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Abstract

This paper studies the cyclical dynamics of skill mismatch and quantifies its impact
on labor productivity. We build a tractable directed search model, in which workers
differ in skills along multiple dimensions and sort into jobs with heterogeneous skill
requirements. Skill mismatch arises due to information frictions and is prolonged by
search frictions. Estimated to the U.S., the model replicates salient business cycle
properties of mismatch. Job transitions in and out of bottom job rungs, combined with
career mobility, are key to account for the empirical fit. The model provides a novel
narrative for the scarring effect of unemployment.
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“In a regime of ignorance, Enrico Fermi would have been a gardener, Von
Neumann a checkout clerk at a drugstore.” (Stigler, 1962)

1 Introduction

Over the business cycle, labor markets face a large amount of reallocation: firms create and
destroy vacancies, work-relationships are formed and resolved, and workers change jobs and
careers. In this paper, we investigate—theoretically and empirically—how business cycles
affect the skill allocation of workers to jobs.

Our theoretical framework is a version of the directed search model of Menzio and Shi
(2010, 2011), in which we incorporate two key features. First, workers differ along multiple skill
dimensions and sort into jobs with heterogeneous skill requirements along those dimensions.
The job search of workers encompasses a career choice, determining the type of skill that
workers seek to employ, and a vertical choice of task complexity, which entails varying ability
requirements on the employed skill. Second, workers and firms have incomplete information
about worker skills, which generates skill mismatch in equilibrium. Workers and firms revise
their beliefs about worker skills based on a noisy learning technology, with the important
assumption that learning is more accurate regarding skills currently used in production. In
equilibrium, workers reallocate both up and down job ladders within a given career path
(utilizing the same skill at varying complexities) and across different career paths (utilizing
different skills).

We estimate the framework using a combination of worker-level data from the NLSY79
and occupation-level descriptors of job requirements (O*NET).1 The estimation builds on a
novel skill-based strategy to identify career switches in the data. We find that the business
cyclicality of mismatch is determined by two opposing forces. On the one hand, we find
that in recessions underqualified workers are fired, specifically those that are occupied at
the bottom rungs of the job ladder. This cleansing effect reduces mismatch among ongoing
work-relations, raising the average labor productivity of workers that have been continuously
employed for two years by 1.3 percent. On the other hand, we find that mismatch among
new hires goes up in recessions, which is primarily caused by an increase in overqualification
among workers hired for low-complexity jobs. This sullying effect reduces labor productivity
of new hires by 0.9 percent. Both the cleansing and sullying effect are consistent with direct
evidence on the cyclicality of mismatch, which we document among workers in the NLSY79.

1See Yamaguchi (2012), Lindenlaub (2017), and Lise and Postel-Vinay (2020) for related calibration
strategies using the same combination of NLSY79 and O*NET.
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Our theoretical findings are explained by a non-trivial interaction between job mobility
and mismatch: Whereas transitions within a given career path (to jobs that employ similar
skills) tend to reduce mismatch as workers re-sort across job rungs in response to belief
revisions, transitions into new career paths (to jobs that employ previously untried skills) tend
to increase mismatch as a consequence of higher uncertainty. Accordingly, the cyclicality of
mismatch is closely entangled with the business cycle dynamics of career mobility. Specifically,
our model predicts that career mobility is countercyclical (which we confirm in the data).
This is because workers that are fired from the bottom rungs of a given career path will
optimally seek to find jobs that utilize a different skill set rather than re-applying to jobs, for
which they are underqualified. In that sense, the two opposing forces shaping the cyclicality
of mismatch are in fact both manifestations of the cleansing of underqualified workers, which
increases career mobility in recessions and in turn heightens mismatch among new hires.

At the worker-level, our framework gives rise to considerable inertia in mismatch and
earnings, reflecting, on the one hand, the time needed to learn about any subsisting mismatch
and, on the other hand, its slow dissolution due to search frictions. The inertia provides a novel
narrative for the “scarring effect of unemployment”, which complements recent explanations
by Jung and Kuhn (2019), Jarosch (2021), and Huckfeldt (2021). In line with empirical
evidence, workers that are displaced from their careers suffer large and persistent earnings
losses, even after they have been re-employed. In the calibrated model, these earnings losses
amount to 19 percent five years after displacement, and to about 10 percent ten years after
displacement.

We conclude the paper with direct evidence for workers having imperfect information
about their skills. Using workers’ forecasts about their own future occupation, we document
that the forecast errors entailed in these forecasts can be systematically predicted by a measure
of worker ability that has been realized at the time the forecasts are formed. The evidence
complements recent work by Conlon et al. (2018) who document substantial forecast errors in
workers expectations regarding future labor market outcomes using the Survey of Consumer
Expectations of the NY Fed.2 In addition, we provide indirect evidence towards the model’s
mechanism. First, career mobility is predicted by the suitability of workers’ skills for their
current career. Second, mismatch among workers starting a new career is on average larger
and more dispersed compared to workers switching jobs within careers.

Related literature Our model combines ingredients from several strands of the literature.
Our formulation of the labor market is based on the directed search models of Menzio and

2Fredriksson, Hensvik and Skans (2018) also provide indirect evidence pointing to information frictions
using Swedish administrative data.
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Shi (2010, 2011), Menzio, Telyukova and Visschers (2016) and Schaal (2017), which provide
us with the analytical framework to explore out of steady state dynamics in a model with
many degrees of heterogeneity.

The multidimensional modeling of skills is closely related to recent theoretical works by
Lise and Postel-Vinay (2020) and Lindenlaub and Postel-Vinay (2017) that also emphasize
the irreducibility of worker heterogeneity into a single unidimensional index.3 There are
two important differences with respect to our paper. First, both papers consider a random
search model of the labor market, effectively accounting for skill mismatch by an exogenous
friction that prevents workers from applying to the best-fitting jobs. In contrast, our approach
abstracts from such frictions by allowing search to be directed, and instead motivates skill
mismatch using incomplete information.4 Second, both papers focus on steady states, whereas
our framework allows for aggregate shocks and is tractable enough to explore out of steady
state dynamics, which is at the core of our exploration.

Finally, our model incorporates learning à la Jovanovic (1979, 1984). Our paper particularly
relates to more recent works, in which learning is about worker skills, rather than a match-
specific productivity term (e.g., Groes, Kircher and Manovskii, 2013, Papageorgiou, 2014,
and Wee, 2016). In our model, this implies that the assessment of future match qualities
varies with the prior work experience of workers and, in particular, leads to countercyclical
fluctuations in uncertainty. Relatedly, Acharya and Wee (2020) explore a complementary
mechanism that similarly gives rise to countercyclical uncertainty that reduces matching
efficiency in recessions.

Our paper also contributes to an old debate on the cyclicality of worker–occupation
mismatch.5 On the one hand, matching models with endogenous separations suggest that
mismatch is procyclical due to a cleansing of unproductive matches (e.g., Mortensen and
Pissarides, 1994; see also, Lise and Robin, 2017 for a variant with ex ante heterogeneous
workers). On the other hand, others have argued that mismatch is countercyclical due to
various sullying forces (e.g., Barlevy, 2002; Moscarini, 2001; Barnichon and Zylberberg, 2019).
Our analysis provides a more nuanced view, suggesting that in fact both forces are present
among different sets of workers, although the cleansing effect unambiguously dominates at the
aggregate. Our evidence complements Crane, Hyatt and Murray (2018) who provide direct
evidence that overall sorting is countercyclical, Bowlus (1995) who provides indirect evidence

3Neal (1999) also studies an environment that distinguishes between career and firm matches.
4While labor market frictions by themselves do not cause mismatch to arise in our framework, they do

contribute to its persistence as they make reallocation costly. Related to the role of imperfect information
in our model, Guvenen et al. (2020) use a similar narrative to motivate their empirical exploration of
multidimensional skill mismatch.

5Şahin et al. (2014) explore an alternative notion of mismatch between vacancies and job seekers.
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that match quality of new hires is procyclical, and Haltiwanger et al., 2021 who find evidence
of both sullying and cleansing during recessions.

Layout The paper is organized as follows. In Section 2, we set up the model and characterize
equilibrium. In Section 3, we describe the calibration strategy used to quantify the model. In
Section 4, we explore implications of mismatch at the worker-level. In Section 5, we describe
the predicted business cycle dynamics of mismatch and contrast them with the data. In
Section 6 we present suggestive evidence towards the learning friction at the core of the model
and towards its implications for career mobility and mismatch. Section 7 concludes.

2 Model

We develop a directed search model of the labor market with endogenous sorting and aggregate
fluctuations in productivity. There are two key features. First, workers are characterized by
a high-dimensional vector of different skill types. Given their skills, workers sort into jobs
that are characterized by the type of skill they employ and are further differentiated by the
intensity they make use of this skill (“task complexity”). Second, information about worker
skills is imperfect and needs to be inferred from noisy signals.

2.1 Environment

Population and technology Time is continuous and extends forever. There is a unit
mass of workers, indexed by i ∈ [0, 1], and an endogenous measure of one-vacancy firms with
free entry. Firms and workers are risk neutral and share the same discount rate ρ. Each
worker is characterized by a continuum of time-invariant abilities, {ai,k}k∈[0,1], where ai,k
are Normally distributed with mean a0 and variance S0 and are i.i.d. across skill types k
and across workers i. Abilities are not observed (directly), but their distribution is public
information.

Jobs are characterized by a unique skill type k ∈ [0, 1] utilized in production, and a skill
requirement or “task complexity” r ∈ R where R ⊂ R is compact. Henceforth, we label jobs
sharing the same skill type k as “career”, and refer to distinct levels of r within a given career
as “job ladder”. The log-output flow of worker i in job (k, r) is given by

log yi,k,r(t) = z(t) + ηr −max{r − ai,k, 0}. (1)

Here, z(t) is an aggregate productivity component, which follows a Poisson process that takes
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two values, z(t) ∈ {zL, zH}, with switching intensities λzL
and λzH

; we normalize zL ≤ zH

and identify the first state with a recession. The second term in (1), ηr, defines the gains
in (potential) output associated with more complex tasks, whereas the third term captures
losses due to underqualification. We assume η ∈ (0, 1), so that the net return on raising the
skill requirement is positive if and only if the worker is skilled enough to operate the more
complex technology (ai,k > r).

Unemployed workers receive a constant utility flow b from home production.

Evolution of beliefs Agents learn about workers’ skills while producing. Specifically, in
each instant that a worker is employed, workers and firms update their beliefs about the
utilized skill, ai,k, based on the noisy signal

dsi,k(t) = ai,kdt+ σdWi,k(t),

where σ > 0 parametrizes the noisiness of the signal and Wi,k follows a standard Brownian
motion that is independent across all i and k. We assume that all learning is common knowledge
and no direct inference is made from yi,k,r (we view the signal si,k as an approximation to the
information that could be inferred if agents were to observe a noisy version of output6).

Specifically, the assumed process for si,k implies that for all i and k the posterior distribution
entertained about ai,k is Gaussian at all times. Let âi,k(t) and Σi,k(t) denote the first two
moments of this posterior. While employed in a job utilizing skill k, the posterior moments
follow a diffusion given by the usual Kalman-Bucy filter,

dâi,k(t) = Σi,k

σ2 (dsi,k(t)− âi,kdt)

dΣi,k(t) = −
(

Σi,k

σ

)2

dt.

Upon switching to a previously untried skill type k, the belief is initialized at the objective
prior distribution, (âi,k,Σi,k) = (a0, S0).

Labor markets, vacancy creation, and separations The labor market is organized in
a continuum of submarkets indexed by the job characteristics (k, r), the relevant worker type

6In fact, this interpretation could be made exact with two slight changes to the environment: (i) time is
discrete, (ii) the penalty on underqualification is given by g(r− ai,k −σεi,t) where εi,t ∼ N (0, 1) is i.i.d. across
i and t. Here g can be any monotonic approximation to max{r − ai,k, 0} which sustains some arbitrary small
return on skills when ai,k > r. E.g., one could set g(x) = max{x, 0}+ βx with β > 0 small. As long as g is
strictly increasing in x, it holds that observing yi,k,r is informationally equivalent to observing a noisy signal
ai,k + σεi,t, demonstrating our claim.
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(âi,k,Σi,k), and a lifetime utility x implicit in the employment contracts offered by firms to
workers. Workers direct their search towards these submarkets. Specifically, unemployed
workers have the opportunity to search the labor market at rate 1 and can search any submarket.
For simplicity, we rule out recall of previously abandoned skill types but notice that the
assumption imposes little restrictions on workers’ search policies in practice.7 Employed
workers have the opportunity to search the labor market at rate κ ∈ [0, 1] and can search for
jobs within their current career path (i.e., the skill type k of the aspired job must match their
current job). Vacancies are created by an infinite supply of potential firms, which can open a
vacancy in any submarket ω ≡ (k, r, x, âk,Σk) at flow costs c.

Workers searching in a given submarket and vacancies posted in that submarket come
together through a frictional matching process. In particular, a worker searching in submarket
ω meets a vacancy at rate p(θt(ω, z)) where θt(ω, z) denotes the vacancy-to-worker ratio of
submarket ω. Similarly, a vacancy posted in submarket ω meets a worker at rate q(θt(ω, z)) =
p(θt(ω, z))/θt(ω, z). As usual, we assume that p is twice differentiable, strictly increasing and
concave; q is strictly decreasing; and p(0) = q(∞) = 0, p(∞) = q(0) =∞.

When a firm and a worker meet in a submarket, the firm offers the worker a wage contract
worth x in lifetime utility and hires the worker. Following Menzio and Shi (2010, 2011), we
assume that the underlying contract space is complete, so that separations are bilaterally
efficient. In particular, endogenous job separations as well as the search policies of employed
workers are taken so as to maximize the joint value of the relationship.

In addition to an endogenous separation choice (further detailed below), worker–firm pairs
separate at an exogenous rate δ > 0. Moreover, independent of their current employment
status, workers switch careers at an exogenous rate ε > 0. If hit by such a career-shock,
workers are forever prevented from applying to any submarket involving the skill type k of
their previous career.

Remark on notion of careers In our terminology, the label career refers to a set of jobs
that utilize similar skills. Our definition differs from previous approaches that have defined
careers based on occupation- or industry-codes. While related, such definitions would be
misleading in our case as distinct occupations may share very similar skill mixes, whereas

7The exception are workers that are exogenously forced to switch careers (introduced below), which would
otherwise prefer to re-apply to their old career. The reason why the no recall assumption does not pose much
of a restriction otherwise is that k lies in a continuum. In particular, absent aggregate shocks, workers would
never find it optimal to return to skill types that they have previously abandoned. The restriction therefore
merely rules out recall after aggregate productivity shocks. For the calibration introduced in the next section,
workers indeed never find it optimal to do so if given the chance.
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others may bundle together jobs with distinct skills.8 For a consistent interpretation of the
model, one should therefore think of careers in terms of skill-mixes when mapping the model
to the data. Our calibration of the model in Section 3 aims to do so by employing a skill-based
definition of careers.

2.2 Equilibrium Characterization

Notation To converse on notation, we suppress i subscripts from all variables going forward.
All value functions are indexed with a time subscript t to express their potential dependence
on the aggregate state (except for their dependence on aggregate productivity z, which is
kept as explicit argument).

Vacancy creation By free entry, the value of creating a vacancy must be zero in every
submarket. Let Jt(âk,Σk, r, z) denote the joint value of a worker–firm pair. The zero profit
condition reads c = q(θt(ω, z))(Jt(âk,Σk, r, z)− x). Rearranging, this pins down the market
tightness as a function of the firm’s share of the surplus, θt(ω, z) = fθ(Jt(âk,Σk, r, z) − x),
where

fθ(V ) ≡

q
−1 (c/V ) V ≥ 0

0 else.
(2)

Unemployed worker problem Because there is no learning during unemployment, the
belief about an unemployed worker’s skills, {âk,Σk}k∈[0,1], remains at the same value at which
they entered unemployment. The value of being unemployed conditional on searching for jobs
of skill type k, denoted by Ut(âk,Σk, z), is therefore given by:

ρUt(âk,Σk, z) = b+ max
x,r
{p(θt(ω, z)) (x− Ut(âk,Σk, z))}+

+ ε (Ut(a0, S0, z)− Ut(âk,Σk, z)) +

+ λz (Ut(âk,Σk,−z)− Ut(âk,Σk, z)) . (3)

The flow value of being unemployed is comprised of four terms: (i) the utility flow of home
production, (ii) the product between the job finding rate and the excess utility, x−U , promised
to the worker in the submarket they are searching (maximized subject to the θ–x frontier

8For instance, using the methodology described in Section 3, we find that the skill mix of an economist
is very similar to the ones of actuaries, financial managers, and mathematicians and statisticians, which all
constitute different occupations at the 3-digit level (see Appendix F.1). Defining careers based on 2-digit
occupation codes instead bundles together many occupations with vastly different skill mixes.
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defined by (2)), (iii) the product between the exogenous career switching rate and the induced
value change when starting a new career with (âk′ ,Σk′) = (a0, S0), and (iv) the product
between the arrival rate of aggregate productivity shocks and the corresponding change in
value (here, “−z” denotes the complementary state of z).

Intuitively, Ut(âk,Σk, z) measures an unemployed worker’s value of searching in career k. It
remains to solve for the optimal career choice of unemployed workers. Fortunately, the problem
is simplified by our assumption that k lies in a continuum, which implies that the choice
of skill types is stationary as workers never run out of new careers to explore. Accordingly,
unemployed workers effectively face the choice between searching within their current career
path, summarized by the belief (âk,Σk), or starting a new career k′ with (âk′ ,Σk′) = (a0, S0).
The unconditional value of being unemployed is then given by

Ut(âk,Σk, z) = max {Ut(âk,Σk, z), Ut(a0, S0, z)} . (4)

Joint surplus maximization Next, consider the worker–firm pair’s joint continuation
choice and the search policy of employed workers. As long as the relationship remains active,
its flow value is given by

ρJact
t (âk,Σk, r, z) = ez+ηr Et[e−max{r−ak,0}] + Λt(âk,Σk, r, z) +

+ max
x,r
{κp(θt(ω, z)) (x− Jt(âk,Σk, r, z))}+

+ δ (Ut(âk,Σk, z)− Jt(âk,Σk, r, z)) +

+ ε (Ut(a0, S0, z)− Jt(âk,Σk, r, z)) +

+ λz (Jt(âk,Σk, r,−z)− Jt(âk,Σk, r, z)) . (5)

Here the first term corresponds to the expected output flow of the worker–firm pair. Using
ak ∼ N (âk,Σk), we can explicitly compute the expected loss from underqualification as
Et[e−max{r−ak,0}] = ψ(âk − r,

√
Σk) with

ψ(x, s) ≡ ex+s2/2Φ (−x/s− s) + Φ (x/s) ,

where Φ(·) is the standard Normal cdf. The second term in (5) captures how J changes
as uncertainty declines over the course of the relationship (first term of Λ) as well as how
uncertainty affects the value itself (second term of Λ),

Λt(âk,Σk, r, z) ≡
(

Σk

σ

)2 (
−∂Jt(âk,Σk, r, z)

∂Σk

+ 1
2
∂2Jt(âk,Σk, r, z)

∂â2
k

)
.
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The third term in (5) captures changes in the joint value due to the worker moving to a
better-matched job (where the maximization is again subject to the θ–x frontier defined in
(2)). The fourth and fifth terms capture the change in value induced by exogenous separation
and exogenous career switching, in which cases the worker–firm pair obtains, respectively,
Ut(âk,Σk, z) and Ut(a0, S0, z). Here we used that the post-separation value for the firm is zero
given free entry. The last term captures the change in value induced by aggregate productivity
shocks.

Finally, accounting for endogenous separations, the joint value of the worker–firm pair is
given by

Jt(âk,Σk, r, z) = max
{
Jact
t (âk,Σk, r, z), Ut(âk,Σk, z)

}
. (6)

Job ladder We next explore workers’ submarket choice as a function of the belief (âk,Σk).
Substituting the θ–x frontier defined by (2) into (3) and (5), it is immediate that the choice
of task-complexity always maximizes the joint value,

r∗(âk,Σk, z) = arg max
r∈R

Jt(âk,Σk, r, z). (7)

For employed workers, this is a direct consequence of bilateral efficiency. For unemployed
workers, it is similarly in their best interest to maximize the joint value because the firms’
share is fixed by the free entry condition, making the worker effectively residual claimant on
the value.

Figure 1 illustrates the resulting job ladder using the parametrization described in Section 3.
The figure displays the choice of r as a function of âk and Σk. As the search policies are
very similar for both realizations of aggregate productivity, we only plot them for the case
where z = zH . In the adopted parametrization, there is a 7-step job ladder corresponding to
R = {0, 0.5, 1, . . . , 3} × S1/2

0 . Workers pursuing a new career, search for jobs with the lowest
complexity, r∗(a0, S0, zH) = 0 (indicated by the red square in the plot). As workers become
more optimistic regarding their skills in a given career k, they apply to more complex jobs
(indicated by lighter shades of green). There is no search towards job rungs below the one
chosen by career-switchers, as such jobs would be dominated by the option to pursue a new
career.

The effect of uncertainty is more ambiguous: While high uncertainty leads workers at
the bottom of the expected skill distribution to apply for jobs for which they expect to be
overqualified, it leads high expected-skill workers to apply for jobs for which they are on
average underqualified.9 This is because for high expected-skill workers the expected value

9This prediction is consistent with our data on mismatch (introduced below), in which workers at the
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Figure 1: Job ladder. Notes.—The graph shows the task complexity r∗ chosen as a function of expected
ability âk and uncertainty Σk. The red square marks the unconditional prior (a0, S0) for untried skill types.
Values for âk, Σ1/2

k and r are denominated in units of S1/2
0 . The graph is plotted for z = zH ; the case where

z = zL looks similar. See Section 3 for a description of the parametrization.

of learning is nearly symmetric in good and bad news, making expected contemporaneous
output the primary determinant of r∗, which for the calibrated value of η is maximized when
workers are expected to be slightly underqualified (whenever Σk > 0).10 By contrast, for low
expected-skill workers, being overqualified entails a positive option value due to the relative
ease to adjust job rungs upwards via on-the-job search, whereas being underqualified at the
bottom job rung entails job loss and career switching.

It remains to characterize the lifetime utility x chosen by workers that are actively searching
for new jobs. From (2), x is decreasing in market tightness θ, creating a trade-off for the
worker to search in submarkets with higher job finding rates p versus searching in submarkets
with higher utility x. Maximizing (3) subject to the θ–x frontier defined by (2), the market
tightness chosen by unemployed workers is given by

θ = p′−1
(

c

Jt(âk,Σk, r∗, z)− Ut(âk,Σk, z)

)
(8)

with r∗ as in (7). Similarly, maximizing (5) subject to (2), the market tightness chosen by

bottom job rungs are systematically overqualified, whereas workers in upper job rungs are systematically
underqualified (see Appendix H.3).

10In general, arg maxr E[yt] > â if and only if η > η̄(Σk), with η̄(Σk) = 1 −(√
2/π · Φ(−Σ1/2

k )/φ(Σ1/2
k ) + 1

)−1
< 0.5 for all Σk > 0.
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Figure 2: Search and separation policies. Notes.—The figure shows search policies as a function of expected
ability âk, uncertainty Σk, and the employment state (unemployed/employed in job with complexity r).
Values for âk, Σ1/2

k and r are denominated in units of S1/2
0 . The figure is plotted for z = zH . See Section 3

for a detailed description of the parametrization.

employed workers is given by

θ = p′−1
(

c

Jt(âk,Σk, r∗, z)− Jt(âk,Σk, r, z)

)
. (9)

Note that by properties of p the last expression evaluates to zero whenever r = r∗. That is,
due to bilateral efficiency, employed workers only search for jobs that are better matches (in
expectation).

Figure 2 illustrates the search and separation policies of workers as a function of beliefs
(âk,Σk) and current employment status (unemployed or employed in a job with complexity
r ∈ R). Unemployed workers change careers whenever âk is small (indicated by the red area
below the dotted threshold). Otherwise they search for jobs in their current career (with
a job finding rate that is increasing in âk; not indicated in the plot). Employed workers
are characterized by a separation threshold (black solid lines), below and above which they
separate (with or without career switch11). Workers in continuing relationships actively search

11Workers separate from their jobs without career switch when the gains from increasing the job finding
rate outweigh the cost of unemployment, as observed for workers whose current job rung is far from their
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for better matched jobs whenever r 6= r∗(âk,Σk, z). Specifically, they aspire to climb down
the job ladder if âk falls into the blue area bordered by the separation region below and the
no-search region (in white) above. If âk falls into the upper blue area, they aspire to climb up
the job ladder instead.

Distributional dynamics The aggregate state in this economy consists of the triplet
(z,Γ,Υ), where Γ is the distribution over active worker–firm pairs (â,Σ, r) and Υ is the
distribution over unemployed workers (â,Σ).12 Based on the search and separation policies
above, we can characterize two Kolmogorov forward equations, one for Γ and one for Υ,
which together with the process for z fully describe the dynamics in this economy. While the
construction of these equations is standard, their precise expression is slightly protracted. We
therefore confine their presentation to Appendix A.

Equilibrium and block-recursivity An equilibrium is a joint value function satisfying
equation (6), an unemployed value function satisfying equation (4), lifetime utilities x satisfying
the free entry condition (2), and a distribution of worker–firm pairs and unemployed workers
evolving according to equations (15) and (16) (stated in Appendix A).

As usual, directed search together with bilateral efficiency and free entry imply that the
unique equilibrium is block-recursive (e.g., Menzio and Shi, 2010, 2011; Schaal, 2017). This
is because free entry of firms implies that the market tightness in each submarket is only
a function of the joint surplus rather than depending on the distribution of workers across
submarkets (see equations (8) and (9)). Hence, given that job finding rates are independent
of cross-sectional distributions, so are the search problems of workers and the corresponding
value functions (3) and (5). Absent any other cross-sectional dependence, we conclude that
the only aggregate dependence of U and J is through z. On this account, we drop the
time-subscript t from all value functions going forward.

3 Calibration

This section describes the parametrization of the model. Following the literature, we use
a set of standard moments to identify parameters common to labor search models. To
inform ourselves about parameters unique to our model, we use a combination of moments

desired one.
12Due to the symmetry in k discussed above, there is no need to keep track of the distribution of workers

across k separately.
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constructed using data from the U.S. Department of Labor’s O*NET project together with a
worker-level panel from the 1979 National Longitudinal Survey of Youth (NLSY79).

3.1 Measuring Careers and Mismatch in the Data

In the model, careers are each associated with a unique skill type. In the sequel, we argue that
when matched with an adequate empirical definition of careers, this simple notion of careers
is isomorphic to a more general version of our model, in which each job utilizes a mix of
different skill types. Specifically, provided that skill-mixes are orthogonal to one another for a
given career classification, such a more general model of skill utilization can always be reduced
to the simple model introduced in Section 2. Motivated by this observation, we measure
career-mobility in the data as job transitions between occupations that are characterized by
sufficiently orthogonal skill-mixes based on its O*NET descriptors.

Model-consistent measure of careers To guide our interpretation of the data, consider
the following generalization of our model, in which each job utilizes a mix of different skill
types. Output per worker–firm pair is given by

yi,k,r(t) = F (z(t), qk,r,ai),

where ai ≡ (ai,1, . . . , ai,J) defines a vector of skills for each worker i over J basic aptitudes.
Similarly, qk,r ≡ r · (wk,1, . . . , wk,J) defines a requirement vector over the same aptitudes for a
given job. As before, jobs are classified in terms of their task complexity r and a particular
skill mix, indexed by k ∈ {1, . . . , K}. The difference is that each k now maps into a vector of
weights (wk,1, . . . , wk,J) over the J basic aptitudes, normalized to sum to unity, as opposed to
a unique skill type.

The key observation is that—with an appropriate classification of careers—the more general
model outlined here can be (approximately) collapsed into the one developed in Section 2.
Specifically, to make our simple model consistent with the more general production technology
outlined, it suffices to classify occupations into careers so that job requirements {qk,r} are
(approximately) orthogonal across k.13 With this in mind, we interpret two occupations
observed in the data as different careers if their requirement vectors are “sufficiently orthogonal”.

13Here we tacitly assume that K is sufficiently large so that workers do not “run out of careers” during
their lifetime. We also assume that F collapses to (1) when {qk,r} are orthogonal across k. See Appendix B
for two examples where skills are perfect complements and perfect substitutes.
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Figure 3: Schematic illustration of empirical measure of careers for J = 2. Job transitions from q1 to jobs
within the ϕ̄-cone are interpreted as transitions up and down the same job ladder; transitions to jobs outside
the ϕ̄-cone are interpreted as career switches.

Specifically, let ϕ : RJ × RJ → [0, π/2], define the angle between two skill vectors q1 and q2,

ϕ(q1, q2) = cos−1
(

q1 · q′2
‖q1‖ ‖q2‖

)
.

Then any job transition from a job with q1 to a job with q2 is treated as a career switch if
and only if ϕ(q1, q2) ≥ ϕ̄ for some ϕ̄ (below, ϕ̄ is chosen so that the average correlation in
requirements for career switches is zero).14 To account for variations in economic relevance
across the J skill dimensions, we weigh them using a set of market weights when computing
ϕ(q1, q2) in our empirical implementation.15

Figure 3 illustrates our empirical approach to measuring career switches for the case where
J = 2. Starting from job q1, transitions into jobs within the cone defined by ϕ̄ (depicted by
the red shaded area) are interpreted as transitions up and down the same job ladder (i.e.,
changes in r with a negligible variation in the skill mix k). Transitions to jobs outside the
ϕ̄-cone are interpreted as career switches (i.e., transitions with a significant change in the
skill-mix k). Appendix F.1 provides examples for occupations inside and outside the ϕ̄-cones
of “economists” and “dental assistants”.

14See also Gathmann and Schönberg (2011) for a similar approach used to measure occupational distance.
15Specifically, let v1, . . . , vJ denote a set of weights (further described below). Then ϕ(q1, q2) is computed

using the weighted dot product q1 · q′2 ≡
∑

j vjq1,jq2,j .
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Residual correlation in skills across careers We have argued that an orthogonal
classification of careers allows for an exact mapping of our model to the data. In Appendix H,
we provide evidence that given our classification learning is indeed uncorrelated across careers.
Nevertheless, one may ask about the implications if this weren’t the case.

In theory, if skills were correlated across careers, workers could partially predict their
performance in previously untried careers (although their ability to do so is likely limited
in practice16). This would allow them to direct their search towards occupations for which
they believe to be most qualified. Using the notation of our model, we could capture this
by re-interpreting a0 as the conditional mean of the best-perceived career, and S0 as the
residual uncertainty. As long as skills are not perfectly correlated, the model would still
give rise to an increase in uncertainty and mismatch after career switches, not changing its
fundamental dynamics. The main addition compared to the uncorrelated skill case would
be a likely increase in a0 (and decrease in S0) over the life cycle of a worker, reflecting that
workers become better at predicting their strengths with additional experience.

Measuring skill requirements and careers Our empirical measure of skill requirements
is based on the O*NET project, which describes occupations using a list of 277 descriptors
relating to required worker attributes and skills. We follow the literature and reduce the large
set of descriptors to J = 4 dimensions using Principal Components (Guvenen et al., 2020;
Lise and Postel-Vinay, 2020), which we interpret as mathematics, verbal, social, and technical
skills.17 To make them comparable, we normalize each skill dimension in terms of percentile
ranks.18 Appendix E describes the data in more detail.

To identify career moves, we merge our skill measures with the NLSY79. Let qi,t =
(qi,t,1, . . . , qi,t,4) denote the four-dimensional skill measure associated with the job held by
worker i at date t.19 As detailed above, we associate a job transition from qi,t to qi,t+1 with a
career switch if the angle between the two skill vectors, ϕ(qi,t, qi,t+1), is larger than ϕ̄. The

16In practice, the ability of a worker to predict performance across careers is likely to be impaired by a
lack of information regarding the precise importance of skills in each career. For instance, suppose skills are
perfect substitutes as in (18) in Appendix B; i.e., skills enter production through the linear index wka′i. In
this case, learning about the linear index wka′i is a sufficient statistic for the current career, but cannot easily
projected across careers without knowing both wk and wk′ .

17Guvenen et al. (2020) and Lise and Postel-Vinay (2020) reduce worker requirements to only three
dimensions. We add the technical component as it has been shown to be an important determinant for labor
market outcomes (Prada and Urzúa, 2017).

18To make our measure of skill requirements comparable with our measure of worker skills (described
below), we compute the percentile ranks based on the distribution of requirements among jobs observed in
the NLSY79 sample.

19We map 2010 SOC codes used by O*NET to classify occupations into Census codes used by NLSY79
using standard crosswalk files.
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threshold ϕ̄ is chosen so that the average correlation in requirements (across skill dimensions)
is zero for career moves: ∑4

j=1 vjCorr(qi,t,j, qi,t+1,j) = 0, where {vj} is a set of market weights
described below.20 Using this strategy, we set ϕ̄ = 14.8◦ which implies that 42.1 percent of all
job transitions in the NLSY79 sample are career switches. The propensity to switch careers is
comparable to the numbers obtained by Fujita and Moscarini (2017), Carrillo-Tudela et al.
(2016), Carrillo-Tudela and Visschers (2020), and Huckfeldt (2021).

Measuring worker skills and mismatch Following Guvenen et al. (2020) we define
mismatch based on the absolute difference in skill requirements and worker skills. For this
purpose, we measure worker skills based on six ASVAB scores available from the NLSY79
sample, individual scores on the Rotter locus-of-control scale, and the Rosenberg self-esteem
scale. We follow a similar procedure as for skill requirements to reduce those scores into a
four-dimensional measure of worker abilities in math, verbal, social and technical skills.

Let ai = (ai,1, . . . , a1,4) denote the skill vector of worker i. The mismatch between worker i
and their current occupation is then given by:

mi,t ≡
4∑
j=1

vj |ai,j − qi,t,j| . (10)

Here vj are “market weights”, obtained from the regression coefficients on each of the four
mismatch dimensions in a Mincer regression (normalized so ∑4

j=1 vj = 1).21 The weights
ensure that our mismatch measure is not driven by skills that are economically irrelevant.
Similarly, we define positive mismatch, measuring overqualification, and negative mismatch,
measuring underqualification, as

m+
i,t ≡

4∑
j=1

vj max{ai,j − qi,t,j, 0} m−i,k ≡
4∑
j=1

vj max{qi,t,j − ai,j, 0}.

3.2 Parametrization of the Model

Assigned parameters We parametrize the model at a monthly frequency. The discount
rate ρ is set to log(1.05)/12 corresponding to an annual discount rate of 5%.

The relative search intensity of employed workers, κ, is set to 0.5, consistent with the
20The zero correlation in skills target for career-switchers contrasts strongly with an average correlation of

.89 among job-switchers that are classified as within-career transitions.
21Specifically, we regress log wagei,t on math, verbal, technical, and social mismatch, controlling for a

quadratic polynomial in age and worker fixed effects. The resulting weights are .58, .14, .09, .19 for math,
verbal, technical, and social, respectively.
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relative search effort documented in Holzer (1987) and Faberman et al. (2017).22 We choose
to set the relative search intensity κ based on direct evidence as opposed to targeting the
job-to-job rate, because job-to-job transitions are clearly caused by many factors not present
in the model, including relocation shocks, rent seeking purposes, and random fluctuations
in match-quality. If we would force the model to match the empirical job-to-job rate, we
would effectively require learning about skills to account for these other forces, overstating
the importance of learning for job-to-job mobility.23

We specify the set of potential task-complexities, R, using a seven-point grid given by
{0, 0.5, . . . , 3} · S1/2

0 , denoted in standard deviations of ak. The boundaries of the grid are
chosen so that adding additional grid points has no impact on the results.24 We approximate
beliefs about worker skills using a 61-point grid for âk on [−3, 7] · S1/2

0 + a0 and a 21-point
grid for Σk on [0, 1] · S0. Finally, we normalize log productivity in recessions to 0, and choose
transition rates for z in order to match the monthly switching intensities between recessions
and expansions in the U.S., where recessions are periods with an unemployment rate above
its unconditional average of about 6.5%.

Target moments We calibrate the remaining parameters using the method of moments
with weights chosen to minimize the relative distance between model and empirical moments.
All model moments are computed at the ergodic distribution. As usual, all parameters are
identified jointly. In the following we provide a heuristic mapping from moments to parameters
to guide intuition.

Following the literature, we target worker flows in and out of unemployment as documented
by Shimer (2012) to identify the exogenous separation rate δ and the flow cost of vacancy
creation c. We identify b by targeting a replacement ratio of b/E[y] equal to .71 as found by
Hall and Milgrom (2008). Following Menzio and Shi (2010) and Schaal (2017), we choose
CES contact rate functions, p(θ) = (1 + θ−γ)−1/γ and q(θ) = (1 + θγ)−1/γ. The matching
function parameter γ is set to match an elasticity of UE flows with respect to the aggregate
vacancy–unemployment ratio of .28 as estimated by Shimer (2005). Finally, we identify zH
(relative to zL) from an average recession–expansion difference in unemployment amounting
to 2.8 p.p. in the US.

To identify the speed of learning, parametrized by σ, we target an average slope of the
22Conditional on searching for jobs, Holzer (1987) and Faberman et al. (2017) document a relative time

spent on search activities among employed workers of 0.48 and 0.51, respectively.
23In our calibration, the monthly job-to-job worker flows are .021.
24Adding an extra grid point at −0.5 · S1/2

0 has no effect as no search is directed to such submarkets in our
calibration. Adding an extra grid point at 3.5 · S1/2

0 does not change the results as it attracts only a negligible
mass of 0.005 workers at the ergodic distribution.
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Table 1: Targeted moments

Fitted Moments Data Model Origin

EL[U ]− EH [U ] .028 .027 BLS
E[UE rate] .425 .424 Shimer (2012)
E[EU rate] .035 .035 Shimer (2012)
b/E[y] .710 .708 Hall and Milgrom (2008)
εUE/θ .280 .281 Shimer (2005)
E[log(haz3/haz18)] 1.37 1.37 NLSY79
E[χ = 1] .422 .421 NLSY79, O*NET
EL[χ = 1]− EH [χ = 1] .069 .065 NLSY79, O*NET
ENC [m−] .096 .096 NLSY79, O*NET
ENC [m+] .201 .201 NLSY79, O*NET

Notes.—The notation E[·] denotes unconditional expectations, computed
at the ergodic distribution of the model. EL[·], EH [·] and ENC [·] denote
expectations conditional on the aggregate state being in a recession and
expansion, and conditional on the first job in a new career. U denotes the
aggregate unemployment rate, EU and UE are monthly transition rates, y
is output per worker–firm pair, εUE/θ is the elasticity of the UE rate with
respect to the aggregate vacancy–unemployment ratio, hazx is the separation
hazard after x months of employment, χ is an indicator evaluating to unity if
workers switch careers during a job transition (this includes both EE’ and
EUE’ transitions), and m− and m+ denote negative and positive mismatch.

empirical separation hazard between the 3rd and 18th month of employment, log(haz3/haz18),
of 1.37 as found in the NLSY79 sample.25 Intuitively, a high speed of learning (low values of
σ) allows worker–firm pairs to quickly identify whether a match is profitable, implying a steep
decline in the separation hazard over time. By contrast, if learning is slow, worker–firm pairs
will keep revising their beliefs for a prolonged time, reflected in a flattening of the hazard
curve.

Next, we use the arrival rate of exogenous career-shocks, ε, to ensure consistency of the
model with an average propensity to switch careers of 42.1 percent, as documented above in
the NLSY79. Relatedly, we use the technology parameter η to match the empirical cyclicality
in career mobility, which we find to be 6.9 percentage points higher in recessions compared to
expansions.

Finally, to identify the prior mean and variance of skills, a0 and S0, we match the positive
and negative mismatch of workers in the first job of a new career. This captures that total
mismatch in the first job after a career-switch is closely linked to the prior uncertainty S0,
whereas the ratio between over- and underqualification pins down a0 relative to the “entry”

25We measure the slope starting after the 3rd month of employment as the first three months are often
subject to explicit or implicit probationary agreements, which the model abstracts from.
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Table 2: Summary of parameters

Parameter Description Value

Assigned
ρ Monthly discount rate log(1.05)/12
κ Relative search intensity of employed 0.5
zL Aggregate log-productivity in recessions 0
λzL , λzH Poisson rates of productivity shock 0.0128, 0.0172

Estimated
zH Aggregate log-productivity in expansions 0.290
b Home production utility 0.981
c Flow cost of vacancies 0.007
γ Matching function parameter 0.510
η Return on task complexity 0.497
a0 Unconditional mean of skills 0.105
S

1/2
0 Standard deviation of skills 0.357
σ Standard deviation of signal noise 2.505
δ Exogenous separation rate 0.012
ε Exogenous career switching rate 0.003

(a) Skills (b) Uncertainty (c) Job rungs

Figure 4: Ergodic distribution of individual state variables. Notes.—Values for ak, âk, Σ1/2
k and r are

denominated in units of S1/2
0 .

job rung r∗(a0, S0, z). We note that according to the data, workers starting a new career are
on average overqualified.

Estimation results Table 1 reports the data targets alongside the corresponding moments
in the calibrated model. The model fits the data almost perfectly.

The calibrated parameters are listed in Table 2. Figure 4 shows the implied ergodic
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distribution of individual state variables: mean beliefs about the currently employed skill
(along with their true realization a), uncertainty, and task complexities. The distribution of
mean beliefs is censored slightly below a0, reflecting the option to switch careers whenever
workers become pessimistic about their skills. Moreover, comparing the distribution of âk
with the true distribution of currently pursued skills ak, the latter is more dispersed, especially
around âk = a0. This is because uncertainty is highest at the beginning of a career and
is negatively correlated with |âk − a0| as extreme belief revisions are more likely the more
information is observed.

The distribution of uncertainty is visibly right-skewed with a median uncertainty of
0.25 · S0 and a mean of 0.36 · S0. Not surprisingly, however, despite the overall right-skew, the
distribution of Σk also has a concentration of mass at Σk = S0, reflecting the reset in learning
after workers switch careers.

Finally, the distribution of job rungs is hump shaped, with a median job rung of 1 · S1/2
0

and a mean of 1.2 · S1/2
0 .

4 Dynamics at the Worker-level

We are now ready to study the equilibrium allocation of workers to jobs and how it evolves
over time. In this section, we do so, focusing on the micro-level dynamics of workers. We
begin with a random simulation illustrating the labor market dynamics of a single worker.
Next, we highlight how workers’ career choice and their progression through the job ladder
are both shaped by considerable inertia. Finally, we show how this inertia carries over to
earnings and generates a significant unemployment scar after job displacement.

4.1 Sample Path for a Single Worker

In the model, the allocation of workers to jobs is governed by an interaction of learning, career
choice, and workers’ progression through job rungs. Figure 5 illustrates this interaction by
simulating a 10-year sample path for a single worker, while keeping the aggregate state fixed
at z = zL. There are no exogenous separation nor displacement shocks realized throughout
the path. At t = 0, the worker is unemployed and initial beliefs are (âk,Σk) = (a0, S0).

Given the initial belief, the worker directs their search at t = 0 towards the bottom
job rung (r = 0). Once matched, they start revising their belief, resulting in declining
uncertainty (fourth panel), revisions to their mean estimate (solid black line in the first panel),
and revisions to expected mismatch (second panel). Over time, these revisions lead to a
reallocation in jobs via on-the-job search, job separations and career changes.
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Figure 5: Sample path for a single worker. Notes.—The figure shows a random career path for a single
worker, initialized without a job and with (âk,Σk) = (a0, S0). Throughout, the aggregate state is fixed at
z = zL. Vertical gray bands depict unemployment spells. Vertical purple dotted lines depict career switches.
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Specifically, the worker engages in on-the-job search whenever their desired job rung r∗

differs from the current job rung r (red line in panel 1). Graphically, on-the-job search episodes
occur whenever the mean belief falls outside the lightly red shaded bands in panel 1 (which
indicate that r = r∗(âk,Σk, z)). For instance, starting at about 5 years, the upward-revision
in âk leads the worker to attempt to climb up the job ladder, which they succeed at about
5.5 years. Further successful job-to-job transition can be seen in years 6–9, during which the
worker goes through an additional five job-to-job transitions (inducing changes in the job
rung as seen in the first panel).

Endogenous job separations occur whenever mismatch falls outside the black dashed
lines in the second panel, as observed after about 0.9, 1.4 and 2.4 years.26 Once the worker
is unemployed, they direct their search towards a new career whenever âk falls below the
thin dotted threshold in panel 1, as observed for the first two of the three unemployment
spells (indicated by the vertical purple dotted lines at the beginning of the corresponding
unemployment spell). In these cases, the belief resets to (âk,Σk) = (a0, S0), and the worker
directs their search to the bottom job rung of the new career. By contrast, the third separation
after 2.4 years occurs because the gains from climbing the job ladder are sufficiently large so
that increasing the job finding rate (by moving to unemployment) outweighs the cost of being
temporarily unemployed. During this final unemployment spell the worker hence directs their
search to a higher job rung within the same career.

4.2 Inertia in Job Rungs, Mismatch and Earnings

The sample path in Figure 5 demonstrates that the allocation of workers to jobs is subject to
inertia, both within and across careers. The inertia reflects, on the one hand, the time needed
to learn about any subsisting mismatch and, on the other hand, its slow dissolution due to
search frictions. We next explore the consequences of this inertia for workers’ progression
through job rungs, mismatch and earnings.

Inertia in job rungs and mismatch We begin by highlighting inertia in workers’ progres-
sion through job rungs. Figure 6a plots the average job rung as a function of workers’ tenure
in a given career. The average job rung increases in tenure for two reasons: (i) the climbing of
the job ladder of high ability workers; (ii) the selection out of a carrier by low ability workers.
Both forces are subject to inertia. Absent frictions, workers would always pursue a career
with ak ≥ rmax and would always be employed at the top job rung rmax = 3 · S1/2

0 , yielding a
26The separation thresholds can be equivalently expressed in terms of â as we have done in Figure 2.
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Figure 6: Relationship between tenure, job rungs, mismatch, and earnings. Notes.—Tenure is defined as the
time since the last career change. The no mismatch counterfactuals show fictitious profiles for average job
rungs and earnings where the distribution of abilities evolves as in equilibrium, but where r = r∗(a, 0, z) at all
times. All conditional expectations are computed at the ergodic distribution.

flat relationship between job rungs and tenure.27 This starkly contrasts with the slow climb
through the job rungs seen in Figure 6a.

To assess the relative importance of the two sources of inertia, we contrast the model’s
evolution of job rungs with a counterfactual where there is no mismatch conditional on
skills; that is, r = r∗(a, 0, z). To make the counterfactual comparable, we evaluate it using
exactly the same distribution of skills (conditional on tenure) as emerges in equilibrium. By
construction, the counterfactual only reflects the selection effect, which in our calibration
explains about 50 percent of the overall increase in job rungs with tenure.

The slow reallocation of job rungs immediately translates to mismatch being persistent
as well. Moreover, as seen in Figure 6b, this naturally translates into a negative correlation
between mismatch and job rungs.28 Interestingly, despite the overall decline in mismatch
across job rungs, there is a relative increase in the contribution of underqualification among
higher job rungs, which is driven by the diminishing option value of being overqualified as
discussed in the context of Figure 1.

Inertia in earnings Having documented inertia in job rungs and mismatch, we next look
at its impact on earnings. Because wages are not uniquely determined by the bilaterally

27Career mobility is subject to inertia because evaluating the prospects of a career takes time due to the
information friction and reduces the returns to trying out new careers given the anticipation of mismatch. In
Appendix C, we assess the cost of this implicit friction, finding that on average it amounts to 4.75 months of
average output per worker.

28There is a slight increase in mismatch at the highest job due to an increase in “overqualification” among
workers whose skills exceed the top job rung rmax.
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efficient labor contracts explored so far, we first have to take a stand on the wage arrangement
that firms use to deliver a worker’s promised lifetime utility x. We do so by following Schaal
(2017) and choosing the unique wage scheme under which employed workers find it sequentially
optimal to pursue the contracted continuation and search policies, even in the absence of any
contractual commitment. The unique wage arrangement with this properties effectively pays
workers their expected marginal product, adjusted for the cost of recruitment which is loaded
onto workers at the instant of hiring (see Appendix D for details).

Earnings are inversely related to mismatch through its adverse impact on labor productivity.
For underqualified workers this is due to the direct penalty on production. For overqualified
workers this is due to the opportunity cost of operating a task complexity that is too low.
In either case, earnings are again subject to strong inertia in both the reallocation of job
rungs within career and an inefficiently low propensity to switch careers. Figure 6c plots the
resulting earnings profile in tenure along with the no mismatch counterfactual.29 The slow
climb through the job ladder gives rise to a steep wage ladder that spans many years. Over
the course of the first 10 years, earnings increase by a factor of 2.4, of which about 70 percent
are explained by a reduction in mismatch and about 30 percent by a shift in skills.

4.3 Scarring Effect of Unemployment

Previous literature has documented a large and persistent impact of involuntary job loss on
future wages and earnings (e.g., Davis and von Wachter, 2011; Jarosch, 2021), especially
when the job loss is accompanied by occupational displacement (Huckfeldt, 2021). In this
section, we offer a narrative for the “scarring effect of unemployment” based on the inertia in
mismatch and earnings. In line with the evidence in Huckfeldt (2021), earnings losses are
in large parts realized through wage losses and are concentrated among workers that are
separated from their job and are displaced from their career.

Career displacement vs. job loss Figure 7a shows the earnings and wage path of a
worker with at least 3 years prior job tenure that is displaced from their current career at
t = 0, conditional on the business cycle state at t = 0.30 Relative to the counterfactual of no
job loss, earnings are reduced by roughly 47 percent one year after the displacement, and

29To increase comparability, we keep both the distribution of abilities and recruiting costs fixed at their
equilibrium level. That is, counterfactual earnings are reduced by the same recruiting cost as in the model, so
that the difference in earnings solely reflects the increase in labor productivity due to a lack of mismatch.

30The restriction to workers with 3 years of prior job tenure parallels the selection made by Davis and von
Wachter (2011) and Jarosch (2021) in their empirical studies. Absent the tenure requirement, the earnings
loss from displacement amounts to 44, 16 and 8 percent after one, five and ten years, respectively.
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Figure 7: Response to a displacement shock. Notes.—Panel (a) shows the earnings and wage losses by
workers displaced from their career at t = 0, conditional on the business cycle state at t = 0. All responses
are as a percentage relative to the counterfactual of no job loss. Panel (b) shows the corresponding average
job rungs (in units of S1/2

0 ) for workers displaced from their career, workers separated from their job without
career displacement, and workers without job loss.

continue to be depressed by about 19 percent five years later, and by about 10 percent ten
years later. While initially a significant share of the earnings loss is explained by a slow rate
of reemployment (after one year, 36 percent of the workers displaced during recessions and 28
percent of the ones displaced during expansions are unemployed), most of the long-run “scar”
is due to a persistent decline in wages.

The reason behind this long-run “scar” on wages is that displaced workers—who previously
occupied jobs at all rungs of the job ladder— must rebuild their careers in new sectors, which
is subject to inertia as described above. Figure 7b illustrates this by plotting the average job
rungs of displaced workers in the sequel to their job loss. While workers that are separated
from their job without career displacement are able to immediately re-enter the labor market
at their previous job rungs (with little consequences for earnings31), workers that are displaced
from their career enter the labor market at the bottom job rung and take years to advance
(on average) to their previous rungs. The prolonged impact of this long climb through the
job rungs on earnings is able to account for the evidence in the literature, which 5–10 years
after displacement documents earnings losses relative to the control group ranging from 5–10
percent (Davis and von Wachter, 2011; Huckfeldt, 2021) to 15–20 percent (Jarosch, 2021).

31There is a small and temporary earnings loss for workers that are separated without career displacement
due to the job loss itself and the recruiting cost that is loaded onto starting wages.
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Table 3: Cyclicality of mismatch in the model

Mismatch measure mi,t m−i,t m+
i,t ei,t

Cyclical difference (in %) −0.46 −2.58 1.53 0.36
Notes.—The table reports the difference in conditional means between recessions and expansions,
computed at the ergodic distribution and denominated in percent of the ergodic mean.

5 Aggregate Fluctuations in Mismatch

In this section, we study the macro-dynamics of mismatch and its implications for aggregate
productivity. We also present reduced-form evidence on the cyclicality of mismatch in the
data.

5.1 Mismatch Cycles in the Model

5.1.1 Aggregate Productivity Shocks

We begin by computing the cyclical difference in mismatch, defined by the difference in
conditional means between recessions and expansions, EL[·] − EH [·]. Table 3 reports the
results. The model predicts procyclical fluctuations in underqualification (negative mismatch
being 2.58 percent lower in recessions than in expansions) and countercyclical fluctuations in
overqualification (positive mismatch being 1.53 percent higher in recessions than in expansions).
Combined, total mismatch is mildly procyclical, being on average 0.43 percent lower in
recessions than in expansions.

To assess the impact of these mismatch fluctuations on output, we compute the component
of labor productivity affected by the endogenous selection into job rungs,

ei,k,r(t) ≡ exp (ηr −max {r − ai,k, 0}) ,

which we call “labor efficiency”. Conditional on skills, labor efficiency is decreasing in both
over- and underqualification, capturing the impact of both types of mismatch in output units.32

Using this measure, we find that the decline in mismatch translates to an increase in average
labor efficiency by 0.36 percent in recessions compared to expansions.

Labor efficiency vs labor productivity We note that the countercyclicality in labor effi-
ciency does not immediately translate into predictions regarding aggregate labor productivity.

32Labor efficiency is decreasing in both types of mismatch, reflecting the direct impact on labor productivity
(if workers are underqualified) and the opportunity cost of choosing a task complexity that is too low (if
workers are overqualified).
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To draw inference about aggregate labor productivity, we first need to take a stand on the
nature of the aggregate “productivity” shock z. One possibility is the literal interpretation as
shock to productive efficiency. In this case overall labor productivity is given by exp(z)E[ei,t],
which is procyclical in our calibration. However, owing to the partial equilibrium nature
of the model, we can alternatively interpret z as a demand shock to the real price of labor
output.33 In this case, aggregate labor productivity is entirely determined by the endogenous
labor efficiency E[ei,t] and is hence countercyclical.

This flexibility in interpreting z suggests a new narrative for the “labor productivity
puzzle”; namely the fact that labor productivity has become less procyclical in the U.S., and
actually rose in 2008-09 during the Great Recession (e.g., Mulligan, 2011; McGrattan and
Prescott, 2012; Gali and van Rens, 2021). Through the lens of the model, we would precisely
expect such development when productivity shocks are diminishing and business cycles have
become increasingly demand-driven, consistent with findings in Hazell et al. (2020) as well
as with the household balance sheet narrative of the Great Recession (Mian, Rao and Sufi,
2013).

Cyclicality by employment tenure The overall cyclicality in mismatch is the result of
opposing effects operating at different tenure levels. To isolate these effects, we next break
down the cyclicality by the time a worker has been continuously employed since their last
unemployment spell (“employment tenure”). Figure 8 shows the decomposition.34 Among new
hires, both over- and underqualification is significantly heightened in recessions. Combined,
total mismatch among new hires increases by about 4 percent in recessions, which translates
to a 0.9 percent decline in labor efficiency.

The increase in mismatch among new hires contrasts starkly with the cyclicality in
mismatch among workers with an employment tenure of more than 6 months, for which
mismatch is reduced in recessions, raising their labor efficiency. For instance, workers that
have been continuously employed for 2 years have an average labor efficiency that is 1.3
percent higher in recessions compared to expansions.

33Here we tacitly assume that the real price of labor output fluctuates relative to b and c, either because b
and c are defined in real terms as in Walsh (2005) and Christiano, Eichenbaum and Trabandt (2015, 2016), or
because of sectoral heterogeneity.

34Formally, we again compute the cyclical difference in mismatch as the difference in conditional means,
but now do so conditional on employment tenure τ , resulting in E[·|zL, τ ]− E[·|zH , τ ]. The conditioning on
employment tenure is imposed at the same instant in which we condition on the business cycle state and does
not fix the business cycle state at the instant of hiring.
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(a) Mismatch
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(b) Labor efficiency

Figure 8: Mismatch cyclicality by employment tenure. Notes.—The figure plots the cyclicality of m, m−,
m+ and e conditional on being continuously employed for τ years; i.e., ∆E[·|τ ] = E[·|zL, τ ]− E[·|zH , τ ]. All
cyclical differences are denominated in percentage deviations from their ergodic mean E[·].

Understanding the mechanism: cleansing and sullying We next explore the forces
driving mismatch in the model. Figure 9 shows the impact of the business cycle on separation
policies and career mobility. When moving from an expansion to a recession, the continuation
region shrinks, resulting in a “cleansing” of workers. Quantitatively, most of this cleansing
is concentrated towards workers close to the lower separation threshold, especially at the
bottom job rungs. This is because workers generally attempt to resolve expected mismatch via
on-the-job search so that in equilibrium little mass is actually distributed across the cleansing
region. The one exception to this is workers with skill estimates below the career-switching
threshold. These workers anticipate to change careers once they lose their jobs, but hold on
to their job as long as they can to avoid the utility loss of becoming unemployed. Because
these workers do not engage in on-the-job search, they make up most of the mass inside
the cleansing region (84 percent at the ergodic distribution). Figure 10a breaks down the
distribution of workers inside the cleansing region by job rungs, confirming that virtually all
of the cleansing is concentrated at the bottom job rungs.

Figure 10b further decomposes workers cleansed out in recessions by the relative prevalence
of positive and negative mismatch, E[m+]/E[m] and E[m−]/E[m]. Workers cleansed from the
bottom job rung are more likely to be overqualified, even at the lower separation threshold,
reflecting the general tendency to be overqualified at the bottom job rung (c.f. Figure 1).
However, even though these workers are expected to be overqualified, their skill estimate is
surrounded by enough uncertainty so that there is also significant underqualification among
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Figure 9: Separation policies: expansions vs recessions. Notes.—The figure shows how the continuation
region contracts during recessions. The career-switching threshold is plotted for z = zL. Values for âk, Σ1/2

k

and r are denominated in units of S1/2
0 .

workers cleansed from the bottom job rung. Similarly, workers cleansed from higher job
rungs are more likely to be underqualified but again with significant uncertainty. Importantly,
regardless of the type of mismatch, mismatch is overall more pronounced among cleansed
workers than on average: evaluated at the ergodic distribution, positive mismatch is 50 percent
higher among cleansed workers compared to the average worker in an expansion, and negative
mismatch is 59 percent higher. This explains the decline in mismatch among workers with
high employment tenure seen in Figure 8. (The cyclicality of labor efficiency is hump-shaped
in tenure, because at low-tenure levels, the match is less likely to pre-date a given aggregate
shock, whereas at very high tenure levels, few workers are mismatched to begin with.)

As highlighted above, the procyclical mismatch among workers with high employment
tenure stands in contrast with the countercyclical mismatch among new hires. The logic behind
this “sullying” among new hires is precisely the cleansing of workers with loose attachment to
their career. Not only does it explain why the model is able to generate the countercyclical
career mobility seen in the data but, as a consequence, it also implies increased mismatch
among the endogenously displaced workers, similar to the one documented for exogenously
displaced workers in Section 4.3.
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(a) By career attachment (b) By mismatch type

Figure 10: Distribution of cleansing by job rung, career attachment and mismatch. Notes.—The figure
shows the job-rung distribution of workers inside the cleansing region, evaluated at the ergodic distribution.
Panel (a) further decomposes the distribution by workers’ attachment to their current career. Panel (b)
further decomposes by the proportion of positive to negative mismatch in the dissolved jobs.

5.1.2 Sectoral displacement shocks

Before proceeding to the data, we use our model to briefly explore the implication of sectoral
shocks, which displace a nonzero mass of workers from their career. One can view such shocks
as a reduced form approximation to structural change or to recessions that disproportionately
affect certain sectors such as leisure and hospitality during the 2020/21 pandemic. We
implement such a sectoral shock as an aggregate displacement of a random mass of 1 percent
of the labor force from their career. For simplicity, we assume that the shock affects all workers
in a sector proportionately, regardless of their employment status. In this pure form, the
shock acts as a prototypical “sullying shock”, without the countervailing impact of cleansing
on mismatch. Accordingly, it induces a countercyclical mismatch response.

In light of recent empirical literature, it is interesting to highlight two features of the
simulated response (shown in Figure 11). First, aggregate productivity (or, equivalently, labor
efficiency given that z is unshocked) is persistently reduced, outlasting the immediate impact
on unemployment. Second, these productivity losses are realized in sectors not originally
affected by the shock. This is because displaced workers must rebuild their careers in new
sectors, which persistently reduces labor productivity below its long-run potential, even after
re-employment. Both features are in line with evidence on the aggregate consequences of
job displacement following a trade shock that led to mass layoffs in manufacturing due to
increased competition from Chinese imports. In particular, the literature has documented
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Figure 11: Aggregate impact of a sectoral displacement shock. Notes.—The figure shows the responses
in aggregate productivity (in percent) and unemployment (in percentage points) to a displacement shock
that affects 1 percent of the labor force. The responses are averages over the ergodic process for aggregate
productivity z.

large and persistent effects of this displacement on wages and productivity (e.g., Autor, Dorn
and Hanson, 2013, 2016), whereas its impact on unemployment has been transient (Bloom
et al., 2019). As predicted by the model, Autor, Dorn and Hanson (2013) document that
the wage reductions following an aggregate displacement shock to manufacturing were not
realized in manufacturing, but indeed are concentrated outside that sector.

5.2 Mismatch Cycles in the Data

We next explore the relation between mismatch and the U.S. business cycle in the data,
using the empirical mismatch measure introduced in Section 3.1. We do so by estimating the
following empirical specification:

mi,t = β0 + (β1 + β2JS i,t + β3UE i,t)× recessiont +

+ γ × (JS i,t,UE i,t, xi,t) + δi + δmt + δyt + εi,t. (11)

Here mi,t is the mismatch of worker i at time t; JS i,t and UE i,t are dummies indicating job
stayers and new hires from unemployment35; recessiont is an indicator that evaluates to unity
if the aggregate unemployment rate is above its unconditional average of about 6.5%; xi,t is a

35Job stayers are defined as all workers that have the same employer at date t as in the previous month.
New hires are defined as all newly hired workers that reported to be not working, unemployed or out of the
labor force in the previous month.
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Table 4: Cyclicality of mismatch in the data

Dependent variable (×100): mi,t m+
i,t m−i,t

(1) (2) (3)

Job stayers (β1 + β2) −.293** .017 −.310***
(.127) (.091) (.085)

New hires (β1 + β3) .646** .501** .145
(.291) (.209) (.185)

Total cyclicality −.250** .045 −.292***
(.126) (.091) (.084)

Notes.—Standard errors clustered at the worker level are in parenthesis. Asterisks, *, **, ***,
indicate coefficients that are significantly different from 0 at the 10%, 5%, 1% level, respectively.
Dependent variables are multiplied by 100 (so mismatch ranges from 0 to 100).

set of individual controls, including a quadratic polynomial in age, the region of residence, and
a full set of 1-digit occupation and industry dummies; and δi, δmt , δyt are individual, month,
and 5-yearly fixed effects, respectively. Here, job-to-job transitions are the omitted category
and are absorbed by β1.36 We note that the inclusion of individual fixed effects controls for
compositional changes in the workforce over the business cycles (e.g., Solon, Barsky and
Parker, 1994).

Table 4 reports the estimated business cyclicality. Looking at job stayers, mismatch
declines in recessions by an average of .293 percentage points, which corresponds to 1.01%
of the unconditional average in mismatch. Decomposing the decline into positive and
negative mismatch (columns 2 and 3), we find that the decline is entirely driven by layoffs of
underqualified workers, whereas mismatch due to overqualification is acyclical.

The procyclicality of mismatch among job stayers stands in contrast to the cyclicality
among newly employed workers, which is countercyclical (.646 percentage points, or 2.31%
of the average mismatch among new hires). Decomposing the mismatch, we find that the
overall cyclicality is largely driven by unemployed workers finding a job in recessions being on
average more overqualified compared to workers finding a job in expansions.

Looking at the total cyclicality (third row), we find that overall mismatch is procyclical.
Intuitively, even though new hires are significantly more mismatched during recessions, they
only constitute a small fraction of the workforce. Aggregate mismatch is, therefore, primarily
determined by the cleansing effect of recessions, comprising roughly acyclical dynamics of
overqualification and procyclical dynamics of underqualification.

36As our model does not imply any robust prediction for the cyclicality in mismatch among job-to-job
movers, we do not focus on job-to-job transitions here. See Table 12 in Appendix G.3 for details on the
implied mismatch cyclicality among job-to-job transitions.
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Comparison to the model The strong presence of a cleansing effect in the data lends
support to the baseline version of our model in which business cycles are driven by aggregate
productivity shocks. Using the baseline model to compute the analog to the empirical moments
in Table 4, we obtain

∆EJS [m+] = .086 ∆EJS [m−] = −.208

∆EUE [m+] = .399 ∆EUE [m−] = .175,

where ∆ denotes the difference in conditional means, EL[·]− EH [·], computed at the ergodic
distribution. Overall, the model does a fairly good job at replicating the estimated coefficients,
the exception being the cyclicality of m+ among job stayers, for which the model predicts a
small countercyclical response as opposed to the acyclical one in the data. Otherwise, the
model captures well the strong cleansing effect on underqualified workers, as well as the
sullying effect among new hires, which has a more pronounced effect on overqualification.

6 Suggestive Evidence

We conclude the paper by providing direct evidence towards the learning friction at the core
of this paper and towards its implications for career mobility and mismatch. Appendix H
contains additional supportive evidence towards the assumptions and mechanism of the model.

6.1 Learning About Skills

We begin by providing direct evidence for workers having imperfect information about their
skills as modeled here. We do so using a NLSY79 survey question that asks workers about
their expected occupation in 60 months. Based on the reported forecasts, we construct forecast
errors between a worker’s realized occupation in 60 months and their prediction:

fei,t,j ≡ qi,t+60,j − q̂i,t+60,j,

where q̂i,t+60,j is the requirement in skill j associated with the predicted occupation. Suppose
an econometrician observes a noisy measure of a worker’s skills ai. Hypothesizing that skills
are indeed predictive of future occupations, E[qi,t+60|ai] = ai, one would then predict the
forecast error regarding the utilization of skill j to be given by

pei,t,j ≡ ai,j − q̂i,t+60,j.
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Table 5: Direct evidence for learning

Dependent variable:
∑
j fej fej

math verbal technical social
(1) (2) (3) (4) (5)∑

j pej .562***
(.020)

pej .556*** .471*** .331*** .482***
(.019) (.020) (.020) (.020)

R-squared .321 .331 .257 .155 .251
Obs. 1575 1575 1575 1575 1575

Notes.—Robust standard errors are in parenthesis. Asterisks, *, **, ***, indicate coefficients that
are significantly different from 0 at the 10%, 5%, 1% level, respectively.

Importantly, pei,t,j is fully realized at the time the forecasts are surveyed. The main premise
of our test is that under the null hypothesis that workers know their skills, the forecast error
should therefore be orthogonal to the predicted error pei,t,j. Note that the orthogonality test
follows immediately from the null of workers knowing their own skills, and holds regardless
whether or not the econometric conjecture E[qi,t+60|ai] = ai is correct. Moreover, while the
goodness of our measure for worker skills affects the power of the test, it is inconsequential
for its validity.37

We assess the hypothesis of full information by estimating the following specification:

4∑
j=1

fei,t,j = β0 + β1

4∑
j=1

pei,t,j + εi,t. (12)

Our estimate for β1 is given by .56 with a standard error of .02. Table 5 further reports
variations of our test where we separately estimate (12) for each skill dimension,

fei,t,j = β0 + β1pei,t,j + εi,t,j.

In all cases, we reject the null hypothesis that workers have full information about their skills.
The findings are consistent with anecdotal evidence given in Guvenen et al. (2020), which
suggests that workers are unaware of their own ASVAB test scores, and with recent work
by Conlon et al. (2018) who document substantial forecast errors regarding labor market
outcomes using the Survey of Consumer Expectations of the NY Fed.

37This is because any variable that is realized at date t should be orthogonal to workers’ expectation error
under full information. This holds true independently of the remainder of workers’ information structure and
regardless of whether ai is a noisy measure itself. See Chahrour and Ulbricht (2021) for a formal proof.
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We also note that β1 > 0 in all specifications, indicating that learning has the expected
effect: Suppose, for instance, that a worker underestimates their future use of math skills.
Then our estimate indicates that over time, as the worker learns about their skills, they indeed
end up in a career that is more math-intense than initially predicted.

To sum up, our estimates (i) reject the null that workers perfectly know their skills, and
(ii) support the prediction that, as workers learn about their skills, their occupation-choices
are skill-driven.

6.2 Career Mobility and Mismatch

Skills predict career mobility Our model predicts that workers seek to switch careers
when their belief estimate about current skills, âk, falls below a certain threshold. Lacking
data on âk, we can not directly explore this prediction in the data. Still, because âk is centered
around the true skill ak, we can use our skill measure to proxy for âk. To do so, define
ai(k) ≡ (wk,1, . . . wk,J) × a′i as the suitability of worker i’s skills for their current career k,
defined by their skills weighted by the normalized skill requirements, {wk,j}, introduced in
Section 3.1. We then estimate the following specification in the sample of all job transitions
in the NLSY79:

career switchi,t = β0 + β1ai(ki,t−1) + γxi,t + δmt + δyt + εi,t, (13)

where career switchi,t is a dummy that equals 1 if the transition entails a career switch; xi,t is
a set of worker controls, including a quadratic polynomial in age, the region of residence, and
race, gender and education dummies; and δmt and δyt are month and 5-yearly fixed effects.
We estimate β̂1 = −0.071, implying that a lower skill index for the job prior to the transition
indeed raises the propensity of career switching, consistent with the predictions of the model.

Career mobility predicts mismatch Our model further predicts that workers that switch
careers are on average more mismatched in their new job compared to non-switchers. Moreover,
because mismatch is caused by uncertainty, we not only expect it to be higher on average
among switchers but further expect it to have a higher variance.

We explore these predictions by comparing switchers with non-switchers, using again the
same sample of all job transition in the NLSY79. Specifically, we estimate the impact on
average mismatch using the following specification:

mi,t = β0 + β1career switchi,t + γxi,t + δmt + δyt + εi,t, (14)
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Table 6: Career mobility and mismatch

Dependent variable: career switchi,t mi,t s.d.(mi,t)
(1) (2) (3)

ai(ki,t−1) −.071***
(.023)

career switchi,t .957*** .605***
(.308) (.178)

Notes.—Standard errors clustered at the worker level are in parenthesis. Asterisks, *, **, ***,
indicate coefficients that are significantly different from 0 at the 10%, 5%, 1% level, respectively.
Mismatch in columns 2 and 3 is multiplied by 100 (so it ranges from 0 to 100). Column 3 reports
the second stage of a conditional heteroskedasticity model, using the residuals εi,t from column 2
to compute s.d.(mi,t) = |εi,t|. See the main text for a description of the controls.

using the same set of controls as in (13). We find β̂1 = .957, implying that average mismatch
among career-switchers is indeed significantly higher than among non-switchers. To explore
the impact on the variance of mismatch, we use a conditional heteroskedasticity model using
the residuals from (14) to compute s.d.(mi,t) = |εi,t|. The second stage is specified as follows,

s.d.(mi,t) = β0 + β1career switchi,t + γxi,t + δmt + δyt + ζi,t,

using again the same set of controls as in (13) and (14). As predicted by the model, we find a
positive and statistically significant effect that increases the standard deviation of mismatch
by .605 for career-switchers compared to non-switchers.

7 Conclusion

This paper studies the business cyclicality of worker–occupation mismatch in a quantitative
business cycle model with labor market and information frictions. We estimate the model
using U.S. data. We find that aggregate mismatch is procyclical among job stayers and
countercyclical among new hires, with the former force being overall dominating. These
patterns are consistent with direct evidence on the cyclicality of mismatch. We have also
shown that the model predicts a scarring effect of job displacement that is sufficiently large
to account for empirical evidence on the unemployment scar.

Our framework is among the first that incorporates multidimensional sorting into an equi-
librium model with labor market frictions (see also, Lise and Postel-Vinay, 2020; Lindenlaub
and Postel-Vinay, 2017). It is distinguished from the existing literature by its analytical
tractability, which opens the door to an analysis of aggregate shocks. Our framework delivers
rich predictions regarding job and career mobility.
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Online Appendix to “Mismatch Cycles”

A Kolmogorov Forward Equations

Let pU(â,Σ, z) and pE(â,Σ, r, z) define the job finding rates of unemployed and employed
workers as given by (8) and (9).

Active relationships The distribution over active relationships, Γt(â,Σ, r), is characterized
by the following PDE:

Γ̇t(â,Σ, r) = Γ̇learn
t (â,Σ, r) + Γ̇ee

t (â,Σ, r) + Γ̇ue
t (â,Σ, r)− Γ̇eu

t (â,Σ, r)− εΓt(â,Σ, r). (15)

Here, the first term defines distributional dynamics driven by changes in beliefs, given by

Γ̇learn
t (â,Σ, r) =

(
∂

∂Σ + 1
2
∂2

∂â2

)(Σ
σ

)2

Γt(â,Σ, r)
 .

The second term, defines reallocation dynamics due to job-to-job transitions,

Γ̇ee
t (â,Σ, r) = −pE(â,Σ, r, z)Γt(â,Σ, r) +

∑
r′∈R

pE(â,Σ, r′, z)Γt(â,Σ, r′) · 1r=r∗(â,Σ,z),

where 1C denotes the indicator function for a given condition C. The third term, defines the
incoming flow of new hires out of unemployment,

Γ̇ue
t (â,Σ, r) = pU(â,Σ, z)Λt(â,Σ) · 1r=r∗(â,Σ,z).

The fourth term defines separations into unemployment,38

Γ̇eu
t (â,Σ, r) =

(
δ + lim

π→∞
πχsep(â,Σ, r, z)

)
Γt(â,Σ, r)

where χsep(â,Σ, r, z) ∈ {0, 1} is an indicator evaluating to unity when the value of the match
becomes negative (Jact

t (â,Σ, r, z) ≤ U(â,Σ, z)). Finally, the fifth term defines exogenous
career switches.

38Note that for the endogenous separations case, the rate of outflows equals ∞ as long as Γt(â,Σ, r) 6= 0
for the corresponding states, implying that the only possible limit is Γt(â,Σ, r) = 0 for any states (â,Σ, r)
outside the continuation region.
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Unemployed Similarly, the distribution over unemployed workers, Υt(â,Σ), is characterized
by the following PDE:

Υ̇t(â,Σ) = Υ̇cs
t (â,Σ) + Υ̇eu

t (â,Σ)− Υ̇ue
t (â,Σ). (16)

Here, the first term defines net changes in (current-career) beliefs due to agents switching
careers,39

Υ̇cs
t (â,Σ) = −

(
ε+ lim

π→∞
πχcs(â,Σ, z)

)
Υt(â,Σ)+

+
∫∫ (

ε+ lim
π→∞

πχcs(â,Σ, z)
)

Υt(â′,Σ′) d(â′,Σ′) · 1(â,Σ)=(a0,S0),

where χcs(â,Σ, z) ∈ {0, 1} is an indicator evaluating to unity when switching careers is
optimal (Ut(a0, S0, z) > Ut(â,Σ, z)). The second term defines gross inflows into unemployment,
including those from exogenous career switches,

Υ̇eu
t (â,Σ) =

∫
Γ̇eu
t (â,Σ, r) dr +

∫∫∫
εΓt(â,Σ, r) d(â′,Σ′, r) · 1(â,Σ)=(a0,S0).

Finally, the third term defines the outflows from unemployment due to workers finding jobs,

Υ̇ue
t (â,Σ) = pU(â,Σ, z)Λt(â,Σ).

Transmission of aggregate shocks The aggregate productivity state zt affects the cross-
sectional distribution through three channels: (1) its direct impact on job finding rates
pU(â,Σ, z) and pE(â,Σ, r, z), (2) its direct impact on the separation and career switching
thresholds χsep(â,Σ, r, z) and χcs(â,Σ, z), and (3) its direct impact on the desired job rung
r∗(â,Σ, z). These direct effects translate into shifts in Γ̇ee

t , Γ̇eu
t , Γ̇ue

t , Υ̇eu
t , Υ̇ue

t and Υ̇cs
t , which

in turn propagate to Γt and Υt according to (15) and (16). In particular, an aggregate shock
to zt manifests itself both through a discrete shift in the cross-sectional distributions Γt and
Υt upon impact and by alternating their subsequent evolution Γ̇t and Υ̇t.

For the calibration from Section 3, the direct effects are sizable for pU , pE and χsep, whereas
the direct effects on χcs and r∗ are negligible.40 Specifically, the direct effects on pU , pE and

39Note that the rate of workers switching careers equals ∞ as long as Υt(â,Σ) 6= 0 for the corresponding
states. The only possible limit is therefore given by Υt(â,Σ) = 0 for any states (â,Σ) in which workers switch
careers. Accordingly, the corresponding switching rates, defining the inflow into (a0, S0), equal the inflow into
the switching states from employment.

40The cyclicality of career-mobility is entirely driven through the distributional shift in Υt caused by the
shift in the separation threshold χsep.
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χsep imply strong procyclical fluctuations in the job finding rate from unemployment and the
job-to-job mobility rate, and countercyclical fluctuations in the separation rate (reflecting the
contraction in the continuation region depicted in Figure 9).41

B Examples of General Production Function

This appendix provides two examples of a general production technology F (z, q,a) that
collapses into (1) when qk,r are orthogonal.

Complementary-skill case Let

F (z(t), qk,r,ai) ≡ exp
z(t) +

J∑
j=1

(
ηqk,r,j −max

{
qk,r,j −

qk,r,jai,j∑J
j=1 qk,r,j

, 0
}) . (17)

Substituting r = ∑J
j=1 qk,r,j and wk,j = qk,r,j/(

∑J
j=1 qk,r,j), we can rewrite (17) in more

accessible form
log yi,k,r = z(t) +

J∑
j=1

wk,j (ηr −max{r − ai,j, 0}) ,

which clearly collapses into (1) for an orthogonal weighting scheme; e.g.,42

[
w′1 w′2 · · · w′K

]
= IK .

Substitutible-skill case Let

F (z(t), qk,r,ai) ≡ exp
z(t) + η

J∑
j=1

qk,r,j −max


J∑
j=1

qk,r,j −
∑J
j=1 qk,r,jai,j∑J
j=1 qk,r,j

, 0


 , (18)

which can be rewritten more compactly as

log yi,k,r = z(t) + ηr −max

r −
J∑
j=1

wk,jai,j, 0

 .
Again, it is easy to verify that yi,k,r collapses into (1) for an orthogonal weighting scheme.

41Evaluated at the ergodic distribution, the cyclical differences between expansions and recessions are:
9.5 percentage points (pp.) for the monthly job finding rate from unemployment, 0.4 pp. for the monthly
job-to-job mobility rate, and −0.7 pp. for the separation rate.

42Here, we tacitly set K = J , for ease of exposition. Weighting schemes other than the identity scheme may
require a redefinition of skill types, but can equally be reduced to (1) for an appropriate definition of skills as
long as {ak} are orthogonal across the adopted career classification {k}.
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Table 7: Inertia in career mobility

Recession Expansion

Unemployed 8.85 8.98
r = 0 9.33 9.95
r = 0.5 · S1/2

0 7.89 8.46
r = 1.0 · S1/2

0 4.97 5.21
r = 1.5 · S1/2

0 2.34 2.42
r = 2.0 · S1/2

0 0.88 0.90
r = 2.5 · S1/2

0 0.26 0.27
r = 3.0 · S1/2

0 0.04 0.04
Notes.—The table reports the implicit cost on career mobility induced by mismatch, denominated
in monthly average output per worker, E[yi,t]/E[1− Ut].

C Inertia in Career Mobility

As alluded to in the main text, inertia not only marks workers’ reallocation across job rungs
within careers, but also their career choice. This is because evaluating the prospects of a
career takes time due to the information friction and reduces the returns to trying out new
careers given the anticipation of mismatch. In what follows, we assess the magnitude of this
implicit cost on exploring new careers. We do so by considering a fictitious career-switching
problem in which workers can instantaneously churn careers and learn the relevant skill at
infinite speed subject to an explicit switching cost ξi,t. For any given worker, we then calculate
the magnitude of the explicit switching cost ξi,t that keeps them indifferent between accessing
the fictitious churning technology and sticking to their equilibrium career choice. Intuitively,
our approach replaces the implicit information friction on career mobility (and the cost of
entailing mismatch) by an explicit switching cost ξi,t, which we design so as to impose the
same career mobility patterns for all workers.

Specifically, let Xi,t denote the current unemployment value U(âk,Σk, z) if a worker is cur-
rently unemployed, and the joint worker–firm value J(âk,Σk, r, z) if they are employed. Then
the marginal benefit of exploring a new career and learning the relevant skill instantaneously,
(â,Σ) = (a, 0), is given by

ξ̃i,t =
∫ ∞
−∞

max {Ut(a, 0)−Xi,t, 0} dΦ
(
a− a0√
S0

)
.

To preempt workers from assessing the churning technology it hence suffices to set ξi,t = ξ̃i,t.
Table 7 reports the result (denominated in the economy-wide average monthly output per
worker). The implicit friction is largest for low-skilled workers as they benefit the most from
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exploring new careers. It ranges from the equivalent of 10 months of output for workers at
the bottom rung of the job ladder to about one work day of at the top rung.43 Averaged
across workers and business cycle states, the implicit friction evaluates to the equivalent of
4.75 months of average output per worker.

D Wages Without Commitment by Workers

This appendix details the computation of wages used for the exploration in Section 4.
Following Schaal (2017) we adopt the unique wage scheme that induces equilibrium search
and job continuation policies to be self-enforcing for workers (without requiring a contractual
commitment).

Let wt denote the wage of worker i at date t, and let Wt define the expected lifetime utility
of an employed worker that is delivered by the contracted process for {wt}. Notice that the
characterization so far only pins down Wt = xt during hiring but does not determine how
the promised hiring utility, xt, is delivered across states and throughout the duration of the
work-relationship. In analogue to (5), the expected utility flow of an active relationship is
given by

ρW act
t (âk,Σk, r, z) = wi,t + Λ̃t(âk,Σk, r, z) +

+ max
x,r
{κp(θt(ω, z)) (x−Wt(âk,Σk, r, z))}+

+ δ (Ut(âk,Σk, z)−Wt(âk,Σk, r, z)) +

+ ε (Ut(a0, S0, z)−Wt(âk,Σk, r, z)) +

+ λz (Wt(âk,Σk, r,−z)−Wt(âk,Σk, r, z)) , (19)

where

Λ̃t(âk,Σk, r, z) ≡
(

Σk

σ

)2 (
−∂Wt(âk,Σk, r, z)

∂Σk

+ 1
2
∂2Wt(âk,Σk, r, z)

∂â2
k

)

and
Wt(âk,Σk, r, z) = max

{
W act
t (âk,Σk, r, z),Ut(âk,Σk, z)

}
.

Absent contractual commitments, workers’ on-the-job search maximizes (19) subject to (2).
43The implicit friction is slightly larger for workers at the bottom job rung than for unemployed workers

due to the presence of exogenously laid off workers among the unemployed who have strong incentives to
retain their current career.
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Rearranging the associated first-order condition, we have

θ = p′−1
(

c

Jt(âk,Σk, r∗, z)−Wt(âk,Σk, r, z)

)
. (20)

Comparing (20) with (9), we conclude that for search to be self-enforcing, the worker value of
the relationship must match the joint value whenever they are actively searching. Accordingly,
the unique self-enforcing wage scheme is given by

wi,t = ez+ηrEt[e−max{r−ak,0}] = ez+ηrψ(âk − r,
√

Σk);

i.e., workers are compensated their marginal product at each instant of an ongoing work-
relationship. Moreover, because W act

t = xt must hold at hiring, workers must reimburse firms
for their recruitment cost at the instant of hiring, implying a one-time reduction in wages
equal to

J(âk,Σk, r, z)− x = c/q (θ(âk,Σk, r, z)) .

Finally, noticing that the described wage arrangement implies W act
t = Jact

t at any instant
of an ongoing relationship, we conclude that workers’ job continuation/separation choices are
also aligned with the bilaterally efficient ones observed under commitment.

E Measuring Job Requirements, Employment Transi-
tions, and Worker Skills

This appendix details the measurement of job requirements, employment transitions, and
worker skills.

E.1 Job Requirements

Following Guvenen et al. (2020), we measure skill requirements using 26 O*NET descriptors
from the Knowledge, Skills and Abilities categories that were identified by the Defense
Manpower Data Center (DMDC) to be related to each ASVAB category, augmented by
six descriptors linked to social skills.44 As in Guvenen et al. (2020), we link those O*NET

44The descriptors used are the following: oral comprehension, written comprehension, deductive reasoning,
inductive reasoning, information ordering, mathematical reasoning, number facility, reading comprehension,
mathematics skill, science, technology design, equipment selection, installation, operation and control,
equipment maintenance, troubleshooting, repairing, computers and electronics, engineering and technology,
building and construction, mechanical, mathematics knowledge, physics, chemistry, biology, english language,
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descriptors to ASVAB test category based on the relatedness score provided by DMDC. The
verbal skill requirement is then defined as the first principal component of Word Knowledge and
Paragraph Comprehension, the math requirement is that of Math Knowledge and Arithmetic
Reasoning, and the technical requirement is the first principal component of Electronics Info,
General Science, and Mechanical comprehension. For the social dimension, we also collapse
the six O*NET descriptors into a single dimension defined by the first principal component.
Finally, we normalize all requirements by converting them into percentile ranks based on the
distribution of occupations in our NLSY79 sample (see below).

E.2 Employment Transitions

Employment histories We infer employment histories from the NLSY79 Work History
Data File, which is a nationally representative panel of workers who are followed from first
entry into the labor market. We aggregate the available employment data, which is recorded
at a weekly frequency, to a monthly frequency by focusing on the job for which an individual
worked the most hours in a given month.

Sample selection As the NLSY79 is well-known and requires little description, we focus
in the following on describing the sample selection used in this paper. We focus on the
subsample of males and females from the so-called cross-sectional sample, which is designed to
represent the non-institutionalized civilian segment of the U.S. in 1979.45 As is standard in the
literature, we drop individuals who were more than two years in the military force, individuals
with a weak labor market attachment (spending more than 10 years out of the labor force),
individuals that were already working in 1979, and those that do not have information on the
Armed Services Vocational Aptitude Battery (ASVAB) test scores.

E.3 Worker Skills and Mismatch

Worker skills We measure workers skills using ASVAB test scores available in the NLSY79
(see Appendix E.2 for a description of our subsample). The ASVAB is a general test that
measures knowledge and skills in 10 different components that was taken by survey participants
when first entering the survey.46 As in Guvenen et al. (2020), we focus on a subset of seven

social perceptiveness, coordination, persuasion, negotiation, instructing, service orientation.
45The NLSY79 also contains supplemental samples that oversample ethnic minorities, economically disad-

vantaged people, and the military, none of which we include in our analysis.
46The components are arithmetic reasoning, mathematics knowledge, paragraph comprehension, word

knowledge, general science, numerical operations, coding speed, automotive and shop information, mechanical
comprehension, and electronics information.
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components (arithmetic reasoning, mathematics knowledge, paragraph comprehension, word
knowledge, mechanical comprehension, general science and electronics information) which are
linked to math, verbal and technical skills, and are combined using Principal Components
Analysis. For the social dimension, we proceed in the same fashion using the individual scores
in two different tests provided by the NLSY79: the Rotter Locus of Control Scale and the
Rosenberg Self-Esteem Scale.47 To adjust for differences in test-taking age, before proceeding
with PCA, we normalize the mean and the variance of each test score according to their
age-specific values. Then, once we have the raw scores in each skill dimension, we convert
these into percentile ranks.

Mismatch We merge the panel of worker-level data with the occupation data using using
three-digit Census occupational codes. Note that O*NET uses SOC codes from 2010, which
are more detailed than the occupational codes in the NLYS79, based on the three-digit Census
occupation codes. Hence several occupations in NLSY79 have more than one score. Using
a crosswalk to identify each SOC code with a Census code, we take an unweighted average
over all the SOC codes that map to the same code in the census three-digit level occupation
classification. We then proceed to construct mismatch as defined in the main body of the
paper.

F On Skill-based Definition of Careers

This appendix examines in further detail our skill-based definition of careers. We present
examples that illustrate how our definition classifies occupations across different careers;
we assess the prevalence of radical vs. gradual career switches; we compare our skill-based
measure of career mobility with alternative measures; and finally, we show that the cyclicality
of career mobility is primarily driven by job transitions that go through unemployment.

F.1 Illustrative Examples of Career Mobility

We begin presenting two examples of career mobility identified through our angular measure.
The first example fixes the requirement vector of the 3-digit occupation q1 = “Economist” and
considers a selection of 3-digit occupational titles with requirement vectors q2. According to our

47The Rotter Locus of Control Scale measures the degree of control individuals feel they possess over their
life, and the Rosenberg Self-Esteem Scale aims at reflecting the degree of approval or disapproval towards
oneself. These measures have been commonly used in previous works as measures of non-cognitive skills
(Speer, 2017; Lise and Robin, 2017; Guvenen et al., 2020). For more details, see Heckman, Stixrud and Urzua
(2006).
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(a) By angular distance to Economist (b) By job rung quintiles

Figure 12: Examples of occupations inside and outside “Economist” cone. Notes.—Blue dots correspond to
occupations classified within the same career.

skill-based criterion, these occupations are classified within the same career as an “Economist”
if their angular distance ϕ(q1, q2) is smaller than the calibrated threshold ϕ̄ = 14.8◦. Figure
12a plots the angular distances for these occupations relative to an “Economist”. By definition,
the angular distance from “Economist” to “Economist” is zero. In this example, “Actuaries”,
“Financial Managers”, “Data Entry Keyers” and “Mathematicians and Statisticians” fall inside
the “Economist” cone (blue dots) and, hence, transitions from “Economist” to any of these
occupations are classified within the same career. In contrast, transitions to occupations
that fall outside this cone (gray diamonds), such as “Cooks”, are classified as a career switch
relative to a “Economist”.

To assess movement up and down the job ladder, Figure 12b plots the same set of occu-
pational titles according to their position in the job ladder, measured by the corresponding
quintile in the job rung distribution. Within the “Economist” cone, “Actuaries”and “Mathe-
maticians and Statisticians” are top-tier occupations (5th quintile) while “Financial Managers”
(4th quintile) and “Data Entry Keyers” (2nd quintile) are lower-tier occupations. Changing
jobs to any of the latter occupations would entail a movement down the job ladder within the
same career.

Figures 13a and 13b present a second illustrative example for the occupation q1 = “Dental
Assistant”. According to our skill-based definition, if a “Dental Assistant” becomes a “Dental
laboratory technician”, a “Dentist” or a “registered nurse”, this is interpreted as a movement
up the job ladder: the skill-mix required by any of those occupations is fairly similar to a
“Dental Assistant”, but the task complexity is increased. In contrast, if a “Dental Assistant”
becomes, say, a “Baker”, this is interpreted as a career switch.
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(a) By angular distance to Dental Assistant (b) By job rung quintiles

Figure 13: Examples of occupations inside and outside “Dental Assistant” cone. Notes.—Blue dots correspond
to occupations classified within the same career.

Table 8: Gradual job transitions

N 4 5 6 7 8

Pr [ϕ(q0, qN ) < ϕ̄] 0.82 0.82 0.82 0.82 0.81
Notes.—The table shows the fraction of transition paths for which the final job falls within the
cone of the original job; i.e., ϕ(q0, qN) < ϕ̄.

F.2 Gradual Career Transitions

Our approach to measuring career mobility identifies large changes in the occupation require-
ments that occur at distinct points of time. One implication of this approach is that career
switches if broken down to a sequence of small steps may not constitute a distinct career
switch at any point of time.

In the following, we explore the empirical prevalence of such “gradual” career transitions.
To do so, fixing an integer N , we first construct the sample of all N consecutive job transitions
in the NLSY79 which do not constitute a career-transition according to our measure. That
is, letting QN ≡ {qs}s∈{0,1,...,N} denote the job requirements of N + 1 consecutive jobs of a
given worker, our sample contains the universe of all QN such that each individual transition
satisfies ϕ(qs−1, qs) < ϕ̄ for all s ∈ {1, 2, . . . , N}. Equipped with this sample, we then
re-apply our criterion to the initial and final job, and compute the fraction of samples for
which ϕ(q0, qN) < ϕ̄. Table 8 reports the results for different values of N . In all cases, we
find a moderate prevalence of gradual career transitions of 18–19%. By contrast, for the
majority of within-career job sequences the final job falls within the cone of the initial job.
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Table 9: Cyclicality of career mobility under alternative definitions of a career

skill-
based

1-digit 2-digit 3-digit 1-digit
(SOC)

k-means

career mobility .42 .50 .50 .61 .50 .45
excess cyclicality .07 .04 .04 .03 .04 .04

corr. with skill-based 1.00 .64 .64 .69 .64 .75
Notes.—First row shows the unconditional career switching propensity (in percent). Second row
shows the cyclicality of career mobility, computed as the difference in career mobility in recessions
to expansions (in p.p.). Third row shows the correlation of different career mobility measures with
our skill-based definition.

F.3 Comparison With Alternative Definitions of Careers

Here we compare our skill-based measure of career mobility with alternative measures. In
particular, we compare it with the following alternative criteria to define careers: 1-digit,
2-digit, or 3-digit occupational codes from Autor and Dorn (2013); 1-digit occupations from
the Standard Occupational Classification (SOC); and a classification derived from a k-means
algorithm that groups occupations into different careers such that the angular distance to
the average skill-requirement in a career is minimized (specifically, we choose the number
of clusters to be k = 6 that delivers an unconditional career mobility rate of 45%, closely
matching the career mobility rate of 42.2% obtained under our skill-based definition). The
exercise considers the universe of job transitions and for each transition determines whether
or not it is registered as a career transition according to these alternative criteria.

Table 9 summarizes the comparison. Overall, we see significant differences across these
classifications. While all measures are moderately correlated with our baseline measure, with
correlations ranging from .64 to .75, there are significant differences in the average propensities
to switch careers, ranging from .42 to .61. Interestingly, however, despite these differences, all
measures imply countercyclical career mobility.

F.4 Cyclicality in Career Mobility By Transition Type

According to our model, the cyclicality of career mobility is intrinsically tied to job transitions
through unemployment. We note that this prediction is not driven by our restriction on career
transitions.48 This is because it is precisely the workers that are cleansed from their jobs that

48Our model assumes that workers can switch careers exclusively through a spell of unemployment. While
in reality, of course, some career switches occur through job-to-job transitions, this assumption is meant to
capture that switching careers is more costly and time intensive than other job-to-job transitions. For instance,
professional networks are naturally centered around current and past careers, facilitating within-career switches
or even giving rise to entirely unsolicited offers. By contrast, career-switching arguably requires a more active
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Table 10: Cyclicality of career mobility by type of job transition

Transition type Fraction of all job
transitions

Fraction of all career
switches

Excess cyclicality

EUE’ .56 .48 .08
EE’ .44 .52 −.01

Total (EUE’ + EE’) 1.00 1.00 .07
Notes.—Job transitions and career switches by type of job transition. EUE’ refers to job transitions
that undergo an unemployment spell. EE’ refers to direct job-to-job transitions. Excess cyclicality
is computed as career switching rate in recessions minus expansions.

cause the increase in career switching during recessions.
To assess this implication of the model, we decompose the empirical cyclicality of career

mobility into its cyclicality among transitions through unemployment (EUE’) and job-to-job
transitions (EE’). Table 10 shows the decomposition. Consistent with the predictions of the
model, the overall cyclicality (+0.07 percentage points in recessions) is exclusively driven by
countercyclicality in EUE’ transitions (+0.08 percentage points), whereas the propensity to
switch careers among EE’ transitions is roughly acyclical (−0.01 percentage points).

G On Mismatch Cyclicality

This appendix presents additional empirical results and robustness checks on the cyclicality of
mismatch. We show a time series for aggregate mismatch; we examine the cyclical properties
of mismatch using alternative business cycle indicators; we assess mismatch cyclicality for
job-to-job movers; we present a robustness check using the two cohorts of the NLSY data;
and finally, we show the cyclical properties of mismatch for each of the four underlying skill
dimensions (math, verbal, technical and social skills).

G.1 Aggregate mismatch cyclicality

Figure 14 plots time series of aggregate mismatch and the unemployment rate. To construct
the aggregate mismatch series (left scale), we residualize mismatch with respect to the controls
from the baseline regression (11), and then compute a symmetric 2-quarter moving average
to smooth the series from seasonal fluctuations.

By construction, the mismatch series is centered around zero. For most of the sample
period, we observe a negative correlation between mismatch and the unemployment rate, with

search. Our restriction on career-switching captures this, in reduced form, by forcing employed workers to
quit their job and search “full time” when seeking a career change.
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Figure 14: Time series of aggregate mismatch and the unemployment rate. Notes.—The figure shows time
series of residualized mismatch (left scale, controlled by the baseline regression controls) and the unemployment
rate (right scale, in percentage points). Shaded regions correspond to NBER-defined recessions.

two notable exceptions: the period around the 1990-1991 recession, and the years prior to the
Great Recession where both series are declining.

For comparison, the shaded regions indicate NBER-defined recessions. Both the unem-
ployment rate and mismatch are lagging the NBER-defined recessions. We further explore
this in Appendix G.2.

G.2 Alternative cyclical indicators

Our baseline recession indicator defines recessions as times when the unemployment rate
exceeds its long-term average of about 6.5%. Using an unemployment-defined cyclical indicator
is natural for our purpose because, by definition, fluctuations in mismatch are tied to job
flows, especially in and out of unemployment.

Here, we examine the cyclical properties of mismatch using alternative business cycle
indicators: (A) unemployment rate, (B) HP-filtered unemployment rate, (C) NBER recession
indicator (applied to all months within a quarter), and (D) 4-quarter lag of the NBER
recession indicator. We repeat the main regression for mismatch cyclicality in (11) using these
four alternative measure of the business cycle.

Table 11 presents the results. In Panels A and B we use unemployment-related indicators
and confirm our baseline results: total mismatch is procyclical; the procyclicality of total
mismatch is primarily driven by underqualified workers being laid-off in recessions; and new
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Table 11: Mismatch cyclicality: Alternative cyclical indicators

Dependent variable (×100): mi,t m+
i,t m−i,t

(1) (2) (3)

Panel A: Unemp. rate

Job stayers (β1 + β2) −.167*** −.047 −.120***
(.056) (.041) (.038)

New hires (β1 + β3) .247** .140* .107*
(.100) (.072) (.065)

Total cyclicality −.147*** −.037 −.110***
(.055) (.041) (.037)

Panel B: Unemp. rate deviations

Job stayers (β1 + β2) −.123 −.013 −.110**
(.084) (.064) (.054)

New hires (β1 + β3) .371 .172 .198
(.239) (.178) (.149)

Total cyclicality −.091 −.006 −.084
(.082) (.063) (.053)

Panel C: NBER

Job stayers (β1 + β2) −.075 −.060 −.015
(.112) (.083) (.075)

New hires (β1 + β3) −.124 −.287 .162
(.332) (.244) (.198)

Total cyclicality −.075 −.064 −.011
(.109) (.081) (.072)

Panel D: NBER lagged

Job stayers (β1 + β2) −.198** −.065 −.133**
(.090) (.067) (.059)

New hires (β1 + β3) 1.061*** .695*** .366*
(.329) (.249) (.204)

Total cyclicality −.150* −.046 −.104*
(.090) (.066) (.059)

Notes.—Standard errors clustered at the worker level are in parenthesis. Asterisks, *, **, ***,
indicate coefficients that are significantly different from 0 at the 10%, 5%, 1% level, respectively.
Dependent variables are multiplied by 100 (so mismatch ranges from 0 to 100). Panel A and B
include yearly fixed effects.
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Table 12: Cyclicality in mismatch among job-to-job transitions in the data

Dependent variable (×100): mi,t m+
i,t m−i,t

(1) (2) (3)

Job-to-job transitions (β1) .265 .442** −.177
(.293) (.215) (.220)

Notes.—Standard errors clustered at the worker level are in parenthesis. Asterisks, *, **, ***,
indicate coefficients that are significantly different from 0 at the 10%, 5%, 1% level, respectively.
Dependent variables are multiplied by 100 (so mismatch ranges from 0 to 100).

hires from unemployment have countercyclical fluctuations in mismatch.
Next, we examine mismatch cyclicality using the NBER-defined indicators. When using the

contemporaneous NBER indicator (Panel C) we obtain insignificant coefficients. In contrast,
when using the lagged NBER indicator (Panel D) the coefficients are highly significant
and comparable in size to our baseline results. These results are explained by the lag in
unemployment compared to the NBER recession indicator as visible in Figure 14.49 As
argued above, this matters, because fluctuations in mismatch are intrinsically tied to job
flows, explaining why it is the lagged NBER indicator that is significantly correlated with
mismatch.

In summary, we conclude that mismatch contemporaneously correlates with unemployment
measures, while it correlates with the lagged NBER indicator.

G.3 Job-to-Job Transitions

Our model has sharp predictions for mismatch cyclicality among job stayers and new hires
from unemployment, which are corroborated in the data and reported in the main body in
Table 4. Here we supplement the analysis with empirical observations of mismatch cyclicality
for job-to-job movers. Table 12 shows the impact of a recession on mismatch among job-
to-job movers, as captured by β1 in specification (11). We obtain significant countercyclical
fluctuations in positive mismatch. This observation is consistent with procyclical upgrading of
match quality driven by job-to-job transitions, as examined by Gertler, Huckfeldt and Trigari
(2020). While we see a significant increase in overqualification during recessions, we do not
see a significant impact on underqualification or total mismatch among job-to-job movers.

49The contemporaneous correlation between the unemployment rate and the NBER indicator is 0.12, while
the cross-autocorrelation between the unemployment rate and the lagged NBER indicator is 0.5.
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Table 13: Mismatch cyclicality in the data: NLSY79 and NLSY97

Dependent variable (×100): mi,t m+
i,t m−i,t

(1) (2) (3)

Job stayers (β1 + β2) −.267** −.009 −.258***
(.114) (.080) (.076)

New hires (β1 + β3) .552** .487*** .065
(.236) (.168) (.185)

Total cyclicality −.238** .013 −.251***
(.113) (.080) (.075)

Notes.—Standard errors clustered at the worker level are in parenthesis. Asterisks, *, **, ***,
indicate coefficients that are significantly different from 0 at the 10%, 5%, 1% level, respectively.
Dependent variables are multiplied by 100 (so mismatch ranges from 0 to 100).

G.4 Two cohorts: NLSY79 and NLSY97

For our baseline estimates, we only use data from the NLSY 1979 cohort. The reason is
that the 1997 cohort does not contain data on the Rotter Locus of Control Scale and the
Rosenberg Self-Esteem Scale, which we use to construct a measure of social ability and which
is found to be a key predictor of labor market outcomes by Guvenen et al. (2020) and Lise
and Postel-Vinay (2020). Here, we replicate the mismatch cyclicality results extending the
data to include the 1997 cohort. Due to the lack of data needed to measure social ability in
the 1997 survey, mismatch now only comprises math, verbal, and technical skills. Table 13
presents the results which are analogue to those in Table 4 in the main text. Overall, the
coefficients are very similar across both samples. We conclude that our results are robust to
including one or two cohorts.

G.5 By Skill Dimension

In the main text, we assess the cyclicality of a mismatch index, defined in (10), which
aggregates mismatch across four skill dimensions using market weights. Here, we examine
the cyclical properties of mismatch for each skill dimension: math, verbal, technical and
social. We do so by running the same empirical specification as in (11) but separately by skill.
Table 14 is the analog to Table 4 in the main text. As before, we report the cyclicality of
total, positive, and negative mismatch, and report coefficients separately for job stayers, new
hires from unemployment, and the totality of workers.

Overall, mismatch cyclicality by skill dimension has the same cyclical properties as total
mismatch. For each skill dimensions, we consistently obtain procyclical mismatch among
job stayers (first row of each panel), that is, mismatch decreases for job stayers in recessions
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Table 14: Mismatch cyclicality in the data: By skill dimension

Dependent variable (×100): mi,t m+
i,t m−i,t

(1) (2) (3)

Panel A: Math

Job stayers (β1 + β2) −.379* −.030 −.349*
(.021) (.791) (.001)

New hires (β1 + β3) .693* .535* .159
(.066) (.040) (.492)

Total cyclicality −.334* −.002 −.332*
(.041) (.983) (.002)

Panel B: Verbal

Job stayers (β1 + β2) −.298* −.013 −.311*
(.062) (.900) (.002)

New hires (β1 + β3) .986* .741* .245
(.007) (.002) (.274)

Total cyclicality −.235 .052 −.288*
(.139) (.625) (.005)

Panel C: Technical

Job stayers (β1 + β2) −.273 .028 −.301*
(.102) (.823) (.005)

New hires (β1 + β3) .006 .089 −.083
(.987) (.740) (.726)

Total cyclicality −.247 .044 −.290*
(.137) (.719) (.007)

Panel D: Social

Job stayers (β1 + β2) −.044 .152 −.196*
(.784) (.156) (.086)

New hires (β1 + β3) .551 .413* .138
(.139) (.098) (.575)

Total cyclicality −.012 .167 −.179
(.938) (.119) (.114)

Notes.—Standard errors clustered at the worker level are in parenthesis. Asterisks, *, **, ***,
indicate coefficients that are significantly different from 0 at the 10%, 5%, 1% level, respectively.
Dependent variables are multiplied by 100 (so mismatch ranges from 0 to 100).
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and the decline is entirely driven by layoffs of underqualified workers (those with negative
mismatch, column 3). Additionally, we obtain countercyclical mismatch among new hires
from unemployment (second row of each panel), in this case driven by more overqualified
workers finding jobs in recessions than in expansions (those with positive mismatch, column
2). Finally, total mismatch is procyclical (third row of each panel), as before. While all skill
dimensions show similar cyclical properties, math and verbal skills are the ones with the
highest statistical significance.

H Across-career vs. Within-career Experiences

This appendix provides further suggestive evidence on the assumptions, mechanisms, and
implications of our learning model. Our model assumes that learning is geared towards
workers’ ability in their current career. Moreover, for simplicity, we further assume that
ability is uncorrelated across careers (but have noted that this assumption is not essential).
Using the NLSY data, we present various pieces of evidence that validate these assumptions
and, furthermore, corroborate key implications of the model on the difference between career
switches and job transitions within a career.

H.1 Evidence from Job Separation Hazards

In the model, we make the simplifying assumption that skills are independent across careers.
This assumption implies that the separation hazard should be independent of the number of
careers previously held by a worker. Figure 15a shows that this is indeed the case in the data.
It plots the job separation hazard conditional on the number of careers held. Corroborating
the independence assumption, there are no significant differences between the separation
hazards for the first, second, and third career.

In contrast, the model implies that learning within careers is a relevant factor and thus
one would expect that job separation hazards would depend on prior work experience within
that same career. Figure 15b confirms this prediction by plotting the job separation hazard
conditional on the number of jobs held by a worker within the same career. We observe that
the separation hazard for the first job in a career is significantly larger than for subsequent
jobs in the same career; moreover, the separation hazard declines at a steeper rate for the
first job in a career, consistent with uncertainty being highest at the beginning of a career.
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(a) By number of careers previously held (b) By number of jobs within same career

Figure 15: Job separation hazards. Panel Afor subsequent jobs within the same career. Notes.—Separation
hazards include EU and EE’ transitions and assume a linear baseline hazard. Error bars indicate 95%
confidence intervals. All moments are residualized with respect to race, gender, education, region of residence,
and initial age at the start of the job spell.

H.2 Evidence from Distributions of Reemployment Job Rungs

Next, we use the distribution of reemployment job rungs to provide additional indirect
evidence. As with the separation hazards, uncorrelated learning across careers implies that
the distribution of reemployment job rungs should be independent of the number of careers.
This is indeed confirmed in Figure 16a, where we observe that the likelihood to start at any
job rung is independent of the number of careers previously held.

In particular, regardless of the number of careers held before, upon a career switch a
worker is always more likely to start at the bottom of the job ladder, consistent with the
predictions of the model. Figure 17 further substantiates this finding, showing that the
tendency of workers to start at the bottom job rung after career-switches holds independently
of their job rung in the previous career. This fact supports our prediction that career switches
entail restarting learning about untried skills and thus workers optimally aim for jobs at the
bottom of the new job ladder.

Regarding within career transitions, Figure 16b shows that the distribution of reemployment
job rungs within a career is affected by the number of previously held jobs, consistent with
learning within careers. This distribution is initially skewed towards the lowest job rung and
becomes increasingly skewed towards the highest job rung as career tenure increases. These
observations are consistent with the predictions of the model: Short-tenure workers are more
likely to start at the bottom of the job ladder while long-tenure workers are more likely to get
reemployed at higher rungs as explored in Section 4.
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(a) By number of careers previously held (b) By number of jobs within same career

Figure 16: Distribution of reemployment job rungs. Notes.—Error bars indicate 95% confidence intervals.
Include EU and EE’ transitions. All moments are residualized with respect to race, gender, education, region
of residence, a quadratic polynomial in age, and month and 5-year fixed effects.

Figure 17: Reemployment job rungs for career switchers, conditional on previous position in the job ladder
(by rung quintiles). Notes.—Error bars indicate 95% confidence intervals. Transitions include EUE’ and EE’
transitions. All moments are residualized with respect to age, gender, race, education, region, industry, and
5-year fixed effects
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Table 15: Empirical distribution of mismatch across job rungs

Quintile of ri,t mi,t m+
i,t m−i,t

Q1 2.010 7.780 −5.770
Q2 −0.720 2.090 −2.800
Q3 −0.960 −1.470 0.520
Q4 −1.550 −4.280 2.730
Q5 0.730 −6.070 6.810

Notes.—Mismatch is residualized with respect to region, a quadratic polyno-
mial in age, and individual, month and 5-yearly fixed effects.

H.3 Evidence from the Distribution of Mismatch Across Job Rungs

Finally, our model predicts that, with the exception of the highest job rung, mismatch is
declining in job rungs. Moreover, the decline is driven by a decline in overqualification, whereas
underqualification becomes relatively more important at higher job rungs (c.f. Figure 6b). To
explore this prediction, we use the generalized model introduced in Section 3.1 to assign a
task complexity ri,t to each job. We then compute the average mismatch (residualized with
respect to region, a quadratic polynomial in age, and individual, month and 5-yearly fixed
effects) for each quintile of the task complexity distribution. Table 15 reports the results.
Consistent with the model, total mismatch is declining across job rungs with the exception of
the highest job rung, and the decline is driven by overqualification.
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