and thus rounds to zero). In other words, whenever the regression

line, overlaps with the grey region, we cannot discard that the current fed funds rate is set

optimally.

In 1990-M6, the FOMC expected inflation to run over its target for some time, as depicted

in the top-left panel of Figure 3. For a strict inflation targeter, the 1990-M6 fed funds rate

was not set optimally, because a higher fed funds rate —a positive perturbation to the policy

rate (δ∗πt > 0)— can lower the expected loss function by better stabilizing inflation.33 In

this case, the overlooked trade-off is a trade-off across horizons, i.e., a “dynamic” trade-off:

By raising interest rates, the Fed could have traded lower inflation at shorter horizons with

too low inflation at longer horizons.34

Two mandates: We now consider a central bank with a dual inflation-unemployment

mandate, and we consider the policy problem

min
i0t∈R
Lt , Lt = Et ‖Πt‖2 + λEt ‖Ut‖2 , (14)

where Ut = (ut − u∗t , . . . , ut+H − u∗t+H)′ is the vector of unemployment gaps.

In line with the Fed’s “balanced approach”, we put equal weight on stabilizing inflation

and unemployment (λ = 1) as in the optimal policy simulations of the Tealbook.

With a dual mandate, the situation is more complicated because in addition to the

dynamic trade-off highlighted above, policy makers must also take into account possible

conflicts between the different mandates; in this case a “static” trade-off between inflation

and unemployment. In fact, we can re-write δ∗t , the dual-mandate OPP, as a weighted-

33The dashed red line in Figure 4 lies outside the grey area, so that the magnitude of the OPP (the slope
of the red line) is large enough to discard optimality of the fed funds rate (for a hypothetical strict inflation
targeter).

34The dynamic trade-off comes from the blunt nature of the monetary instrument: when the Fed moves
the fed funds rate, it affects the whole path of macro variables, not only one horizon.
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average of the OPP for each mandate, i.e.,

δ∗t = ωδ∗πt + (1− ω)δ∗ut ,

where δ∗πt = −(Rπ′Rπ)−1Rπ′EtΠ0
t and δ∗ut = −(Ru′Ru)−1Ru′EtU0

t are the optimal per-

turbations for a single mandate (inflation or unemployment) and ω = 1
1+λ/κ

is a scalar

weight that depends on the ratio of society’s preference between the two mandates (λ),35

and the central bank’s instrument “average” ability to transform unemployment into infla-

tion κ = ‖Rπ‖/‖Ru‖.36 Thus, the dual-mandate OPP δ∗t captures two types of trade-offs:

(i) a dynamic trade-off depending on the relative ability of the central bank to influence

each mandate at different horizons, e.g., longer vs. shorter horizons, and (ii) a static trade-

off depending on the relative ability of the central bank to influence one mandate versus

another.37

Going back to our 1990-M6 example, taking the expected path of unemployment (top-

right panel of Figure 3, blue colors) into consideration completely changes the picture. In

fact, in this case, we can no longer discard that the fed funds rate was actually set optimally

despite substantial deviations of inflation and unemployment from target. The reason is the

standard static trade-off between inflation and unemployment, and this can be seen directly

from the regression lines in Figure 4: it is desirable to run a more contractionary policy

(δ∗πt ≈ +1.25 > 0, the red line slopes upwards) to lower inflation and at the same time

run a more expansionary policy (δ∗ut ≈ −.25 < 0, the blue line slopes downwards) to lower

unemployment, which is not possible. Graphically, this can be seen by the fact that the blue

line and the red line display opposite slopes. Since the black line (with slope equal to the

dual-mandate OPP) is an average between these red and blue lines, it ends up with a flat

35We have ω −→
λ→0

1 (a single inflation mandate), and similarly ω −→
λ→∞

0 (a single unemployment mandate).
36Note that κ reduces to the slope of the Phillips curve in the baseline New-Keynesian model (Gaĺı, 2015).
37The estimated impulse responses to a fed funds rate shock imply κ ≈ .07 and ω ≈ .08, because the

fed funds rate is much more effective at moving unemployment than at moving inflation. As a result, the
overall OPP δt will be heavily tilted towards the stabilization of unemployment, and unless the deviations
of inflation are large and correlated with Rπ (such that δ∗πt is large), the dual-mandate OPP will be driven
to a large extent by the OPP for unemployment.
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slope that rounds to zero, i.e., inside the grey cone of optimality.

In words, while the Fed would have liked to lower the fed funds rate to fight excess

unemployment, it was prevented to do so by the high and on-going excess inflation. This

was explicitly acknowledged in the 1990-M6 Bluebook.

Three mandates: Our framework can accommodate any number of mandates, and it

is instructive to consider adding a financial stability mandate, as has been the subject of

numerous debates since the great recession (e.g., Svensson, 2017a).

To capture that third mandate, imagine that the Fed wants to stabilize credit growth

around some target, guided for instance by numerous works that point to the link between

fast credit growth and the severity of subsequent recessions (e.g., Jordà, Schularick and

Taylor, 2013). Specifically, we consider the policy problem

min
i0t∈R
Lt , Lt = Et ‖Πt‖2 + Et ‖Ut‖2 + λBEt ‖Bt‖2 , (15)

where λB is the preference parameter for the financial stability target and Bt denotes the

path of the growth rate of non-financial domestic debt, in deviation from its target. For

illustration purposes, we fix that target at 5.6 percent, the average debt growth rate over the

1990-2000 period, and we set λB = .25, the ratio of the variance of inflation to the variance

of debt growth of 1990-2000.

Figure 5 plots the same set of plots as Figure 3 but with the additional third mandate, and

we consider the Fed in 2003-M6, a time when credit expansion was particularly strong, and

the Fed might have wanted to preemptively lean against the wind. Note that the 2003-M6

meeting marked the end of an easing cycle for the Fed.

Looking at the individual optimal adjustment for each mandates (depicted in the middle

panels), we can see that the OPP for the “traditional” mandates (δ∗πt and δ∗ut ) are aligned:

Inflation was too low and unemployment too high, so that both mandates call for lower rates

(this is in contrast to the previous 1990-M6 case study). As a result, δ
∗(2)
t , the OPP for a dual

inflation-unemployment targeter, rounds to −.75 < 0 percentage points. At the same time
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however, credit growth was very strong and called for a higher interest rate (δ∗bt ≈ .25 > 0)

in order to more quickly bring back credit growth in line with target.38 A policy maker with

three mandates is thus confronted with another static trade-off in that the OPP for credit

growth is positive but the OPPs for inflation and unemployment are negative.

Because of this static trade-off the three-mandate OPP (δ
∗(3)
t ≈ −.25) is lower (in absolute

value) than the dual-mandate OPP (δ
∗(2)
t ): it still calls for lowering the fed funds rate to

raise inflation and lower unemployment, but at the same time it tries to limit the side-effects

on credit growth (as shown by the counter-factual forecasts displayed in the top panels).

5.2.2 On the effect of uncertainty on the OPP

To illustrate the effects of IR and model uncertainty on the OPP and on a researcher’s

ability to discard optimality, we consider the Fed as of 2008-M4. This particular example

is interesting, because it is in the early stage of the financial crisis: Lehman Brothers was

still 6 months away from failing, unemployment was only at 5 percent, and few anticipated

the magnitude of the recession that was going to ensue. In fact, the fed funds rate was still

at 2.25ppt so the Fed still had room to use conventional policies to stimulate activity.39 An

interesting question in hindsight is thus whether the 2008-M4 fed funds rate was optimal.

In other words, can we conclude that the Fed should have lowered its fed funds rate earlier

given the FOMC forecasts of the time and given the uncertainty attached to its forecasts.

We consider a central bank with a traditional inflation-unemployment dual mandate as in

policy problem (14), and Figure 6 has the same structure as our previous plots except that the

top panels now also report the 68 percent confidence intervals calculated from past forecast

errors over the previous 10 years. In the scatter plot, we also added the confidence intervals

38Echoing an argument made by Svensson (2017a), the fed funds rate is a blunt instrument to control
credit growth. The peak effect of the policy change only happens after 3 years (middle-right panel of Figure
5), by which time credit growth was already expected to be back to target. As a result, the overall reduction
in the loss function (15) is quantitatively small. Stated differently, while a higher fed funds rate does reduce
credit growth, it does so with considerable delay, and thus offers little benefits. In contrast, the cost in terms
of higher unemployment is substantial. Thus, the cost-benefit ratio of leaning against the wind is relatively
high.

39By the end of 2008 however, unemployment had reached 7.3 percent, and the Fed had dropped the fed
funds rate by almost 2ppt (to the zero lower bound) in the span of only three months (September-December)
following the failure of Lehman Brothers in September 2008.
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for the OPP; the yellow and grey cones. The yellow cones show the 68 percent confidence

interval for the OPP given IR estimation uncertainty only. Then, the grey cones show

the 68 percent confidence interval for the OPP given IR estimation uncertainty and model

specification uncertainty. If that cone does not overlap with the x-axis, we can conclude that

there is a failure to optimize with 68 percent probability.

Ignoring model specification uncertainty for now, a quick inspection of the median SEP

forecast and the poor unemployment outlook suggests that policy in 2008-M4 was not op-

timal: the Fed should have cut rates more aggressively. The OPP confirms this impression

and the median value for the OPP rounds to -0.5ppt (dash-black line), driven precisely by

this expected increase in unemployment.40 In other words, the OPP signals that the Fed

should have lowered the fed funds rate faster than it did, given the median SEP forecast for

unemployment.

However, note the large uncertainty around the unemployment forecast. In fact, in this

case forecast uncertainty is so large that we cannot discard optimality despite the substantial

expected increase in unemployment. The 68% grey cones overlap with the x-axis, meaning

that there is a more than 32 percent chance that the chosen policy p0
t actually balances

the (unobserved) conditional expectations for inflation and unemployment, even though the

FOMC point forecasts suggest otherwise.

To summarize, as of 2008-M4 the expected increase in unemployment was not strong

enough and too uncertain to justify a more aggressive monetary stimulus and a faster drop

in the policy rate.

In this context, it is interesting to contrast the 2008-M4 situation with that of two years

later; in 2010-M4. There, the fed funds rate was stuck at zero but the Fed could have use

its slope instrument to stabilize the economy. Thus, Figure 7 displays the usual set of plots

but for 2010-M4 and for the slope instrument, so that the middle panels show the impulse

40The positive inflation gap is seen as transitory and as a result displays little correlation with the delayed
effect of the fed funds rate on inflation. As a result, there is little the Fed can do about that positive inflation
gap, and the OPP for inflation rounds to zero. Note how this case captures a common wisdom of central
banking: central banks should “look through” transitory inflationary episodes.
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responses of inflation and unemployment to a 1ppt increase in the slope of the yield curve.

This time, the deviations from targets are so large that we can clearly discard optimality at

the 68 percent confidence level. In fact, the OPP calls for lowering the slope instrument by

an additional 150 basis.41

5.3 A retrospective analysis of US monetary policy

In this section, we systematically study the optimality of the Fed policy over 1980-2018, in

effect repeating our case studies of section 5.2 for every single FOMC meeting since 1980 for

which we have the conditional forecasts.

Figure 8 displays in the top row the time series of the two instruments that we considered:

the fed funds rate and the slope of the yield curve (the difference between the 10-year bond

yield and the fed funds rate). The bottom panels report the corresponding OPPs along

with their confidence intervals, as implied by both impulse response and model uncertainty.

In addition, to summarize the distance to optimality in terms of “welfare loss”, the bottom

panels of Figure 8 also show in shades of red the additional loss ∆Lt incurred by the observed

deviation of optimality, expressed in ppt of average extra inflation and unemployment gaps

over the next 5 years. This welfare loss metric is useful to put into perspective the magnitude

of the welfare cost of an optimality deviation.42

While the fed funds rate has not been set exactly at its optimal level since 1980, the

optimal adjustment (in absolute value) is overall relatively small averaging only 25 basis

points over the full sample. There are only three larger misses; large misses in the early

1980s, a relatively small but significant miss in 2003 (a case we already discussed in the

41A few caveats to this conclusion: (i) our approach does not highlight which specific policies would have
been able to induce such shift in the slope, and (ii) the exercise for the slope instrument is done with the
benefit of hindsight, since our evidence on the effect of the slope instrument comes precisely from that time
period.

42We compute

∆Lt(δ̂t) = Lt(δ̂t)− Lt(0) , with Lt(δt) = Et(Y 0
t +Rtδt)′(Y 0

t +Rtδt) (16)

where Lt(δ̂t) is the value of the loss function under the optimal policy (i.e., after the actual policy has been

corrected with the optimal discretionary adjustment δ̂t and where Lt(0) = Et(Y 0′

t Y
0
t ) is the value of the loss

function under the policy actually implemented at time t.
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previous section) and a miss at the onset of the great recession when the fed funds rate

could have been brought down more rapidly to the zero lower-bound (although that OPP is

not significant, as we discussed above).43

The largest miss is in terms of the slope instrument, which could have been used more

aggressively during the financial crises and its aftermath, a conclusion echoing that of Eberly,

Stock and Wright (2019). The OPP drops rapidly to -2 percentage points and only slowly

revert back to zero. In fact, the OPP for the slope instrument remains significantly different

from zero over the whole 2009-2013 period, indicating that for the period 2008-2012 a more

extensive use of slope policies would have brought the slope of the term structure closer to

optimal.44

6 Conclusion

In this paper we propose a methodology for detecting optimization failures in the policy

decision process. The proposed OPP statistic determines if the proposed policy choice is

non-optimal, and it can highlight which trade-offs have been overlooked.

Although little touched on in this paper, the OPP can also be used by the policy makers

themselves in order to articulate their views and communicate their policy decisions, either

to their peers (in the context of deliberations among FOMC members for instance) or to

private actors (market participants for instance). In particular, the transparent regression in-

terpretation can help policy makers articulate and quantify their policy prescriptions around

three central concepts (i) their preference between different objectives, (ii) their assessment

of the economic outlook, and (iii) their views on the effects of policy.45

43The large miss in the early 80s should be taken with caution. Our approach is valid as long as there
are no regime changes and our IR estimates capture the transmission of monetary policy in the current
regime. This approach is reasonable in the post-1990 era of anchored inflation expectations, but it is more
contentious in the early 1980s period, where the Fed was actively trying to anchor inflation expectations at
a lower level. In that context, our finding of an “overly tight” fed funds rate in the early 80s could just be
capturing the Fed’s efforts to engineer a regime switch.

44We re-iterate that our approach does not highlight which specific policies would have been able to induce
such shift in the slope.

45These three concepts are the three central sources of disagreement among policy makers (See e.g.,
Orphanides, 2019, for a recent example).
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While we focused on monetary policy making to illustrate the OPP,46 our framework

can be used to inform the policy responses in many other contexts where optimality is hard

to assess. For instance, in the context of fiscal policy, a number of rules are being used

to prevent excessive deficit, such as the European “Stability and Growth Pact” that limits

budget deficits in EU member countries to 3 percent of GDP. Similar to Taylor rules in

the context of monetary policy, these rules are rigid and do not take into account other

important objectives of policy makers, such as avoiding large drops in GDP and excessive

unemployment.47 The OPP could be used in this context to modernize the deficit rule with

a “forecast deficit targeting” approach to fiscal discipline, in the same way that forecast

inflation targeting replaced strict monetary growth targets.48 The OPP would provide a

quantitative criterion to formalize how a policy maker should balance (in expectation) fiscal

discipline with (say) growth and unemployment considerations.

There are many other possible applications of the OPP, for instance a government with a

double objective of high trend GDP growth and low income inequality, a government inter-

ested in exchange rate management, or a low/middle income country interested in foreign-

exchange reserve management.49

46In the context of monetary policy, the OPP statistic could also be trivially adapted to alternatives to
inflation targeting, such as average inflation targeting or nominal GDP targeting, which are actively debated
as the Fed is reconsidering its policy framework.

47In practice such trade-offs are central to policy makers, as reflected by the number of EU countries,
which chose to violate the rule during the 2007-2009 crisis.

48To some extent, a “forecast deficit targeting” approach is already followed by the EU commission, as
countries have to justify how they expect to bring the deficit back under the 3 percent ceiling. However, there
is no objective criterion defining the “appropriate” pace of corrective measures, similarly to the imprecision
of the “looking good” criterion in the context of forecast inflation targeting.

49The optimal level of foreign-exchange reserve is an important area of research for both developing
and low-income economies. The 3-months of import rule advocated by the IMF has no strong theoretical
justification and it does take into account time and country specificities (e.g., Jeanne and Ranciere, 2011;
Barnichon, 2009).
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Bénassy-Quéré, Agnès, Benot Coeuré, Pierre Jacquet, and Jean Pisani-Ferry.
2018. Economic Policy: Theory and Practice. Second edition. Oxford University Press.

Blanchard, Olivier J. 2016. “Do DSGE Models Have a Future?” Policy Brief PB, 16–11.

Blanchard, Olivier J., and Stanley Fischer. 1989. Lectures on macroeconomics. MIT
press.

Brainard, William C. 1967. “Uncertainty and the Effectiveness of Policy.” The
American Economic Review, 57(2): 411–425.

Chetty, Raj. 2009. “Sufficient statistics for welfare analysis: A bridge between structural
and reduced-form methods.” Annu. Rev. Econ., 1(1): 451–488.

Christiano, Lawrence J., Martin Eichenbaum, and Charles L. Evans. 2005.
“Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy.” Journal of
Political Economy, 113(1): 1–45.

Dennis, John E., and Robert B. Schnabel. 1996. Numerical Methods for
Unconstrained Optimization and Nonlinear Equations. Siam.

Eberly, Janice C., James H. Stock, and Jonathan H. Wright. 2019. “The Federal
Reserve’s Current Framework for Monetary Policy: A Review and Assessment.” Working
paper.

Elliot, Graham, and Allan Timmermann. 2016. Economic Forecasting. Princeton
University Press.
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Figure 1: Illustration of the OPP: a single mandate
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Notes: Top panel: Expected paths for the policy objective Yt under the initial policy choice (filled circles)
and under the policy modified with the OPP δ∗t (empty circles). Bottom row: impulse responses of the
policy objective yt to a 1ppt innovation to the policy instrument.
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Figure 2: Illustration of the OPP: a dual mandate
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Notes: Top panel: Expected paths for the two policy objectives Yt (in red) and Ut (in blue) under the initial
policy choice (filled circles) and under the policy modified with the OPP δ∗t (empty circles). Bottom row:
impulse responses of the policy objective yt and zt to a 1ppt innovation to the policy instrument. The OPP
δ∗t is a weighted average of δyt

∗
and δzt

∗, the OPPs corresponding to the single mandate y or z, with the
weight ω = 1

1+λ/κ where κ = ‖Ryt ‖/‖Rzt ‖.
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Figure 3: A static inflation-unemployment trade-off
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Notes: Top panel: median FOMC forecasts for the inflation and unemployment gaps as of 1990-M6. Bottom
panel: impulse responses of the inflation and unemployment gaps to a fed funds rate shock. In red (blue) is
the OPP δ∗π (δ∗u) for a strict inflation (unemployment) targeter.
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Figure 4: A regression interpretation of the OPP

Notes: In red, a scatter plot of the median FOMC inflation gap forecast (EΠ0) as of 1990-M6 against
the impulse response of the inflation gap (Rπ) with the best linear fit (red dashed line). The slope of that
regression line is δ∗π, the OPP for a strict inflation targeter. Same information in blue for the unemployment
gap. The dashed black line depicts the best-linear fit after including all points, and the slope of that line is
δ∗, the OPP for a dual targeter.
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Figure 5: Dynamic trade-offs and leaning against the wind
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Notes: Top panel: median SEP forecasts for the inflation, unemployment and debt growth gaps as of
2003-M6. Middle panel: impulse responses of the inflation, unemployment, and debt growth gaps to a fed
funds rate shock. In red (resp. blue, green) is the OPP δ∗π (resp. δ∗u, δ∗b) for a strict inflation (resp.
unemployment, debt growth) targeter. Bottom panel: scatter plot of the median SEP forecasts for inflation
(red), unemployment (blue) and debt growth (green) against the corresponding impulse responses. The
dot-dashed black line depicts the best-linear fit after including inflation and unemployment points, and the
slope of that line is δ∗(2), the OPP for a dual inflation-unemployment targeter. The thick-dashed line depicts
the best-linear fit after including all points, and the slope of that line is δ∗(3), the OPP for a central bank
with three mandates.
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Figure 6: Taking uncertainty into account: fed funds rate policy
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Notes: Top panel: Median SEP forecasts for the inflation and unemployment gaps as of 2008-M4 (in red
and blue) along with the 67 percent confidence bands. Middle panel: impulse responses of the inflation
and unemployment gaps to a fed funds rate shock with the 95 percent confidence intervals. Bottom panel:
scatter plot of the median SEP inflation and unemployment gap forecasts (EY 0) against (minus) the impulse
responses (IR) of the inflation and unemployment gaps (−R) with the best linear fit (dashed-black line) with

average slope δ̂. The beige area areas depicts the 95 confidence intervals from IR estimation uncertainty, and
the light grey shaded areas depicts the 67 confidence intervals from IR estimation and model mis-specification
uncertainty.
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Figure 7: Taking uncertainty into account: slope policy
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Notes: Top panel: Median SEP forecasts for the inflation and unemployment gaps as of 2010-M4 (in red
and blue) along with the 67 percent confidence bands uncertainty. Middle panel: impulse responses of the
inflation and unemployment gaps to a slope policy shock with the 95 percent confidence intervals. Bottom
panel: scatter plot of the median SEP inflation and unemployment gap forecasts (EY 0) against (minus) the
impulse responses (IR) of the inflation and unemployment gaps (−R) with the best linear fit (dashed-black

line) with average slope δ̂. The beige area areas depicts the 95 confidence intervals from IR estimation
uncertainty, and the light grey shaded areas depicts the 67 confidence intervals from IR estimation and
model mis-specification uncertainty.
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Figure 8: OPP for the Fed instruments (1980-2018)
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area captures both impulse response and mis-specification uncertainty: OPP values outside the shaded-areas
can be excluded with a 67 percent probability. The shades of red represent the magnitude of the additional
loss incurred by deviating from optimality, with darker colors indicating larger losses. The additional loss√

∆Lt is expressed in ppt of average extra inflation and unemployment gaps over the next 5 years.
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Online Appendix (not for publication)

Proof of Proposition 1. Note that

∂

∂pt
Lt =

∂

∂pt
Et‖ft(pt, Xt, ξt)‖2

= lim
h→0

1

h

(
Et‖ft(pt + h,Xt, ξt)‖2 − Et‖ft(pt, Xt, ξt)‖2

)
= lim

h→0
Et
(
‖ft(pt + h,Xt, ξt)‖2 − ‖f(pt, Xt, ξt)‖2

h

)
= lim

h→0
Et
(
∂

∂pt
‖ft(pt(h), Xt, ξt)‖2

)
,

where pt(h) ∈ (pt, pt + h) exists by the continuity of ft on D by the mean value theorem.

We have for all pt ∈ D that

∂

∂pt
‖ft(pt, Xt, ξt)‖2 = 2

(
∂f(pt, Xt, ξt)

∂p′t

)′
ft(pt, Xt, ξt)

= 2Rt(pt, Xt)
′ft(pt, Xt, ξt)

≤ 2‖Rt(pt, Xt)‖‖ft(pt, Xt, ξt)‖

≤ 2∆Zt ,

where the second equality follows as Rt is independent of ξt, the first inequality from Cauchy-

Schwartz and the second inequality from Assumption 1 and 2.(c). Note that ∆ is a finite

constant and Et(Zt) <∞, thus we can use the dominated convergence theorem to conclude

that almost surely

lim
h→0

Et
(
∂

∂pt
‖f(pt(h), Xt, ξt)‖2

)
= Et

(
lim
h→0

∂

∂δt
‖f(pt(h), Xt, ξt)‖2

)
= Et

(
∂

∂δt
‖f(pt, Xt, ξt)‖2

)
= 2R′tEtf(pt, Xt, ξt) .

Hence, we have that the loss function Et‖ft(pt, Xt, ξt)‖2 is continuously differentiable on

D, thus by Lemma 4.3.1 in Dennis and Schnabel (1996) the optimal policy popt
t satisfies

the gradient condition ∂
∂pt

Et‖ft(pt, Xt, ξt)‖2|pt=poptt
= 0. Hence, if p0

t is optimal we must

have that R′tEtY 0
t = 0, which since Rt = Rt(p

0
t , Xt) has full column rank implies that

δ∗t = −(R′tRt)
−1R′tEtY 0

t must satisfy δ∗t = 0 if p0
t is optimal.

Proof of Proposition 2. For convenience let EtY opt
t = Etft(popt

t , Xt, ξt). Let κ be a fixed

constant in (1, µmin/c) and note that such constant exists as c < µmin by assumption 2.1.
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Note that Rt(p
0
t , Xt)

′Rt(p
0
t , Xt) is non-singular and thus there exists a constant ε1 > 0 such

that

‖(Rt(p
0
t , Xt)

′Rt(p
0
t , Xt))

−1‖ ≤ κ

µmin

∀p0
t ∈ N (popt

t , ε1) .

Let

ε = min

{
ε1,

µmin − κc
κ∆γ

}
.

Now consider

p0
t + δ∗t − p

opt
t = p0

t − p
opt
t − (R′tRt)

−1R′tEtY 0
t

= −(R′tRt)
−1
[
R′tEtY 0

t − (R′tRt)(p
opt
t − p0

t )
]

= −(R′tRt)
−1
[
R′tEtY

opt
t −R′t

(
EtY opt

t − EtY 0
t −Rt(p

opt
t − p0

t )
)]

.

Now the Lipschitz assumption (e.g. Assumption 2.2) implies that

‖EtY opt
t − EtY 0

t −Rt(p
opt
t − p0

t )‖ ≤
γ

2
‖popt

t − p0
t‖2 ,

see Lemma 4.1.12 in Dennis and Schnabel (1996). Recall from proposition 1 thatRt(p
opt
t , Xt)

′EtY opt
t =

0, and thus we have by assumption 2.1 that

‖R′tEtY
opt
t ‖ ≤ c‖p0

t − p
opt
t ‖ .

Combining the bounds gives

‖p0
t + δ∗t − p

opt
t ‖ ≤ ‖(R′tRt)

−1‖
[
‖R′tEtY

opt
t ‖+ ‖Rt‖‖EtY opt

t − EtY 0
t −Rt(p

opt
t − p0

t )‖
]

≤ κ

µmin

[
c‖p0

t − p
opt
t ‖+

γ∆

2
‖popt

t − p0
t‖2

]
,

which can be simplified using the definition of ε to obtain

‖p0
t + δ∗t − p

opt
t ‖ ≤ ‖p0

t − p
opt
t ‖

[
κc

µmin

+
κγ∆

2µmin

‖p0
t − p

opt
t ‖
]

≤ ‖p0
t − p

opt
t ‖

[
κc

µmin

+
µmin − κc

2µmin

]
=
κc+ µmin

2µmin

‖p0
t − p

opt
t ‖

≤ ‖p0
t − p

opt
t ‖ .

This completes the proof.

Proof of Proposition 3. Note that since Rt is independent of pt the derivative of every el-
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ement of Rt with respect to pt is equal to zero. Therefore when we expand the model ft

around δt = 0 we have

ft(p
0
t + δt, Xt, ξt) = ft(p

0
t , Xt, ξt) +Rtδt

which implies that the policy problem is strictly convex in δt. Now recall from proposition 1

that the first order conditions at pt + δt are equal to R′tEtft(p0
t + δt, Xt, ξt) = 0, which using

the expansion can be rewritten as

R′t
(
Etft(p0

t , Xt, ξt) +Rtδt
)

= 0

solving for δt gives δ∗t , which implies that for p0
t + δt to be optimal we must take δt = δ∗t .
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