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Abstract

Identifying individual levels of rationality is crucial to modeling strategic interaction and un-

derstanding behavior in games. Nevertheless, there is no consensus on how to best identify levels of

higher order rationality, and the identification of an empirical distribution remains highly elusive.

In particular, the games used for the task can have a huge impact on the identified distribution.

To tackle this fundamental problem, this paper introduces an axiomatic approach that singles

out a simple class of games that minimizes the probability of misidentification errors. It then

shows that the axioms are empirically meaningful in a within subject experiment that compares

the distribution of orders of rationality across different games, including standard games from the

literature. The games singled out by the axioms exhibit the highest correlation both with the

distribution of the most frequent rationality level a subject has been classified with and with an

independent measure of cognitive ability. Finally, there is no evidence in our sample of within

subject consistency of identified rationality levels across games.
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1 Introduction

In any interaction among rational agents, optimal behavior depends on the beliefs about whether

the others are rational, about whether the others believe the others are rational, and so on. If

agents are bounded in their reasoning process about others’ rationality, it becomes crucial to

obtain a reliable method to identify the empirical distribution of individuals’ orders of ratio-

nality. For example, to understand price formation in financial markets one needs to know the

empirical distribution of the levels of higher order rationality among traders. In institutional

design, whether a proposed school-matching procedure is empirically efficient depends on the

participants’ depth of reasoning. Similar issues arise in a variety of strategic contexts, such as

monetary policy, negotiation and conflict, oligopolistic competition, and voting.

This crucial empirical problem has given rise to an extended literature that uses differ-

ent identification methods to find the empirical distribution of individual levels of hierarchical

thinking (Beard and Beil, 1994; Schotter, Weigelt and Wilson, 1994; Nagel, 1995; Costa-Gomes,

Crawford and Broseta, 2001; Van Huyck, Wildenthal and Battalio, 2002; Costa-Gomes and

Weizsacker, 2008; Rey-Biel, 2009; Healy, 2011; Costa-Gomes, Crawford and Iriberri, 2013; Bur-

chardi and Penczynski, 2014). While there is no consensus on which method is best, there is

agreement on the fact that higher orders of rationality are difficult to identify. The problem,

however, might be deeper than the choice of the best identification method. In fact, the funda-

mental issue is that standard games do not allow for the observation of behavior at the different

levels of the hierarchy of beliefs and, if they do, they might induce hierarchical thinking due to

their structure.

This conflict is easily visible in dominance solvable games. When a subject plays a strategy

consistent with having beliefs of a certain level k there is a high probability of making an

identification mistake. Given it is not possible to observe behavior at the different steps of

the reasoning process, we cannot exclude that it is other belief systems or decision processes

which lead to the observed choice. On the other hand, if the structure of the game allows

for the observation of behavior at the different steps of the hierarchy of beliefs, the subject

would be classified as having beliefs of level k only if her behavior at each step of the ladder is

consistent with such a classification, keeping other things constant.1 This would consistently

reduce the probability of identification mistakes but such games might frame subjects into

thinking hierarchically. Due to framing, subjects might be classified into higher categories

hence making the identified empirical distribution flawed. To the best of our knowledge, there

is still no solution to this fundamental problem.

This paper provides an answer to the above concerns. The contribution is theoretical and

1Another possibility would be to make a subject play a series of dominance solvable games but given each
game is different from the others, there are too many factors out of the control of the researcher that might
determine changes in individual behavior.
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empirical. Theoretically, we use for the first time an axiomatic approach to define a new class

of games. We propose two properties that reduce potential misidentification of higher order

rationality levels and allow to reliably estimate their distribution in experimental settings. Em-

pirically, we test the validity of the proposed properties and then the existence of an underlying

distribution of higher orders of rationality.

Regarding the theoretical contribution, we propose the following two properties that address

the concerns raised. First, the game should allow for reliable, choice based, inference. This can

be achieved via a structure that allows for the test of individual behavior at each step of the

hierarchy of beliefs. We refer to this property of games as lower order consistency. It was first

incorporated in Kneeland (2015) which used ring(-network) games, introduced by Cubitt and

Sugden (1994).2 Second, the payoff dependencies of the game should not correspond exactly

with the hierarchical belief “structure,” otherwise it might lead subjects who would not form

higher-order beliefs to play as if they had them. In particular, it should not frame players with

low levels of rationality to behave as if they had higher ones. Hence, the payoff structure of

the game should be such that each level of the hierarchy of beliefs has payoff interdependencies

not just with lower levels. This way players can form different hierarchies of beliefs. We refer

to games satisfying this property as framing-free.

Somewhat surprisingly, these two natural properties are sufficient to pin down a unique class

of games. Indeed we show that the simplest class of games satisfying lower order consistency

and absence of framing, and identifying four levels of rationality—the empirically relevant

ones—is a specification of a new class of games we present here, the e-ring games. An e-ring

game is a normal-form game with incomplete information, where the latter is structured by

means of messages that automatically go back and forth between players as in the email game

of Rubinstein (1989), generating a natural one-to-one correspondence between messages and

higher-order beliefs.

Regarding the empirical contribution, we study the validity of e-ring games as an iden-

tification tool. We first test the properties we propose. Then, we compare the distribution

identified by the e-ring games against the distributions obtained with standard games used in

the literature. We do this to verify the existence of an underlying distribution of types across

games and to see which of the games achieves the closest identification. In our experiment, all

subjects play each of the following four types of games: eight of our e-ring games, eight ring

games as in Kneeland (2015), two simple two-player 4×4 dominance solvable games, and three

different versions of the beauty contest game presented in Nagel (1995).3

2The ring games used in Kneeland (2015) are finite dominance solvable games in normal form, where player
1’s payoffs depend on player 1’s and player 2’s actions; player 2’s payoffs depend on player 2’s and player 3’s
actions and so on, until player k, whose payoffs depend on player k’s and player 1’s actions, but who has a single
strictly dominant action that allows to initiate dominance solvability procedure.

3To be more specific, subjects play versions of the beauty contest game where the average of all subjects’
responses is multiplied by 1/3, 2/3 and finally, in the p-beauty contest game, by an unspecified number (p)
strictly between 0 and 1 and assumed to be commonly known.
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We use the revealed rationality approach to classify subjects within each class of games into

five levels depending on the actions they choose. An action is categorized as R0 if it is never

a best response, as R1 if it is a best response to some belief, as R2 if it a best response to the

belief that the opponent is playing an R1 action, and so on. A subject is hence classified as

Rk if all her actions are Rk actions and at least one is not Rk + 1. That is, we assign players

the maximal level of higher-order rationality consistent with the choices made (as in Lim and

Xiong (2016), Tan and Werlang (1988) and Brandenburger, Danieli and Friendenberg (2017)).

We do not use the exclusion restriction assumption made in Kneeland (2015), which maintains

that subjects satisfying lower-order rationality do not respond to changes in higher-order payoffs,

even if the e-ring games would allow for such an approach. The reason is twofold. First, the 4×4

games and the beauty contest games do not allow the use of such a restriction, hence rendering

the comparison across games difficult to interpret. Second, there exist influential theoretical

frameworks in which subjects satisfying lower-order rationality do respond to changes in higher-

order payoffs.4

The experiment supports our theoretical approach. First, we find evidence that the proper-

ties proposed are relevant. In particular, we find that games that violate lower order consistency,

and hence do not have a one to one correspondence with the beliefs structure, tend to misiden-

tify the distribution of types for levels 2 or higher. Second, we find framing effects in the ring

games, which are the only other class of games that satisfy lower order consistency, but are not

framing free. In fact, we find evidence that subjects that do not behave as if they had higher

orders of rationality in other games, are classified as if they had them in ring games.

We next look at the existence of an underlying distribution of types in the population

and we study which class of games, if any, seems to better identify such distribution. We

find no clear evidence of the existence of a stable distribution. The results show that our

games are more reliable than the others for the identification of the distribution of higher

order of rationality once we take into account possible mistakes within the revealed rationality

approach. Specifically, once we classify individuals with the most frequent rationality level

they have been identified with and we check for the correlation between the different games

and this classification, our game outperforms the others by a significant margin. This finding

might suggest that e-ring games successfully identify the relative ranking of individuals once we

take into account possible statistical noise. If that was the case, we should find evidence that

our ranking is also more correlated than others with independent measures of cognitive ability.

Indeed, we find that the ranking identified with e-ring games is the most correlated with the

ranking of the subjects based on the results of the standardized test used for the admittance

to the university.

Furthermore, the data show that the depth of higher-order rationality is very game depen-

dent at the individual and at the aggregate level. While this paper is the first, to the best of

4See Section 4.3 for further details.
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our knowledge, that experimentally checks for persistence of rationality classifications across

games at the individual level, similar results have been found in the k-level literature (Geor-

ganas, Healy and Weber, 2015; Alaoui and Penta, 2016; Cooper, Fatas, Morales and Qi, 2016;

Ellingsen, Östling and Wengström, 2018). Given that many characteristics change from one

game to the other, it is not surprising to find that absolute levels of rationality vary across

games.5 Nevertheless, this evidence seems to suggest that assuming the existence of a stable

absolute ranking of individuals in the population lacks empirical support.

The remainder of the paper is organized as follows. In the next section, we describe our

class of games. In Section 3, we present the desirable properties a class of games should have

to reliably identify higher orders of rationality and then we show that e-ring games are the only

class of games that satisfy such properties. In Section 4, we present the experimental design

along with the other classes of games we used and the experimental results. Section 5 concludes.

The Online Appendix contains an English translation of the experimental instructions and the

payoff matrices for all games used in the experiment.

2 E-Ring Games

An e-ring game is a two player incomplete information game in normal form in which players

automatically send and receive messages and each player’s own payoffs depend not only on the

actions chosen by the players but also on the number of messages that player received. That

is, a player’s own payoffs when she has received ` messages are different from those faced when

receiving ` + 1 messages. There is a maximal number of messages that any player can receive

with an otherwise email game-like communication structure (Rubinstein, 1989). The payoff of

a sender with ` messages depends on the actions of a receiver with ` or `+ 1 messages, whose

payoffs in turn depend on actions of a sender with `− 1 or ` messages and ` or `+ 1 messages

respectively, and so on. This allows us to associate different payoff matrices and hence actions

to different levels of higher-order beliefs. The fact that messages are finite puts a natural limit

to the number of levels that can be identified, as well as to the complexity of the game. As

will be clear in Section 3, ` messages are needed for each of the two players to test for up to 2`

levels of higher-order rationality. This is a major difference with the email game of Rubinstein

(1989), where players face the same 2×2 payoff matrices for almost all the number of messages

received. The next definition formalizes these features of the e-ring game.

Definition 1 (E-Ring Game) An e-ring game of depth k (even) is a list G = 〈Ti, Ai, ui, πi〉i=1,2,

where, for each player i:

5There is also a growing literature distinguishing players cognitive bounds and actual behavior due to beliefs.
For example, a subject’s behavior might be consistent with low levels of rationality but this might be due to
her beliefs about other’s rationality more than actual limitations in her cognitive capacity. See Alaoui and
Penta (2018b), Friedenberg, Kets and Kneeland (2018) and Germano, Weinstein and Zuazo-Garin (2019) for
theoretical and empirical discussions.
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1. Ti = {1, 2, . . . , k/2} is a set of types.

2. Ai is a finite set of actions.

3. ui : Ti × A1 × A2 → R is a payoff function.

4. πi : Ti → ∆(T−i) is a belief-map such that, for fixed p1, p2 ∈ (0, 1),

π1(t1)[t2] =

{
p1 if t2 = t1

1− p1 if t2 = t1 + 1
π2(t2)[t1] =

{
p2 if t1 = t2 − 1

1− p2 if t1 = t2

for 1 ≤ t1 < k/2 and 1 < t2 ≤ k/2, and otherwise π1(k/2)[k/2] = 1 and π2(1)[1] = 1.

To see that this borrows from the communication structure presented in Rubinstein (1989),

consider player i who has received ` messages. Then, by Definition 1, we say that such a player

is of type ti = `. Player i knows that the payoff she obtains from each action profile is given

by the map ui(ti, · ). However, player i is uncertain about the number of messages received by

the other player and, therefore, also about the latter’s type and payoff function. In particular,

player 1 knows with probability p1 that player 2 is of type t2 = `, and with probability 1− p1,
that she is of type t2 = ` + 1 (with the exception of type t1 = k/2, who knows that player 2

is of type k/2 as well); similarly, player 2 knows with probability p2 that player 1 is of type

t1 = ` − 1, and with probability 1 − p2, that she is of type t1 = ` (with the exception of type

t2 = 1, who knows that player 1 is of type 1).

The next example of a dominant solvable e-ring game illustrates the computation of equilbria

using the message structure explained above.

E-ring game of depth 4. There are two players, row (player 1) and column (player 2). Each

player is initially informed about the number of messages she receives, and the payoffs depend

only on the number of messages the player receives as well as on the actions chosen by both

players. Each player either gets 1 or 2 messages, whereby player 2 either has the same number or

one more message than player 1. To compute the payoffs of the opponent, players can compute

the number of messages received by their opponent as follows. Player 1 with 1 message knows

her opponent has either 1 or 2 messages, each event with equal probability (p1 = 1/2); player 1

with 2 messages knows for sure the other player also has 2 messages. Similarly, player 2 with 1

message knows for sure that her opponent also has 1 message; while player 2 with 2 messages

knows her opponent has either 1 or 2 messages, each event with equal probability (p2 = 1/2).

Consider the following payoff matrices, where, respectively, A,B,C are the actions of

player 1 and a, b, c the actions of player 2, and where u1(t1) are the payoffs of player 1 when

she receives t1 messages, and u2(t2) the payoffs of player 2 when she receives t2 messages.
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u1(1) a b c

A 80 60 80

B 200 100 140

C 120 140 180

u2(1) a b c

A 80 160 180

B 40 140 80

C 60 100 140

u1(2) a b c

A 60 80 40

B 80 20 20

C 160 120 180

u2(2) a b c

A 180 20 100

B 120 40 140

C 160 80 200

The above payoff structure has a unique (interim correlated) rationalizable action for all players

and number of messages. Player 1 with 2 messages (payoff matrix u1(2)) has a strictly dominant

action C. Player 2 with 2 messages (payoff matrix u2(2)), seeing this and the fact that player 1

with 2 messages has A as strictly dominated action, (and knowing that she faces player 1 with

t1 = 1, t1 = 2 with equal probability), has a unique strict best reply c. Player 1 with 1 message

(payoff matrix u1(1)), given the above and seeing that player 2 with 2 messages has a as a

strictly dominated action, (and again knowing that she faces player 2 with t2 = 1, t2 = 2 with

equal probability), has a unique strict best reply C. Finally, player 2 with 1 message (payoff

matrix u2(1)), knowing that for sure she faces player 1 with 1 message and that she plays C

as unique best reply, also has a unique strict best reply c. Thus ((C,C); (c, c)) is the unique

rationalizable strategy profile. �

3 Identification of Orders of Rationality

We now introduce a novel take on the problem of identification of orders of rationality by

adopting an axiomatic approach. Section 3.1 recalls some basic game-theoretic notions, and

formalizes the notion of orders of rationality and the identification of the latter via revealed

rationality. Since the identification is based on choice data obtained from decisions in a given

game, the particular features of the implemented game can crucially affect the identification

and, eventually, put its external validity into question. Section 3.2 deepens on these extrapo-

lation concerns and presents two properties, lower order consistency and absence of framing,

aimed at minimizing identification errors. Somewhat surprisingly, it turns out that lower order

consistency and absence of framing alone, greatly narrow the space of all conceivable games: as

Proposition 1 in Section 3.3 shows, if the analyst aims at the most simple experimental design

that combines both properties, she is left precisely with (simply) dominance solvable e-ring

games.
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3.1 Preliminaries

Games and k-th Order Rationality

A (Bayesian) game consists of a list G := 〈Ti, Ai, ui, πi〉i∈I where I is a finite set of players,

and for each player i we have a finite set of types Ti, a finite set of actions Ai, a utility function

ui : T×A→ R, and a belief function πi : Ti → ∆(T−i). A conjecture for player i is a probability

function µi ∈ ∆(T−i × A−i). Conjecture µi is admissible for type ti if its marginal over T−i

coincides with πi(ti), and believes in event E ⊆ T−i × A−i if it assigns probability 1 to E.6

The set of best responses to conjecture µi admissible for type ti consists on the actions that

maximize the expected utility induced by ti and µi, that is:

arg max
ai∈Ai

∑
t−i∈T−i

∑
a−i∈A−i

µi[(t−i, s−i)] · ui((t−i; ti), (a−i; ai)).

Given a type, each action can be consistent with rationality, rationality and belief in ratio-

nality, or rationality and some other higher order belief in rationality. Formally, we say that

action ai is 1-st order rational for ti if ai is a best response to some admissible conjecture for

type ti. For order k ≥ 2, proceeding recursively, we say that action ai is kth order rational for

type ti if ai is a best response to some admissible conjecture for type ti that believes that her

opponents’ play (k − 1)-th order rational strategies.7 Finally, we say that game G is:

• Dominance solvable, if for every player i and every type ti there exists some k ≥ 1 such

that only one action is k-th order rational for type ti.

• Simply dominance solvable, if it is dominance solvable and, in addition, for every order

k ≥ 1 there exists some type ti that has a unique k-th order rational action. As discussed

in Remark 1, this strengthening of dominance solvability is convenient for minimizing

identification errors.

Identification and Classification of Orders of Rationality

The identification in this paper relies on revealed rationality and can be summarized as follows:

a subject is asked to make a choice in the role of every type of every player in the game, and her

order of rationality is estimated as the lowest k ≥ 0 for which every choice is k-th order rational

6The notation is standard. By T :=
∏

i∈I Ti and A :=
∏

i∈I Ai we denote the set of type and action profiles,
respectively, and for each player i we write T−i :=

∏
j 6=i Tj and A−i :=

∏
j 6=iAj . ∆(T−i ×A−i) denotes the set

of probability functions on T−i ×A−i.
7That is, such that µi[{(t−i, a−i) : aj is (k − 1)-th order rational for tj for every j 6= i}] = 1. To keep our

results easily comparable, here we follow the terminology in Kneeland (2015), but notice that an action ai is
k-th order rational for type ti if and only if it is k-th order interim correlated rationalizable for ti, as defined
by Dekel, Fudenberg and Morris (2007) and Battigalli, Di Tillio, Grillo and Penta (2011). For further details
about the solution concept, the reader is referred to these two papers.
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at its corresponding role.8 A subject whose choice vector is identified as being of order k ≥ 0 is

classified as being of order Rk. More formally, let X :=
⋃

i∈I Ti denote the set of player types

in game G,9 that is, the set of all possible roles of the subject. The set of observable choice

vectors is:

C := {(ai, ti) | ai ∈ Ai, ti ∈ Ti, i ∈ I}.

Then, for a given game G, revealed rationality provides a well-defined mapping between the set

of observable choice vectors and the possible orders of rationality:

Definition 2 (Identification) Let G be a game. Then, the identification induced by G is the

map I : C → N ∪ {0} where for every choice vector {(a`, x`)}x`∈X ,

I({(a`, x`)}x`∈X ) := min {k ≥ 0 | a` is k-th order rational for every x` ∈ X } .

I identifies order k ≥ 1 if game G has a unique player type xk all of whose actions except one

fail to be k-th order rational and, in such case, we say that player type xk is used to identify

order k.

E-ring game of depth 4 (example continued). Consider again the game discussed at the
end of Section 2, which we here reproduce for convenience.

u1(1) a b c

A 80 60 80

B 200 100 140

C 120 140 180

u2(1) a b c

A 80 160 180

B 40 140 80

C 60 100 140

u1(2) a b c

A 60 80 40

B 80 20 20

C 160 120 180

u2(2) a b c

A 180 20 100

B 120 40 140

C 160 80 200

Applying the above definitions yields the following identification of orders of rationality. A

subject playing always C or c, depending on the role, would be identified as R4. On the other

hand, a subject playing always C or c but playing either b or d when playing as player 2 with 1

8An alternative identification method is Kneeland’s (2015) exclusion restriction. We do not use this method
for three reasons. First, using this identification strategy would eliminate the standard classes of 4× 4 and BC
games, thereby severely limiting our between games comparisons. Second, a main criticism to this approach is
that subjects in general may change strategies even when not responding to changes in the payoffs of high-order
opponents. To test this, Lim and Xiong (2016) have subjects play the ring games of Kneeland (2015) multiple
times (as well as other games), and find up to 77% non-compliance with the assumption in the ring games,
meaning that 77% of the experimental subjects chose different actions at least once. Third, there are influential
theoretical frameworks for which a subject satisfying lower-order rationality might respond to changes in higher
order payoffs (see Alaoui and Penta (2016, 2018a,b))

9Notice that, for games of complete information, the set of player types coincides with the set of players of
the game.
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message would be identified as R3. Similarly, a subject playing C as player 1 with 2 messages

and c as player 2 with 2 messages, while playing B,D as a player 1 or b, c, d as player 2 with

1 message, would be identified as R2. Furthermore, a subject playing C as player 1 with 2

messages while playing a or d as player 2 with 2 messages and B,C,D or b, c, d as either player

1 or 2 with 1 message, would be identified as R1. Finally, a subject playing any of the dominated

actions would be identified as R0.10 �

3.2 An Axiomatic Approach to Identification

Lower Order Consistency

It is natural to expect that, when choosing as a player type that only has one `-th rational

action a`, a subject who systematically performs a hierarchical reasoning process of order k ≥ `,

would opt for said action. Accordingly, a subject who follows a different decision making rule

should be expected to fail to choose a` for some ` = 1, . . . , k. Hence, an identification that,

when identifying order k, also identifies orders ` = 1, . . . , k poses an additional challenge only to

those decision makers who do not consistently engage in higher-order reasoning, and serves, in

consequence, as an estimation error minimizing check. We formalize the requirement as follows:

Property 1 (Lower Order Consistency) Identification I is lower order consistent if when-

ever it identifies order k ≥ 1 it also identifies orders ` = 1, . . . , k.

Unsurprisingly, lower order consistency is an implicit standard in the modern literature in

identification of rationality orders—e.g., Kneeland (2015) or Lim and Xiong (2016), and is of

course a property satisfied by e-ring games. However, other classes of games often employed for

identification, such as bimatrix games or beauty contests, fail to satisfy this requirement.11 The

following simple observation shows that, besides its intuitive appeal, lower order consistency

also pins down a rather narrow class of games:

Lemma 1 Let G be a game with lower order consistent identification of orders k ≥ 1. Then G
has at least k distinct player types of which one has a strictly dominant action. Moreover, if G
identifies exactly k orders, then it is dominance solvable in exactly k steps.

Remark 1 The requirement in Definition 2 that there be just one action that is k-th order ra-

tional is made to minimize the likelihood that such actions be chosen by chance, thereby leading

10In this example, we explain our identification strategy as if subjects switched roles. In the experiment, we
achieve this by reassigning player 1’s matrix with 2 messages to player 2 with 1 message while reallocating the
other matrices to maintain the dominant solvability structure.

11In bimatrix games there are, at most, two player types. Beauty contests, due to the symmetric role its
players, only possess one player type. Notice that the p-beauty contest games can identify at most k = 1 levels,
and the two-player complete information, dominance solvable games can identify at most up to k = 2 levels. On
the other hand, a ring game with k players and an e-ring game of depth k can identify k levels of higher-order
rationality.
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to identification error. This implies that, if a game has a lower order consistent identification,

it must be simply dominance solvable.

Absence of Framing

In principle, it could be expected that subjects’ decision making rules were context-dependent,

so that observing sophisticated higher order reasoning in the game employed for identification

would not mean that this behavior would extend to games of different nature. Hence, in

order to minimize this variant of identification error, and enhance the external validity of the

identification, the game structure should not frame players into the precise hierarchical thinking

that is the object of the identification. Moreover, a game that frames players into hierarchical

thinking makes it easier for players that have some degree of hierarchical thinking to reach

higher levels. To better illustrate this phenomenon let us discuss the following two situations:

G1. There are three players, 1, 2 and 3. Player 1’s utility only depends on her own choices,

Player 2’s utility depends on her choices and those of Player 1, and Player 3’s utility

depends on her own and Player 2’s choices. As a consequence, Player 3’s second order

belief has only one possible order that is consistent with the payoff dependency of the

game: her first order belief is about Player 2’s choices and her second order belief, about

Player 2’s first order belief about Player 1’s choices.

G2. There are three players, 1, 2 and 3. Player 1’s utility only depends on her own choices,

while Player 2 and 3’s utilities depend on all three players’ choices. In this case, Player 3’s

second order belief has two possible orders that are consistent with the payoff dependency

of this game: (1) her first order belief is about Player 2’s choices and the second, about

Player 2’s first order belief about Player 1’s choices; (2) her first order belief is about

Player 2’s choices and her second order beliefs, about Player 2’s first order belief about

Player 3’s choices.

As in the case of lower order consistency above, the ambiguity in G2 on the possible orders that

can be used to construct the belief hierarchy seems to be an obstacle only for subjects that do

not systematically reason hierarchically. On the contrary, the simplicity of the structure in G1

naturally frames subjects into hierarchical reasoning.12 To minimize this notion of framing, the

game should allow each player type to be able to construct hierarchical orders of other player

types that are alternative to the natural one associated with the payoff structure of the game.

This can be achieved by enriching the payoff dependencies so that, for player types of order 2

12Of course, the distinction above deals with subjects that, unlike what the standard model of higher-order
reasoning admits, do not form joint beliefs about their opponent’s behavior and higher-order beliefs (i.e., Player
2 may have a joint belief about Players 1 and 3’s behavior in G2). However, this is immaterial for the argument:
ideally, we want to avoid that players that have difficulties in forming these joint conjectures are categorized as
if they were able to form them.
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and above, payoffs always depend on additional player types than the ones associated with the

natural hierarchy of beliefs. This idea is easy to formalize in the language of graphs; to this

end, let us introduce some terminology first:

Definition 3 (Link Structure) Let G be a game. The link structure of G consists of a set

of directed links L ⊆ X ×X where, for any pair of distinct player types z1 and z2, (z1, z2) ∈ L
if and only if the following two conditions hold:

(i) z1’s payoffs depend on the actions of z2.

(ii) z1 has no strictly dominant action.

A path between z1 and zn is a sequence (z1, z2, ..., zn) such that {(zi, zi+1)}n−1i=1 ⊆ L and all the

zi’s except possibly z1 and zn are pairwise distinct.

With this, the absence of framing into hierarchical reasoning can be formalized as follows:

Property 2 (Absence of Framing) A lower order identification I is framing-free if when-

ever it identifies order k ≥ 2 then, for any ` = 2, . . . , k, the link structure of game G has at

least two distinct paths that start at x` and are of length `− 1 and `− 2.

There are two aspects to this definition. First, at any level ` of the hierarchy of beliefs there

should be at least one path distinct from the natural one (of length `− 1) associated with the

payoff structure. Second, we want to avoid that a subject of rationality level `− 1 be identified

as ` due to framing. This implies that for each player type ` ≥ 2, we need at least two distinct

paths of lengths `− 1 and `− 2.

x3 x2 x1 x3 x2 x1

Figure 1: Games G1-Ring Game (left) and G2 (right).

To see that this formalism captures the intuition discussed at the beginning of the paragraph,

Figure 1 illustrates the games G1 and G2 (where player k is identified with player type xk).

In G1, player type x3 is framed as she has only one path of length ` = 2 and of length ` = 1.

By contrast, in G2, player type x3 has two paths of both length ` = 2 and ` = 1. Notice that

G1 has the same link structure as a ring game, therefore such a class of games does not satisfy

Property 2.

x4 x3 x2 x1

Figure 2: Game with some framing.
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Figures 2 illustrates a case with less extreme framing. Here player types x2 and x4 are

framed: player type x2 has a single path of length 1 and player type x4 has a single path of

length 3. Player type x3 is not framed as she has two paths of both length ` = 2 and ` = 1.

Finally, Figures 3 and 4 below show the link structures of two framing-free games.

x4 x3 x2 x1

Figure 3: Framing-free game. E-Ring Game

x3 x4 x2 x1

Figure 4: Framing-free game.

3.3 E-Ring Games as Minimal Class of Games Guaranteeing Lower

Order Consistent and Framing-Free Identification

It turns out that, as we show in Proposition 1 below, by imposing lower order consistency and

absence of framing, the class of games the analyst may employ in the identification of up to 4

levels of rationality is significantly reduced.13 If, in addition, for the sake of simplicity of the

implementation the game is required to be minimal, then we are left with just the e-ring games.

A game is minimal if it has a minimal number of players, in order to reduce the noise in the

belief formation process, and its link structure contains the lowest possible number of links, to

minimize the complexity of the game.

Proposition 1 Let G be a game. Then, G is minimal among the class of games inducing a

lower order consistent and framing-free identification that identifies exactly order 4 if and only

if G is a simply dominance solvable e-ring game of depth 4.

Proof. The ‘if’ part is immediate so we focus on the ‘only if’ one. Lemma 1 implies that G is

dominance solvable and that it has player types x1, x2, x3, x4 and a link structure containing

(x4, x3), (x3, x2) and (x2, x1). Minimality of players implies that player types x1 and x3 belong

to one player and player types x2 and x4 belong to the other. Moreover there cannot be links

between player types belonging to the same player. Given this, absence of framing implies that

the link structure also contains (x3, x4) and (x2, x3). The only other link that can be added

is (x4, x1), but is excluded by minimality of links. We are thus left with the link structure of

Figure 3.

13We focus on 4 orders of rationality since the experimental literature agrees that these are empirically the
most relevant ones.
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4 Experiment

4.1 Experimental Design

The experiment consisted of four tasks and a non-incentivized questionnaire. In the first task,

subjects chose an action in a pair of standard two player 4×4 dominance solvable games. In

each of the subsequent two tasks, subjects chose actions in a set of eight ring games and eight

e-ring games. The set of eight ring games and the set of eight e-ring games were presented in

different random orders to each of the subjects, respectively. In the final task, subjects were

presented with the beauty contest game as in Nagel (1995) and had to choose a number for two

different versions of the game (one where the average of all players’ numbers was multiplied by

2/3 to determine the winner, and another where the average was multiplied by 1/3) and a more

general version, where subjects were asked to explain a general strategy about how they would

choose for any (unspecified) commonly known number p between 0 and 1 (both not included)

that could be announced publicly in the beauty contest game. For this final task, subjects were

told that they could either choose a number, a mathematical formula or provide any text which

would show their reasoning process.

Our experimental design intends to compare the e-ring games with benchmark games used

in the literature (ring games, dominance solvable games such as our 4×4 games and the p-

beauty contest games) to empirically classify individuals according to the revealed rationality

approach. We chose these classes of games as they are the ones most frequently used in the

literature for the identification of the empirical distribution of higher orders of rationality.

Moreover, they are particularly convenient to test the empirical validity of the two axioms

proposed in Section 3.2, since the 4×4 dominance solvable games and the beauty contest games

do not satisfy lower order consistency, while the ring games satisfy lower order consistency but

not absence of framing.

We designed eight treatments differing in three aspects: (i) whether the ring game was

played before or after the e-ring game; (ii) whether the payoff matrices used in the ring and e-

ring games remained constant (non-permuted) across decisions, while either varying the player’s

position (ring game) or the number of messages received (e-ring game), or whether the actions

in such matrices were reshuffled (permuted); and (iii) whether the 1/3 version of the beauty

contest game was played before or after the 2/3 one. A translation of the original Spanish

instructions as well as the actual games used for each of the tasks can be found in the Online

Appendix.

In both the e-ring and the ring games, each subject can play four possible actions in each

of the eight games for a total of 65,536 possible action profiles. In both the e-ring and the ring

games, there are 801 action profiles that do not violate any of the predicted action profiles of

types R1-R4, independently of subjects’ role following the revealed rationality approach. Thus,
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it is unlikely for a subject to be assigned to a rational type by random chance since there is

1.2% probability of being identified as R1-R4 while playing randomly in either games.14

4.2 Laboratory Implementation

The experiment was conducted at the Engineering School of Universidad Carlos III in Madrid

(Spain) in April, 2018. This particular school was selected due to being one of the most presti-

gious universities in the country. Accordingly, the average grade in the entrance to university

exam of our pool of participants is 12 (out of 14 possible points). All undergraduate engineering

students from the school were sent an email message announcing the experimental sessions and

they were confirmed on a first-come first-served basis according to our sample size requirement.

229 students participated. No subject participated in more than one session. Subjects made all

decisions using a booklet including all instructions in the order determined by their treatment

assignment and the randomization of the order of eight ring and e-ring games, the answer sheets

and a post-experimental questionnaire. Sessions were closely monitored resembling exam-like

conditions in order to ensure independence across participants’ responses and compliance with

our instructions.

Instructions were read aloud and included examples of the payoff consequences of several

actions in each of the tasks. Participants answered a demanding comprehension test prior to

each of the tasks. A majority of subjects (71%) answered all 13 questions correctly. We made

sure that all remaining issues were clarified before proceeding to the actual experiment.15 Their

explicitly written rationale to their actions also shows that they understood the experimental

instructions. Participants received no feedback after playing each of the games nor after finishing

each of the tasks, and we monitored that subjects would not jump from one task to the other

unless instructed. Once all four tasks were completed, subjects filled up a questionnaire, which

included non-incentivized questions about the reasoning process used to choose in each of the

tasks, as well as questions about knowledge of game theory and demographics. Subjects were

given 4 minutes to complete the first task, 20 minutes each for the second and third tasks, and

9 minutes for the final task. The two experimental sessions lasted around 75 minutes each.

We provided high monetary incentives for 10 randomly selected participants, instead of

paying all subjects a lower amount of money.16 One of the twenty decisions was randomly

selected for payment at the end of the experiment for each of these 10 participants. Subjects

were randomly and anonymously matched into groups of 2-players (e-ring and 4× 4 games), 4-

players (ring games) or all players (p-BC games) depending on the game selected, and were paid

14Of the 801 possible rational action profiles, 720 would be identified as R1 (89.8%), 72 as R2 (8.9%), 8 as
R3 (0.9%) and 1 as R4 (0.1%).

15Although our analysis uses the full sample of participants, results are robust to using the subsample of
subjects who made no mistakes in the tests.

16See Alaoui and Penta (2018a) for a theoretical justification of this design choice that should give higher
incentives to achieve higher levels in the hierarchy of beliefs.
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based on their choice and the choices of their group members in the selected game. Subjects

received e100 plus the euro value of their payoff in the selected game. Average payments for

these selected participants were e174.

4.3 Experimental Results

Empirical Relevance of the Properties. The first empirical question is whether the de-

sirability of the proposed properties is actually justified by the data. To test lower order

consistency (Property 1), we check whether the probability of classifying subjects in higher

categories is higher in those games that do not satisfy it.

To this end, we compare the proportion of subjects identified as having higher order beliefs

in rationality (R2, R3 or R4) in 4×4 games and in the two beauty contest games but that are

identified as not having such beliefs (and thus being classified as R0 or R1) in both ring games

and e-ring games, and vice versa.

Below we report the proportions of subjects (out of the total population) identified as R2-R4

in 4×4 and beauty contest games, and whose highest rationality level identified in e-ring and

ring games is R0 or R1:

4× 4: 0.14 2/3-BC: 0.19 1/3-BC: 0.09.

When we calculate the proportions of subjects identified as R0 or R1 in 4×4 and beauty contest

games, and who are identified as R2-R4 in e-ring and ring games, we obtain the following:

4× 4: 0.04 2/3-BC: 0.02 1/3-BC: 0.12.

The data goes in the direction we should expect if the proposed Property 1 was relevant. That

is, the first proportions should be greater than the second ones. This means that 4×4 and

2/3-BC games are clearly worse in identifying higher order beliefs. The data does not exclude

that the 1/3-BC game may do reasonably well at identifying higher order rationality.

By contrast, when we invert the games, we find that the proportions of subjects identified

as R2-R4 in ring and e-ring games, and who are identified as R0 or R1 in 4×4 and beauty

contest games are:

E-ring games: 0.01 Ring games: 0.01,

whereas, the proportions of subjects identified as R0 or R1 in ring and e-ring games, and who

are identified as R2-R4 in 4×4 and beauty contest games are:

E-ring games: 0.11 Ring games: 0.14.

Again, the data goes in the expected direction.
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Next, we build on the established empirical relevance of Property 1 to understand the

importance of requiring absence of framing (Property 2). For this, we look at the distribution

of levels of rationality obtained in ring games and e-ring games by those individuals whose

maximum levels of rationality identified in the other games is not higher than 1 (i.e., R0 or R1

in 4×4 games and BC games). We do this, given that, if Property 1 holds, 4×4 games and BC

games are good tests for levels R0 or R1. Individuals that do not show higher order beliefs in

any of these games have a higher probability of not having been misidentified. We focus on this

particular population of 36 subjects because the strongest effects of framing (from the e-ring

and ring games), if present, should be highlighted within a population that shows otherwise no

evidence of higher order beliefs.

Table 1 presents the cumulative distribution function of the rationality levels as classified by

the e-ring and ring games among participants who are identified as R0 or R1 in the 4× 4 and

1/3-BC games. We find that the ring games consistently classify subjects in higher categories

than the e-ring games. In fact, as is clear from Table 1, the distribution of levels identified by

the ring games first order stochastically dominates the one identified by the e-ring games.17

R4 R3 R2 R1 R0

E-ring game 0.0% 8.3% 33.3% 75.0% 100.0%

Ring game 16.7% 22.2% 38.9% 75.0% 100.0%

Table 1: Cumulative distribution of rationality levels for e-ring and ring games

for individuals identified no more than R1 in the 4× 4 and 1/3-BC games.

We find further evidence of the relevance of Property 2. Figure 5 reports the proportion

of subjects classified as level Rk, for all but the p-BC game with unspecified p, irrespective of

the order of the tasks.18 First, when looking at the distribution of the classification of subjects

according to the ring game, we observe a steep decrease in the frequencies of subjects classified

as R2 and R3, while there is an increase in the frequencies of R4’s. Second, when comparing

treatments in which the ring games and the e-ring games were presented in different orders to

subjects, we find higher levels of rationality in the e-ring games when they are played after hav-

ing played the ring games, than when played in the opposite order (Kolmogorov-Smirnov test

significant at the 1% level). We interpret this evidence as highlighting two things. First, the

properties are addressing potentially serious flaws of the different methods. Second, they cap-

ture the observed problems in the right direction, given that the e-ring games, that are the only

17Requiring participants to be identified as R0 or R1 in all three games (4 × 4, 2/3-BC and 1/3-BC games)
leaves us with only 8 participants, while maintaining the stochastic dominance of the cumulative distribution
of the ring games over the e-ring games.

18We leave out the p-BC game with unspecified p because of the different identification strategy used.
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games satisfying both properties, seem to be less affected by these potential misidentification

problems.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

R0 R1 R2 R3 R4

E-Ring Games Ring Games 4x4 Games BC 2/3 BC 1/3

Figure 5: Classification by order of rationality, by game.

Existence of an Underlying Distribution. Having studied the empirical relevance of Prop-

erties 1 and 2, we now address a further potential problem with this kind of exercise. The main

aim of the literature is to identify the distribution of types in the population. This assumes

that, either individuals truly behave as described by the model (as is approach) or that their

behavior can be described by the model (as if approach). In both instances it is fundamental

to understand whether there is a stable distribution of types in the population.

We first look at the aggregate results. As shown in Figure 5, more than 80% of the subjects

were classified by a level of rationality between R1 and R4. The classification of subjects in

the different levels shows high variability across games. The e-ring games, the ring games and

the 1/3-BC game have level R1 as their mode, whereas the 4×4 games have level R2, and the

2/3-BC game has level R4 as mode. The frequencies of Rk levels tend to decrease after R1 or

R2 for the e-ring games, the 1/3-BC and the 4×4 games. All this evidence seems to suggest

that there is no stable distribution and assuming its existence might lead to serious mistakes.

In the 2/3-BC game, we find that the distribution is generally shifted towards higher levels, in

particular, with high frequencies of R2’s, R3’s and R4’s.19

19Notice that in the 2/3-version of the BC game, numbers below 30 and 20 are already classified as, respec-
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We also find additional treatment effects. First, when comparing treatments with permuted

and non-permuted versions of the ring and e-ring games, we find higher levels of rationality in

permuted versions (Kolmogorov-Smirnov test significant at the 1% level for the e-ring games and

2% for the ring games). It may be due to the non-permuted versions leading to more mechanical

processes and rules of thumb, while the permuted versions may induce subjects to think harder

about the games. This is in line with the literature on fluency (Oppenheimer (2008)). Second,

we find some evidence for cognitive depletion, namely, lower levels of rationality in the ring

games when they are played after having played the e-ring games (Kolmogorov-Smirnov test

significant at the 1% level). This could be due to the higher complexity of the e-ring game

compared to the other games, as proven by the fact that 76% of the subjects (174 out of 229)

passed the 7-question comprehension test, whereas, in the ring and the 4×4 games, respectively,

95% (218 out of 229) and 92% (211 out of 229) of the subjects passed the corresponding

comprehension test.20 The distribution of the Rk levels, conditional on passing the test, is not

qualitatively different from the unconditional case.21 These findings suggest that the identified

rationality level might be not only game dependent but also path dependent.

The high degree of variation of the classification across games is confirmed at the individual

level. Out of 229 subjects, no one was classified at the same level of rationality across all games.

When allowing individuals to be classified within two adjacent levels of rationality, we obtain

that 14% of the subjects are within two levels, distributed as follows:

R0-R1: 2% R1-R2: 7% R2-R3: 4% R3-R4: 1%

If we further classify individuals by the lowest level of rationality a subject has been identified

with, then we obtain the following distribution:

R0 : 32% R1 : 49% R2 : 18% R3 : 1% R4 : 0%.

No class of games is more stringent than the others in terms of identification of an individual

lower bound of rationality. That is, no class of games assigns a level of rationality to subjects

that is consistently lower than the ones assigned by the other classes. Without taking into

account the individuals identified as R0, the e-ring games identify a lower bound for 26% of

the population, the ring games and the 4×4 games for 30%, the 2/3-BC game for 5% and the

tively, R3 and R4. When looking at the reasoning processes reported in the p-BC game with unspecified p, we
observe that many of the subjects reporting such numbers, do it for idiosyncratic and nonstrategic reasons (e.g.,
lucky number, birthdate, age, etc.). By contrast, in the 1/3-BC game, subjects need to choose numbers below
4 and 1.2, to be classified as R3 and R4, respectively.

20Notice however that our test is much more demanding (7 vs 3 questions). Hence, statistically, we should
expect to find a difference.

21Another treatment effect we find is that when the 1/3 version of the BC game is played after the 2/3 version,
rationality levels are on average lower (Kolmogorov-Smirnov test significant at the 1% level). This effect might
be due to the fact that subjects might use the numbers they said in the 2/3 version as a reference.
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1/3-BC game for 45%. However, this result is mainly driven by subjects classified as R1 and is

therefore not very informative.

An alternative way of analyzing consistency in the data is to check the stability of the

relative ranking of rationality levels across games for pairs of individuals. While the levels of

rationality vary a lot across classes of games, it might be the case that when we look at pairs

of individuals, one is always ranked equal or higher across all classes. In this sense we find that

among all possible pairs of subjects only 29% are classified with a consistent relative ranking

across all classes of games. This number increases to 30% if we exclude beauty contest games

and is 49% if we exclude e-ring, ring and 4× 4 games.22

An additional method to measure the stability of the relative ranking across classes of games

is to check the correlation between the distributions obtained for the different classes. Table 2

shows that the correlation of the Rk levels between pairs of classes of games is also weak.

Between classes of games that are “more similar” (e.g., between the two BC games or between

the ring and the e-ring games) it is clearly higher. Interestingly, the e-ring games perform

slightly better than the others in that it exhibits higher correlations than the other games.23

E-ring Ring 4× 4 2/3-BC 1/3-BC

E-ring 1.00 0.24 0.14 0.13 0.15

Ring 1.00 0.13 0.09 0.10

4× 4 1.00 0.02 0.09

2/3-BC 1.00 0.67

1/3-BC 1.00

Table 2: Correlation of the distributions of levels of rationality be-
tween classes of games.

The fact that the e-ring games exhibit higher correlations than all the other classes, suggests

that this class of games is actually capturing some kind of underlying relative ranking of the

individuals. To look for the existence of this relation, one would need to check the correlation

of the classifications obtained in the different classes of games with a distribution clean from

22In the latter category of games, if we also include the version of the beauty contest with abstract p, the
level of consistency goes down to 38%.

23When considering the p-BC game with unspecified p the correlations are as follows:

E-ring: 0.29 Ring: 0.14 4× 4: 0.01 2/3-BC: 0.37 1/3-BC: 0.53.
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statistical noise (e.g. mistakes, idiosyncratic game characteristics, etc.) that might increase the

probability of identification errors. A robust way of identifying this distribution, within the

revealed rationality approach, is to classify each individual by the rationality level she has been

most frequently identified with across all classes of games.24 Once we do that the obtained

distribution is the following:

R0 : 9.1% R1 : 37.0% R2 : 34.6% R3 : 6.7% R4 : 12.5%.

Using this distribution, we calculate the aforementioned correlations. For the beauty contest

games, for each individual, we take the minimum level of rationality she has been identified

with, to avoid the noise created by the 2/3 version. The results are as follows:

E-ring: 0.63 Ring: 0.50 4× 4: 0.35 BC: 0.46.

The e-ring games outperform the other classes of games by a significant margin.25 This leads

us to conclude that e-ring games are rather successful in identifying the relative ranking of

individuals once we take into account possible statistical noise.

A final piece of evidence pointing in the same direction is the higher correlation between the

distribution of rationality levels in the e-ring games with an independent measure of cognitive

ability than for any of the other classes of games. Indeed, the correlation between the rationality

levels as identified by the different classes of games and the ranking of the subjects based on

the results of the standardized test used for the admittance to university is as follows:

E-ring: 0.24 Ring: 0.12 4× 4: 0.06 BC: 0.05.

To conclude, while we do not find evidence of a stable absolute ranking of individuals, that

is, allowing for no mistakes and no variation across games, we do find some kind of stable

relative ranking of individuals when relaxing these constraints. In particular, it seems that the

e-ring games do relatively well at identifying this kind of ranking.

5 Concluding Remarks

The identification of a reliable distribution of orders of rationality in the population is a crucial

exercise for many applications. As argued in the introduction, it can have an impact on the

24When for an individual the most frequent classification is not unique, following the revealed rationality
approach, we take the minimum. In the case that individual behavior is particularly noisy, that is an individual
has been classified differently in each class of games, we do not include the data in the calculation of the
correlations even if they do not qualitatively change the results. This happens 21 times out of 229.

25Notice that while, statistically, e-ring games should outperform BC and 4×4 games due to the higher number
of choices and hence the higher informative content of the classification, there should be no difference between
e-ring games and ring games in terms of informativeness of the classification.
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understanding of many economic problems like price formation, institutional design, monetary

policy, oligopolistic competition, among many others. The main problem in this kind of exercise

is that usual games do not allow for the observation of behavior at the different steps of the

hierarchy of beliefs and, if they do, they might frame individuals into thinking in levels, thereby

invalidating the very exercise.

This paper tackles this unresolved problem by taking an axiomatic approach. We propose

two intuitive axioms that, at a practical level, narrow the class of games valid for identification

down to a single class: e-ring games. The empirical evidence presented suggests that both

properties are relevant and that the new class of games manages to significantly reduce the

likelihood of identification errors and to more consistently identify the relative ranking of sub-

jects. Nevertheless, the data cannot confirm the existence of a stable and game-independent

distribution of rationality types in the population. This casts doubts on using the standard

concepts of rationality and higher order rationality as fixed behavioral benchmark in games and

points toward taking a more flexible or game-dependent approach.
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