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1. Introduction

Paraphrasing Nash (1951), there are two approaches to game theory: axiomatic

and strategic.  By giving different insights on a problem, the two approaches are

complementary.  This paper applies the axiomatic approach to the prekernel of games

in coalitional form, thereby complementing the strategic analysis that Serrano (1995)

made of this solution concept.  The extension of the prekernel to games of non-

transferable utility (NTU) has been perceived as a challenging problem, and the

strategic approach has proven to be useful to this aim.  Thus, Serrano (1995) finds that

the prekernel is the set of payoffs such that every pair of players' Nash product is

critical (Previous attempts to extend the prekernel to NTU games (Kalai (1975), Billera

and McLean (1994)) are not satisfactory.  Both papers try to extend the notion of a

coalition excess to NTU games).

Harsanyi (1959) proposes "reduced games" with respect to pairs of players to

analyze "consistency" and "converse consistency" on a class of multi-person pure

bargaining problems.  In the same spirit as Harsanyi's, we investigate the implications

in the model of NTU games of a well-known internal consistency property and its

converse with respect to bilateral negotiations as formulated by two-person Davis-

Maschler (1965) reduced games.  Consistency and its converse are the key axioms used

by Peleg (1986) in order to characterize the prekernel of transferable utility (TU)

games.  Roughly speaking, our characterization combines the axioms of Peleg (1986)

for the TU prekernel and those of Nash (1950) for the Nash solution to bilateral

bargaining problems.  In this sense, our work resembles Aumann's (1985) and Hart's

(1985) axiomatizations of the Shapley NTU value and the Harsanyi value, respectively.

These theorems combine the axioms of Nash (1950) and those of Shapley (1953).  Our

theorem is also a pure axiomatization, in the sense that it is not restricted to a class

where a certain solution concept is nonvacuous.  We regard the existence problem and

the axiomatic characterization as two completely separate issues.  Our main theorem

says that, for the class of smooth NTU games, the prekernel is the only solution that

satisfies consistency, converse consistency, and a set of five axioms of the Nash type

imposed on the subclass of two-person smooth problems1 : nonemptiness, scale

invariance, equal treatment for TU games, Pareto efficiency, and local independence.

The equal treatment property for TU games is a weaker requirement than Nash's

original symmetry axiom.  On the other hand, local independence is stronger than the

"independence of irrelevant alternatives" axiom.  Local independence is introduced and

studied by Nagahisa (1991) for the characterization and implementation of the

                                               
1   In this sense, our work resembles Aumann's (1985) and Hart's axiomatizations of the Shapley NTU
value and the Harsanyi value, respectively.  These theorems combine the axioms of Nash (1950) and
those of Shapley (1953).
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Walrasian allocation rule in exchange economies (see also Dutta, Sen and Vohra

(1995), Nagahisa and Suh (1995), Saijo, Tatamitani and Yamato (1993)).  The basic

idea can be traced back to Inada (1964), who proposes this condition to investigate the

Arrow impossibility theorem in economic environments.  The condition says that "if at

a commodity allocation all agents have a common marginal rate of substitution under

preference profiles  u  and  u', then the allocation should be chosen as a socially optimal

outcome for  u'  whenever it is selected for  u."  The version in this paper expresses

essentially the same concept in the payoff space.

We also show that for the class of smooth games with the cores nonempty, the

same axioms as in our main theorem characterize the intersection of the core and the

prekernel.  This is related to Moldovanu's (1990) partial axiomatization of this

intersection for convex assignment problems.

The paper is organized as follows.  Section 2 presents the model, while Section

3 is devoted to the consistency properties of the prekernel.  Section 4 contains our main

result, as well as examples to show that the axioms are independent.

2. The Basic Model

Denote by  R  the set of the real numbers.  If  N  is a nonempty finite set, denote

by  |N|  the cardinality of  N, and by  RN  the set of all functions from  N  to  R.  We

identify an element  x  of  RN  with an  |N|-dimensional vector whose components are

indexed by members of  N; thus we write  xi  for  x(i).  If  x ∈ RN  and  S ⊂ N, we

write  xS  the restriction of  x  to  S, which is the element of  RS  that associates  xi

with each  i ∈ S.  Let  S ⊂ N, and  Y ⊂  RS.  We define  _Y = {y ∈ Y | There is no  x ∈
Y  such that  xi  > yi for all  i ∈ S}, and  intY  as the interior of  Y.  A representation

for  Y  is a function  g  from  RS  to  R  such that  Y = {x ∈ RS | g(x) ² 0} and  intY =

{x ∈ RS | g(x) < 0}.  We also write  gi(x)  for the partial derivative of  g  at  x Œ RS

with respect to component  i ∈ S, and  ∇g(x)  for the gradient vector of  g  at  x ∈ RS.

The pair  (N, V)  is a coalitional game, or simply a game if  N  is a nonempty

finite set, and  V  is a correspondence that associates with every  S ⊂ N  a nonempty

subset  V(S)  of  RS  such that

(1)  V(S)  is  closed, and comprehensive;

(2)  for each xS ∈ RS, _V(S)∩({xS}+R+S)  and  _V(S)∩({xS}-R+S) are compact; and

(3)  for each  (xS , ys) ∈ V(S)×_V(S), xS  = ys  if  xS  ³ ys (nonlevelness)2.

Let  V(N)  be the class of correspondences  V  such that all  (N, V)  are games.  A

member of  N  is a player, and a nonempty subset of  N  is a coalition in the game  (N,

V).  A payoff to player  i  is a point of  R{i}, and a payoff profile on coalition  S  is a

point of  RS.



4

The game  (N, V)  is smooth if there is a differentiable representation  g  for

V(N)  with positive gradients on  _V(N); namely for each  i ∈ N, gi(x) > 0  at any  x ∈

_V(N).  A class  Γ  of games is rich if for every  (N, V) ∈ Γ, Γ  contains all two-person

games in which the players are members of  N.

A transferable utility game, or simply a TU game, is a smooth game  (N, V)

which is defined by a function  v  that associates with every coalition  S  a real number

v(S)  such that  V(S) = {xs ∈ RS | _i∈sxi ² v(S)}  for every coalition  S.  We abuse the

notation, and use  (N, v)  to denote the associated coalitional game.

Let  Γ  be a nonempty class of games.  A solution on  Γ  is a relation  σ  which

associates with every  (N, V) ∈ Γ  a subset  σ(N, V)  of  V(N)  (could be empty).

Definition. Let  ({i, j}, V)  be a two-person smooth game.  The prekernel of  ({i, j}, V)

is:

Prk({i, j}, V) = {x ∈ _V({i, j}) | gi(x)(xi - vi) = gj(x)(xj - vj)},

where  g  is a representation for  V({i, j}), and  (vi, vj) = (maxV({i}), maxV({j})).

Remark 2.1.  Solution  Prk  reduces to the Nash bargaining solution on the class of

two-person smooth games  ({i, j}, V)  such that  V({i, j})  is a convex set containing

(vi, vj).

Definition.  Let  Γ  be a nonempty class of games.  Then a solution  σ  on  Γ  satisfies

nonempty-valuedness  (NEV ) if  σ(N, V) _ Ø  for each  (N, V) ∈ Γ; and

Pareto efficiency  (PE ) if  σ(N, V) ⊂ _V(N)  for each  (N, V) ∈ Γ.

Remark 2.2.  On the class of two-person smooth games, Prk  satisfies NEV and PE.

Let  (N, v)  be a TU game, and  i, j  be two distinct players in  N.  Then  i  and  j

are substitutes in  (N, v)  if  v(S∪{i}) = v(S∪{j})  for all  S ⊂  Ν\{i, j}.

Definition.  Let  Γ  be a class of games.  A solution  σ  on  Γ  satisfies the equal
treatment property  (ETP) for TU games if for each  x ∈ σ(Ν, v), xi = xj whenever  (N,

v)  is a TU game in  Γ, and  i  and  j  are substitutes in  (N, v).

Remark 2.3.  On the class of two-person smooth games, Prk  satisfies ETP for TU

games.

Let  (N, V)  be a game, α ∈ R++N, and  β ∈ RN.  For each coalition  S, we

define the function  λsαβ  from  RS  to itself by  λsαβ(xS) = (αixi + βi )i∈s;  for each  xS



5

∈ RS.  We then consider  λαβ(V)  as the correspondence that associates with every
coalition  S  a set  λαβ(V)(S) = {yS ∈ RS | yS = λsαβ(xS)  for some  xS ∈ V(S)}.

Definition.  Let  Γ  be a class of games.  A solution  σ  on  Γ  satisfies scale invariance
(SIV) if for each  (N, V) ∈ Γ, each  α ∈ R++N, and each  β ∈ RN, σ(N, λαβ(V)) =

λΝαβ(σ(N, V))  whenever  σ(N, V) _ Ø.

Remark 2.4.  On the class of two-person smooth games, Prk  satisfies SIV.

Definition.  Let Γ be a nonempty class of two-person smooth games.  A solution  σ  on

Γ  satisfies local independence (LID ) if for each  ({i, j}, V) ∈ Γ, each  x ∈ σ({i, j},

V), and each  V' ∈ V({i, j}),

x ∈ ∂V({i, j}) ∩ ∂V'({i, j});

(maxV({i}), maxV({j})) = (maxV'({i}), maxV'({j}));

∇g(x) // ∇g'(x)2

⇒ x ∈ σ({i, j}, V'),

where  g  and  g'  are respectively representations for  V({i, j})  and  V'({i, j}).

Remark 2.5.  On the class of two-person smooth games, Prk  satisfies LID.

Remark 2.6.  Let  (N, V)  be a smooth game.  Suppose that there is a smooth economy

(N, Z, A, u)  which generates the outcomes of  V  as the utility possibility sets of

coalitions: Z  is a common consumption set for all the agents in  N, A  is a

correspondence that associates with every coalition  S  a nonempty subset  A(S)  of  Z,

which denotes the set of feasible allocations for coalition  S, and  u = (ui)i∈N  is a

profile of agent's utility functions which are defined on  Z  and differentiable in its

interior.2

For each coalition  S, define the function  uS  by the Cartesian product of  ui, i ∈
S.  Then  V(S)  is derived as the image  uS(A(S))  of  A(S)  under  uS.  For each utility

profile  x  on  ∂V(N), the gradient vector of  ∂V(N)  at  x  can be shown to be

proportional to the vector of marginal utilities of all the agents with respect to any

commodity.  Its direction is then unique up to any transformations of utility functions

such that the marginal utility vectors of all the agents change proportionally.

Let  E  be a nonempty class of smooth economies.  For each  (N, Z, u, A) ∈ E,

denote by  U(N, Z, A)  the class of utility functions  u'  such that  (N, Z, u', A) ∈ E.  An

allocation rule on  E  is a relation  ϕ  that associates with every  (N, Z, u, A) ∈ E  a

subset  ϕ(N, Z, u, A)  of  A(N).  The Pareto rule on  E  is the allocation rule  P  that

assigns to every  (N, Z, u, A) ∈ E  the set  P(N, Z, u, A)  of Pareto efficient allocations
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in  A(N).  We may thus translate the above version of local independence for the payoff

space to that for the commodity space as follows:

An allocation rule  ϕ  on  E  satisfies local independence  if for each  (Ν, Ζ, u, Α) ∈
E, each  z ∈ ϕ(Ν, Ζ, u, Α) ∩ intZ, and each  u' ∈ U(N, Z, A),

z ∈ P(Ν, Ζ, u, Α) ∩ P(Ν, Ζ, u', Α);

supui(A(i)) = supui'(A(i)), ui,(z) = ui,'(z)  for every  i ∈ N;

∇u(z) // ∇u'(z)

⇒ z ∈ ϕ(Ν, Ζ, u', Α),

were  ∇u(z) = (∇ui(z))i∈N, and  ∇u'(z) = (∇ui'(z))i∈N.

This is not identical with the original one by Nagahisa (1991).  He does not put on the

conditional part either the restrictions of Pareto efficiency or the invariance of utilities.

Further the proportionality implies more than the invariance of marginal rates of

substitutions.  The above requirement is thus weaker than his one.

Proposition 1.  Let  Γ{i, j}  be the class of two-person smooth games  ({i, j}, V).  Then

a solution on  Γ{i, j}  satisfies NEV, PE, ETP for TU games, SIV, and LID  if and only if

it is  Prk.

Proof.  The solution  Prk  on  Γ{i, j}  satisfies NEV, PE, ETP for TU games, SIV, and

LID.  Now we prove the uniqueness.  Say  i = 1, and  j = 2.  Let  ({1, 2}, V)  be a two-

person smooth game, and  σ  a solution on  Γ{i, j}  which satisfies  NEV, PE, ETP for

TU games, SIV, and  LID.  We prove that  σ({1, 2}, V) = Prk({1, 2}, V).

By NEV, there exists x = (x1, x2) ∈ Prk({1, 2}, V).  By PE, x ∈ ∂V({1, 2}).  By

differentiability, there is a unique tangent line of the curve  _V({1, 2})  at  x: ∇g(x)·(z -

x) = g1(x)(z1 - x1) + g2(x)(z2 - x2) = 0.  Define the two-person smooth game  ({1, 2},

V')  by  V'({1}) = V({1}), V'({2}) = V({2}), and  V'({1, 2}) = {z ∈ R{1, 2} | ∇g(x)·(z -

x) ² 0}.  Then, by the LID of  Prk, x ∈ Prk({1, 2}, V').  Note that

Prk({1, 2}, V')={([(g2(x)/g1(x)(x2-v2')+x1+v1']/2, [(g1(x)/g2(x)(x1 -v1')+ x2+v2']/2)},

which is the midpoint of the segment on the line  _V'({1, 2})  truncated by  (v1', v2') =

(maxV'({1}), maxV'({2})).  Hence, {x} = Prk({1, 2}, V') (see Figure 1).2   Define the

TU game  ({1, 2}, w)  by  w({1}) = 0 = w({2}), and  w({1, 2}) = g1(x)(x1 - v1') +

g2(x)(x2 - v2').  By NEV, PE and ETP for TU games, σ({1, 2}, w) = {(1/2)w({1, 2}),

(1/2)w({1, 2})}.  Let  α = (1/g1(x), 1/g2(x)), and  β = (v1', v2').  By SIV,

σ({1, 2}, λαβ(w)) = λΝαβ (σ({1, 2}, w))

= {((1/2g1(x))w({1, 2}) + v1', (1/2g2(x))w({1, 2}) + v2'))}

= Prk({1, 2}, V') = {x}.

                                               
2   We do not necessarilly assume that  (vi, vj) ∈  V({i, j})  for all  ({i, j}, V) ∈ Γ{i, j}.
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Note that  ({1, 2}, λαβ(w))  is the game  ({1, 2}, V').  Hence, σ({1, 2}, V') = σ({1, 2},

λαβ(w)) = {x}, so that  x ∈ σ({1, 2}, V').  By LID, x ∈ σ({1, 2}, V).  Thus, Prk({1, 2},

V) ⊂ σ({1, 2}, V).  In exactly the same way, we can show that  σ({1, 2}, V) ⊂ Prk({1,
2}, V).  Hence, σ({1, 2}, V) = Prk({1, 2}, V).  `

Use Word 6.0c or later to           

view Macintosh picture.             

3. Reduced Game Properties of the Prekernel

The following is a two-person "reduced game" studied by Peleg (1986, 1992).

Let  ΠN ≡ {P ⊂ N | |P| = 2}, which is the set of two-person coalitions in  N.

Definition.  Let  (N, V)  be a game,  x ∈ V(N), and  P ∈ ΠN.  The two-person reduced
game of  (N, V) with respect to  P given  x  is the pair  (P, VxP)  of  P  and the

correspondence  VxP  that associates with every  S ⊂ P  a subset  VxP(S)  of  RS, where

VxP({i}) = {yi ∈ R{i}| (yi, xQ) ∈ V({i}∪Q), Q ⊂ N\P}  for each  i ∈ P, and  VxP(P) =

{yp ∈ Rp |(yp, x–p) ∈ V(N)}.34

Definition.  Let  (N, V)  be a game.  The prekernel of  (N, V)  is:
Prk(N, V) = {x ∈ _V(N) |gi(x)(xi-vi(x–{i, j})) = gj(x)(xj-vj(x–{i, j}))  for each  i, j ∈N},

where  g  is a representation for  V(N), and  vi(x–{i, j})), vj(x–{i, j})) = (maxVx{i,j}({i}),

maxVx{i,j}({j})).

Definition.  Let Γ be a nonempty class of smooth games.  A solution  σ  on  Γ  satisfies

local independence (LID) if for each (N, V) ∈ Γ, each x ∈ σ(N, V), and each V' ∈
V(N),

x ∈ ∂V(N) ∩ ∂V'(N);

∀ P ∈ ΠN, ∀ Q ⊂ N\P, ∀ i ∈ P, vi({i}∪Q; xQ) = vi'({i}∪Q; xQ);

∇g(x) // ∇g'(x)
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⇒ x ∈ σ(N, V'),

where  g  and  g'  are respectively representations for V(N) and V'(N), vi({i}∪Q; xQ) =

max{yi ∈ R{i}| (yi, xQ) ∈ V({i}∪Q)}, and vi'({i}∪Q; xQ) = max{yi ∈ R{i} | (yi, xQ) ∈

V'({i}∪Q)}  for each  P ∈ ΠN, each  Q ⊂ N\P, and each  i ∈ P.

Remark 3.1.  To redefine the above statement for the commodity space, we need to

impose more restrictions of invariance of utility levels on the translation in Remark 2.6.

Thus the above version is even weaker than the previous one.

Definition.  Let  Γ  be a nonempty class of games.  Then a solution  σ  on  Γ  satisfies

bilateral  consistency  (BCS ) if
∀ (N, V) ∈ Γ, ∀ x ∈ σ(N, V), ∀ P ∈ ΠN, (P, VxP) ∈ Γ & xP ∈ σ(P, VxP).

Definition.  Let  Γ  be a nonempty class of games.  Then a solution  σ  on  Γ  satisfies

converse consistency  (CCS ) if
∀ (N, V) ∈ Γ, ∀ x ∈ _V(N),[(∀ P ∈ ΠN, xP ∈ σ(P, VxP)) ⇒ x ∈ σ(N, V)].

Remark 3.2.  On a rich class of smooth games, Prk  satisfies  BCS  and CCS.

Remark 3.3.  Let  Γ{i, j}  be the class of two-person smooth games  ({i, j}, V).  Then a

solution on  Γ{i, j}  satisfies NEV, PE, ETP for TU games, SIV, LID, BCS, and CCS  if

and only if it is  Prk.

4. A Characterization of the Prekernel

We have checked that on a class of smooth games, the solution  Prk  is nonempty-

valued, and satisfies  PE, ETP for TU games, SIV, and LID.  We next show that it is

uniquely characterized by two-person versions of all the axioms together with bilateral

consistency and its converse.

Theorem 1.  Let  Γ0  be a rich class of smooth games.  A solution on  Γ0  satisfies NEV

for two-person games, PE for two-person games, ETP for two-person TU games, SIV

for two-person games, and LID for two-person games, BCS and CCS if and only if it is

Prk.

Proof. The solution  Prk  on  Γ0  satisfies NEV for two-person game, PE for two-

person game, ETP for two-person TU games, SIV, LID, BCS, and CCS.  Now we

prove the uniqueness.  Let  (N, V) ∈ Γ0, and  σ  a solution on  Γ0  that satisfies  NEV,
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PE, ETP for TU games, SIV and LID for two-person games, and satisfies  BCS and

CCS  on  Γ0.  We prove that  σ(N, V) = Prk(N, V).  The proof for  |N| = 1  is trivial.

We have already proven the case of  |N| = 2.  Then consider the case of  |N| ≥ 3.

Suppose that  Prk(N, V) _ Ø.  Let  x ∈ Prk(N, V).  By the BCS of  Prk, xP ∈
Prk(P, VxP)  for every  P ∈ ΠN.  Hence, xP ∈ σ(P, VxP)  for every  P ∈ ΠN.  By the

CCS of  σ, x ∈ σ(N, V).  Hence, Prk(N, V) ⊂ σ(N, V).  Note that  σ(N, V) _ Ø.  Then

we can similarly show that  σ(N, V) ⊂ Prk(N, V).  Thus, σ(N, V) = Prk(N, V).

Suppose that  Prk(N, V) = Ø.  Let  x ∈ _V(N).  By the CCS of  Prk, there exist

at least one pair  Q  of players in  N  such that  xQ ∉ Prk(Q, VxQ).  Since  (Q, VxQ)  is a

two-person game, we have  Prk(Q, VxQ) = σ(Q, VxQ), so that  xQ ∉ σ(Q, VxQ).  By the

BCS of  σ, x ∉ σ(N, V).  Hence, there is no payoff profile in  σ(N, V), so that  σ(N, V)
= Ø.  Thus, σ(N, V) = Prk(N, V). `

In Theorem 1, we have used seven axioms.  It does not look so elegant, and Lensberg

(1988) actually proves that under consistency, we do not need any such conditions as

the "independence of irrelevant alternatives" to axiomatize the Nash solution on the

class of pure bargaining problems with valuable populations.  The following examples

show that we are not able to drop any of the seven axioms to characterize  Prk  on a

class of smooth games even with valuable populations.

Example 4.1:  For every  (N, V) ∈ Γ0, let  σ(N, V) = Ø.  Then  σ  vacuously satisfies

all the conditions except  NEV for two-person games.

Example 4.2:  For every two-person game  (P, V), define

b(P, V) = (vi)i∈P if  (vi)i∈P ∈ intV(P);

Prk(P, V) if  (vi)i∈P ∉ intV(P).

For every  (N, V) ∈ Γ0, let  σ(N, V) = {x ∈ V(N)| xP ∈ b(P, VxP)  for all  P ∈ ΠN}.

Then  σ  satisfies all the conditions except  PE  for two-person games.

Example 4.3:  For every  (N, V) ∈ Γ0, let  σ(N, V) = _V(N).  Then  σ  satisfies all the

conditions except ETP for two-person TU games.

Example 4.4:  For every  (N, V) ∈ Γ0, let  σ(N, V) = {x ∈ _V(N)| xi - vi(x–{i, j}) = xj-

vj(x–{i, j})  for each  i, j ∈ N}.  Then  σ  satisfies all the conditions except  SIV  for

two-person games.

Example 4.5:  For every two-person game  (P, V), define  a(P, V) = (ai(P, V))i∈P  by

ai(P, V) = max{xi ∈ R{i}| (xi, v-i) ∈ V(P)}  for all  i ∈ P.  For every  (N, V) ∈ Γ0, let

σ(N, V) = {x ∈ ∂V(N)| xP ∈ [(vi(x-P))i∈P, a(P, VxP)]  for each  P ∈ ΠN}, where  [c, d]
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= {(1 - t)c + td | 0 ² t ² 1}  for each  c, d ∈ RP.  That is, for every pair  P  of players in

N, xP  is the maximal point of the feasible set  VxP  on the segment connecting  (vi(x-

P))i∈P  to  a(P, VxP)  if  x ∈ σ(N, V).  Note that  σ  is a modification of the Kalai-

Smorodinsky bargaining solution, and  σ  satisfies all the conditions except  LID  for

two-person games.

Example 4.6:  Let  (N, V) ∈ Γ0, and  i, j ∈ N.  Then  i  and  j  are equivalent if

gi(x)(x)(vi({i}∪S; xS) - vi) = gj(x)(vj({j}∪S; xS) - vj)  for every  x ∈ _V(N), and for

each  S ⊂ N\{i, j}, where  vi({i}∪S; xS) = max{yi ∈ R{i}| (yi, xS) ∈ V({i}∪S)}  for

each  i ∈ N, and each  S ⊂ N\{i}.  Note that  gi(x)(vi(x–{i, j}) - vi) = gj(x)(vj(x–{i, j})) -

vj)  for every  x ∈ _V(N)  if players  i  and  j  are equivalent.  Now let  σ(N, V) = {x ∈
_V(N) | gi(x)(xi - vi) = gj(x)(xj - vj)  if  i, j ∈ N  are equivalent}.  We can verify that  σ

satisfies the five axioms imposed on two-person games: NEV, PE, ETP for TU games,

SIV, and LID.  If  |N| = 2, then the two players in  N  are equivalent, and  σ(N, V) =

Prk(N, V).  To prove that  σ  satisfies  CCS,  suppose that  x ∈ _V(N)  is such that  xP

∈ σ(P, VxP) = Prk(P, VxP)  for each  P ∈ ΠN.  Since Prk  satisfies  CCS,  x ∈ Prk(N,

V).  We show that  Prk(N, V) ⊂ σ(N, V)  if  |N| ³ 3.  Let  x ∈ Prk(N, V).  Then  x ∈
_V(N).  Assume that  i, j ∈ N  are equivalent.  Since  x ∈ _V(N), we have  gi(x)(vi(x–

{i, j}) - vi) = gj(x)(vj(x–{i, j})) - vj), so that  gi(x)(xi - vi) - gj(x)(xj - vj) = gi(x)(xi - vi(x–

{i, j})) - gj(x)(xj - vj(x–{i, j})).  Since  x ∈ Prk(N, V), we have  gi(x)(xi - vi(x–{i, j})) =

gj(x)(xj - vj(x–{i, j})), so that  gi(x)(xi - vi) - gj(x)(xj - vj) = 0. Hence, x ∈ σ(N, V), i.e.,

Prk(N, V) ⊂ σ(N, V).  Thus, σ  satisfies  CCS.  Suppose that  N = {1, 2, 3}, and  V  is a

TU game defined by  v({1}) = v({2}) = v({3}) = 0, v({1, 2}) = 4, v({1, 3}) = 3, v({2,

3}) = 2, and  v({1, 2, 3}) = 6.  Then  (N, V)  has no pair of equivalent players, so that

σ(N, V) = _V(N).  Let  x = (2, 2, 2) ∈ σ(N, V), then  σ({1, 2}, V(x-{1, 2})) = {(2.5,

1.5)}.  Hence, σ  does not satisfy  BCS.

Example 4.7:  For every  (N, V) ∈ Γ0, let  σ(N, V) = {x ∈ Prk(N, V) | vi(x-{i, j}) = vi(x-

{i, k})  for each  i, j, k ∈ N with  j _ i _ k}.  Note that  σ(N, V) = Prk(N, V)  if  |N| = 2.

Then  σ satisfies all the conditions except CCS.

Remark 4. 1.  The solution  Prk  satisfies  PE, ETP for TU games, SIV, and LID over

the class of  n-person smooth games, n ³ 2.  It does not satisfy, however, NEV over the

same class (see Serrano (1995, Example 2), and Moldovanu (1990, p.188)).

We next study the intersection of the core and the prekernel on the class of

games with nonempty core.
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Definition.  Let  (N, V)  be a game, S ⊂ N, and  x ∈ RN.  Then  S  can improve upon
x  if there is  y ∈ V(S)  such that  yi > xi  for all  i ∈ S.  The core of  (N, V)  is:

C(N, V) = {x ∈ V(N)| There is no coalition that can improve upon  x}.

Definition.  Let  ({i, j}, V) be a two-person smooth game.  The core-kernel of  ({i, j},

V)  is:

CK({i, j}, V) = {x ∈ C({i, j}, V) | gi(x)(xi - vi) = gj(x)(xj - vj)},

where  g  is a representation for  V({i, j}), and  (vi, vj) = (maxV({i}), maxV({j})).

Remark 4.2.  The solution  CK  reduces to the Nash bargaining solution on the class of

two-person smooth games  ({i, j}, V)  such that  V({i, j})  is a convex set.

Proposition 2.  Let  ΓC{i, j}  be the class of two-person smooth games  ({i, j}, V)  with

nonempty core.  Then a solution on  ΓC{i, j}  satisfies NEV, PE, ETP for TU games, SIV,

and LID  if and only if it is  CK.

Proof.  The solution  CK  on  ΓC{i, j}  satisfies NEV, PE, ETP for TU games, SIV, and

LID.  Now we prove the uniqueness.  Say  i = 1, and  j = 2.  Let  ({1, 2}, V)  be a two-

person smooth game, and  σ  a solution on  ΓC{i, j}  which satisfies  NEV, PE, ETP for

TU games, SIV, and  LID.  We prove that  σ({1, 2}, V) = CK({1, 2}, V).

By NEV, there exists  x = (x1, x2) ∈ CK({1, 2}, V).  By PE, x ∈ _V({1, 2}).

By differentiability, there is a unique tangent line of the curve  _V({1, 2})  at  x:

∇g(x)·(z - x) = g1(x)(z1 - x1) + g2(x)(z2 - x2)  = 0.  Define the two-person smooth game

({1, 2}, V')  by  V'({1}) = V({1}), V'({2}) = V({2}), and  V'({1, 2}) = {z ∈ R{1, 2} |

∇g(x)·(z - x) ² 0}.  Then, by the LID of  CK, x ∈ CK({1, 2}, V').  Note that

CK({1, 2}, V')={([(g2(x)/g1(x)(x2-v2')+x1+v1']/2, [(g1(x)/g2(x)(x1 -v1')+ x2+v2']/2)},

which is the midpoint of the segment on the line  _V'({1, 2})  truncated by  (v1', v2') =

(maxV'({1}), maxV'({2})).  Hence, {x} = CK({1, 2}, V') (see Figure 2).3   Define the

TU game  ({1, 2}, w)  by  w({1}) = 0 = w({2}), and  w({1, 2}) = g1(x)(x1 - v1') +

g2(x)(x2 - v2').  By NEV, PE and ETP for TU games, σ({1, 2}, w) = {(1/2)w({1, 2}),

(1/2)w({1, 2})}.  Let  α = (1/g1(x), 1/g2(x)), and  β = (v1', v2').  By SIV,

σ({1, 2}, λαβ(w)) = λΝαβ (σ({1, 2}, w))

= {((1/2g1(x))w({1, 2}) + v1', (1/2g2(x))w({1, 2}) + v2'))}

= CK({1, 2}, V') = {x}.

Note that  ({1, 2}, λαβ(w))  is the game  ({1, 2}, V').  Hence, σ({1, 2}, V') = σ({1, 2},

λαβ(w)) = {x}, so that  x ∈ σ({1, 2}, V').  By LID, x ∈ σ({1, 2}, V).  Thus, CK({1, 2},

                                               
3  For every  ({i, j}, V) ∈ ΓC{i, j}, C({i, j}, V) _ Ø, i.e.,  (vi, vj) ∈  V({i, j}).
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V) ⊂ σ({1, 2}, V).  In exactly the same way, we can show  σ({1, 2}, V) ⊂ CK({1, 2},
V).  Hence, σ({1, 2}, V) = CK({1, 2}, V).  `

Definition.  Let  (N, V)  be a game.  The core-kernel of  (N, V)  is:

CK(N, V) = {x ∈ C(N,V) | gi(x)(xi-vi(x-{i, j})) = gj(x)(xj-vj(x-{i, j})) for each i, j ∈ N},

where  g  is a representation for  V(N), and  (vi(x-{i, j}), vj(x-{i, j})) = (maxVx{i, j}({i}),

maxVx{i, j}({j})).

Theorem 2.  Let  ΓC  be a rich class of smooth games with nonempty core.  A solution

on  ΓC  satisfies NEV for two-person games, PE for two-person games, ETP for two-

person TU games, SIV two-person games, and LID for two-person games, BCS and

CCS if and only if it is  CK.

Proof. The solution  CK  on  ΓC  satisfies NEV for two-person game, PE for two-

person game, ETP for two-person TU games, SIV, LID, BCS, and CCS.  Now we

prove the uniqueness.  Let  (N, V) ∈ ΓC, and  σ  a solution on  ΓC  that satisfies  NEV,

PE, ETP for TU games, SIV and LID for two-person games, and satisfies  BCS and

CCS  on  ΓC.  We prove that  σ(N, V) = CK(N, V).  The proof for  |N| = 1  is trivial.

We have already proven the case of |N| = 2.  Then consider the case of |N| ≥ 3.

Suppose that  CK(N, V) _ Ø.  Let  x ∈ CK(N, V).  By the BCS of  CK, xp ∈
CK(P, V(x–p))  for every  P ∈ ΠN.  Hence, xp ∈ σ(P, V(x–p))  for every  P ∈ ΠN.  By

the CCS of  σ, x ∈ σ(N, V).  Hence, CK(N, V) ⊂ σ(N, V).  Note that  σ(N, V) _ Ø.

Then we can similarly show that  σ(N, V) ⊂  CK(N, V).  Thus, σ(N, V) = CK(N, V).

Suppose that  CK(N, V) = Ø.  Let  x ∈ _V(N).  Then by the CCS  of  CK, there

exist at least one pair  Q  of players in  N  such that  xQ ∉ CK(Q, V(x–Q)).  Since  (Q,

V(x–Q))  is a two-person game, we have  CK(Q, V(x–Q)) = σ(Q, V(x–Q)), so that  xQ ∉
σ(Q, V(x–Q)).  By the BCS of  σ, x ∉ σ(N, V).  Hence, there is no payoff profile in

σ(N, V), so that  σ(N, V) = Ø.  Thus, σ(N, V) = CK(N, V). `
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Use Word 6.0c or later to           

view Macintosh picture.             

Moldovanu (1990, Theorem 5.2) considers the same solution on the class of

NTU assignment games.  For characterization, he implicitly assumes that the solution

under investigation is single-valued for two-person games of the domain.  He thus uses

the "independence of irrelevant alternatives" as one of the axioms instead of local

independence.  If we do not assume either such a single-valuedness condition or local

independence, we are not able to show more than that the solution contains the

intersection of the core and the prekernel, that is, σ(N, V) ⊂ CK(N, V)  for every game

(N, V)  of the domain.

The following examples show the independence of the axioms in Theorem 2.

Example 4.1':  For every  (N, V) ∈ ΓC, let  σ(N, V) = Ø.  Then  σ  vacuously satisfies

all the conditions  except NEV for two-person games in  ΓC.

Example 4.2':  For every two-person game  (P, V), define  d(P, V) = (vi)i∈p.  For every

(N, V) ∈ ΓC, let  σ(N, V) = {x ∈ V(N)| xP ∈ d(P, VxP)  for all  P ∈ ΠN}.  Then  σ
satisfies all the conditions  except PE for two-person games in  ΓC.

Example 4.3':  For every  (N, V) ∈ ΓC, let  σ(N, V) = C(N, V).  Then  σ  satisfies all

the conditions except ETP for two-person TU games in  ΓC.

Example 4.4':  For every  (N, V) ∈ ΓC, let  σ(N, V) = {x ∈ _V(N)| xi - vi(x-{i, j}) = xj

- vj(x-{i, j})  for each  i, j ∈ N}.  Then  σ satisfies all the conditions except SIV for two-

person games in  ΓC.

Example 4.5':  For every two-person game  (P, V), define  a(P, V) ≡ (ai(P, V))i∈p  by

ai(P, V) = max{xi  ∈ R{i}| (xi , v–i) ∈ V(P)}  for all  i ∈ P.  For every  (N, V) ∈ ΓC, let

σ(N, V) = {x ∈ _V(N)| xP ∈ [(vi(x–p))i∈p, a(P, VxP)]  for each  P ∈ ΠN}.  Then  σ
satisfies all the conditions except LID for two-person games in  ΓC.
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Example 4.6':  For every  (N, V) ∈ ΓC, let  σ(N, V) = Prk(N, V).  Then  σ  satisfies all

the conditions except ETP for two-person TU games in  ΓC.

Example 4.7':  For every  (N, V) ∈ ΓC, let  σ(N, V) = {x ∈ CK(N, V) |  vi(x-{i, j})  =

vi(x-{i, k})   for each  i, j, k ∈ N with  j _ i _ k}.  Note that  σ(N, V) = CK(N, V)  if  |N|

= 2.  Then  σ satisfies all the conditions except CCS.

Remark 4. 3.  The solution  CK  satisfies  PE, ETP for TU games, SIV, and LID over

the class of  n-person smooth games with nonempty core, n ³ 2.  It does not satisfy,

however, NEV over the same class (see Moldovanu (1990, p.188)).
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