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1. Introduction

Paraphrasing Nash (1951), there are two approaches to game theory: axiomatic
and strategic. By giving different insights on a problem, the two approaches are
complementary. This paper applies the axiomatic approach to the prekernel of games
in coalitional form, thereby complementing the strategic analysis that Serrano (1995)
made of this solution concept. The extension of the prekernel to games of non-
transferable utility (NTU) has been perceived as a challenging problem, and the
strategic approach has proven to be useful to thisaim. Thus, Serrano (1995) finds that
the prekernel is the set of payoffs such that every pair of players Nash product is
critical (Previous attempts to extend the prekernel to NTU games (Kalai (1975), Billera
and McLean (1994)) are not satisfactory. Both papers try to extend the notion of a
coalition excessto NTU games).

Harsanyi (1959) proposes "reduced games' with respect to pairs of players to
analyze "consistency” and "converse consistency” on a class of multi-person pure
bargaining problems. In the same spirit as Harsanyi's, we investigate the implications
in the model of NTU games of a well-known internal consistency property and its
converse with respect to bilateral negotiations as formulated by two-person Davis-
Maschler (1965) reduced games. Consistency and its converse are the key axioms used
by Peleg (1986) in order to characterize the prekernel of transferable utility (TU)
games. Roughly speaking, our characterization combines the axioms of Peleg (1986)
for the TU prekernel and those of Nash (1950) for the Nash solution to bilateral
bargaining problems. In this sense, our work resembles Aumann's (1985) and Hart's
(1985) axiomatizations of the Shapley NTU value and the Harsanyi value, respectively.
These theorems combine the axioms of Nash (1950) and those of Shapley (1953). Our
theorem is also a pure axiomatization, in the sense that it is not restricted to a class
where a certain solution concept is nonvacuous. We regard the existence problem and
the axiomatic characterization as two completely separate issues. Our main theorem
says that, for the class of smooth NTU games, the prekernel is the only solution that
satisfies consistency, converse consistency, and a set of five axioms of the Nash type
imposed on the subclass of two-person smooth problems!: nonemptiness, scale
invariance, equal treatment for TU games, Pareto efficiency, and local independence.

The equal treatment property for TU games is a weaker requirement than Nash's
origina symmetry axiom. On the other hand, local independence is stronger than the
"independence of irrelevant aternatives’ axiom. Local independence is introduced and
studied by Nagahisa (1991) for the characterization and implementation of the

1 In this sense, our work resembles Aumann's (1985) and Hart's axiomatizations of the Shapley NTU
value and the Harsanyi value, respectively. These theorems combine the axioms of Nash (1950) and
those of Shapley (1953).
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Walrasian allocation rule in exchange economies (see aso Dutta, Sen and Vohra
(1995), Nagahisa and Suh (1995), Saijo, Tatamitani and Yamato (1993)). The basic
idea can be traced back to Inada (1964), who proposes this condition to investigate the
Arrow impossibility theorem in economic environments. The condition says that "if at
a commodity allocation all agents have a common marginal rate of substitution under
preference profiles u and u', then the allocation should be chosen as a socially optimal
outcome for u' whenever it is selected for u." The version in this paper expresses
essentially the same concept in the payoff space.

We aso show that for the class of smooth games with the cores nonempty, the
same axioms as in our main theorem characterize the intersection of the core and the
prekernel. This is related to Moldovanu's (1990) partial axiomatization of this
intersection for convex assignment problems.

The paper is organized as follows. Section 2 presents the model, while Section
3 is devoted to the consistency properties of the prekernel. Section 4 contains our main
result, as well as examples to show that the axioms are independent.

2. The Basic M odel

Denote by R the set of the real numbers. If N isanonempty finite set, denote
by [N] the cardinality of N, and by RN the set of all functionsfrom N to R. We
identify an element x of RN with an |NJ-dimensional vector whose components are
indexed by members of N; thus we write x; for x(i). If xT RN and SI1 N, we
write Xs the restriction of x to S, which is the element of RS that associates x;
witheach i1 S. Let ST N,and Y1 RS. Wedefine Y ={y1 Y |Thereisno x1
Y suchthat xj >y;foral i1 S},and intY astheinterior of Y. A representation
for Y isafunction g from RS to R suchthat Y ={x1 RS|g(x) 20} and intY =
{xT RS|g(x) <0}. Weasowrite gj(x) for the partial derivativeof g at x ERS
with respect to component i T S, and Ng(x) for the gradient vector of g at x1 RS,

The pair (N, V) isacoalitional game, or simply agameif N isa nonempty
finite set, and V is a correspondence that associates with every S1 N a nonempty
subset V(S) of RS such that

(1) V(S) is closed, and comprehensive;

(2) foreachxsl RS, V(S C({xg}+R+S) and _V(S)C({xs}-R+S) are compact; and

(3) foreach (xs,y9) 1 V(S) _V(9), xs =ys if Xs 3ys(nonlevelness)2.
Let V(N) be the class of correspondences V such that all (N, V) are games. A
member of N isaplayer, and a nonempty subset of N isacoalition in the game (N,
V). A payoff to player i isapoint of R{i}, and a payoff profile on coalition S isa
point of RS,



The game (N, V) is smooth if there is a differentiable representation g for
V(N) with positive gradientson _V(N); namely for each iT N, gi(x) >0 atany x1
_V(N). A class G of gamesisrichif for every (N, V)1 G G contains all two-person
games in which the players are members of N.

A transferable utility game, or simply a TU game, is a smooth game (N, V)
which is defined by afunction v that associates with every coalition S areal number
v(S) suchthat V(S) ={xs1 RS| i sxi2Vv(S)} for every codlition S. We abuse the
notation, and use (N, v) to denote the associated coalitional game.

Let G be anonempty class of games. A solutionon G isareation s which
associates with every (N, V)1 G asubset s(N, V) of V(N) (could be empty).

Definition. Let ({1, j}, V) be atwo-person smooth game. The prekernel of ({i, |}, V)
is:

Prk({i, j}, V) ={xT _V({i,i}) |G - vi) = gi(x)(x; - v{)},
where g isarepresentation for V({i, j}), and (vj, vj) = (maxV({i}), maxV({j})).

Remark 2.1. Solution Prk reduces to the Nash bargaining solution on the class of
two-person smooth games ({i, j}, V) suchthat V({i, j}) isaconvex set containing
(Vi, vj)-

Definition. Let G be anonempty class of games. Then asolution s on G satisfies
nonempty-valuedness (NEV ) if s(N,V) @ foreach (N,V)1 G and
Pareto efficiency (PE)if s(N,V)1 _V(N) foreach (N,V)T G

Remark 2.2. On the class of two-person smooth games, Prk satisfies NEV and PE.

Let (N,v) beaTU game, and i, betwo distinct playersin N. Then i and |
are substitutesin (N, v) if v(SE{i})=Vv(SE{j}) foral SI N\i,j}.

Definition. Let G be a class of games. A solution s on G satisfies the equal
treatment property (ETP) for TU gamesif for each x1 s(N, v), X; = Xxj whenever (N,

v) isaTU gamein G and i and j aresubstitutesin (N, v).

Remark 2.3. On the class of two-person smooth games, Prk satisfies ETP for TU
games.

Let (N,V) beagame,al RN, and b1 RN. For each codition S, we
define the function | 2P from RS toitself by | &bP(xs) = (ajx; + bj )ii 5 for each xs
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T RS. We then consider |2aP(V) as the correspondence that associates with every
codlition S aset | ab(V)(S) ={ysl RS|ys=1P(xs) for some xsi V(S)}.

Definition. Let G beaclassof games. A solution s on G satisfies scale invariance
(SIV) if for each (N, V)1 Geach al RN andeach b1 RN, s(N, | 2b(V)) =
I N@B(s(N, V)) whenever s(N, V) _@.

Remark 2.4. On the class of two-person smooth games, Prk satisfies SIV.

Definition. Let Gbe a nonempty class of two-person smooth games. A solution s on
G satisfies local independence (LID ) if for each ({i, j}, V)1 G each x1 s({i,j},
V),andeach V'1T V({i, j}),

xT v(di, ih) ¢ Vi, j});

(maxV({i}), maxV({j})) = (maxV'({i}), maxV'({j}));

Ng(x) // Ng'(x)?

P xT s({i,j}, V),
where g and g are respectively representationsfor V({i, j}) and V'{i, j}).

Remark 2.5. On the class of two-person smooth games, Prk satisfies LID.

Remark 2.6. Let (N, V) beasmooth game. Suppose that there is a smooth economy
(N, Z, A, u) which generates the outcomes of V as the utility possibility sets of
codlitions. Z is a common consumption set for al the agents in N, A is a
correspondence that associates with every coalition S anonempty subset A(S) of Z,
which denotes the set of feasible allocations for codlition S, and u = (U)ifn IS a
profile of agent's utility functions which are defined on Z and differentiable in its
interior.2

For each coalition S, define the function us by the Cartesian product of u;, i 1
S. Then V(S) isderived astheimage us(A(S)) of A(S) under us. For each utility
profile x on 9YV(N), the gradient vector of fV(N) a x can be shown to be
proportional to the vector of marginal utilities of all the agents with respect to any
commodity. Its direction is then unique up to any transformations of utility functions
such that the marginal utility vectors of all the agents change proportionally.

Let E be anonempty class of smooth economies. For each (N, Z,u, A) T E,
denote by U(N, Z, A) the class of utility functions u' suchthat (N, Z,u, A)T E. An
allocation ruleon E isarelation j that associates with every (N, Z, u, A) 1 E a
subset j (N, Z, u, A) of A(N). The Pareto rule on E isthe dlocation rule P that
assignstoevery (N, Z,u, A)T E theset P(N, Z, u, A) of Pareto efficient allocations



in A(N). We may thus trand ate the above version of local independence for the payoff
space to that for the commodity space as follows:
Anallocationrule j on E satisfies local independence if for each (N, Z, u, A) 1
E,each z1 j(N,Z,u,A) CintZ,andeach u'T U(N, Z, A),
z1 P(N,Z,u,A) CP(N,Z, u,A);
supui(A (1)) = supui'(A(i)), ui,(2) = u;,'(2) forevery il N;
Nu(z) // Nu'(2)
p zT j(N,Z,u, A),
were Nu(z) = (Nui(2))ii n, and Nu'(z) = (Nu'(@)ii n.
This is not identical with the original one by Nagahisa (1991). He does not put on the
conditional part either the restrictions of Pareto efficiency or the invariance of utilities.
Further the proportionality implies more than the invariance of margina rates of
substitutions. The above requirement is thus weaker than his one.

Proposition 1. Let G} be the class of two-person smooth games ({i, j}, V). Then
asolutionon Gi.i} satisfies NEV, PE, ETP for TU games, SV, and LID if and only if
itis Prk.

Proof. The solution Prk on G} satisfies NEV, PE, ETP for TU games, SIV, and
LID. Now we prove theuniqueness. Say i=1,and j=2. Let ({1, 2}, V) beatwo-
person smooth game, and s asolution on G 1} which satisfies NEV, PE, ETP for
TU games, SIV, and LID. Weprovethat s({1, 2}, V) = Prk({1, 2}, V).

By NEV, thereexists x = (x1, x2) 1 Prk({1, 2}, V). By PE,x1 TvV({1, 2}). By
differentiability, there is a unique tangent line of the curve _V({1, 2}) at x: Ng(x)-(z -
X) = g1(X)(z1 - X1) + g2(X)(z2 - X2) = 0. Define the two-person smooth game ({1, 2},
V) by V({1}) =V{1), V'{2}) =V({2}), and V'({1,2}) ={zT R* 2 |Ng(x)-(z -
X) 20}. Then, by theLID of Prk,x1 Prk({1, 2}, V'). Note that

Prk({1, 2}, V)={ ([(92(x)/g1(x) (X2-V2)+x1+V1T/2, [(91(X)/g2(X) (X1 -V1)+ X2+V2]/2)},
which is the midpoint of the segment on theline _V'({1, 2}) truncated by (v1', v2') =
(maxV'({1}), maxV'({2})). Hence, {x} = Prk({1, 2}, V') (see Figure 1).2 Define the
TU game ({1, 2}, w) by w({1})=0=w({2}), and w({1, 2}) = gi(x)(x1 - v1) +
92(X)(X2 - v2). By NEV, PE and ETP for TU games, s({1, 2}, w) = {(V2w({1, 2}),
(1/2w({1, 2})}. Let a=(1/gy(x), 1/g2(x)), and b = (v1', v2). By SIV,

s({1 2}, 1ab(w))  =1n2P(s({1, 2}, w))
= {(V29:(x))w({1, 2}) + v1', (L202(x))w({ 1, 2}) + v2))}
=Pk 1,2}, V)  ={x}.

2 We do not necessarilly assume that (vi, vj) T V({i,j}) foral ({i,j},v)T G}
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Notethat ({1, 2}, |2aP(w)) isthegame ({1, 2}, V'). Hence, s({1, 2}, V') =s({1, 2},
| abw)) = {x},sothat xT s({1,2},V"). ByLID,x1 s({1,2}, V). Thus, Prk{1, 2},
W1 s{1, 2}, V). Inexactly the same way, we can show that s({1, 2}, V)1 Prk({1,
2},V). Hence, s({1, 2}, V) =Prk({1, 2}, V). *

Word 6.0c or later to

view Macintosh picture:

3. Reduced Game Properties of the Prekernel

The following is a two-person "reduced game" studied by Peleg (1986, 1992).
Let PN° {PI N||P|=2},whichisthe set of two-person coalitionsin N.

Definition. Let (N, V) beagame, xT V(N),and P1 PN. The two-person reduced
game of (N, V) with respect to P given x isthe pair (P, Vxp) of P and the
correspondence Vyp that associates with every ST P asubset Vyp(S) of RS, where
Vxr({i}) ={yiT R (yi,xQ) T V{i}EQ), Q1 N\P} foreach il P, and Vyp(P) =
{ypl RPI(yp, xp) T V(N)}.34

Definition. Let (N, V) beagame. The prekernel of (N, V) is

Prk(N, V) ={xT _V(N) [gi(x)(xi-Vi(X~i, j})) = Gi(X)(X-Vj(x—~i,j3)) foreach i,jT N},
where g isarepresentation for V(N), and Vi(X_{i,j})), Vj(X_{i,j})) = (maxVX{i,j}({i}),
maxVygi 3 ({i}))-

Definition. Let Gbe a nonempty class of smooth games. A solution s on G satisfies
local independence (LID) if for each (N, V) T G each x T s(N, V), and each V' 1
V(N),

x1 TV(N) C TV'(N);

"PT PN QI NP, " il P,vi({i}EQ; xg) = Vi'{i}EQ; Xq);

Ng(x) // Ng'(x)



p xT s(N, V),
where g and g are respectively representations for V(N) and V'(N), vi({i}EQ; Xq) =
max{y; I R} (yi, xg) T V{I}EQ)}, and vi'{i}EQ; xg) = max{y; T Ri} | (y;, xq) I
V'{i}EQ)} foreach PT PN, each QI N\P,andeach i1 P.

Remark 3.1. To redefine the above statement for the commodity space, we need to
impose more restrictions of invariance of utility levels on the translation in Remark 2.6.
Thus the above version is even weaker than the previous one.

Definition. Let G be anonempty class of games. Then asolution s on G satisfies
bilateral consistency (BCS) if
"(N,WVT G xT s(N,V)," PT PN (P,Vyp) T G& xpl s(P, Vyp).

Definition. Let G be anonempty class of games. Then asolution s on G satisfies
converse consistency (CCS) if
"(N,V)T G" xT _V(N),[(" PT PN, xpl s(P,Vxp) P x1T s(N, V)].

Remark 3.2. On arich class of smooth games, Prk satisfies BCS and CCS.

Remark 3.3. Let Gi.i} bethe class of two-person smooth games ({i, j}, V). Thena
solutionon G} satisfies NEV, PE, ETP for TU games, SIV, LID, BCS, and CCS if
and only if itis Prk.

4. A Characterization of the Prekernd

We have checked that on a class of smooth games, the solution Prk is nonempty-
valued, and satisfies PE, ETP for TU games, SIV, and LID. We next show that it is
uniquely characterized by two-person versions of al the axioms together with bilateral
consistency and its converse.

Theorem 1. Let & bearich class of smooth games. A solution on &y satisfies NEV
for two-person games, PE for two-person games, ETP for two-person TU games, SV
for two-person games, and LID for two-person games, BCS and CCSif and only if it is
Prk.

Proof. The solution Prk on & satisfies NEV for two-person game, PE for two-

person game, ETP for two-person TU games, SIV, LID, BCS, and CCS. Now we

prove the uniqueness. Let (N, V)T G, and s asolution on Gy that satisfies NEV,
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PE, ETP for TU games, SIV and LID for two-person games, and satisfies BCS and
CCS on &. We provethat s(N, V) = Prk(N, V). The proof for |[N| =1 istrivial.
We have aready proven the case of |N|=2. Then consider the case of |N|3 3.

Suppose that Prk(N, V) _ @. Let x1 Prk(N, V). By the BCS of Prk, xp 1
Prk(P, Vxp) for every PT PN. Hence, xp1 s(P, Vxp) for every P1 PN. By the
CCSof s,x1 s(N, V). Hence, Prk(N, V) I s(N, V). Notethat s(N, V) _@. Then
we can similarly show that s(N, V)1 Prk(N, V). Thus, s(N, V) = Prk(N, V).

Suppose that Prk(N, V) =@. Let xT _V(N). By the CCSof Prk, there exist
at least one pair Q of playersin N suchthat xql Prk(Q, Vxg). Since (Q, Vxq) isa
two-person game, we have Prk(Q, Vxo) =s(Q, Vxq), sothat xol s(Q, Vxg). By the
BCSof s, x| s(N, V). Hence, thereis no payoff profilein s(N, V), sothat s(N, V)
=@. Thus, s(N, V) =Prk(N, V).*

In Theorem 1, we have used seven axioms. It does not look so elegant, and Lensberg
(1988) actually proves that under consistency, we do not need any such conditions as
the "independence of irrelevant alternatives' to axiomatize the Nash solution on the
class of pure bargaining problems with valuable populations. The following examples
show that we are not able to drop any of the seven axioms to characterize Prk on a
class of smooth games even with valuable populations.

Example 4.1: Forevery (N,V)1 G, let s(N,V)=@. Then s vacuously satisfies
all the conditions except NEV for two-person games.

Example 4.2: For every two-person game (P, V), define
b(P, V) = (Vi)it p if (vi)iipl intV(P);
Prk(P, V) if (vi)itpl intV(P).
Forevery (N, V)T G, let s(N,V)={xT V(N)|xp1 b(P, Vyp) foral PT PN},
Then s satisfies all the conditions except PE for two-person games.

Example 4.3: Forevery (N,V)1 Gy, let s(N,V)=_V(N). Then s satisfiesal the
conditions except ETP for two-person TU games.

Example 4.4: Forevery (N, V)T Gy, let s(N, V) ={xT _V(N)| xi - i(x~i, j}) = Xj-
Vj(x—i, jy) foreach i,jT N}. Then s satisfiesall the conditions except SIV for
two-person games.

Example 4.5: For every two-person game (P, V), define a(P, V) = (a(P, V))ii p by

a(P, V) =max{x; T R} (x;,v))T V(P)} foral il P. Forevery (N,V)1 &, let

SN, V) ={xT IV(N)[ xpT [(vi(x-p))ii p, &P, Vxp)] foreach PT PN}, where [c, d]
9



={(1-t)c+td|02t21} foreach c,d1 RP. Thatis, for every pair P of playersin
N, xp isthe maximal point of the feasible set Vyp on the segment connecting (Vvi(X-
p)iip to aP, Vyp) if x1 s(N, V). Notethat s isamodification of the Kalai-
Smorodinsky bargaining solution, and s satisfies al the conditions except LID for
two-person games.

Example 4.6: Let (N,V)T Gy, and i,jT N. Then i and | are equivalent if
GIVIHIES: x9) - vi) = g()(vi({I}ES: x) - v)) for every x T _V(N), and for
each ST N\i, j}, where vi({i}ES; x5) = max{y;i I R{}| (y;, xg) T V({i}ES)} for
each i1 N, andeach SI N\{i}. Note that gi(X)(Vi(X~i, j3) - Vi) = gi(x)(vi(X~i, 1) -
vj) forevery x1 _V(N) if players i and j areequivalent. Now let s(N, V) ={x1

_V(N) | gi(X)(xi - vi) = gj(X)(x; - V) if i,jT N areequivalent}. We can verify that s
satisfies the five axioms imposed on two-person games. NEV, PE, ETP for TU games,
SIV, and LID. If |N|= 2, then the two playersin N are equivalent, and s(N, V) =
Prk(N, V). Toprovethat s satisfies CCS, supposethat x T _V(N) issuch that xp
T s(P, Vyxp) = Prk(P, Vyp) for each PT PN. Since Prk satisfies CCS, x 1 Prk(N,
V). We show that Prk(N, V) T s(N, V) if |N|33. Let xT Prk(N, V). Then x1

_V(N). Assumethat i,jl N areequivalent. Since x| _V(N), we have gi(x)(Vvj(Xx—
{01 = Vi) = GOV (X<, j3)) - vj), so that Gi(x)(xi - Vi) - gi(X)(Xj - vj) = Gi(X)(Xi - Vi(X—
{i j})) - gj(X)(Xj - Vj(X_{i, j})). Since x 1 Prk(N, V), we have gi(X)(X; - Vi(X_{i, j})) =
gi(X)(Xj - Vi(X~i, 1)), so that gi(x)(X; - Vi) - gj(X)(Xj - vj) = 0. Hence, xT s(N,V),i.e,
Prk(N, V) T s(N, V). Thus, s satisfies CCS. Supposethat N={1,2,3},and V isa
TU game defined by v({1}) =v({2}) =v({3}) =0, v({1, 2}) =4, v({1, 3}) = 3, v({2,
3})=2,and v({1, 2, 3})=6. Then (N, V) hasno pair of equivalent players, so that
s(N, V) = _V(N). Let x=(2,2 21 s(N,V), then s{1, 2}, V(xq1, 2)) = {(25,
1.5)}. Hence, s does not satisfy BCS.

Example 4.7: Forevery (N,V)T Gy, let s(N, V) ={xT Prk(N, V) [ Vi(Xi, 1) = Vi(X-
(i.ky) foreach i,j, kT Nwith j_i_Kk}. Notethat s(N, V) =Prk(N, V) if IN|=2,
Then s satisfies all the conditions except CCS.

Remark 4. 1. The solution Prk satisfies PE, ETP for TU games, SIV, and LID over
the class of n-person smooth games, n 3 2. It does not satisfy, however, NEV over the
same class (see Serrano (1995, Example 2), and Moldovanu (1990, p.188)).

We next study the intersection of the core and the prekernel on the class of

games with nonempty core.
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Definition. Let (N,V) beagame, S1 N,and x1 RN. Then S can improve upon
x if thereis y1 V(S) suchthat y; >x; forall il S. Thecoreof (N,V) is:
C(N, V) ={x1 V(N)| Thereis no codlition that can improve upon X}.

Definition. Let ({i, j}, V) be atwo-person smooth game. The core-kernd of ({i, j},
V) is:

CK({i,j}, V) ={xT C({i,j}, V) [ i(x)(xi - vi) = gj(x) (% - v})},
where g isarepresentation for V({i, j}), and (vj, vj) = (maxV({i}), maxV({j})).

Remark 4.2. The solution CK reduces to the Nash bargaining solution on the class of
two-person smooth games ({i, j}, V) suchthat V({i,j}) isaconvex set.

Proposition 2. Let Goli-i} be the class of two-person smooth games ({i, j}, V) with
nonempty core. Then a solution on Gcli-i} satisfies NEV, PE, ETP for TU games, SV,
and LID if and onlyifitis CK.

Proof. The solution CK on Gdli i} satisfies NEV, PE, ETP for TU games, SIV, and
LID. Now we prove theuniqueness. Say i=1,and j=2. Let ({1, 2}, V) beatwo-
person smooth game, and s asolution on Gcli: i} which satisfies NEV, PE, ETP for
TU games, SIV, and LID. Weprovethat s({1, 2}, V) = CK({1, 2}, V).

By NEV, there exists x = (X1, x2) | CK({1, 2}, V). By PE, x| _V({1, 2}).
By differentiability, there is a unique tangent line of the curve V({1, 2}) a x:
Ng(X)-(z - X) = 91(X)(z1 - X1) + g2(X)(z2 - X2) = 0. Define the two-person smooth game
{12, V) by V(1) =v({1}), V'(2) =V({2}), and V'{1, 2}) ={z1 RLZ |
Ng(x):(z- x) 20}. Then, by theLID of CK, x| CK({1, 2}, V). Note that

CK{ L, 2}, V)= ([(92x)/92(x) (X2-v2) +x1+v1'1/2, [(91(X)/g2(X) (X1 -V1)+ X2+V2]/2)},

which is the midpoint of the segment on theline _V'({1, 2}) truncated by (v1', v2') =
(maxV'({1}), maxV'({2})). Hence, {x} = CK({1, 2}, V') (see Figure 2).2 Define the
TU game ({1, 2}, w) by w({1})=0=w({2}), and w({1, 2}) = gi(x)(x1 - v1) +
92(X)(X2 - v2). By NEV, PE and ETP for TU games, s({1, 2}, w) = {(/2w({1, 2}),
(172w({1,2})}. Let a=(1/gu(x), 1/g2(x)), and b = (v1, v2). By SIV,

s({1 2}, 1ab(w))  =1n2P(s({1, 2}, w))
= {(V29:(x))w({1, 2}) + v1', (L202(x))w({ 1, 2}) + v2))}
=CK{1, 2, V)  ={x}.

Note that ({1, 2}, | 2b(w)) isthe game ({1, 2}, V'). Hence, s({1, 2}, V') =s({1, 2},
| ab(w)) = {x},sothat xT s({1,2},V"). ByLID,xT s({1, 2}, V). Thus, CK({1, 2},

3 Forevery ({i,j}, V)T G&th b c{i, j}, v) _@.ie, (vi,v)T V(i i}
11



W1 s{1, 2}, V). Inexactly the same way, we can show s({1, 2}, V)1 CK({1, 2},
V). Hence, s({1, 2}, V) =CK({1, 2}, V). °

Definition. Let (N, V) beagame. The core-kernel of (N, V) is:

CK(N, V) ={xT C(N,V) | gi(x)(Xi-Vi(x{i, j})) = () (Xj-vj(Xi, ) for eachi,j T N},
where g isarepresentation for V(N), and (Vi(X-(i, 1), Vi(Xi, j3)) = (MaxVygi 3 ({i}),
maxVi, 3 ({i}))-

Theorem 2. Let Gc be arich class of smooth games with nonempty core. A solution
on G satisfies NEV for two-person games, PE for two-person games, ETP for two-
person TU games, SV two-person games, and LID for two-person games, BCS and
CCSifandonlyifitis CK.

Proof. The solution CK on Gc satisfies NEV for two-person game, PE for two-
person game, ETP for two-person TU games, SIV, LID, BCS, and CCS. Now we
prove the uniqueness. Let (N, V)T G, and s asolutionon G¢ that satisfies NEV,
PE, ETP for TU games, SIV and LID for two-person games, and satisfies BCS and
CCS on Gc. Weprovethat s(N, V) = CK(N, V). The proof for |N| =1 istrivial.
We have aready proven the case of |[N| = 2. Then consider the case of [N| 3 3.

Suppose that CK(N, V) _@. Let xT CK(N, V). By the BCSof CK, xp1
CK(P, V(x)) forevery PT PN. Hence xp1 s(P, V(xp)) forevery P1 PN. By
the CCSof s,x1 s(N, V). Hence, CK(N, V) I s(N, V). Notetha s(N,V) _ @.
Then we can similarly show that s(N, V)1 CK(N, V). Thus, s(N, V) = CK(N, V).

Supposethat CK(N, V) =@. Let xT _V(N). Then by the CCS of CK, there
exist at least one pair Q of playersin N suchthat xo I CK(Q, V(x_g)). Since (Q,
V(x_q)) isatwo-person game, we have CK(Q, V(X_q)) = s(Q, V(x_q)), so that xq |
s(Q, V(x—q)). By theBCSof s, x| s(N,V). Hence, there is no payoff profile in
s(N, V), sothat s(N,V)=@. Thus, s(N, V) =CK(N, V)."®

12



Word 6.0c or later to

view Macintosh picturi

Moldovanu (1990, Theorem 5.2) considers the same solution on the class of
NTU assignment games. For characterization, he implicitly assumes that the solution
under investigation is single-valued for two-person games of the domain. He thus uses
the "independence of irrelevant aternatives' as one of the axioms instead of local
independence. If we do not assume either such a single-valuedness condition or local
independence, we are not able to show more than that the solution contains the
intersection of the core and the prekernel, that is, s(N, V) I CK(N, V) for every game
(N, V) of the domain.

The following examples show the independence of the axiomsin Theorem 2.

Example4.1': Forevery (N,V)1 G, let s(N,V)=@. Then s vacuously satisfies
all the conditions except NEV for two-person gamesin Cc.

Example 4.2': For every two-person game (P, V), define d(P, V) = (vj)ii p. For every
(N, VT G, let s(N,V)={xT V(N)[xpT d(P, Vxp) foral PT PN}. Then s
satisfies al the conditions except PE for two-person gamesin Ge.

Example 4.3 Forevery (N,V)T G, let s(N,V)=C(N, V). Then s satisfiesall
the conditions except ETP for two-person TU gamesin Gc.

Example4.4': Forevery (N,V)T G, let s(N, V) ={xT _V(N)|xi - Vi(X{i,j}) = X
-Vj(Xgi,j3) foreach i,jT N}. Then s satisfiesall the conditions except SIV for two-
person gamesin Gc.

Example 4.5": For every two-person game (P, V), define a(P, V) ° (a(P, V))iip by
a(P, V) =max{x; T R} (xi,vi)T V(P)} foral iT P. Forevery (N,V)1 G, let
s(N, V) ={xT _V(N)| xp T [(ViX-p))ii p» &P, Vxp)] for each PT PN}. Then s
satisfies al the conditions except LID for two-person gamesin Gc.

13



Example4.6': Forevery (N,V)1T Gg, let s(N, V) =Prk(N, V). Then s satisfiesall
the conditions except ETP for two-person TU gamesin Gc.

Example 4.7': Forevery (N, V)T Gg, let s(N, V) ={xT CK(N, V)| Vi(xi,j) =
Vi(xi,kp) foreach i,j, k1 Nwith j _i_k}. Notethat s(N, V) =CK(N, V) if |N|
= 2. Then s satisfies all the conditions except CCS.

Remark 4. 3. The solution CK satisfies PE, ETP for TU games, SIV, and LID over

the class of n-person smooth games with nonempty core, n 3 2. It does not satisfy,
however, NEV over the same class (see Moldovanu (1990, p.188)).
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