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Abstract

Evidence from the cognitive sciences suggests that some choices are conscious and

reflect individual volition while others tend to be automatic, being driven by analogies

with past experiences. Under these circumstances, standard economic modeling might

not always be applicable because not all choices are the result of individual tastes.

We propose a behavioral model that can be used in standard economic analysis that

formalizes the way in which conscious and automatic choices arise by presenting a

decision maker comprised of two selves. One self compares past decision problems

with the one the decision maker faces and, when the problems are similar enough,

it replicates past behavior (Automatic choices). Otherwise, a second self is activated

and preferences are maximized (Conscious choices). We then present a novel method

capable of identifying a set of conscious choices from observed behavior and discuss

its usefulness as a framework for studying asymmetric pricing and empirical puzzles in

different settings.
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1 Introduction

Behavioral economics has posed a serious challenge to standard economic theory by

documenting and analysing numerous behaviors inconsistent with preference maxi-

mization. Inconsistencies tend to emerge when individuals do not exert the effort to

consciously analyze the problem at hand, e.g., Carroll et al. (2009). A key question

then arises. When are people choosing consciously?

This paper provides a first theoretical framework in which to consider the co-

existence of conscious and automatic, i.e., unconscious, behavior and a means to

understand the nature of individual decisions in different situations once this duality

is taken into account. Studying this dichotomy is crucial to the understanding of

market outcomes. In fact, as highlighted by Simon (1987) and Kahneman (2002),

experts such as managers, doctors, traders or policy makers often make automatic

decisions. Nevertheless, the sources of automatic choices remain underexplored in

economics.1

Evidence from the cognitive sciences suggests that the familiarity of the choice

environment is the key determinant of the relationship between conscious and au-

tomatic choices. Unconscious, automatic choices are made in familiar environments.

Thus, if we wish to understand the role of automatic decisions in markets, we need (i)

to create a model of automatic choices that takes into account the role played by the

familiarity of the decision environment and (ii) to analyze whether it is possible from

observed behavior to distinguish between conscious and automatic choices in order

to understand the underlying preferences. These research questions will be addressed

in this paper.

To answer the first question, we propose a simple formalization of evidence drawn

from the cognitive sciences, the main contribution of which is to provide a first model

describing when and how choices should be conscious or automatic.2 In Section 2,

we present a decision maker described by a simple procedure. Whenever the decision

1Although there is a growing attention in economics to conscious and intuitive or automatic
reasoning. See for example Rubinstein (2007) and Rubinstein (2016) for a distinction between
conscious and intuitive strategic choices by players of a game or the distinction in Cunningham and
de Quidt (2015) between implicit and explicit attitudes.

2See section 6.2 for the cognitive foundations of the model.
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environment is familiar, i.e., whenever its similarity with past experience, measured

by a similarity function, passes a certain threshold, past behavior is replicated. This

is the source of automatic choices. Otherwise, the best option is chosen by maximiz-

ing a rational preference relation. This is the source of conscious choices. Consider,

for example, a consumer who buys a bundle of products from the shelves of a su-

permarket. The first time he faces the shelves, he tries to find the bundle that best

fits his preferences. Subsequently, if the prices and arrangement of products do not

change too much, he will perceive the decision environment as familiar and will au-

tomatically stick to the bundle chosen previously. If, on the other hand, the change

in prices and arrangement of the products is evident to him, his choice will again be

based on preference maximization.3

Even in such a simple framework, there is no trivial way to distinguish which

choices are made automatically and which are made consciously. Following the ex-

ample, suppose our consumer is faced once more with the same problem, but this

time, although a new bundle is available, he sticks with the original choice. Is it

because he prefers the original bundle to the new one? Or is it because he is choosing

automatically?

We show how to find conscious choices and hence restore the standard revealed

preference analysis by being able to tell which environments were not familiar. Section

3 assumes (i) that the decision maker behaves according to our model and (ii) that the

similarity function is known, while the threshold is not.4 We then show that, for every

sequence of decision problems, it is possible by means of an algorithm to identify a set

of conscious observations and an interval within which the similarity threshold should

lie. That is, we provide a novel method for restoring revealed preference analysis.

First notice that new observations, i.e., those in which the choice is for an al-

ternative never chosen before, must be conscious. No past behavior could have been

replicated. Starting from these observations, the algorithm iterates the following idea.

If an observation is consciously generated, any other less familiar observation, that

3This is in line with the ideas presented in Woodford (2019) where it is stated that “. . . people
should not be modeled as behaving differently in situations that they do not recognize as different. . . ”

4See Sections 3 and 5 for a justification of the latter hypothesis. See the appendix for an empirical
strategy for estimating the similarity function when shared in a population.
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is any decision problem which is less similar to those that preceded it, must be also

consciously generated. Returning to our consumer, if we know that after a change in

the price of the products on the shelf, the consumer chose consciously, then he must

also have done so on all those occasions where the change was even more evident.

The algorithm identifies a set of automatic decisions in a similar fashion, that is,

it first highlights some decisions that must be automatic and then finds more familiar

observations to reveal other automatic decisions. Notice that knowing whether some

decisions were made automatically is very important for understanding the way in

which familiarity of environments is determined. Even if automatic choices do not

reveal individual preferences, they tell us which problems are considered familiar, i.e.,

similar enough, by the decision maker, hence enabling the identification of the interval

in which the similarity threshold should lie.

The algorithm assumes that the decision maker behaves according to our model,

hence the falsifiability of the model becomes a central concern. In Section 4 we propose

a testable condition that is a weakening of the Strong Axiom of Revealed Preference

that characterizes our model and thus renders it falsifiable. Section 5 contains a

generalization of the identification algorithm and of the characterization, assuming

only partial knowledge of similarity comparisons. Section 6 clarifies the connection

between the model and methods introduced here and the economics and cognitive

sciences literatures. Section 7 uses the model as a framework for understanding

asymmetric pricing in markets. Section 8 concludes. The appendix describes a pro-

cedure for empirically estimating the similarity function when shared by a population

of otherwise heterogeneous agents.

2 Dual Decision Processes

2.1 The Model

Let X and E be two sets. The decision maker (DM) faces, at time t, a decision

problem (At, et) with At ⊆ X and et ∈ E. The set of available alternatives At at

time t, from which the DM has to make a choice, is called the menu. An alternative

is any choice element, such as a consumption bundle, a lottery or a consumption
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stream. The environment et is a description of the possible characteristics of the

problem faced by the DM at time t. As highlighted below, an environment can be the

menu, the set of attributes of the alternatives contained in the menu, the framing,

etc. We denote by at ∈ At the chosen alternative at time t. With a little abuse of

the notation, we refer to the pair formed by the decision problem (At, et) and the

chosen alternative at as observation t. We denote the collection of observations in

the sequence {(At, et, at)}Tt=1 as D, i.e. D = {1, ..., T}. Notice that the same menu or

environment can appear more than once in the sequence.

A chosen alternative is the outcome of a two-stage choice procedure which de-

scribes the DM and formalizes the duality of automatic and conscious choices. For-

mally, let σ : E × E → [0, 1] be the similarity function. The value σ(e, e′) measures

the degree of similarity between environment e and environment e′. The automatic

self is endowed with a similarity threshold α ∈ [0, 1] that delimits which pairs of

environments are similar enough. Whenever σ(e, e′) > α the individual considers e

to be similar enough to e′. At time t, and faced with the decision problem (At, et),

the automatic self executes a choice if it can replicate the choice of a previous period

s < t such that σ(et, es) > α. The choice is the alternative as chosen in one such

period. The maximizing self is endowed with a preference relation � over the set

of alternatives. For ease of exposition, we assume that � is a strict order, i.e. an

asymmetric, transitive and complete binary relation, defined over X. At time t, if the

maximizing self is activated, it chooses the alternative at that maximizes � in At.
5

Summarizing:

at =

as for some s < t such that σ(et, es) > α and as ∈ At,

the maximal element in At with respect to � , otherwise.

Three remarks are useful here. First, notice that automatic and conscious decisions

are separated by the behavioral parameter α. In some sense, α is summarizing the

cost of using the cognitively demanding system. The higher the cost, the lower

5The idea that conscious behavior arises from the maximization of a preference relation is a
simplification which we use to focus the analysis on the main novelties of the framework presented
in this paper. For a more detailed discussion regarding this point, see section 8.
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the threshold. Thus, parameter α captures individual heterogeneity as preferences

do. Notice that, while the similarity function has been widely studied in cognitive

sciences, e.g. Tversky (1977), Medin et al. (1993) and Hahn (2014), the cognitive costs

of activating conscious decision processes remain an unknown quantity. Therefore,

the method we propose in section 3 can be seen as a first attempt to identify, among

observed behavior, the interval in which such costs should lie, given the similarity

function.6

As a second remark, notice that we are describing a class of models because we

do not impose any particular structure on replicating behavior. We do not specify

which alternative will be chosen when more than one past choice can be replicated.

This class can accommodate many different behaviors , e.g., choosing the alternative

that was chosen in the most similar past environment, or choosing the alternative

that maximizes the preference relation over those chosen in similar enough past en-

vironments, etc. All of the following analysis is valid for the class as a whole.

As a final remark, below, for illustrative purposes, we propose some examples of

relevant environments for economic applications and a possible similarity function for

use in such cases.

Environments as Menus: In many economic applications it seems sensible to view

the entire menu of alternatives, e.g. the budget set, as the main driver of analogies.

That is, E could be the set of all possible menus and two decision problems are per-

ceived to be as similar as their menus are. In this framework, E = 2X \ {∅}.
Environments as Attributes: The alternatives faced by decision makers are often

bundles of attributes. In such contexts, it is reasonable to assume that the attributes

of the available alternatives determine the decision environment. If A is the set con-

taining all possible attributes, then E = 2A \ {∅}.
Environments as Frames: We can think of the set E as the set of frames or an-

cillary conditions as described in Salant and Rubinstein (2008) and Bernheim and

Rangel (2009). Frames are observable information that is irrelevant for the rational

assessment of alternatives; for example, the way the products are displayed on a shelf.

6There is growing attention in decision theory to the empirical estimation of cognitive param-
eters for richer theoretical models, e.g., Cerreia-Vioglio et al. (2012), Rustichini et al. (2016), and
Dardanoni et al. (2018).
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Every frame can be seen as a set of irrelevant features of the decision environment.

Thus, if the set containing all possible irrelevant features is F , we have E = 2F \{∅}.

The cognitive sciences provide different ways to model the similarity function based

on empirical evidence. In all the previous examples it is natural to assume that the

similarity function relates different environments according to their commonalities

and differences. For example, σ(e, e′) = |e∩e′|
|e∪e′| , that is, the similarity of two environ-

ments increases with the proportion of shared characteristics . This function is just a

symmetric specification of the more general class considered in Tversky (1977). Al-

though, it is not always possible to obtain all the information relating to the similarity

function, a case analyzed in section 5, henceforth, we take E and σ as given.

2.2 An example

This section provides an example to illustrate the behavioral process we are modeling.

Although the example is abstract, it shows very directly how the model works. For

a more concrete application of the model to an interesting economic setting, please

refer to section 7.

Let X = {1, 2, 3, ..., 10}. We assume that environments are menus, i.e. E is the set

of all non-empty subsets of X and that σ(A,A′) = |A∩A′|
|A∪A′| . Suppose that the automatic

self is described by α = .55 and that the preference 1 � 2 � 3 � · · · � 10 describes

the maximizing one. We now explain how our DM makes choices from the following

list of ordered menus:

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 3, 4, 7 2, 4, 7 1, 3, 6 1, 2, 3, 4 2, 4, 8 2, 4, 8, 9, 10

In the first period, the DM has no prior experiences, therefore the maximizing

self is active. Thus, the choice results from the maximization of preferences, that is,

a1 = 3. Then, in the following period, given that σ(A2, A1) = 4
6
> .55, the automatic

self is active and therefore we will observe a replication of past choices, that is, a2 = 3.

Period 1’s environment makes period 2’s one fluent. Now, in period 3, notice that

the similarity between A3 and A2 or A1 is always below the similarity threshold and
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that this makes the maximizing self active. The preference relation is maximized

and therefore a3 = 1. By similar reasoning applied for the fourth and fifth periods,

it can be seen that a4 = 2 and a5 = 1. Then, in period six, the automatic self is

active given that σ(A6, A3) = 3
5
> .55, leading to a6 = 1. In period seven, given

no sufficiently similar past environment, the maximizing self is active and therefore

a7 = 2. Finally, in the last period, the automatic self again becomes active, given

that σ(A8, A7) = 3
5
> .55 and behavior will therefore be replicated, i.e. a8 = 2.

One may wonder what an external observer would understand from this choice

behavior. Section 3 addresses this point.

3 The Revealed Preference Analysis of Dual De-

cisions

In this section, we discuss how to recognize which observations were automatically

or consciously generated in a DD process. This information is crucial to elicit the

unobservables in the model that are the sources of individual heterogeneity, that is, the

preference relation and the similarity threshold. In fact, we can think of the similarity

function as a cultural component common to most individuals, while the similarity

threshold is the source of individual heterogeneity in automatic processes. Thus, the

similarity function is taken as given, while the similarity threshold α is elicited from

observed behavior.7 Notice that the similarity function and the similarity threshold

define a binary similarity function that is individual specific. Thus, by separating the

similarity function from the similarity threshold we are able to associate individual

heterogeneity to a parameter relating to individual cognitive costs without too many

degrees of freedom hampering the technical analysis.

7This assumption is in line with the stance taken in the cognitive sciences. In fact, similarity
comparisons are generally taken as a more interpersonal component while cognitive costs are specific
to the individual. See for example Tversky (1977), Medin et al. (1993) or Hahn (2014) and subsequent
related literature , which also provides a variety of methods for identifying the similarity function.
The idea here is that, even if , everyone in a certain society implicitly agrees that an Italian restaurant
is more similar to a French one than to a Chinese one, they might not all perceive the Italian and
the French ones, for example, to be so close as to be indistinguishable, i.e., to be similar enough.
The appendix uses this assumption to estimate the similarity function. In the online appendix, the
function is identified with rich enough data.
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Although the exercise is very different from standard analysis, assuming knowledge

of the similarity function is actually analogous to the usual assumptions made for

the parametric estimation of decision theoretical models, where the functional form

of interest is usually taken as given. Here we assume knowledge of the similarity

function in order to enable the estimation of individual preferences and the similarity

threshold. Section 5 shows that the hypothesis can be relaxed in order to generalize

the analysis presented in this section.

It is easy to recognize a set of observations that are undoubtedly generated by the

maximizing self. Notice that all those observations in which the chosen alternative

was not a previous choice must belong to this category. This is so because, as no past

behavior has been replicated, the automatic self could not be active. We call these

observations new observations.

In order to identify a first set of automatically-generated observations, notice that,

being rational, the maximizing self cannot generate cycles of revealed preference. As is

standard, a set of observations t1, t2, . . . , tk forms a cycle if ati+1
∈ Ati , i = 1, . . . , k−1

and at1 ∈ Atk , where all chosen alternatives are different. Given the above reasoning,

for every cycle there must be at least one observation that is automatically generated.

Intuition suggests that the one corresponding to the most familiar environment should

be a decision mimicking past behavior. The following definition helps in formalizing

this idea.

The unconditional familiarity of observation t is

f(t) = max
s<t,as∈At

σ(et, es).

Whenever there is no s < t such that as ∈ At, we say f(t) = 0.

That is, unconditional familiarity measures how similar observation t is to past

observations from which behavior could be replicated, i.e., those past decision prob-

lems for which the chosen alternative is present at t. Then, we say that observation

t is a most familiar in a cycle if it is part of a cycle of observations within which

it maximizes the unconditional familiarity value. Given the above reasoning, these

observations must be generated by the automatic self.

The major challenge is to relate pairs of observations in such a way as to allow
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the knowledge of which self generated one of them to be transferred to the other.

In order to do so, we introduce a second measure of familiarity of an observation t,

which we call conditional familiarity. Formally,

f(t|at) = max
s<t,as=at

σ(et, es).

Whenever there is no s < t such that as = at, we say f(t|at) = 0.

That is, conditional familiarity measures how similar observation t is with past

observations from which behavior could have been replicated, i.e., those past decision

problems for which the choice is the same as at t. The main difference between

f(t) and f(t|at) is that the former is an ex-ante concept, i.e., before considering the

choice, while the latter is an ex-post concept, i.e., after considering the choice. Our

key definition uses these two measures of familiarity to relate pairs of observations.

Definition 1 (Linked Observations) We say that observation t is linked to obser-

vation s, and we write t ∈ L(s), whenever f(t|at) ≤ f(s). We say that observation t

is indirectly linked to observation s if there exists a sequence of observations t1, . . . , tk

such that t = t1, tk = s and ti ∈ L(ti+1) for every i = 1, 2, . . . , k − 1.

The definition formalizes the key idea behind the algorithm. Observation t is linked to

observation s if its conditional familiarity is lower than the unconditional familiarity

of s. As explained below, once an observation is categorized as consciously or auto-

matically generated, it is through its link to other observations that such knowledge

can be extended.

Denote by DN the set of all observations that are indirectly linked to new obser-

vations and by DC the set of all observations to which most familiar observations in

a cycle are indirectly linked. The binary relation determined by the concept of linked

observations is clearly reflexive; thus, new observations and most familiar observations

in a cycle are contained in DN and DC respectively.

We are now ready to present the main result of this section, which establishes that

observations in DN are generated by the maximizing self, while observations in DC

are generated by the automatic self. As a consequence, it guarantees that the revealed

preference of observations in DN is informative with respect to the preferences of the
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individual and it moreover identifies an interval within which the similarity threshold

must lie. Before stating the proposition, it is useful to highlight that x is revealed

preferred to y for a set of observationsO, i.e., xR(O)y, if there is a sequence of different

alternatives x1, x2, . . . , xk such that x1 = x, xk = y and for every i = 1, 2, . . . , k− 1 ∈
O, it is xi = at and xi+1 ∈ At for some t.

Proposition 1 For every collection of observations D generated by a DD process:

1. all observations in DN are generated by the maximizing self while all observa-

tions in DC are generated by the automatic self,

2. if x is revealed preferred to y for the set of observations DN , then x � y,

3. max
t∈DN

f(t) ≤ α < min
t∈DC

f(t|at).

Proof. We start by proving the statement regarding conscious observations. Trivially,

new observations must be generated by the maximizing self since they cannot be

replicating any past behavior. Consider an observation t ∈ DN . By definition, there

exists a sequence of observations t1, t2, . . . , tn with t1 = t, f(ti|ati) ≤ f(ti+1) for all

i = 1, 2, ..., n− 1 and tn being new. We prove that t is generated by the maximizing

self recursively. We know that tn is consciously generated. Now assume that tk is

generated by the maximizing self and suppose by contradiction that tk−1 is generated

by the automatic one. From the assumption on tk, we know that f(tk) ≤ α. From the

assumption on tk−1, we know that f(tk−1|atk−1
) > α, which implies f(tk−1|atk−1

) >

f(tk), a contradiction with the hypothesis. Hence, tk−1 is also generated by the

maximizing self, and the recursive analysis proves that observation t is also consciously

generated.

We now prove the statement regarding automatic observations. First. consider an

observation t which is a most familiar in a cycle and assume by contradiction that it

is generated by the maximizing self. Then, f(t) ≤ α. By definition of most familiar in

a cycle, it must be f(s) ≤ α for every s in the cycle, making all decisions in the cycle

being generated by the maximizing self. This is a contradiction with the maximization

of a preference relation. Now consider an observation t ∈ DC . By definition, there

exists a sequence of observations t1, t2, . . . , tn with tn = t, f(ti|ati) ≤ f(ti+1) for
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all i = 1, 2, ..., n − 1 and t1 being a most familiar in a cycle. We again proceed

recursively. Since t1 is generated by the automatic self, we have f(t1|at1) > α. Now

assume that tk is generated by the automatic self and suppose by contradiction that

tk+1 is generated by the maximizing one. We then know that f(tk|atk) > α ≥ f(tk+1),

which is a contradiction concluding the recursive argument.

For the revelation of preferences part, since DN can only contain observations

generated by the maximizing self, it is straightforward to see that the revealed in-

formation from such a set must refer to the preferences of the DM. Regarding α,

notice that since observations in DN are generated by the maximizing self, we know

that maxt∈DN f(t) ≤ α and also that, since observations in DC are generated by the

automatic self, α < mint∈DC f(t|at), which concludes the proof.

To understand the reasoning behind Proposition 1, first consider an observation

t which is known to be new, and hence consciously generated. This implies that its

corresponding environment is not similar enough to any other previous environment.

In other words, f(t) ≤ α. Then, any observation s for which the conditional familiarity

is less than f(t) must also be generated by the maximizing self. In fact, f(s|as) ≤
f(t) ≤ α implies that no past behavior that could have been replicated in s comes from

an environment that is similar enough to the one in s. Thus, any observation linked

with a new observation must be generated by the maximizing self. It is easy to see that

this reasoning can be iterated. In fact, any observation linked with an observation

generated by the maximizing self must also be generated by the maximizing self.

Similarly, consider a most familiar observation in a cycle t, that is known to be

automatically generated. Any observation s for which the unconditional familiarity is

greater than the conditional familiarity of t must also be generated by the automatic

self. In fact, we know that α < f(t|at) because t is generated by the automatic self.

Then, any observation s to which t is linked has unconditional familiarity greater

than α, which implies that some past behavior could be replicated by the automatic

self, and therefore that such an observation must also be generated by the automatic

self. Again, the reasoning can be iterated. Thus, we can start from a small subset of
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observations undoubtedly generated either automatically or consciously, and thence

infer which other observations are of the same type. We use the example in section

2.2 to show how the algorithm works.

Algorithm: Example of Section 2.2

Suppose that we observe the decisions made by the DM in the example in section 2.2,

without any knowledge regarding his preferences � or similarity threshold α. The

following table summarizes the different observations.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 3, 4, 7 2, 4, 7 1, 3, 6 1, 2, 3, 4 2, 4, 8 2, 4, 8, 9, 10

a1 = 3 a2 = 3 a3 = 1 a4 = 2 a5 = 1 a6 = 1 a7 = 2 a8 = 2

We can easily see that the only new observations are observations 1, 3 and 4;

hence, we can directly infer that the corresponding choices were conscious.

We can now go one step further and consider observation 5. From the observed

behavior we cannot tell whether the choice comes from maximization of preferences

or the replication of past behavior in period 3. Nevertheless, the choice was conscious

in period 3 and one can easily see that f(5|a5) = 2
5
≤ 3

7
= f(3), which means that

observation 5 is linked with observation 3 and, by Proposition 1, this reveals that it,

too, was conscious.

Now consider observation 7. We cannot directly link observation 7 either to ob-

servation 1, 3 or 4, because f(7|a7) = 1
2
> max{f(1), f(3), f(4)}. However, we

can indirectly link observation 7 to observation 3 through observation 5, because

f(7|a7) = 1
2
≤ 1

2
= f(5), thus making 7 an element of DN . No other observation

is indirectly linked to observations 1, 3 or 4 and hence, DN = {1, 3, 4, 5, 7}. The

method rightfully excludes all automatic choices from DN .

This example presents inconsistencies in the revealed preference. Observations 3

and 6 are both in conflict with observation 2. That is, observations 2 and 3 and 2 and 6

form cycles. Then, noticing that max{f(2), f(3)} = f(2) and that max{f(2), f(6)} =

f(2) = f(6) we can say that observations 2 and 6 are generated by the automatic self

thanks to Proposition 1, given they are most familiar in a cycle.

Notice then, however, that observation 6 is linked to observation 8 given that
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f(6|a6) = 3
5
≤ f(8) = 3

5
, thus revealing that the latter must also have been automat-

ically generated. Thus, we obtain that DC = {2, 6, 8}, which were the observations

rightfully excluded from DN . No decision made by the maximizing self has been cat-

aloged as automatic.

The modified revealed preference exercise helps us determine that alternative 1 is

better than any alternative from 2 to 7, alternative 3 is better than any alternative

from 4 to 6, and alternative 2 is better than alternatives 4, 7 and 8, as is indeed

the case. The value of the similarity threshold α can, by Proposition 1, be correctly

determined to be in the interval [0.5, 0.6) thanks to the information retrieved from

observations 7 and 8 respectively.

DN contains new observations and those indirectly linked to them.8 It may be the

case that some consciously-generated observations are not linked to any observation

in DN , thus making DN a proper subset of the set of all consciously-generated obser-

vations. For this reason, nothing guarantees that D\DN are automatically-generated

observations and hence, Proposition 1 must show how to dually construct a set of

automatic decisions DC . Nonetheless, if the observations are rich enough, it is pos-

sible to guarantee that DN and DC contain all conscious and automatic decisions,

respectively.9 More importantly, notice that Proposition 1 relies on one important

assumption, which is that the collection of observations is generated by a DD process.

The following section addresses this issue.

4 A Characterization of Dual Decision Processes

In Section 3 we showed how to elicit the preferences and the similarity threshold of

an individual who follows a DD process. Building upon the results of that section,

we here provide a necessary and sufficient condition for a set of observations to be

characterized as a DD process with a known similarity function. In other words, we

provide a condition that can be used to falsify our model.

From the construction of the set DN , we understand that a necessary condition

8DN is never empty because it always contains the first observation.
9Material available in the online appendix.
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for a dataset to be generated by a DD process is that the indirect revealed preference

obtained from observations in DN , i.e. R(DN), must be asymmetric. It turns out

that this condition is not only necessary but also sufficient to represent a sequence

of decision problems as if generated by a DD process. A simple postulate of choice

characterizes the whole class of DD processes.

Axiom 1 (Link-Consistency) A sequence of observations {(At, et, at)}Tt=1 satisfies

Link-Consistency if, in every cycle, there is at least one observation that is not indi-

rectly linked to a new observation.

This is a weakening of the Strong Axiom of Revealed Preference. In fact, it

allows for cycles but only of a particular kind. Preferential information gathered

from observations in DN cannot be inconsistent. The following theorem shows that

this condition is indeed necessary and sufficient to characterize DD processes with

known similarity.

Theorem 1 A sequence of observations {(At, et, at)}Tt=1 satisfies Link-Consistency

if and only if there exist a preference relation � and a similarity threshold α that

characterize a DD process.

Proof. Necessity: IfD is generated by a DD process, then it satisfies Link-Consistency

as explained in the text.

Sufficiency: Now suppose that D satisfies Link-Consistency. We need to show that

it can be explained as if generated by a DD process. Notice that Link-Consistency

implies that the revealed preference relation defined over DN , i.e. R(DN), is asym-

metric. In fact, asymmetry of R(DN) means that it is not possible to construct cycles

comprised of observations in DN . Using standard mathematical results, we can find

a transitive completion of R(DN), call it �. By construction, all decisions in DN can

be seen as the result of maximizing � over the corresponding menu.

Define α = maxt∈DN f(t). Notice that by definition of DN , there is no observation

s /∈ DN such that f(s|as) ≤ f(t) for some t ∈ DN . This implies that, for all s /∈ DN ,

f(s|as) > α,; thus, it is possible to find, for each one, a preceding observation which

it would appear to replicate. In particular, the one defining f(s|as).
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Thus, we can represent the choices as if generated by an individual with preference

relation � and similarity threshold α.

The theorem is saying that Link-Consistency makes it possible to determine

whether the DM is following a DD process or not. In particular, when the property is

satisfied, we can characterize the DM’s preferences with a completion of R(DN) which

is asymmetric thanks to Link-Consistency and use the lower bound of α as described

in Proposition 1 to characterize the similarity threshold. In fact, by construction, for

any observation t outside DN it is possible to find a preceding observation that can

be replicated, i.e., the one defining f(t|at). The next section shows how the algorithm

would still work even if with extremely partial knowledge of the similarity compar-

isons. Notice, however, that Link-Consistency implies that there must be no cycles

among new observations, a concept which is independent of the particular choice of

similarity function, thus making the model always falsifiable. Finally, notice that we

do not assume any particular structure for the sequence of observations we use as

data, and hence that the characterization of preferences does not need to be unique,

even when the similarity is known.10

5 Partial Information on the Similarity

In this section we show that our algorithmic analysis is robust to very weak assump-

tions concerning knowledge of the similarity function. In particular, we study the

case in which only a partial preorder, i.e., a reflexive, transitive but incomplete bi-

nary relation, over pairs of environments is known, and denoted by S. For example,

the Symmetric Difference between sets satisfies this assumption. Such an extension

is very general. It is potentially relevant in many contexts where it is not possible to

estimate the cardinal similarity function but only the relative order it represents. It is

also robust to even weaker assumptions, when, for example, only some of the binary

10Material providing a full characterization of the procedure with rich enough data is available in
the online appendix. Richness is obtained either by assuming that the data come from a homogeneous
population, as is standard in the literature when dealing with path dependent models, or by assuming
that the implicit memory of the DM is bounded and that the bound is known.
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comparisons between pairs of environments are known. Returning to the example

used in the introduction, we might not know how the DM compares different prices

and dispositions of products on the shelf, but we might know that, for any combina-

tion of prices, a minor change in just one price results in a more similar environment

than a major change in all prices.

We show here that, even if the information regarding similarity comparisons is

partial, it is still possible to construct two sets that contain only conscious and auto-

matic observations respectively, and that one consistency requirement characterizes

all DD processes. In order to do this, we assume that, if the individual follows a

DD process, the similarity σ cardinally represents a completion of such a partial or-

der. Thus, for any e, e′, g, g′ ∈ E, (e, e′)S(g, g′) implies that σ(e, e′) ≥ σ(g, g′) and

we say that (e, e′) dominates (g, g′). We first adapt the key concepts on which the

algorithmic analysis is based in order to run the more general analysis.

The two concepts of familiarity need to be changed. In particular, given that it is

not always possible to define the most familiar past environment, the new familiarity

definitions will be sets containing undominated pairs of environments. Let F (t) and

F (t|at) be defined as follows:

F (t) = {(et, es)|s < t, as ∈ At and there is no w < t such that (et, ew)S(et, es) and aw ∈ At},

F (t|at) = {(et, es)|s < t, as = at and there is no w < t such that (et, ew)S(et, es) and aw = at}.

That is, F (t) and F (t|at) generalize the idea behind f(t) and f(t|at), respec-

tively. In fact, F (t) contains all those undominated pairs of environments where et is

compared with past observations which choice could be replicated. Similarly, F (t|at)
contains all those undominated pairs of environments in which et is compared with

past observations, the choice of which could have been replicated. We can easily rede-

fine the concept of link. We say that observation t is linked to the set of observations

O whenever either F (t|at) = ∅ or for all (et, e) ∈ F (t|at) there exists s ∈ O such that

(es, e
′)S(et, e), for some (es, e

′) ∈ F (s). Two things are worth underlining. First, no-

tice that F (t|at) = ∅ only if t is new; thus, as in the main analysis, new observations

are linked with any other observation. Next, notice that, this time, we define the link
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between an observation t and a set of observations O. This helps us to tell whether

an observation is generated by the maximizing self once we know that another obser-

vation is. If all observations in O are generated consciously, and for each one of them

there exists a pair of environments that dominates a pair in F (t|at), then t must also

have been generated by the maximizing self. This is because, for all observation s in

O, the similarity of all pairs of environments contained in F (s) must be below the

similarity threshold.

Then, we say that observation t is Consciously-indirectly linked to the set of ob-

servations O if there exists a sequence of observations t1, . . . , tk such that t = t1, tk is

linked to O and ti is linked to {ti+1, ti+2, ..., tk}∪O for every i = 1, 2, . . . , k−1. Define

DN̂ as the set containing all new observations and all those observations indirectly

linked to the set of new observations. Proposition 2 shows that DN̂ contains only

observations generated by the maximizing self.

What about automatic choices? As in the main analysis, whenever a cycle is

present in the data, we know that at least one of the observations in the cycle must

be generated by the automatic self. This time, given that we assume only partial

knowledge of the similarity comparisons, it is not always possible to define a most

familiar observation in a cycle.11 Notice, however, that, whenever an observation is

inconsistent with the revealed preference constructed from DN̂ , such an observation

must be automatically generated.12 Thus, say that observation t is cloned if it is

either a most familiar in a cycle or xR(t)y while yR(DN̂)x.

Say that observation t is Automatically-indirectly linked to observation s if there

exists a sequence of observations t1, . . . , tk such that t = t1, tk = s and ti is linked to

ti+1 for every i = 1, 2, . . . , k−1. Whenever we know that observation t is automatically

generated, we can infer that observation s is generated by the automatic self too,

only if, for all pairs of environments in F (t|At), there exists a pair of environments

in F (s) that dominates it. In fact, in general, only some pairs of environments

11Obviously, in this context, a most familiar observation in a cycle would be an observation t
belonging to a cycle such that for any other observation s in the cycle, F (t) dominates F (s). That
is, for any (es, e) ∈ F (s) there exists (et, e

′) ∈ F (t) such that (et, e
′)S(es, e).

12Notice that this implies that even with no knowledge of any similarity comparisons, the knowl-
edge that new observations give us regarding the preferences of the individual highlights some ob-
servations as automatic given they are in contradiction with those preferences.
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contained in F (t|at) have similarity above the threshold. As before, let DĈ be the set

containing all cloned observations and the observations to which they are indirectly

linked. Proposition 2 below shows that DĈ contains only observations generated by

the automatic self.

Proposition 2 For every collection of observations D generated by a DD process

where only a partial preorder over pairs of environments is known:

1. all decisions in DN̂ are generated by the maximizing self and all decisions in

DĈ are generated by the automatic self,

2. if x is revealed preferred to y for the set of observations DN̂ , then x � y.

Proof. First, we show that any observation t linked to a set O of conscious ob-

servations must also be generated by the maximizing self. In fact, notice that, for

any s ∈ O, we know that σ(es, e
′) ≤ α for all (es, e

′) ∈ F (s). Then, given that

t is linked to O, we know that, for any (et, e) ∈ F (t|at), there exists s ∈ O such

that (es, e
′)S(et, e) for some (es, e

′) ∈ F (s). Now, given the definition of F (t|at), this

implies that σ(et, ew) ≤ α for all w < t such that aw = at and the result follows.

Then, by Proposition 1 in the paper, we know that new observations are consciously

generated and, by applying the previous reasoning iteratively, it is shown that DN̂

must contain only observations generated by the maximizing self.

As a second step, we show that any observation s to which an observation t

generated by the automatic self is linked, must be also automatically generated. Given

that t is generated by the automatic self, it means that there exists a w < t such that

σ(et, ew) > α and aw = at. Then, either (et, ew) ∈ F (t|at) or (et, ew) /∈ F (t|at).

• Let (et, ew) ∈ F (t|at). Then, given that t is linked to s, there exists a pair

(es, e
′) ∈ F (s) such that (es, e

′)S(et, ew). This implies that σ(es, e
′) ≥ σ(et, ew) >

α, and the result follows.

• Let (et, ew) /∈ F (t|at). Then, there exists a w′ < t such that (et, ew′)S(et, ew)

and (et, ew′) ∈ F (t|at). This implies that σ(et, ew′) > σ(et, ew) > α. Then,

given that t is linked to s, we know that, for all (et, e) ∈ F (t|at), there exists
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a (es, e
′) ∈ F (s) such that (es, e

′)S(et, e). In particular, there exists a (es, e
′) ∈

F (s) such that (es, e
′)S(et, ew′). This implies that σ(es, e

′) ≥ σ(et, ew′) > α,

and the result follows.

Then, given that cloned observations are automatically generated, we can apply the

previous reasoning iteratively to show that DĈ must contain only observations gen-

erated by the automatic self.

Finally, by reasoning similar to that developed in the proof of Proposition 1 in the

main text, given that all observations in DN̂ must be consciously generated, R(DN̂)

reveals the preference of the DM.

Thus, we see that knowing only a partial preorder does not heavily affect the struc-

ture of the algorithm and the main logical steps behind it. What is of interest is that,

even with this assumption, it is possible to characterize a DD process with only a

single condition, that is, DN̂ -Consistency.

Axiom 2 (DN̂ -Consistency) A sequence of observations {(At, et, at)}Tt=1 satisfies

DN̂ -Consistency whenever xR(DN̂)y implies not yR(DN̂)x.

DN̂ -Consistency imposes asymmetry on the revealed preference obtained from DN̂ . If

a sequence of decision problems satisfies DN̂ -Consistency when only a partial preorder

is known, then we are able to characterize the preferences of the individual, the

similarity threshold and, more importantly, a similarity function that respects that

preorder. This is what is stated in the following theorem. Notice that S is assumed

to be known.

Theorem 2 A sequence of observations {(At, et, at)}Tt=1 satisfies DN̂ -Consistency if

and only if there exist a preference relation �, a similarity function σ representing S

and a similarity threshold α that characterize a DD process.

Proof. Necessity: Suppose that the sequence {(At, et, at)}Tt=1 is generated by a DD

process. Then it satisfies DN̂ -Consistency given that, according to Proposition 2, DN̂

contains only conscious observations and � is a linear order.
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Sufficiency: Suppose that the sequence {(At, et, at)}Tt=1 satisfies DN̂ -Consistency.

We need to show that it can be explained as if generated by a DD process. Notice

that DN̂ -Consistency implies that the revealed preference relation defined over DN̂ ,

i.e., R(DN̂), is asymmetric. Thus, using standard mathematical results, we can find

a transitive completion of R(DN̂), call it �. By construction, all decisions in DN̂ can

be seen as the result of maximizing � over the corresponding menu.

We now define σ. We first complete S. Notice that, by construction of DN̂ , for all

t /∈ DN̂ , there exists a pair (et, e) ∈ F (t|at) such that there is no s ∈ DN̂ for which

(es, e
′)S(et, e) for some (es, e

′) ∈ F (s). That is, for all observations not in DN̂ , there

exists a pair of environments which is not dominated by any pair of environments of

observations in DN̂ . We call this pair undominated. Then, let S ′ be the following

reflexive binary relation. For any undominated pair (et, e) ∈ F (t|at) with t /∈ DN̂ ,

let, for all s ∈ DN̂ and for all (es, e
′) ∈ F (s), (et, e)S

′(es, e
′) and not (es, e

′)S ′(et, e).

Let S ′′ be the transitive closure of S ∪ S ′. Notice that S ′′ is an extension of S that

preserves its reflexivity and transitivity. Thus, we can find a completion S∗ of S ′′ and

a similarity function σ : E × E → [0, 1] that represents S∗.

Finally, we can define α. For any observation t, let f ∗(t) be as follows:

f ∗(t) = max
s<t,as∈At

σ(et, es),

Then let α = maxt∈DN̂ f
∗(t). Notice that, by construction of σ, for all t /∈ DN̂ there

exists a pair of environments (et, e) ∈ F (t|at) such that for all s ∈ DN̂ , σ(et, e) >

f ∗(s), hence σ(et, e) > α. So, for every observation not in DN̂ we can find a preceding

observation for it to replicate.

Thus, we can represent the choices as if generated by an individual with preference

relation �, similarity function σ and similarity threshold α.

Intuitively, the observations inDN̂ are used to construct the individual’s preference

relation. The similarity function represents a possible extension of the partial preorder

that respects the absence of links between observations in DN̂ and those outside that

set. This is possible thanks to the construction of DN̂ and it allows for the definition

of the similarity threshold in a similar fashion as before.
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6 The Model in Context

In this section, we show how the paper relates to the literature and what evidence

from cognitive sciences it is formalizing.

6.1 Related Literature

In our model the presence of similarity comparisons makes behavior automatic. That

is, if two environments are similar enough, then behavior is replicated. This is a dif-

ferent approach with respect to the theory for decisions under uncertainty, which was

proposed in Gilboa and Schmeidler (1995) and summarized in Gilboa and Schmeidler

(2001). In case-based decision theory, as in our model, the decision maker uses a

similarity function in order to assess how much alike are the problem he is facing and

the ones he has in his memory. In that model the decision maker tends to choose the

action that performed better in past similar cases. There are two main differences

with the approach we propose here. First, from a conceptual standpoint, our model

relies on the idea of two selves interacting during the decision-making process. Sec-

ond, from a technical point of view, our model uses similarity in combination with a

threshold to determine whether the individual replicates past behavior or maximizes

preferences, while in Gilboa and Schmeidler (1995) preferences are always maximized.

Thus, as section 8 suggests, case-based decision theory may be ingrained in the more

general structure proposed here. The model in Gilboa and Schmeidler (1995) can be

seen as a particular way of making conscious decisions. Nevertheless, both models

agree on the importance of analogies for human behavior.

We would like to stress that, although our proposed behavioral model is new, the

idea that observed behavior may be the outcome of interaction between two different

selves is not novel and dates back, at least, to Strotz (1955). Strotz-type models,

such as Laibson (1997), Gul and Pesendorfer (2001) or Fudenberg and Levine (2006),

are different from the behavioral model introduced here, since they represent the

two selves as two agents with different and conflicting preferences, usually long-run

vs short-run preferences.13 In our approach, however, the two selves are inherently

13In some models, the difference between the two selves stems from the fact that they have different
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different one from the other. One uses analogies to deal with the environment in which

the decision maker acts, while the other uses a preference relation to consciously

choose among the available options. Furthermore, the issue of which self drives a

particular decision problem depends on problems experienced in the past and their

degree of similarity with the current one, and not on whether the decision affects the

present or the future. Nevertheless, we do not exclude the possibility that analogy

formation may be influenced to some extent by whether the decision affects the present

or the future.

Finally, it is important to notice that the preference revelation strategy used in

this paper agrees with the one used in Bernheim and Rangel (2009), who analyze the

same problem of eliciting individual preferences from behavioral datasets, which they

do in two stages. In a first stage, they take as given the welfare relevant domain,

that is the set of observations from which individual preferences can be revealed; and

then, in a second stage, they analyze the welfare-relevant observations and propose a

criterion for the revelation of preferences that does not assume any particular choice

procedure to make welfare judgments.14 Albeit similar, our approach differs in two

important aspects. Firstly, we model conscious and automatic choices, and, in section

3, we propose a particular method for finding the welfare-relevant domain, i.e. the

algorithm highlighting a set of conscious choices. Secondly, we propose a specific

choice procedure, and perform standard revealed preference analysis on the relevant

domain; thus our method, by being behaviorally based, is less conservative for the

elicitation of individual preferences. In this sense, our stance is also similar to the one

proposed in Rubinstein and Salant (2012), Masatlioglu et al. (2012) and Manzini and

Mariotti (2014), who make the case for welfare analysis based on the understanding

of the behavioral process that generated the data.

information. See, for example, Cunningham (2015), which proposes a model of decision making
where the two selves hierarchically aggregate information before choosing an alternative. Other
papers use more than two selves to rationalize individual choices, but all selves are still represented
by different preference relations; see, for example, Kalai et al. (2002), Manzini and Mariotti (2007)
and Ambrus and Rozen (2015).

14Notice that Apesteguia and Ballester (2015) also propose a choice-procedure free approach for
measuring the welfare of an individual from a given dataset. They do this by providing a model-free
method to measure how close actual behavior is to the preference that best reflects the choices in
the dataset.
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6.2 Cognitive Foundations of the Model

The cognitive sciences have always distinguished between conscious and unconscious

processes. More recently, this duality has been incorporated into Dual Process Theory,

as described in Evans and Frankish (2009) and Kahneman (2011), which divides

mental processes into two categories, analytical (or conscious) and analogical (or

automatic).15 Using these findings, the objective here is twofold, (i) to propose a

simple initial formalization of automatic processes and (ii) to model the interaction

between conscious and automatic processes in a tractable way. We abstract from more

in-depth modeling of conscious behavior, which is represented here by the rational

model. Nevertheless, the framework developed in this paper is flexible enough to

allow for alternative models of conscious processes, as explained in more detail in

section 8.

Unconscious or automatic processes are extremely context dependent. In par-

ticular, the main determinant for the activation of non-deliberative processes is the

subjective experience of ease associated with a particular situation, i.e., fluency, due

to the characteristics of the environment. Studies surveyed by Oppenheimer (2008),

one of the leading scholars in fluency research, show that in fluent, familiar, situ-

ations, individuals’ decisions are less conscious, that is, more automatic. Disfluent

situations, on the other hand, lead to conscious behavior.16 Hence, it becomes crucial

for the purposes of this paper to be able to formalize what fluency of an environment

is.

Paraphrasing Oppenheimer (2008), a situation becomes more fluent as it becomes

more familiar. That is, an experience is more fluent the easier is the unconscious

perception of its similarity with past experiences.17 Thus, we model familiarity here

15Many papers helped in developing the theory, including Schneider and Shiffrin (1977), Evans
(1977), McAndrews et al. (1987), Evans (1989), Reber (1989), Epstein (1994) and Evans and Over
(1996).

16This literature is closely related to that on limited attention in cognitive sciences, where agents
consciously analyze a situation only if it is novel enough, see Woodford (2019).

17This is in line with research on priming, which studies the influence of unconscious or implicit
memory on behavior through environmental cues, which appears to be one of the main sources of
fluency. As defined in Tulving and Schacter (1990), priming is an unconscious change in the ability
to identify or produce an item as a result of a specific prior encounter with that item. Priming
creates a sense of familiarity and ease, which make the environment fluent and behavior automatic
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through two main channels. First, an environment is more familiar the greater its

similarity with environments experienced in the past.18 This is measured by the sim-

ilarity function. Second, problems requiring new solutions due a lack of previous

solutions, cannot be considered familiar. That is, a decision problem is familiar if

past behavior can be replicated. Clearly, these are simplifications; but they are in

line with evidence in cognitive sciences showing that automatic processes are based

on analogical reasoning, i.e., similarity judgments with the past, which activate au-

tomatic responses.19 The main idea we are depicting is that environments that are

similar with the past prompt automatic responses that are drawn from past experi-

ences. This is also in line with the evidence in Woodford (2019) which calls for the

introduction of these ideas in economics.

Then, the second important step is to model the dichotomy between conscious and

automatic processes. The majority of the evidence points to the fact that analogical

reasoning is parallel.20 That is, automatic processes operate continuously; uncon-

sciously assessing the nature and familiarity of the environment. On the other hand,

conscious processes are costly and are fully activated only when the environment is

disfluent or novel, i.e., unfamiliar. In the model, the parallel nature of analogical

reasoning is represented by the fact that similarity comparisons are always drawn

and the costly nature of the conscious system is captured by the similarity threshold.

The higher the threshold, the lower the cost; that is, fewer environments will be per-

ceived as fluent or familiar. This assumption enriches the model and aligns it more

closely with the evidence. In fact, the fluency of an environment is a concept that

intertwines similarity with past experiences with the cost of conscious processing.21

Conscious processes are needed when new responses are required due to the novelty

of the environment, either because it is not similar enough with past experiences or

and coherent with the context. See Bargh (2005) for a survey on priming.
18Notice that , given that we are describing implicit memory, we assume perfect memory, in line

with research in neurosciences as already summarized in Graf (1990). For a more recent survey, see
Dew and Cabeza (2011).

19See Bargh (2005), Evans and Frankish (2009), Kahneman (2011) and Lisman and Sternberg
(2013).

20See Evans and Frankish (2009) for a survey of the evidence.
21Notice that the model abstracts from the notion that the cost of conscious processing can be

a function of the environment. This is clearly a simplification to avoid having too many degrees of
freedom, but it is certainly an interesting avenue for future research.
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because no behavior can be replicated.22 This is in line with research in neuroscience,

see Lisman and Sternberg (2013), which sustains that unconscious processes generate

habits while non-habits are the outcome of conscious responses.

Finally, notice that, in this model, the relationship between automatic and con-

scious processes does not have to be completely dichotomous. As already stated,

here, we present and analyze a class of models, some specifications of which make the

relationship between automatic and conscious processes more complementary. For

example, choosing the alternative that maximizes preferences over those chosen in

similar-enough past environments. In this sense, the automatic system would be sim-

plifying the problem by creating a fluent consideration set on which the conscious

system would be maximizing preferences.

7 An Application: Asymmetric Pricing

In this section, the model is used to provide a simple explanation for the phenomenon

of asymmetric pricing, that is, the asymmetric response of firms to changes in costs.

Firms increase prices when costs go up, while they tend not to decrease prices when

costs go down. This well- documented fact is at odds with standard economic theory,

despite the fact that it affects two thirds of markets, as highlighted in the seminal

paper Peltzman (2000). The evidence in Peltzman (2000) is quite overwhelming and

excludes more standard explanations, such as collusion or menu costs. In fact, the

phenomenon is present in all kind of markets, regardless of their degree of compet-

itiveness. Peltzman (2000) calls for a new theory to deal with this phenomenon.

Various models have been put forward, as explained below, but, first, we show that

DD processes provide a fairly natural and alternative explanation of the phenomenon.

Consider two firms competing over a market comprised of consumers described

by a DD process. Consumers’ automatic systems make analogies over price vectors,

i.e., given constant wealth, over budget sets. Meanwhile, firms face cost shocks. The

key idea is that the presence of DD consumers creates a demand in the second period

that depends on prices in the first and that has asymmetric responses to changes

22We do not exclude the possibility that, in such instances, the conscious response would be to
choose a similar enough alternative in a similar enough environment.
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in prices. If prices rise in the second period, consumers react rationally because

they are unable to replicate past behavior, given that their budget sets have shrunk.

On the other hand, if prices fall in the second period, not all consumers will adapt

their behavior, given that they have heterogeneous similarity thresholds and are able

to replicate past behavior. Thus, if the decrease in prices is not big enough, some

consumers will not perceive the change, thus making the demand much less elastic.

Under certain circumstances, this particular demand structure gives firms incentives

to maintain prices when costs go down but adjust them when costs go up. The

following subsections clarify this reasoning.

7.1 Setting

The setting is very simple. There are two firms, A and B, which compete à la Bertrand

over two periods.23 The structure of the game is common knowledge among the firms.

First period costs are symmetric, marginally constant and normalized to 1, that is,

c1
A = c1

B = 1, where cti represent the costs of firm i in period t. In period 2, costs are

independently drawn for each firm i = A,B as follows:

c2
i =

(1 + β) with π probability

(1− β) with 1− π probability

with β ∈ (0, 1).

Consumers are described by a DD process and have V units of wealth in each

period. The automatic system makes comparisons between price vectors. In the first

period, consumers are rational, given that there is no past to replicate. In the second

period, consumers’ behavior depends on firms’ pricing decisions and consumers’ sim-

ilarity thresholds, which are distributed in the population with density function f .

This means that heterogeneity in the population is modeled through different costs

of maximizing-self activation.

23Competition à la Bertrand assures that asymmetric pricing is not the outcome of firms’ market
power while also making the assumption of having just two firms less relevant. In fact, the whole
analysis can be generalized to n firms quite easily.
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7.2 Analysis

In this section, we look for the subgame perfect equilibria of the game. We focus on

the existence of an equilibrium in pure strategies. First of all, notice that, given the

symmetry of the environment, we must have that firms choose the same action in

period one. For now, let p1
A = p1

B = p1, where pti is the price firm i charges in period

t. We now look at the second period decision. W.l.o.g., the analysis concerns firm

A’s decision in the second period.

The demand faced by firm A in period two depends not only on prices in period

one, but also on the pricing decisions of firm B in period two. Let:

µ(αn) =

∫ αn

0

f(α)dα

with

αn = σ(p1
A, p

1
B; p2

A, p
2
B)

That is µ represents the fraction of consumers who use the automatic system to

purchase in period two. Thus we have the following.

If p2
B = p1:

d2
A(p1

A, p
1
B, p

2
A, p

2
B) =


0 if p2

A > p2
B,

1
2
V
p1

if p2
A = p2

B,

µ(α1)1
2
V
p1

+ (1− µ(α1))1 V
p2A

if p2
A < p2

B.

While if p2
B 6= p1 we get:

d2
1(p1

A, p
1
B, p

2
A, p

2
B) =



0 if p2
A > p2

B ≥ p1,

1
2
V
p2A

if p1 < p2
A = p2

B,

1
2
V
p1

if p1 = p2
A = p2

B,

1 V
p1

if p1
1 = p2

A < p2
B,

µ(α2)1
2
V
p1

+ (1− µ(α2))0 if p2
B < p2

A ≤ p1,

µ(α2)1
2
V
p1

+ (1− µ(α2))1 V
p2A

if p2
A < p2

B ≤ p1.
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Notice that α1 ≥ α2, given that, in scenario 2, both firms might have changed prices

so fewer consumers will perceive the environment as being similar enough.

First of all, when costs are high, i.e., c2
A = 1+β, firm A will adapt prices such that

p1 6= p2
A = 1 + β. Suppose firm A does not adapt prices, that is, p2

A = p1. Suppose,

then, that p2
A = p1 ≥ 1 + β. In this case, firms would be making positive profits in

both periods, under any circumstance, and hence would have incentives to undercut

each other in the first period, thus leading to p1 < 1 + β. Clearly, it cannot be that

p2
A = p1 < 1+β, because firm A would have incentives to deviate in the second period

to avoid incurring in negative profits. Thus, it must be that p1 6= p2
A = 1 + β.

As a second point, notice that, when firm A has low costs in period two, i.e.,

c2
A = 1−β, while firm B has high costs, c2

B = 1 +β, we will have that p2
A = 1 +β− ε,

given that p2
B = 1 + β, as per the previous reasoning. For simplicity, we assume that,

in this case, p2
A = 1 + β and that firm A wins the entire market.

Now, to examine what happens when costs are low for both firms, that is, c2
A =

c2
B = 1 − β, let us assume that firm A believes that firm B does not change prices,

that is, p2
B = p1. Then, if firm A lowers prices it gets:

(p2
A − (1− β))(µ(α1)

1

2

V

p1
+ (1− µ(α1))1

V

p2
A

)

On the other hand, if it does not lower prices, it gets:

(p1 − (1− β))
1

2

V

p1

That is, firm A does not charge p2
A if:

(p1 − (1− β))
1

2

V

p1
≥ (p2

A − (1− β))(µ(α1)
1

2

V

p1
+ (1− µ(α1))1

V

p2
A

)

with p1 > p2
A > (1− β). This condition can be rewritten as:

µ(α1) ≥ 2(p2
A − (1− β))p1 − (p1 − (1− β))p2

A

(p2
A − (1− β))(2p1 − p2

A)
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That is:

F (α1) ≥ 2(p2
A − (1− β))p1 − (p1 − (1− β))p2

A

(p2
A − (1− β))(2p1 − p2

A)

If we let p2
A = p1 − ε, we can rewrite the condition as follows:

F (α1) ≥ p1

p1 + ε
− ε

(p1 + ε)

1− β
(p1 − ε− (1− β))

(1)

The following subsection will show that this condition can hold under many general

circumstances. For now, let us assume that the condition is satisfied, to see whether

it is possible to obtain an equilibrium with asymmetric pricing in pure strategies.

We need to solve for p1. Clearly, price competition among firms requires p1 to be

such that expected profits in period 1 are zero. That is:

(p1 − 1)
1

2

V

p1
+ π2(p1 − (1− β))

1

2

V

p1
+ π(1− π)2β

V

1 + β
= 0

So we get:

p1 =
(1 + β)(1 + (1− β)π2)

(1 + π2)(1 + β) + π(1− π)4β

First notice that p1 < 1. In fact:

(1 + β)(1 + π2(1− β)) < (1 + β)(1 + π2) + π(1− π)4β

Given that (1 + β)(1 + π2(1− β)) < (1 + β)(1 + π2) and π(1− π)4β > 0. Moreover,

clearly, p1 > 1− β. In fact:

p1 − (1− β) =
β((1 + β)− π(1− π)4(1− β))

(1 + π2)(1 + β) + π(1− π)4β
> 0

given that
1 + β

1− β
> 4π(1− π),

where the left hand side is greater than 1, while the maximum of the right hand side

is 1.

To be sure that p1 can be an equilibrium price when Condition (1) is satisfied,

firms must have no incentives to deviate. In fact, it might be the case that firms still
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want to deviate unilaterally in the first period. That is, firms might decide to incur

in greater short-term losses in order to win the entire market in the second period,

and thereby make greater long-term profits. Thus, for p1 to be an equilibrium price,

it must be that:

(p1 − 1)
1

2

V

p1
+ π2(p1 − (1− β))

1

2

V

p1
+ π(1− π)2β

V

1 + β
>

> (p1 − ε− 1)
V

p1 − ε
+ π2(p1 − ε− (1− β))

V

p1 − ε
+ π(1− π)2β

V

1 + β

Or:

0 > (p1 − ε− 1)
V

p1 − ε
+ π2(p1 − ε− (1− β))

V

p1 − ε
+ π(1− π)2β

V

1 + β
.

which can be rewritten as:

(1 + β)(1 + (1− β)π2)

(1 + π2)(1 + β) + π(1− π)2β
> p1 − ε.

A sufficient condition is:

(1 + β)(1 + (1− β)π2)

(1 + π2)(1 + β) + π(1− π)2β
> p1 =

(1 + β)(1 + (1− β)π2)

(1 + π2)(1 + β) + π(1− π)4β
,

which is always true. Firms have no incentive to deviate. Thus, it is possible to

obtain asymmetry of pricing in pure strategies in this setting, as highlighted in the

following proposition.

Proposition 3 There is an equilibrium with asymmetric pricing only if Condition

(1) holds.

Notice that proposition 3 is actually saying two things. Firstly, that, if Condition

(1) does not hold, then firms have incentives to deviate unilaterally and therefore, by

standard arguments, prices will be equal to costs, thus leading to no asymmetry in

pricing. Secondly,that, if Condition (1) holds, there is an equilibrium with asymmetric

pricing but it might be the case that there are more equilibria. In fact, the whole

analysis is based on firm A’s belief that firm B does not change prices. If firm A
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believes otherwise, then its incentives to change prices might be stronger and an

additional standard equilibrium, with prices equal to costs, would be possible.24

Finally, it is interesting to highlight the following.

Remark 1 Whenever Condition (1) holds, there is an equilibrium in which firms

enjoy a mark up in period 2 when costs are low.

In fact, if Condition (1) is satisfied, p1 ∈ (1− β, 1) and therefore firms have negative

profits in period 1 that are compensated by expected positive profits in period 2.

This implies that prices align with costs only when costs are high. While not central

to understanding asymmetry in pricing, this remark is interesting because it means

that, in this simple setting, firms might enjoy mark-ups in pure strategies, even in a

fairly competitive environment as occurs under Bertrand competition.

7.3 Analysis of Condition (1)

In this section, we analyze whether there are general settings under which Condition

(1) holds or fails.

To understand when Condition (1) is satisfied, we need to make some assumption

regarding the automatic system and the distribution of the similarity threshold in the

population. As a first step, let the similarity function be:

σ(p1
A, p

1
B; p2

A, p
2
B) =

1

1 + d((p1
A, p

2
A), (p1

B, p
2
B))

where d((p1
A, p

2
A), (p1

B, p
2
B) = ((p1

A − p2
A)2 + (p1

B − p2
B)2)

1
2 is the Euclidean distance

between price vectors in the two periods. Under the assumptions of Condition (1) we

have that ((p1
A − p1

B)2 + (p2
A − p2

B)2)
1
2 = ε. Thus, we have:

µ(α1) =

∫ 1
1+ε

0

f(α)dα = F
( 1

1 + ε

)
24Notice that, if Condition (1) holds, such an equilibrium would not be trembling-hand perfect,

given that the belief that firm B will change prices can be sustained only by allowing mistakes by
firm B.

32



Thus, Condition (1) can be rewritten as follows:

F
( 1

1 + ε

)
≥ p1

p1 + ε
− ε

(p1 + ε)

1− β
(p1 − ε− (1− β))

,

which leads to remark 2.

Remark 2 If F
(

1
1+ε

)
≥ 1

1+ε
for any ε, Condition (1) is satisfied.

This stems from the fact that p1 < 1 and so:

F
( 1

1 + ε

)
≥ 1

1 + ε
>

p1

p1 + ε
>

p1

p1 + ε
− ε

(p1 + ε)

1− β
(p1 − ε− (1− β))

,

where the last inequality stems from the fact that the last term is always positive.

Notice that F
(

1
1+ε

)
≥ 1

1+ε
for any ε for many distributions, e.g. the uniform dis-

tribution or any positively-skewed Beta distribution, such as Beta(1, n) with n > 1.

However, this is only a sufficient condition. Whenever F
(

1
1+ε

)
< 1

1+ε
for some ε,

Condition (1) must be checked and no general conclusions can be drawn without

making further assumptions. Nevertheless, an interesting implication of the model

can be highlighted.

Remark 3 If F
(

1
1+ε

)
< p1

p1+ε
for some ε, then there exists a β big enough such that

Condition (1) fails.

The remark is a direct consequence of the fact that

lim
β→1

1− β
(p1 − ε− (1− β))

= 0

Remark 3 is of particular interest given that it goes in the direction of empirical

findings. In fact, Peltzman (2000) finds that asymmetric pricing is present in those

markets in which cost shock are not particularly big. That is, empirically, the bigger

the cost shocks, the less asymmetric the behavior of firms in adjusting prices to costs.

Similar results are found in Chen et al. (2008). The intuition behind Remark 3 in

our setting is quite straightforward. Ceteris paribus, the higher the β, the more room

there is for a firm to decrease the price to a degree that is perceived by enough

consumers to make it profitable. In fact, in general, given that the second term of the
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right hand side of Condition (1) is decreasing in β, the greater the β, the more likely

it is for Condition (1) to fail. Thus, under certain circumstances, if the cost shock is

big enough, the asymmetric response of demand to changes in prices disappears.

This is a crucial distinction between the theoretical explanation provided here and

the models that have been presented in the literature to reconcile asymmetric pricing

with economic theory. In fact, since Peltzman (2000), there have been many attempts

to explain the phenomenon of asymmetric pricing by abstracting from menu costs or

market power, which have been rejected by the data. All models, in a similar fashion

to our framework, include some kind of inelasticity of demand in response to changes

in prices.

One strand of the literature (Yang and Ye (2008), Tappata (2009), Lewis (2011),

Cabral and Fishman (2012)) has used search models to explain such inelasticities.

The main idea is that consumers form expectations on the distribution of prices

based on past realization of prices or costs and thus tend to search less intensely

after high prior realization of prices or costs, while searching more intensely after low

realizations. This gives incentives to firms to react asymmetrically to cost changes.

Another strand, Levy et al. (2004), has used rational inattention to create inelastic

response of demand to price changes. According to this model, consumers decide not

to allocate attention to small price changes because it is costly for them to do so. This

means that demand is symmetrically inelastic for small price changes, irrespective of

their direction. Clearly, firms facing this kind of demand have incentives to raise prices

for small changes in costs given the demand does not change but have no incentives

to reduce prices for minor cost changes because they would not increase demand.

The explanation provided here, despite its simplicity, has some crucial differences

that reconcile the two strands of literature with the empirical evidence. First of

all, as Remark 3 shows, it can connect the presence of asymmetric pricing with the

magnitude of the cost shock an industry suffers like the models of rational inattention.

All the papers using search models are unable to reconcile this fact, because the

friction created by searching would make asymmetric pricing always optimal for firms,

regardless of the magnitude of the shock. Secondly, like search models, the model

maintains the asymmetric response of demand to price changes, which is present in
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the data, but which rational inattention models cannot explain in this context.25

Finally, it is useful to underline one last feature of the general framework presented

here which sets it apart from other settings. The model allows for each consumer’s

choice to be conscious or automatic, i.e. rational or not, depending on the features

of the environment, hence making the overall proportion of agents that are rational

or not in the population endogenous to the problem at hand. That is, heterogeneity

of behavior is easily obtained through the distribution of α, thus making the model

tractable.

8 Final Remarks

The cognitive sciences have highlighted the fact that choices can be divided into

two categories; conscious and automatic. This greatly hinders the use of standard

economic models, which do not generally take into account the existence of automatic

choices.

In this paper, we proposed a possible formalization of this duality, which allows

us to restore standard revealed preference analysis. For this reason, we have assumed

that conscious behavior is the maximization of a given preference relation. In some

cases, this assumption can be too strong. Inconsistent choices might also arise when

choosing consciously. Fortunately, the framework and analysis developed here do not

depend on which particular type of conscious behavior is assumed. In fact, for any

given decision environment, analogies determine a partition with two components, one

containing those problems that are similar enough to the reference environment and

another containing those that are not. Such a partition is based on only one, simple

assumption; that automatic choices must stem from the replication of past behavior,

in line with research in cognitive and neuro sciences, as explained in Lisman and

Sternberg (2013). Alternative conscious behaviors are possible. The only element

of the formal analysis that must be changed is the consistency requirement, which

25The asymmetric response of demand to price changes has received a great deal of attention in
marketing (Krishnamurthi et al. (1992), Kalyanaram and Winer (1995), Mazumdar et al. (2005),
Karle et al. (2015), Cornelsen et al. (2018)) and many other fields, such as finance, telecommuni-
cations, energy and transportation (Bidwell et al. (1995), Chen et al. (2004), Adeyemi and Hunt
(2007), Wadud (2014), Hymel and Small (2015)).
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needs to be tested on those problems in DN . Obviously, dually, to find automatic

choices, we should analyze violations of such requirements. Similarly, the assumption

that automatic behavior stems from the replication of past behavior is much less

restrictive than would appear at a first glance. Automatic choices must be familiar

choices. For example, we can consider cases where the DM stores in his memory

not only his own experiences, but also those of his parents, siblings or friends, thus

making the concept more general than a literal interpretation of the model would

suggest.

Section 7 showed that the model is very tractable and can be used in standard

economic analysis. It formalizes a novel way of understanding the coexistence of

sticky and adaptive behavior that generates predictions different from those of other

theories. Whenever past behavior can be replicated, analogies between different de-

cision problems make individual choices less responsive to changes in the quality and

number of available options. On the other hand, if past behavior cannot be repli-

cated, individual choices are perfectly responsive to changes in the environment. This

asymmetry is one of the key differences that distinguish this model from others in

the literature and enable it to encompass various phenomena in different fields that

usually require specific explanatory models. In fact, there is a large and diverse body

of empirical evidence showing that individual behavior does not immediately adapt

to changes in the economic environment and that its responsiveness depends on the

nature of the change. Consumption tends to be sticky, as shown by Carroll et al.

(2011) among others. However, the response is asymmetric; that is, consumption

is less responsive as prices go down, than as they go up, as explained in section 7.

Traders tend to show under-reaction to news, and trading behavior is less responsive

to favorable market conditions; see for example Braun et al. (1995) and Chan et al.

(1996). Finally, doctors, for no rationally explicable reason, sometimes tend to stick

to suboptimal treatments see, for example, Hellerstein (1998), whereas, in other cases,

they are quick adopters of tailored treatments for certain patients, as found in Frank

and Zeckhauser (2007). The framework presented here allows for a formal analysis

of these different findings in a simple and tractable environment, where it is possible

to model individual heterogeneity in behavior through the distribution of a simple
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parameter such as α.26

This model may also be useful for addressing welfare issues. Obviously, restor-

ing a revealed preferences approach is crucial for welfare analysis. Nevertheless, the

approach proposed here highlights an issue that is usually neglected , i.e., cognitive

costs. The upper and lower bounds of the interval in which the similarity threshold

lies are defining, respectively, a lower and upper bound of the cognitive costs of ac-

tivation of the maximizing self. This may be of help in the analysis of welfare, but

it raises the question of how to relate such costs to utility, which is a problem that

we leave for future research. A first possibility would be the following. Suppose the

similarity of two environments depends on how close the maximum utility obtainable

in both of them is. Clearly, in such a specification α summarizes the cost of activat-

ing the maximizing self in utils, because similarity comparisons are also determined

by utility. Notice, however, that even when all primitives are related to individual

preferences, suboptimal choices are possible, thus maintaining the importance of the

revealed preference analysis in section 3. Imagine, for example, a sequence of de-

cision problems where behavior can be replicated in each step of the sequence and

the environments are close enough to activate the automatic self. Suppose that the

utility attainable in each problem is increasing throughout the sequence. Obviously,

even in this specification of the model, a decision maker replicating the initial choice

would eventually make a suboptimal decision. This is because the environment of

a given decision problem is automatically compared with all past environments, not

only those associated with a problem that was solved by the maximizing self.27

Finally, another point worth further attention is that some simplifying assump-

tions were made in order to develop a new framework encompassing automatic choices.

In particular, we assumed that the similarity function is known and the environments

are given. Although the first of these assumptions can be relaxed, as shown in sec-

26See the online appendix for an analysis of these economic environments through the lenses of
DD processes.

27Although this might appear an odd feature of the model, it closely maps cognitive science ideas,
e.g., Chugh and Bazerman (2007) and references therein, by enabling the depiction of the boiling frog
syndrome. See Offerman and Van Der Veen (2015) for evidence of the phenomenon in economics.
Notice that this feature also distinguishes this specification of the model from satisficing and rational
inattention models.
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tion 5, it is nonetheless essential to know something about similarity comparisons.28

Automatic behavior can be consistent with the maximization of a given preference

relation, thus making the observation of inconsistent behavior insufficient for the cor-

rect categorization of decisions. Analogies add a layer of complexity to the problem,

thus calling for richer data. A first step in this direction is to address the second of the

above-mentioned assumptions, i.e., that environments are known. An understanding

of the key elements in a decision problem for similarity comparisons, is crucial for

the study of individual decision making as noted by Woodford (2019). The model

proposed here provides a setting for the structured consideration of this issue but

leaves the question open for future research.

A Appendix

A.1 Estimation of the Similarity Function

The similarity function is a key component of a DD process and, for the sake of

exposition, in this paper, it is assumed to be at least partially known. Nonetheless,

we discuss in what follows how to estimate it by studying the choice behavior of a

group of individuals sharing the same similarity function.29 In other words, we are

assuming that the population follows a DD process. Notice, however, that, once the

similarity is estimated, this assumption can be falsified, as explained in the main text.

Consider a continuous population of individuals sharing the similarity function

σ, with a continuous and independent distribution of the similarity threshold over

[0, 1]. Sequences of decision problems and preferences are independently distributed.

Suppose, for now, that the preference distribution is known. This assumption is quite

common in empirical analysis and can be relaxed in some cases, as explained below.

It implies that, for every A ⊆ X, the proportion of agents in the population that

would choose alternative x ∈ A, for any alternative x ∈ A, is known. Let π(x|A)

represent such a proportion. Before proceeding to the analysis, notice that, even

28Alternatively, one needs a large enough population of individuals sharing the same similarity
function, as shown in the appendices.

29The idea that similarity comparisons are affected by culture has been studied at least since
Whorf (1941).
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in this circumstance, the revelation of individual preferences would still be relevant

for policy purposes. In fact, knowing the aggregate preference distribution is not

equivalent to knowing the preferences of each individual.

Now, assume that, for every pair of environments e, e′ ∈ E, there exists a repre-

sentative subpopulation of agents such that, for each agent:

• there exists some t′ such that t′ is new, at′ = x for some x ∈ X and et′ = e′.

• there exists some t > t′ such that x ∈ At, no alternative in At \ {x} has been

chosen before t and et = e.

• there is no s ∈ (t′, t) such that as = x.

The main result of this section shows that we can compare the similarity of two

different pairs of environments by considering the aforementioned respective subpop-

ulations and sampling them. Formally, denote by ν(x|e, e′, At) the average relative

number of randomly- sampled individuals sticking to x at t, as defined in the previous

richness condition. That is, for any pair of environments (e, e′), we take a sample of

finite magnitude n from the aforementioned subpopulations and compute the average

ratio of individuals in that sample who stick to y. This average is ν(x|e, e′, At). Notice

that the considered alternatives and sequences of decision problems that satisfy the

richness condition might differ across different pairs of environments.

Proposition 4 (Eliciting the Similarity) For every two pairs of environments (e, e′)

and (g, g′), Pr(|ν(x|e, e′, At)−π(x|At)| ≥ |ν(x′|g, g′, At′)−π(x′|At′)||σ(g, g′) > σ(e, e′))
p→

0. That is, the probability of having |ν(x|e, e′, At) − π(x|At)| ≥ |ν(x′|g, g′, At′) −
π(x′|At′)| when σ(g, g′) > σ(e, e′) probabilistically converges to zero.

Proof. First, notice that |ν(x|e, e′, At)− π(x|At)| 6= 0 for only two reasons, (i) sam-

pling noise, (ii) automatic decisions. Given that the samples to estimate ν(x|e, e′, At)
are independent, as the dimension of the sample grows, the law of large numbers

applies; therefore the first concern disappears in the limit. This leaves us with the

second. Given that α is continuously and independently distributed in the popula-

tion, if |ν(x|e, e′, At) − π(x|At)| ≥ |ν(x′|g, g′, At′) − π(x′|At′)| in the limit, it must

be because more people are replicating behavior in sequence (e, e′) than in sequence
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(g, g′). That is, there always exists a non-negligible part of the whole population

with similarity threshold α in the interval [σ(g, g′), σ(e, e′)) and, since thresholds are

independent of preferences, and the only behavior that can be replicated is that in

which the choice of x or x′ was new, the result follows.

The main intuition of Proposition 4 is the following. |ν(x|e, e′, At) − π(x|At)| mea-

sures how different from the underlying primitives the behavior in the representative

sample is with respect to the preferences in the whole population. There are two

reasons why |ν(x|e, e′, At)− π(x|At)| might not be zero. The sample either has some

agents making automatic choices or some noise. The law of large numbers causes

the second concern to disappear, thus enabling us to reveal the similarity between

different pairs of environments simply by comparing the previous differences for the

different pairs.

The previous result is general and holds true for any underlying relationship be-

tween environments and menus. Nevertheless, whenever At ∩ et = ∅, e.g., decision

environments are frames, we can relax the assumption on the knowledge of pref-

erences. In fact, we would only need to know π(x|A) for all A ⊆ X for just one

alternative x and the analysis would follow as before, except that, this time, the same

alternative can be used to estimate the similarity of different pairs of environments.
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