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Abstract

In this paper we propose methods to construct confidence intervals for the bias of the two-stage

least squares estimator, and the size distortion of the associated Wald test in instrumental vari-

able models. Importantly our framework covers the local projections – instrumental variable

model as well. Unlike tests for weak instruments, whose distributions are non-standard and

depend on nuisance parameters that cannot be estimated consistently, the confidence intervals

for the strength of identification are straightforward and computationally easy to calculate, as

they are obtained from inverting a chi-squared distribution. Furthermore, they provide more

information to researchers on instrument strength than the binary decision offered by tests.

Monte Carlo simulations show that the confidence intervals have good small sample coverage.

We illustrate the usefulness of the proposed methods to measure the strength of identification

in two empirical situations: the estimation of the intertemporal elasticity of substitution in a

linearized Euler equation, and government spending multipliers.
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1 INTRODUCTION

In this paper, we propose a novel methodology to construct confidence intervals
for the strength of identification, and in particular the bias and size distortion in
linear instrumental variables (IV) models. Measuring the strength of identification
is an extremely important issue in practice. It is well-known that the presence of
weak instruments invalidates standard inference (Stock, Wright and Yogo, 2002),
leading to inconsistent point estimates, incorrectly sized tests and invalid confidence
intervals. A conventional and widely-used approach to detect weak instruments in
practice is using the first-stage F-statistic, which is the F-statistic on the strength of the
instrument identification. The statistic (or its generalization, in the case of multiple
endogenous regressors) was proposed by Staiger and Stock (1997), Stock, Wright
and Yogo (2002), Stock and Yogo (2005) and Montiel Olea and Pflueger (2013) as an
approach to evaluate the severity of the weak instrument problem in specific empirical
applications. A large enough value of the first-stage F-statistic (judged according
to appropriately derived critical values) increases researchers’ confidence that the
instruments are strong and, thus, that standard inference on the structural parameters
of interest is valid. Our complementary approach is instead based on constructing a
confidence interval for the strength of identification in terms of quantities of primary
interest: bias and size distortion in the homoskedastic IV model, and bias in the
heteroskedastic/autocorrelated IV model with one endogenous variable as well as in
the local projections–IV (LP-IV) framework.

From a practical point of view, as Stock, Wright and Yogo (2002, p. 518) point
out, “Finding exogenous instruments is hard work, and the features that make an
instrument plausibly exogenous, such as occurring sufficiently far in the past to
satisfy a first-order condition or the as-if random coincidence that lies behind a quasi-
experiment, can also work to make the instrument weak.” Once a researcher has
gone through the tedious job of finding exogenous instruments, he or she can rely on
our method to quantify potential issues caused by the specific instruments’ strength,
without having to discard the instruments altogether.

From a methodological perspective, confidence intervals and other statistics reflect-
ing sampling uncertainty provide additional information relative to p-values, recently
urged by the American Statistical Association (Wasserstein and Lazar, 2016) and also
demanded by the economics community (e.g. the American Economic Review’s Sub-
mission Guidelines state “In tables, please report standard errors in parentheses but
do not use ∗s to report significance levels.”)

In our frameworks, the strength of identification as well as the bias of the two-
stage least squares (TSLS) estimator and the size distortion of the associated Wald
test depend on two types of parameters: coefficients which cannot be consistently
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estimated and covariances which are consistently estimable. Our proposed procedure
works as follows. In the first step, we construct asymptotically valid (1− α) level
confidence sets for the former set of parameters. The second step depends on the
model. In the homoskedastic IV model, we form the confidence intervals for the
parameter summarizing the strength of identification by using the aforementioned
confidence sets and plugging the consistent covariance estimates in the appropriate
expression for the strength of identification. To construct confidence intervals for the
bias and the size distortions, we exploit the mapping from the parameter summarizing
the strength of identification to bias or size distortion via the projection method
– see e.g. Dufour (1997) for an early application of the projection method with
weak instruments. In particular, in the case of one endogenous regressor in the
homoskedastic IV model, we can construct our confidence intervals for the strength
of identification based on the non-central chi-squared distribution, resulting in tight
confidence intervals whose coverage rates are very close to their nominal level. In the
heteroskedastic/autocorrelated IV model, we utilize the confidence sets and consistent
estimates from the first step to obtain confidence intervals for the Nagar (1959) bias
directly through the projection method. We note that in general, the projection method
leads to conservative confidence intervals.

The methodology that we propose has several attractive properties. First, it provides
guidance to applied researchers on quantifying the strength of instruments as well as
bias and size distortion in their empirical analyses, and thus protects them against
weak instruments. A second advantage is that the confidence intervals for the strength
of identification are straightforward and computationally easy to calculate, as they
are obtained from inverting asymptotic chi-squared distributions. The simplicity of
our confidence intervals distinguishes our methodology from weak instrument tests,
whose distributions are typically asymptotically non-pivotal and depend on nuisance
parameters that cannot be estimated consistently.

A third advantage of our methodology is that it can be applied in the presence
of heteroskedasticity and serial correlation when there is one endogenous regressor.
Our framework is also general enough to be applied to LP-IV models (Jordà, 2005).
Since the construction of confidence intervals for the strength of identification is based
on inverting an asymptotic chi-squared distribution, the methodology can be easily
applied even if the disturbances are heteroskedastic and/or serially correlated, in
which case one will simply use a Heteroskedasticity and Autocorrelation Consistent
(HAC) estimator.

Monte Carlo simulations demonstrate that our methods have good coverage.
We illustrate the usefulness of our methodology in two empirical applications. In

the first one, we the estimate the intertemporal elasticity of substitution in linearized
Euler equations in a heteroskedastic/autocorrelated IV model, following Yogo (2004)
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and Montiel Olea and Pflueger (2013). Our confidence intervals confirm that weak
identification is indeed a serious problem, preventing reliable estimation of the in-
tertemporal elasticity of substitution. In the second empirical application, we analyze
the identification of a local projections-IV model to estimate government spending
multipliers, following Ramey and Zubairy (2018).

Our paper is related to the literature on testing the strength of instruments in linear
IV models, in particular Staiger and Stock (1997), Stock, Wright and Yogo (2002), and
Stock and Yogo (2005), who discuss the use of a first-stage F-statistic to test whether
instruments are weak, and Montiel Olea and Pflueger (2013), who provide the limiting
distribution of an appropriate first-stage F-statistic under heteroskedasticity and serial
correlation when there is only one included endogenous variable. We also make a
methodological contribution by constructing confidence intervals for the bias of the
local projections-IV estimator proposed by Jordà (2005).

An alternative approach would be to construct confidence intervals robust to weak
identification for the structural parameters, a solution that becomes computationally
infeasible in large dimensional settings and is only available in special cases. Tests
for weak instruments can be less computationally challenging and are widely used
in practice for their simplicity. Thus, the confidence intervals for the bias and size
distortion that we propose are a practically convenient complementary approach to
robust inference methodologies.

The paper is organized as follows. Section 2 provides the intuition behind our
method using a simple example. Section 3 describes the econometric frameworks
we consider and our proposed confidence intervals. Section 4 provides Monte Carlo
simulation results. Section 5 presents empirical results, and Section 6 concludes.

2 AN ILLUSTRATIVE EXAMPLE

This section illustrates the intuition behind our results in the context of a simple
example. Consider the following baseline IV model:

y = Yβ + u , (1)

Y = ZΠ + V , (2)

where y is a (T × 1) vector, T is the sample size, Y is a (T × 1) vector of included
endogenous variables and Z is a (T × 1) vector of instruments (excluded exogenous
variables); u and V are (T × 1) vectors of independent, mean-zero disturbances with
variance σuu and σVV , where, for simplicity, σuu and σVV are known, along with
E(z2

t ). The structural equation is eq. (1), with the structural coefficient of interest β.
Information on the strength of the instrument is carried by the parameter Π in eq. (2).
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2.1 Confidence Intervals for the Strength of Identification

In the case of one endogenous variable, the standard tests for the strength of in-
struments rely on Stock and Yogo (2005) and Stock, Wright and Yogo (2002), who
recommend using a first-stage F-statistic. This statistic is formally constructed as a
test of the null hypothesis that the instrument is not correlated with the endogenous
variable (Π = 0) against the alternative that Π 6= 0. The aforementioned papers derive
the distribution of the first-stage F-statistic under the assumption that instruments
are weak, that is Π = C/

√
T, where C is a constant, for testing the null hypothesis

that the instrument strength is less than or equal to a threshold against the alternative
that it exceeds the threshold. In this approach, the asymptotic distribution of the
test statistic is asymptotically non-pivotal, as it depends on a nuisance parameter
(C) that cannot be consistently estimated, and this parameter plays a central role in
determining the bias of the TSLS estimator and the size distortion of its associated
Wald test. Therefore test statistic’s critical values are different from standard values
based on the chi-squared distribution, thus making inference difficult.

Let Π̂T = (Z′Z)−1 (Z′Y) denote the Ordinary Least Squares (OLS) estimator of Π
in eq. (2). The reason why the first-stage F-statistic, F0, is asymptotically non-pivotal
is because, under the assumptions in Stock and Yogo (2005) and Staiger and Stock
(1997):

F0 ≡

(
Π̂T − 0

)2

σVV (Z′Z)−1 =

[√
T
(

Π̂T − 0
)2
]

σVV

(
Z′Z

T

)−1 = Y′Z
(
Z′Z

)−1 Z′Y
1

σVV
, (3)

and

√
T
(

Π̂T − 0
)
=
√

T
(
Z′Z

)−1 (Z′Y) = (Z′Z
T

)−1 (Z′Y√
T

)
=

(
Z′Z

T

)−1 (Z′ZC
T

)
+

(
Z′Z

T

)−1 (Z′V√
T

)
→
d

C + ν , (4)

where ν = E
(
Z2

t
)−1 ΨZV , ΨZV is a random variable whose distribution isN

(
0, E

(
Z2

t
)

σVV
)
,

and→
d

denotes convergence in distribution. Thus, since the limiting distribution in

eq. (4) depends on C, the distribution of the first-stage F-statistic in eq. (3) depends on
C. This argument can be extended to the case of multiple endogenous regressors and
instruments.

In our case, we focus on constructing a confidence interval for C. Note that the
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dependence of the limiting distribution on C disappears when considering:

√
T
(

Π̂T −Π
)
=
√

T
((

Z′Z
)−1 (Z′Y)−Π

)
(5)

=

(
Z′Z

T

)−1 (Z′Z
T

C
)
+

(
Z′Z

T

)−1(Z′V√
T

)
− C →

d
ν . (6)

This result implies that

FΠ ≡

(
Π̂T −Π

)2

σVV (Z′Z)−1 →d
χ2

1 , (7)

where χ2
1 denotes a chi-squared distribution with one degree of freedom. Thus, one

conveniently obtains a confidence interval for C by inverting a standard χ2
1 distribution.

It might be surprising that the confidence intervals that we propose can be obtained
by inverting limiting standard chi-squared distributions while the test statistics are
not. The intuition is that the first-stage F-statistics is based on the difference between
the estimate of the strength of identification and zero (the value that corresponds to no
identification); hence, the difference between the two contains information on the true
strength of identification and how close to zero that is, which cannot be consistently
estimated. Thus, deriving the limiting distribution of the first-stage F-statistic in the
weak instrument case results in a limiting distribution that is non-pivotal and depends
on a parameter that cannot be estimated consistently. Confidence intervals, instead,
are based on the difference between the estimate and the true strength of identification,
rather than its value under the null hypothesis, and the limiting distribution of such
difference does not depend on how close to zero the strength of identification is.
Interestingly, this rather peculiar feature of the weak instrument problem cannot be
applied to other non-standard situations resulting from the fact that the parameter is
local to the null hypothesis, such as confidence intervals for highly persistent (local-to-
unity) autoregressive processes. The reason is that, in the local-to-unity framework,
the difference between the estimated largest root and its true value is a function of the
Ornstein-Uhlenbeck process that approximates the true autoregressive process itself.
Since the Ornstein-Uhlenbeck process is a function of the local-to-unity parameter, the
limiting distribution remains a function of the latter. In our weak instrument case,
instead, the local-to-zero parameter does not affect the limiting distribution of the
variables themselves.
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2.2 Confidence Intervals for Bias and Size Distortion

In this paper, we show how to construct confidence intervals for functions of C which
measure the strength of the instrument, such as the concentration parameter, bias and
size distortion. In this subsection, we focus on the size distortion (similar results apply
for the bias when it exists, i.e. in overidentified models). It is well-known (e.g. Stock
and Yogo, 2005) that, in the example considered in this section, the size distortion of a
Wald test on the TSLS estimator of β is a function of the concentration parameter:

µ2
1 = C2E(z2

t )/σVV . (8)

Let us define s
(
µ2

1
)

to be the size distortion, where the notation emphasizes that it
is a function of the concentration parameter. Figure 1 shows the size distortion as a
function of µ2

1 (the nominal level of the Wald test is 5%).
Note that once one has a confidence interval for C, CIC, one directly obtains a

confidence interval for µ2
1, CIµ2

1
, as follows:

CIµ2
1
=
{

µ̃2
1 = C̃2E(z2

t )/σVV such that C̃ ∈ CIC

}
. (9)

One can then construct a confidence interval for s
(
µ2

1
)

by the projection method. Sup-
pose CIC =

[
C, C

]
is the confidence interval for C obtained by inverting the χ2

1 distribu-
tion, where for simplicity C > 0. Then CIµ2

1
=
[
µ2

1
= C2E(z2

t )/σVV , µ2
1 = C2E(z2

t )/σVV

]
.

Suppose that CIµ2
1
= [1, 4] is the confidence interval for µ2

1. Then the confidence inter-

val for the size distortion,
[
s
(

µ2
1

)
, s
(
µ2

1
)]

, obtains as sketched in Figure 1, and equals
[0.06, 0.14].

3 ECONOMETRIC FRAMEWORKS

In this section, we describe the three econometric frameworks we consider, and the
corresponding confidence intervals that we propose. Throughout the paper, T denotes
the sample size,→

p
and→

d
stand for convergence in probability and in distribution,

respectively. The Euclidean norm of a vector a is denoted by ‖a‖, tr (·) is the trace
operator, vec (·) is the vectorization operator, and ⊗ is the Kronecker product. The
abbreviation iid stands for independent and identically distributed, N (ψ, Ξ) denotes
the normal distribution with mean vector ψ and covariance matrix Ξ, and χ2

k denotes
a chi-squared distribution with k degrees of freedom. For any (T × K) matrix A,
PA ≡ A (A′A)−1 A′, and MA = IK − PA, where IK is the (K× K) identity matrix. We
adopt the convention that for a symmetric positive definite matrix B, B = B1/2B1/2

and B−1 = B−1/2B−1/2, where B1/2 and B−1/2 are the unique principal square roots.
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Figure 1: Construction of confidence interval for size distortion
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Note: The figure plots size distortion as a function of µ2
1 (solid line). The confidence interval for µ2

1 is
marked on the horizontal axis (vertical dashed lines), and the corresponding confidence interval for the
size distortion is marked on the vertical axis (horizontal dash-dotted lines with arrows).

3.1 The Linear Homoskedastic IV Model

Consider the model of Staiger and Stock (1997) and Stock and Yogo (2005) (henceforth
SSY), whose notation we follow:

y = Yβ + Xγ + u, (10)

Y = ZΠ + XΦ + V, (11)

where y is a (T × 1) vector and Y is a (T × n) matrix of included endogenous variables.
X is a (T × K1) matrix of included exogenous variables (including a column of ones
if there is a constant in eq. (10)) and Z is a (T × K2) matrix of excluded exogenous
variables (instruments). β is an (n× 1), while γ is a (K1 × 1) vector of coefficients.
Π is a matrix of coefficients of dimension (K2 × n), and Φ is a (K1 × n) matrix of
coefficients. Furthermore, u is a (T × 1) vector of errors, and V is a (T × n) matrix
of errors. Equation (10) is the structural equation of interest to the researcher and
eq. (11) is the first stage equation relating the matrix of endogenous regressor(s) Y to
the matrix of instrument(s) Z.

We define Xt = (X1t, . . . , XK1t)
′
, Zt = (Z1t, . . . , ZK2t)

′
, Vt = (V1t, . . . , Vnt)

′
, Zt =

(X′t, Z′t)
′ as the vectors of the t-th observations of the respective variables, t = 1, . . . , T,
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and Z = [X Z]. The population second moment matrices Σ and Q are as follows:

Σ = E

[(
ut

Vt

)(
ut V′t

)]
=

[
σuu ΣuV

ΣVu ΣVV

]
, (12)

Q = E
(
ZtZ

′
t
)
=

[
QXX QXZ

QZX QZZ

]
. (13)

In this section we make the same assumptions as SSY.
Assumption LΠ: Π = ΠT = C/

√
T where C is a fixed K2 × n matrix.

Assumption M: The following limits hold jointly for fixed K2 as T → ∞:
(a) (T−1u′u, T−1V′u, T−1V′V)→

p
(σuu , ΣVu, ΣVV);

(b) T−1 Z′Z →
p

Q, where Q is positive definite;

(c) (T−1/2X′u, T−1/2Z′u, T−1/2X′V, T−1/2Z′V) →
d

(ΨXu, ΨZu, ΨXV , ΨZV), where Ψ ≡
[Ψ′Xu, Ψ′Zu, vec(ΨXV)

′, vec(ΨZV)
′]′ ∼ N (0, Σ⊗Q) , where Σ is positive definite.

Assumption LΠ models Π as local to zero, formalizing the weak instrument case,
while Assumption M ensures that the appropriately scaled moments of the errors
and the variables obey a Weak Law of Large Numbers and a Central Limit Theorem.
Part (c) of Assumption M corresponds most naturally to serially uncorrelated and
conditionally homoskedastic errors, which may be restrictive in certain empirical
applications. This assumption will be substantially relaxed in Section 3.2.

In order to develop our asymptotic theory, it is convenient to project out the
exogenous regressors, X. That is, let Y⊥ ≡ MXY, Z⊥ ≡ MXZ, and V⊥ ≡ MXV.
Moreover, let V⊥t be the transpose of the t-th row of V⊥, and similarly for Z⊥t . Note
that, by the exogeneity of X, E (XtV′t ) = 0, thus ΣV⊥V⊥ ≡ E

(
V⊥t V⊥′t

)
= ΣVV . Using

Assumption M, it can be shown that Σ̂VV ≡ Y⊥′MZ⊥Y⊥/ (T − K1 − K2) →p ΣVV .

Using this notation, we can rewrite eq. (11) as:

Y⊥ = Z⊥Π + V⊥ . (14)

Furthermore, let us define Ω ≡ QZZ − QZXQ−1
XXQXZ = QZ⊥Z⊥ , where QZ⊥Z⊥ ≡

E(Z⊥t Z⊥′t ), and Ω̂ ≡ Z⊥′Z⊥/T. Moreover, let Π̂T ≡ (Z⊥′Z⊥)−1Z⊥′Y⊥ denote OLS
estimator of Π in eq. (14). Note that Assumption M implies Ω̂→

p
Ω.

The concentration matrix (parameter) plays an important role in the construction
of the confidence intervals for the strength of identification. The concentration matrix
Λ is given by

Λ ≡ 1
K2

Σ−1/2′
VV C′ΩCΣ−1/2

VV =
1

K2
λ
′
λ , (15)

where λ = Ω1/2CΣ−1/2
VV . In the case of n = 1 endogenous regressor, ΣVV is a scalar

σVV (whose consistent estimator is the same, σ̂VV = Σ̂VV), and the concentration
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matrix simplifies to the scalar concentration parameter:

µ2
K2
≡ 1

K2
C′ΩC/σVV . (16)

As Stock and Yogo (2005) demonstrated, the (i) worst-case asymptotic bias relative
to the OLS estimator or (ii) worst-case asymptotic size distortion of the Wald-test on
β – where the worst-case corresponds to the maximum of these quantities over all
possible degrees of simultaneity between the error terms in eqs. (10) and (11) – of
several k-class instrumental variables estimators, including the TSLS estimator, are
functions (given n and K2) of the minimum eigenvalue of the concentration matrix,
denoted by mineval (Λ), or in the special case when n = 1, of the concentration
parameter. In what follows, for simplicity we refer to (i) and (ii) as bias and size
distortion, respectively. Furthermore, due to the popularity of the TSLS estimator, we
will focus on it. In order to better understand the important role played by Λ, note
that the matrix analog of the first-stage F-statistic testing the null hypothesis Π = 0 is

GT = 1
K2

Σ̂−
1
2
′

VV Y⊥
′
PZ⊥Y⊥Σ̂−

1
2

VV . The Cragg and Donald (1993) and Stock and Yogo (2005)
test statistic, gmin, is the minimum eigenvalue of GT: gmin = mineval(GT). As Stock
and Yogo (2005) demonstrate, GT →

d
ν1/K2 and gmin →

d
mineval(ν1/K2), where ν1 has

a non-central Wishart distribution with non-centrality matrix λ
′
λ = K2Λ.

Let b(mineval(Λ); n, K2) and s(mineval(Λ); n, K2) denote the bias and the size
distortion of the TSLS estimator, respectively, as the function of mineval(Λ) when the
number of endogenous regressors and instruments are n and K2, respectively, which
we assume to be fixed. For general n, no closed-form expression is known for the
functions b and s, although their values can be simulated following the algorithm given
by Stock and Yogo (2005), suggesting they are continuous and decreasing. However,
recently Skeels and Windmeijer (2016) obtained an expression for the bias function b
for the case of n = 1 endogenous variable. Figure 2 shows the simulated functions
b and s for n = 1 endogenous regressor and various numbers of instruments K2.
Section D of the Online Appendix provides the values of mineval (Λ) for n = {1, 2, 3}
endogenous variables and K2 = n + 1, . . . , 30 (bias) and K2 = n, . . . , 30 (size distortion),
corresponding to a fine grid of bias and size distortion. Following Stock and Yogo
(2005), we calculate the size distortion assuming the Wald test on β has a nominal level
of 5%. Using the MATLAB code that we provide, the simulations can be performed at
a variety of nominal levels.

Our confidence set provides guidance to researchers on the appropriateness of
the instruments they choose for their analysis by constructing a confidence set for
the instrument strength, either in terms of bias or size distortion. Our first proposed
method, described in Section 3.1.1, applies to the linear IV model with n = 1 endoge-
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Figure 2: Bias and size distortion of TSLS estimator as a function of mineval(Λ)
(n = 1)
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Note: The figures display the bias of the TSLS estimator (left panel) and the size distortion of the
corresponding Wald test at the 5% nominal level (right panel) for n = 1 endogenous regressor, and K2
instruments. The bias values for K2 = 2 were calculated using the method by Skeels and Windmeijer
(2016), while in the remaining cases we followed the simulation appoach of Stock and Yogo (2005).

nous regressor. It delivers confidence intervals which are reasonably short and very
close to their nominal coverage levels, as we will demonstrate later in the Monte Carlo
simulations of Section 4. The second method, described in Section 3.1.2, is generally
applicable for any number of endogenous variables (n ≥ 1), but usually provides more
conservative confidence intervals.

3.1.1 The Case of One Endogenous Regressor (n = 1)

The starting point of our proposed confidence interval is the asymptotic distribution
of the OLS estimator of Π in eq. (14). Under Assumptions LΠ and M, the asymptotic
distribution of Π̂T is given by

√
TΠ̂T →

d
N (C, σVVΩ−1) , (17)

which by Slutsky’s theorem implies that

mT ≡ Ω̂1/2σ̂−1/2
VV

√
TΠ̂T →

d
N (Ω1/2Cσ−1/2

VV , IK2) , (18)

which in turn leads to

fT ≡ m′TmT →
d

χ2
K2

(
K2µ2

K2

)
, (19)

that is fT asymptotically follows a non-central chi-squared distribution with K2 degrees
of freedom and non-centrality parameter K2µ2

K2
. By obtaining a confidence set for µ2

K2
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and using a projection argument, we can construct an asymptotically valid confidence
interval for the bias and the size distortion, as they depend only on µ2

K2
, through

b(µ2
K2

; n, K2) and s(µ2
K2

; n, K2), respectively.
Kent and Hainsworth (1995) suggested several confidence intervals for the non-

centrality parameter of a chi-squared distribution. Based on their recommendation, we
used their proposed “symmetric range” confidence interval. Let FK2(x, K2µ2

K2
) denote

the cumulative distribution function (CDF) of the non-central chi-squared distribution
with K2 degrees of freedom and non-centrality parameter K2µ2

K2
evaluated at x, and

let F−1
K2

(q, K2µ2
K2
) denote the corresponding quantile function evaluated at q. Then the

following algorithm leads to (1− α) level asymptotic confidence intervals for µ2
K2

.

1. Lower bound: If
√

fT ≤
√

F−1
K2

(1− α, 0), then set l
µ2

K2
1−α = 0. Else, solve the equa-

tion FK2( fT, (
√

fT − b)2)− FK2((max
{√

fT − 2b, 0
}
)2, (

√
fT − b)2) = (1− α) for

b, where 0 < b <
√

fT, call the solution b∗, and set l
µ2

K2
1−α = (

√
fT − b∗)2/K2.

2. Upper bound: Solve the equation FK2((
√

fT + 2b)2, (
√

fT + b)2)− FK2( fT, (
√

fT +

b)2) = (1− α) for b, where b > 0, call the solution b∗∗. Then set u
µ2

K2
1−α =

(
√

fT + b∗∗)2/K2.

Then the interval given by CI
µ2

K2
1−α ≡ [l

µ2
K2

1−α, u
µ2

K2
1−α] is a (1 − α) level asymptotic

confidence interval for µ2
K2

. Let us define

lb
1−α ≡ b(u

µ2
K2

1−α; n, K2) ub
1−α ≡ b(l

µ2
K2

1−α; n, K2) , (20)

ls
1−α ≡ s(u

µ2
K2

1−α; n, K2) us
1−α ≡ s(l

µ2
K2

1−α; n, K2) , (21)

which constitute the endpoints of the (1− α) level asymptotic confidence intervals for
bias (eq. (20)) and size distortion (eq. (21)), as summarized in Proposition 1.

Proposition 1 (Confidence interval validity for n = 1 endogenous regressor): Under

Assumptions LΠ and M, CI
µ2

K2
1−α is an asymptotically valid (1− α) level confidence

interval for µ2
K2

, that is,

lim
T→∞

P
(

µ2
K2
∈ CI

µ2
K2

1−α

)
= 1− α . (22)

Furthermore, [lb
1−α, ub

1−α] and [ls
1−α, us

1−α] are (1 − α) level asymptotic confidence

12



intervals for the bias and size distortion, respectively, formally:

lim
T→∞

P
(

b
(

µ2
K2

; n, K2

)
∈ [lb

1−α, ub
1−α]

)
= 1− α , (23)

lim
T→∞

P
(

s
(

µ2
K2

; n, K2

)
∈ [ls

1−α, us
1−α]

)
≥ 1− α . (24)

Proof. See Section A of the Online Appendix.

Remark 1. Skeels and Windmeijer (2016) show that, in the case of n = 1 endogenous
regressor, the bias b

(
µ2

K2
; n, K2

)
is a strictly decreasing continuous function of µ2

K2
(see

their Theorem B.2). If s
(

µ2
K2

; n, K2

)
is strictly decreasing as well (as Stock and Yogo’s

(2005) simulations strongly suggest), then the corresponding asymptotic confidence
interval will not be conservative (the weak inequality in eq. (24) will become an
equality).

3.1.2 The General Case of Potentially Multiple Endogenous regressors (n ≥ 1)

In the general case of n ≥ 1 endogenous regressors, similarly to the previously
discussed special case of n = 1, our proposed confidence interval builds on the
asymptotic distribution of the OLS estimator of Π in eq. (14), denoted by Π̂T:

√
T
(

Π̂T −Π
)
=
(

T−1Z⊥′Z⊥
)−1

T−1/2Z
⊥′

V⊥ , (25)
√

T vec
(

Π̂T −Π
)
→
d
N
(

0, ΣVV ⊗Ω−1
)

, (26)

vec
(

Ĉ− C
)
→
d
N
(

0, ΣVV ⊗Ω−1
)

, (27)

where eq. (26) follows directly from eq. (25) and Assumption M, and in eq. (27) we
used Π = ΠT = C/

√
T and Ĉ ≡ Π̂T

√
T. While Ĉ is an inconsistent estimator of C,

for our purposes the asymptotic normality result of eq. (27) is sufficient. Note that[
vec

(
Ĉ− C

)]′ [
ΣVV ⊗Ω−1]−1

[
vec

(
Ĉ− C

)]
→
d

χ2
nK2

. By using Σ̂VV →p ΣVV and

Ω̂ ≡ Z⊥′Z⊥/T →
p

Ω, we obtain the distribution of the Wald statistic,W(C):

W(C) ≡
[
vec

(
Ĉ− C

)]′ [
Σ̂VV ⊗ Ω̂−1

]−1 [
vec

(
Ĉ− C

)]
→
d

χ2
nK2

. (28)

By taking the (1− α) quantile of the χ2
nK2

distribution (denoted by χ2
nK2,1−α), the Wald

statisticW(C) can be inverted to obtain an asymptotically valid (1− α) level confidence
set for C, which is formally defined as

CIC
1−α ≡

{
∀ C̃ ∈ RK2×n :W

(
C̃
)
≤ χ2

nK2,1−α

}
. (29)

13



Note that CIC
1−α is compact and non-empty by construction. Recall the definition of Λ

in eq. (15) and define

Λ̃(C̃) ≡ 1
K2

Σ̂−1/2′
VV C̃′Ω̂C̃Σ̂−1/2

VV ,

which is a continuous function of C̃ and of the consistent estimates of ΣVV and Ω. Let
us define

LΛ
1−α ≡ min

C̃∈CIC
1−α

mineval(Λ̃(C̃)) UΛ
1−α ≡ max

C̃∈CIC
1−α

mineval(Λ̃(C̃)) . (30)

Then, following a projection argument (see e.g. Dufour (1997)), a (1− α) level asymp-
totic confidence interval for mineval(Λ) is given by

CIΛ
1−α ≡

[
LΛ

1−α, UΛ
1−α

]
. (31)

Furthermore, let us define

Lb
1−α ≡ b(UΛ

1−α; n, K2) Ub
1−α ≡ b(LΛ

1−α; n, K2) , (32)

Ls
1−α ≡ s(UΛ

1−α; n, K2) Us
1−α ≡ s(LΛ

1−α; n, K2) , (33)

which constitute the endpoints of the (1− α) level asymptotic confidence intervals for
bias (eq. (32)) and size distortion (eq. (33)), as summarized in Proposition 2.

Proposition 2 (Confidence interval validity for general n ≥ 1): Under Assumptions
LΠ and M, CIΛ

1−α is an asymptotically valid (1 − α) level confidence interval for
mineval (Λ), that is,

lim
T→∞

P
(

mineval (Λ) ∈ CIΛ
1−α

)
≥ 1− α . (34)

Furthermore, [Lb
1−α, Ub

1−α] and [Ls
1−α, Us

1−α] are (1− α) level asymptotic confidence
intervals for the bias and size distortion, respectively, formally:

lim
T→∞

P
(

b (mineval (Λ) ; n, K2) ∈ [Lb
1−α, Ub

1−α]
)
≥ 1− α , (35)

lim
T→∞

P
(
s (mineval (Λ) ; n, K2) ∈ [Ls

1−α, Us
1−α]

)
≥ 1− α . (36)

Proof. See Section A of the Online Appendix.

Remark 2. Note that, as Λ̃
(

C̃
)

is not a one-to-one function of C̃ in general, our
proposed confidence interval is conservative.

Remark 3. When there is only one endogenous regressor (n = 1), then the Karush–
Kuhn–Tucker conditions provide an analytical solution to eq. (30), and hence to eqs. (32)
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and (33) (we thank an anonymous referee for pointing this out). Define dT ≡ σ̂−1
VVĈ′Ω̂Ĉ.

The upper bound is given by UΛ
1−α = K−1

2

(√
χ2

K2,1−α +
√

dT

)2
. If dT ≥ χ2

K2,1−α, then

LΛ
1−α = K−1

2

(√
dT −

√
χ2

K2,1−α

)2
, while if dT < χ2

K2,1−α, then LΛ
1−α = 0 (see Section A

of the Online Appendix). However, for a general n > 1, the lower and upper bounds of
the proposed confidence interval must be calculated numerically: we use MATLAB’s
fmincon function to calculate the bounds of the confidence intervals, because the
objective function and the constraint are both smooth functions.

Our proposed procedure is an alternative to that of Stock and Yogo (2005). That
procedure tests whether the instruments are strong enough either in terms of not
leading to an estimator of β more biased than a pre-specified tolerance, or controlling
that the Wald test on β does not display higher size distortion than a threshold. Their
theory builds on the asymptotic distribution of gmin. However, their method cannot
provide a confidence set for the bias of the TSLS estimator or the size distortion of the
corresponding Wald test: that is, researchers do not know how weak or strong their
instruments are. Our proposed method is specifically designed to provide researchers
with such a confidence interval, using a confidence interval of mineval (Λ), and its
relationship with the bias and size distortion of IV estimators.

Alternatively, a uniformly valid confidence interval can be obtained using Hansen’s
(1999) grid bootstrap. Note that, however, Hansen’s (1999) bootstrap is computationally
intensive and difficult to implement in multivariate cases. In the following example,
we show that, for the case of weak instruments, our procedure (based on asymptotic
normality) and Hansen’s (1999) deliver the same confidence interval for the strength
of identification; our approach, however, is computationally much less intensive.

Example 1. To illustrate the relationship between our asymptotic normal approximation
and Hansen’s (1999) grid bootstrap, consider a Monte Carlo simulation study. Let us specify
Y = ZΠ+ XΦ+V, where Y, Z, X, V are (T × 1) vectors such that (Zt, Vt)′ ∼ iid N (0, I2),
Π = ΠT = C/

√
T, C = 0.5, T = 100, Xt = 1 and Φ = 1. Hansen’s (1999) grid bootstrap

is uniformly asymptotically valid in the presence of a weak instrument. If our asymptotic
normal approximation is a good approximation of the grid bootstrap quantiles, the 5th and
95th quantiles of the t-statistic obtained using Hansen’s (1999) grid bootstrap are straight
lines (i.e. independent of Π) and equal to ±1.64. Using the grid bootstrap, we can simulate
the distribution of the usual t-statistic testing the null hypothesis of Π = Π0 at each point Π0

on a fine grid AG, which we specify as ranging from −0.1 to 0.1, with increments of 0.01. At
each point on AG, we simulate the distribution of the t-statistic using B = 999 replications
and resampling the estimated residuals with replacement; then we estimate the 5th and 95th
percentiles (qL and qU) of the simulated distribution. Figure 3 depicts the means of qL and qU

at each point on the grid AG across 200 replications, confirming that the simulated quantiles
of the t-statistic are virtually indistinguishable from their asymptotic counterparts (±1.64).
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Figure 3: The grid bootstrap and asymptotic quantiles of the t-statistic
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Note: The figure reports the 5% and 95% quantiles of the grid bootstrap (solid horizontal lines) as well
as the 5% and 95% quantiles of the asymptotic normal approximation on which our projection method
relies (dashed horizontal lines), both as a function of Π.

Example 2. To illustrate our methodology in an empirical setting, consider Angrist and
Krueger’s (1991) problem of estimating the returns to education. Angrist and Krueger (1991)
estimate the effects of educational attainment on wages, resolving the endogeneity problem
using the quarter-of-birth interacted with the year-of-birth as IVs. As Bound et al. (1995)
noted, the instruments are only weakly correlated with educational attainment, causing a
potential weak instrument problem. Table 1 reports the confidence intervals for bias and size
distortions. The first column reports results for the specification in Table V, column 8 in
Angrist and Krueger (1991). The TSLS estimate equals 0.060 (with a standard error of 0.029),
and the Stock and Yogo (2005) F-statistic implies that the instruments are weak in terms of
bias and size distortion as well. That is, at the 5% significance level one cannot reject the null
hypothesis that asymptotically the bias of the TSLS estimator is at most 5% (or even 10 %)
of the bias of the OLS estimator in the worst case (the worst case corresponds to the biggest
relative bias over all possible degrees of simultaneity between the structural and the first-stage
errors). Similarly, a researcher cannot reject the null hypothesis that when performing a Wald
test on β at the 5% nominal level, asymptotically in the worst case (interpreted as before) he
or she would be performing a test which in fact has 5% or 10% larger size than advertised.
Our 95% confidence intervals agree with this, no matter whether they are calculated with the
projection method or the non-central χ2 approximation. The second column reports results for
the specification considered by Bound et al. (1995, Table 1, column 2), which includes a smaller
number of instruments (only quarter-of-birth). The TSLS estimate is 0.142 (with a standard
error of 0.033). The F-statistic is just below the 5% critical value for bias, and well below
the critical value for 5% size distortion. While the Stock and Yogo (2005) test implies weak
instruments, a researcher might have ambiguous thoughts about classifying these instruments
as weak, as for example the critical value corresponding to 10% bias is 9.08. Indeed, our
non-central χ2 – based confidence intervals suggest bias between 1.4% and 5.4%, and size
distortion between 3.0% and 9.7%, which an applied researcher might be comfortable with.
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Table 1: Estimating the returns to education: confidence intervals

Angrist and Krueger (1991) Bound et al. (1995)
(K2 = 28) (K2 = 3)

TSLS estimate (standard error) 0.060 (0.029) 0.142 (0.033)
95% Confidence intervals for bias

Projection method [0.132; 0.997] [0.012; 0.087]
Non-central χ2 [0.223; 0.914] [0.014; 0.054]

95% Confidence intervals for size distortion
Projection method [0.532; 0.950] [0.024; 0.140]
Non-central χ2 [0.777; 0.950] [0.030; 0.097]

F-statistic 1.61 13.49
Critical value (5% bias) 21.42 13.91
Critical value (10% bias) 11.34 9.08
Critical value (5% size distortion) 81.40 22.30
Critical value (10% size distortion) 42.37 12.83

Note: The upper panel reports confidence intervals for bias and size distortion in the Angrist and Krueger
(1991) and the Bound et al. (1995) returns to education regressions. The lower panel shows the F-statistics
and the corresponding critical values (at the 5% significance level) for bias and size distortion (nominal
level of Wald test is 5%) following Stock and Yogo (2005). Critical values in bold correspond to strong
instruments according to the specific threshold.

3.2 The Heteroskedastic/Autocorrelated Linear IV Model

The assumption of homoskedastic errors used in the previous section may be restric-
tive in a number of applications. In those cases, applying either the Stock and Yogo
(2005) test or our proposed confidence interval could lead to incorrect inference on
the instrument strength. As a solution to this problem, Montiel Olea and Pflueger
(2013) propose a measure of the strength of instruments which applies to general (het-
eroskedastic, autocorrelated or clustered) errors, albeit the theory has been developed
for the case of n = 1 endogenous regressor. They consider the TSLS and the limited
information maximum likelihood (LIML) estimators. For simplicity and due to its
popularity, in our paper we focus on the TSLS estimator.

Following Montiel Olea and Pflueger (2013), consider the linear IV model in its
reduced form:

y⊥ = Z⊥Πβ + v1, (37)

Y⊥ = Z⊥Π + v2 , (38)

where eq. (37) is the structural equation of interest in reduced form, while eq. (38) is
the first stage equation linking the endogenous regressor Y⊥ with the instruments
Z⊥ (both projected on the exogenous variables). Both y⊥ and Y⊥ are (T× 1) vectors,
Z⊥ is a (T × K2) matrix of instruments, β is a scalar coefficient, Π is a (K2 × 1) vector
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of coefficients, while v1 ≡ V⊥β + u⊥ and v2 ≡ V⊥ are (T × 1) vectors of errors.
Furthermore, in this section, Z⊥ is orthogonalized such that Z⊥′Z⊥/T = IK2 .

Montiel Olea and Pflueger (2013) adopt Assumption LΠ of SSY to model weak
instruments, but considerably weaken their moment assumptions as follows:
Assumption HL The following limits hold as T → ∞:

(a)

(
T−1/2Z⊥′v1

T−1/2Z⊥′v2

)
→
d
N (0, W) for some positive definite W =

(
W1 W12

W ′12 W2

)
, where

the sub-matrices of W are all (K2 × K2) square matrices;

(b) [v1 v2]
′[v1 v2]/T →

p
κ for some positive definite κ;

(c) There exists a sequence of positive definite estimates Ŵ, measurable with respect to
{y⊥t , Y⊥t , Z⊥t }T

t=1, such that Ŵ →
p

W.

Unlike Assumption M of SSY, these high level assumptions do not restrict W to take
the form of κ⊗ IK2 , and therefore they can encompass a wide range of error structures,
including heteroskedastic, autocorrelated or clustered (in panel data) error terms.

Montiel Olea and Pflueger (2013) formulate their notion of weak instruments in
terms of the Nagar (1959) bias, which is defined as

NTSLS(β, C, W) ≡ µ−2 tr(S12)

tr(S2)

[
1− 2

C′0S12C0

tr(S12)

]
, (39)

where C = ‖C‖C0, µ2 ≡ ‖C‖2/ tr(W2), S1 ≡ W1 − 2βW12 + β2W2, S12 ≡ W12 − βW2,
and S2 ≡ W2. Note that µ2 can be thought of as the analog of the concentration
parameter µ2

K2
defined in Section 3.1. The Nagar bias is the expected value of the

first three terms in the Taylor expansion of the asymptotic distribution of the TSLS
estimator under weak instrument asymptotics (in the case of irrelevant instruments,
corresponding to C = 0, we define the Nagar bias as either +∞ or −∞). Furthermore,
they define the benchmark “worst-case” bias as BM(β, W) ≡

√
tr(S1)/ tr(S2), which is

intuitively related to the approximate bias of the TSLS estimator when the instruments
are uninformative and the first-stage and second-stage errors are perfectly correlated
(see Remark 4 on p. 362 in Montiel Olea and Pflueger, 2013). Then, for a given threshold
τ ∈ [0, 1] (specified by the researcher) they define the weak instrument set as

µ2 ∈ R+ : sup
β∈R,C0∈SK2−1

|NTSLS(β, µ
√

tr(W2)C0, W)|
BM(β, W)

> τ , (40)

where SK2−1 is the K2− 1 dimensional unit sphere. That is, the instruments are weak if
the Nagar bias exceeds a fraction τ of the benchmark bias BM(β, W) for at least some
value of the structural parameter β and some direction of the first-stage coefficients
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C0. Montiel Olea and Pflueger (2013) propose the so-called effective first-stage F-statistic
to test the null hypothesis of weak instruments:

F̂eff ≡
Y⊥′(Z⊥Z⊥′/T)Y⊥

tr(Ŵ2)
. (41)

However, their procedure cannot guide researchers on how weak or strong their
instruments are. On the other hand, our proposed methodology allows researchers to
go beyond hypothesis testing by providing an asymptotic confidence interval for the
Nagar bias defined in eq. (39). Therefore our procedure has the additional advantage
of providing information on the bias of the TSLS estimator directly, without the
need to relate it to the worst-case benchmark bias BM(β, W). However, an additional
complication arises due to the fact that the Nagar bias depends on the structural
parameter β, which is not consistently estimable under weak instrument asymptotics.

In what follows, we explain how we can still provide a confidence interval for the
Nagar bias. Our proposed confidence interval for the Nagar bias is constructed by
combining two ideas: the method of obtaining a confidence set for C in Section 3.1
and the method of obtaining a confidence set for β. Consider the following compact
expression of eqs. (37) and (38) (used by e.g. Andrews, Moreira and Stock (2006)):

Ỹ = Z⊥Πa′ + ṽ , (42)

where Ỹ ≡
[
y⊥, Y⊥

]
, a ≡ (β, 1)′ and ṽ ≡ [v1, v2]. Note that the coefficient matrix Πa′

has an interesting structure: its first column is Πβ, while its second column is Π. Let
us define its vectorized version as Γ ≡ [Π′β, Π′]′, then vectorize eq. (42):

vec
(

Ỹ
)
= (I2 ⊗ Z⊥)Γ + vec(ṽ) . (43)

Consider the asymptotic distribution of the OLS estimator of Γ in eq. (43):

√
T
(

Γ̂− Γ
)
=

[
T−1/2Z⊥′v1

T−1/2Z⊥′v2

]
=

[
ψ̂− Cβ

Ĉ− C

]
→
d
N (0, W) , (44)

where ψ̂ is
√

T times the OLS estimator of ΠTβ in the structural equation, Ĉ = Π̂T
√

T
as in Section 3.1.2, and we used the normalization Z⊥′Z⊥/T = IK2 and Assumptions
HL and LΠ. Furthermore, by Slutsky’s theorem and part (c) of Assumption HL, the
Wald statistic asymptotically follows a chi-squared distribution with 2K2 degrees of
freedom, formally

W(C, β) ≡
[

ψ̂− Cβ

Ĉ− C

]′
Ŵ−1

[
ψ̂− Cβ

Ĉ− C

]
→
d

χ2
2K2

. (45)
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Analogously to the procedure in Section 3.1, by taking the (1− α) quantile of the χ2
2K2

distribution (denoted by χ2
2K2,1−α), the Wald statisticW(C, β) can be inverted to obtain

an asymptotically valid (1− α) level joint confidence set for C and β, formally:

CIC,β
1−α ≡

{
∀ (C̃, β̃) ∈ RK2+1 :W(C̃, β̃) ≤ χ2

2K2,1−α

}
. (46)

Note that if C̃ = 0 is in the confidence set CIC,β
1−α, then the confidence set for β is

unbounded, which is in line with the findings of Dufour (1997). If this is the case, then
it suggests that the instruments are very weak indeed, and β might not be identified.
Therefore when C̃ = 0 ∈ CIC,β

1−α, then we take [−∞,+∞] as our confidence set for the
Nagar bias. Another peculiar case is when the confidence set CIC,β

1−α is empty, which
can happen when a confidence set is based on the inversion principle. This situation
indicates that the data rejects the model, pointing to the violation of the exclusion
restriction. In this case, we take the empty set (denoted by ∅) as the confidence set for
the Nagar bias. We proceed to describe our proposed confidence intervals, keeping in
mind these special cases.

To construct a confidence interval for the Nagar bias, let us define the Nagar bias
as a function of the parameters

(
C̃, β̃

)
and the consistent estimate Ŵ:

ÑTSLS(β̃, C̃, Ŵ) ≡ µ̃−2 tr(S̃12)

tr(S̃2)

[
1− 2

C̃′0S̃12C̃0

tr(S̃12)

]
, (47)

where C̃ = ‖C̃‖C̃0, µ̃2 ≡ ‖C̃‖2/ tr(Ŵ2), S̃1 ≡ Ŵ1 − 2β̃Ŵ12 + β̃2Ŵ2, S̃12 ≡ Ŵ12 − β̃Ŵ2,
and S̃2 ≡ Ŵ2.

Let us define LN
1−α ≡ min

(C̃,β̃)∈CIC,β
1−α

ÑTSLS(β̃, C̃, Ŵ) and UN
1−α ≡ max

(C̃,β̃)∈CIC,β
1−α

ÑTSLS(β̃, C̃, Ŵ).

Our proposed (1− α) level asymptotic confidence interval for NTSLS(β, C, W) is

CINTSLS
1−α =


[
LN

1−α UN
1−α

]
if CIC,β

1−α 6= ∅ and C̃ = 0 /∈ CIC,β
1−α ,

[−∞,+∞] if C̃ = 0 ∈ CIC,β
1−α ,

∅ if CIC,β
1−α = ∅ .

(48)

We summarize our results in the following proposition.

Proposition 3 (Confidence interval validity under general assumptions): Under As-
sumptions LΠ and HL, CINTSLS

1−α in eq. (48) is an asymptotically valid confidence interval
for the Nagar bias NTSLS(β, C, W), that is

lim
T→∞

P
(

NTSLS(β, C, W) ∈ CINTSLS
1−α

)
≥ 1− α . (49)

Proof. See Section A of the Online Appendix.
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Note that, as ÑTSLS(β̃, C̃, Ŵ) is not a one-to-one function of
(

C̃, β̃
)

in general, our
proposed confidence interval may be conservative.

3.3 Local Projections–IV method

Since the original paper by Jordà (2005), the local projections method has become
popular in the macroeconomics literature to estimate impulse response functions, due
to its simplicity (both in terms of estimation and inference) and robustness to model
misspecification. Its IV variant called local projections–IV (LP–IV) has been used in
several recent studies, see for example Jordà et al. (2015) examining the link between
financial conditions, mortgage credit and house prices, or Ramey and Zubairy (2018)
investigating state-dependent US government spending multipliers. Stock and Watson
(2018) provides an overview of the LP–IV econometric framework, which we adopt
here.

Consider the (n× 1) vector of covariance stationary macroeconomic variables Yt,
and its structural vector moving average representation Yt = Θ(L)εt , where L is the lag
operator, Θ(L) = Θ0 + Θ1L + Θ2L2 + . . . , and Θh is an (n×m) matrix of coefficients.
Furthermore, εt is an (m× 1) vector of mutually uncorrelated structural shocks and
measurement errors with a positive definite covariance matrix. The coefficients of
Θ(L) are the structural impulse response functions. Suppose that the researcher is
interested in the response of the i-th endogenous variable at horizon h, Yi,t+h, to
a unitary increase in ε1,t, and let the (i, 1) element of Θh be denoted by Θh,i1. A
convenient normalization is Θ0,11 = 1, that is a unit increase in ε1,t leads to a unit
increase in Y1,t. It follows that we can write Y1,t = ε1,t + {ε2:n,t, εt−1, εt−2, . . . }, where
ε2:n,t ≡ (ε2,t, ε3,t, . . . εn,t)′, and the shorthand {·} denotes the linear combination of
the variables inside the braces. Then the h-period-ahead impulse response of the i-th
variable Yi,t+h to a structural shock ε1,t is given by the population coefficient in the
linear regression

Yi,t+h = Θh,i1Y1,t + uh
i,t+h , (50)

where uh
i,t+h = {εt+h, . . . , εt+1, ε2:n,t, εt−1, εt−2, . . . }. Given the endogeneity of Y1,t, OLS

is inconsistent, but TSLS is consistent if an appropriate set of instrumental variables Zt

is available. Note that in general, uh
i,t+h is serially correlated for h > 1 by construction.

As common in the empirical literature, a vector of control variables Xt can be
added to eq. (50), resulting in Yi,t+h = Θh,i1Y1,t + γ′hXt + uh

i,t+h . After projecting on the
control variables, the regression of interest becomes

Y⊥i,t+h = Θh,i1Y⊥1,t + uh⊥
i,t+h . (51)
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As Stock and Watson (2018) note, the control variables can serve two purposes: first,
the exogeneity conditions E(ε2:n,tZ′t) = 0, and E(εt+jZ′t) = 0 for all j 6= 0 might only
be satisfied after controlling for Xt. Second, they can reduce the variance of the IV
estimator through reducing the variance of the error term. The exogeneity conditions
in the presence of control variables are E(ε⊥2:n,tZ

⊥′
t ) = 0, and E(ε⊥t+jZ

⊥′
t ) = 0 for all

j 6= 0. Instrument relevance is given by E(ε⊥1,tZ
⊥
t ) = Π. Note that under instrument

exogeneity, the instrument relevance condition is equivalent to E(Y⊥1,tZ
⊥
t ) = Π, which

suggests the familiar first stage equation (using the same normalization Z⊥′t Z⊥t /T =

IK2 as before, and Y⊥1,t acting as the endogenous regressor Y⊥t ):

Y⊥1,t = Z⊥′t Π + v2,t , (52)

where E(v2,tZ⊥t ) = 0. From an IV perspective, the structural equation in its reduced
form is given by

Y⊥i,t+h = Z⊥′t ΠΘh,i1 + Θh,i1v2,t + uh⊥
i,t+h = Z⊥′t ΠΘh,i1 + v1,t , (53)

where Y⊥i,t+h corresponds to yt, Θh,i1 plays the role of β, and Θh,i1v2,t + uh⊥
i,t+h is equiv-

alent to v1,t in the heteroskedastic/autocorrelated IV model. As Stock and Watson
(2018) note, apart from special cases, by construction Z⊥′t v1,t and Z⊥′t v2,t feature con-
ditional heteroskedasticity and autocorrelation, hence our confidence interval in the
previous subsection applies directly to the LP–IV framework under Assumptions LΠ,
HL, instrument exogeneity, and the validity of the structural vector moving average
representation described at the beginning of this subsection.

4 MONTE CARLO ANALYSIS

In this section, we investigate the performance of the confidence intervals that we
proposed in both the homoskedastic, and the heteroskedastic and serially correlated
IV model. Throughout, we focus on the empirical coverage rates of our proposed
confidence intervals; in the homoskedastic IV model with n = 1 we provide median
lengths as well, to compare the projection method to the non-central chi-squared
approach. The Online Appendix provides further results, including the median
lengths of the confidence intervals. Without loss of generality, in this section we do
not include exogenous regressors (thus, Y = Y⊥, Z = Z⊥ and V = V⊥). The number
of Monte Carlo replications is 2000 and the nominal level of the confidence intervals’
coverage is (1− α) = 0.90 in all designs.
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4.1 The Homoskedastic IV Model

Let the first stage equation be:

Y = ZΠ + V , (54)

where Y is the T × n matrix of endogenous variables, Z is the T × K2 matrix of
instruments, and V is the T × n matrix of errors. We specify Vt ∼ iid N (0, In) and
Zt ∼ iid N (0, IK2), and consider n = {1, 2}, with K2 = {n + 1, . . . , n + 4} when
focusing on bias, and K2 = {n, . . . , n + 3} when analyzing size distortion. For each
pair (n, K2), we consider three values of bias and size distortion: 5%, 10% and 30%
(Section C of the Online Appendix contains the values of C used in the simulations). We
consider sample sizes of T = {100, 250, 500, 1000}. When there is only one endogenous
regressor (n = 1) we constructed the confidence intervals based on both the non-central
chi-squared approach of Proposition 1 and the projection method of Proposition 2.
Doing so allows us to evaluate the conservativeness of the projection method. Recall
that in the homoskedastic model, bias and size distortion do not depend on structural
equation parameters, only on the smallest eigenvalue of the concentration matrix,
mineval(Λ), K2, and n.

As Panels A of Tables 2 and 3 show, the confidence intervals based on the non-
central chi-squared approximation display coverage rates very close to the nominal
90% level for a variety of sample sizes and bias/size distortion values. The coverage
rates of the confidence intervals based on the projection method are shown in Panels
B of Tables 2 and 3, calculated using exactly the same simulated data. As we can see,
these confidence intervals exhibit over-coverage (as anticipated), which increases in
the number of instruments K2, and for a given K2 it is smaller for smaller values of
bias/size distortion (modulo Monte Carlo error). The intuition behind the former is
that the larger the dimension of the vector C, the “less” one-to-one Λ̃(C̃) becomes. The
latter effect is due to the fact that smaller values of bias/size distortion correspond to
larger values of C, which are further away from the origin, thereby further away from
a part of the parameter space where Λ̃(C̃) is particularly non-invertible.

Panels C and D of Tables 2 and 3 illustrate that the median lengths of confidence
intervals are slightly larger with the projection method than with the non-central χ2

approximation.
Table 4 shows that for n = 2 endogenous variables, our projection method–based

confidence intervals are conservative in general.
Overall, our methods perform well across different specifications, even for relatively

small samples.
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Table 2: Homoskedastic IV model, n = 1 endogenous variable, confidence intervals
for TSLS bias b

Panel A. Coverage rates (non-central χ2)
K2 = 2 K2 = 3 K2 = 4 K2 = 5

T\b 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.89 0.88 0.89 0.90 0.87 0.86 0.89 0.86 0.83 0.87 0.83 0.79
250 0.90 0.90 0.90 0.88 0.88 0.88 0.90 0.89 0.87 0.89 0.87 0.85
500 0.90 0.90 0.89 0.91 0.91 0.90 0.90 0.89 0.89 0.91 0.90 0.90
1000 0.90 0.89 0.89 0.90 0.90 0.89 0.90 0.90 0.90 0.91 0.90 0.89

Panel B. Coverage rates (projection method)
K2 = 2 K2 = 3 K2 = 4 K2 = 5

T\b 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.96 0.96 0.96 0.97 0.97 0.97 0.99 0.99 0.98 0.99 0.99 0.98
250 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
500 0.97 0.97 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00
1000 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Panel C. Median lengths of confidence intervals (non-central χ2)
K2 = 2 K2 = 3 K2 = 4 K2 = 5

T\b 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.49 0.49 0.47 0.84 0.28 0.09 0.73 0.16 0.05 0.57 0.12 0.04
250 0.49 0.49 0.48 0.83 0.27 0.09 0.72 0.16 0.05 0.56 0.11 0.04
500 0.49 0.49 0.47 0.84 0.29 0.09 0.72 0.16 0.05 0.59 0.12 0.04
1000 0.49 0.49 0.48 0.83 0.28 0.09 0.73 0.16 0.05 0.60 0.12 0.04

Panel D. Median lengths of confidence intervals (projection method)
K2 = 2 K2 = 3 K2 = 4 K2 = 5

T\b 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.50 0.50 0.50 0.93 0.63 0.22 0.90 0.40 0.12 0.87 0.30 0.09
250 0.50 0.50 0.50 0.93 0.60 0.21 0.90 0.40 0.12 0.87 0.28 0.09
500 0.50 0.50 0.50 0.93 0.64 0.23 0.90 0.39 0.12 0.88 0.30 0.09
1000 0.50 0.50 0.50 0.93 0.62 0.22 0.90 0.40 0.12 0.87 0.30 0.09

Note: Panel A shows the empirical coverage rates of the proposed confidence interval for the TSLS
bias b based on the non-central χ2 approximation for different sample sizes T, values of b, and
number of instruments K2 for the homoskedastic DGP. Panel B displays analogous results, based
on the projection method. Panels C and D report median lengths of the confidence intervals. The
number of Monte Carlo simulations is 2000. The nominal coverage level is (1− α) = 0.90.

4.2 The Heteroskedastic/Autocorrelated IV Model

We consider two DGPs (Data Generating Processes), labeled as DGP 1 and DGP 2, and
construct confidence intervals for the Nagar bias defined in eq. (39). DGP 1 is inspired
by Montiel Olea and Pflueger (2013, p. 361), and features conditional heteroskedasticity
but no autocorrelation, while DGP 2 has both. First we describe DGP 2, and then
discuss the restriction under which we obtain DGP 1.

Let Z̃t =
(

Z̃1,t, . . . , Z̃K2,t

)′
, εt ∼ iidN (0, (1− ρ2)IK2) and Z̃t = ρZ̃t−1 + εt, where
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Table 3: Homoskedastic IV model, n = 1 endogenous variable, confidence intervals
for size distortion s

Panel A. Coverage rates (non-central χ2)
K2 = 1 K2 = 2 K2 = 3 K2 = 4

T\s 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.91 0.90 0.89 0.89 0.88 0.86 0.89 0.86 0.82 0.89 0.85 0.80
250 0.89 0.89 0.89 0.90 0.89 0.88 0.89 0.88 0.87 0.90 0.88 0.86
500 0.91 0.91 0.90 0.90 0.89 0.89 0.91 0.90 0.89 0.89 0.89 0.88
1000 0.90 0.89 0.90 0.90 0.89 0.89 0.90 0.90 0.89 0.90 0.90 0.89

Panel B. Coverage rates (projection method)
K2 = 1 K2 = 2 K2 = 3 K2 = 4

T\s 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.95 0.96 0.89 0.96 0.95 0.94 0.97 0.97 0.96 0.99 0.98 0.96
250 0.94 0.94 0.89 0.97 0.96 0.96 0.98 0.98 0.97 0.99 0.99 0.98
500 0.94 0.95 0.90 0.97 0.97 0.96 0.98 0.99 0.98 0.99 0.99 0.99
1000 0.94 0.94 0.90 0.98 0.97 0.97 0.98 0.99 0.99 0.99 0.99 0.99

Panel C. Median lengths of confidence intervals (non-central χ2)
K2 = 1 K2 = 2 K2 = 3 K2 = 4

T\b 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.89 0.89 0.09 0.81 0.21 0.07 0.68 0.14 0.05 0.56 0.11 0.04
250 0.89 0.88 0.09 0.81 0.22 0.07 0.66 0.14 0.05 0.56 0.11 0.04
500 0.89 0.88 0.09 0.81 0.20 0.07 0.70 0.15 0.05 0.56 0.11 0.04
1000 0.89 0.88 0.09 0.82 0.22 0.07 0.68 0.14 0.05 0.57 0.11 0.04

Panel D. Median lengths of confidence intervals (projection method)
K2 = 1 K2 = 2 K2 = 3 K2 = 4

T\b 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 0.89 0.89 0.14 0.86 0.38 0.11 0.83 0.30 0.09 0.81 0.25 0.08
250 0.89 0.89 0.15 0.86 0.41 0.11 0.83 0.29 0.09 0.80 0.25 0.08
500 0.89 0.89 0.15 0.86 0.38 0.11 0.83 0.30 0.09 0.81 0.24 0.08
1000 0.89 0.89 0.14 0.86 0.41 0.11 0.83 0.30 0.09 0.81 0.25 0.08

Note: Panel A shows the empirical coverage rates of the proposed confidence interval for size
distortion s (nominal level of Wald test is 5%) based on the non-central χ2 approximation for different
sample sizes T, values of s, and number of instruments K2 for the homoskedastic DGP. Panel B
displays analogous results, based on the projection method. Panels C and D report median lengths of
the confidence intervals. The number of Monte Carlo simulations is 2000. The nominal coverage level
is (1− α) = 0.90.

ρ controls the persistence of the independent autoregressive processes, and we set
ρ = 0.7. The (T × K2) matrix Z̃ collects the vectors Z̃t. Let Zt be the standardized
Z̃t in-sample, such that Z′Z/T = IK2 . That is, let Zstd be the (column-by-column)
demeaned Z̃ divided by its standard deviation (column-by-column), and Qstd

Z =

(Zstd′Zstd/T)−1/2. Then Z = ZstdQstd
Z . We specify a moving average process u2t =

qt + θqt−1, where qt ∼ iidN (0, 1), and θ = 0.4, and it is independent of Z̃t (and Zt)
both contemporaneously and at all leads and lags. Furthermore, let bt ∼ iidN (0, 1)
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Table 4: Homoskedastic IV model, n = 2 endogenous variables, coverage rates for
TSLS bias b and size distortion s

Panel A. Confidence intervals for TSLS bias b
K2 = 3 K2 = 4 K2 = 5 K2 = 6

T\b 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.95 1.00 1.00 0.90
250 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.96 1.00 1.00 0.90
500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 0.92
1000 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.96 1.00 1.00 0.92

Panel B. Confidence intervals for size distortion s
K2 = 2 K2 = 3 K2 = 4 K2 = 5

T\s 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05

100 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.87 1.00 0.99 0.74
250 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 0.88 1.00 1.00 0.73
500 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 0.90 1.00 1.00 0.74
1000 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 0.88 1.00 1.00 0.76

Note: Panel A shows the empirical coverage rates of the proposed confidence interval for the TSLS
bias b based on the projection method for different sample sizes T, values of b, and number of
instruments K2 for the homoskedastic DGP. Panel B displays analogous results, for size distortion s.
The number of Monte Carlo simulations is 2000. The nominal coverage level is (1− α) = 0.90.

(independent of all the previous random variables both contemporaneously and at
all leads and lags), and u1t = au2t + bt, where a = α̃/(1 + θ2), α̃ = −0.5, leading to
E(u1tu2t) = α̃. Define the (K2 × 1) coefficient vector γ as γ = (γ1, 0, . . . , 0)′, γ1 = 0.5.
Conditional heteroskedasticity is introduced by letting v1t = Z′tγu1t and v2t = Z′tγu2t

be the t-th element of v1 and v2, respectively.
In DGP 1, we set θ = 0 to make (Z′v1, Z′v2)

′ serially uncorrelated, while preserving
conditional heteroskedasticity.

We performed Monte Carlo simulations for sample sizes T = {100, 250, 500, 1000},
with K2 = {1, 2, 3, 4} instruments, and for various strengths of identification, NTSLS(β, C, W) =

{0.05, 0.10, 0.3} (in the case of K2 = 4 instruments, we specified NTSLS(β, C, W) =

{−0.05,−0.10,−0.3}, as the Nagar bias is non-positive in this case). We set β = 1 in
all cases. Furthermore, we specified C =

(
c2
∗, c∗, . . . , c∗

)
, and using Matlab’s fzero

or fsolve solver we determined the value of c∗ such that (given β and W) it implies
the desired amount of Nagar bias. The specific C vectors, along with the derivation
of the covariance matrix W can be found in Section C of the Online Appendix. The
numerical optimization to calculate the bounds of the Nagar bias in the simulations
(and later in the empirical examples) was performed using the augmented Lagrangian
algorithm (Birgin and Martínez, 2008) with the PRAXIS subalgorithm (Brent, 1972) in
the NLopt package (Johnson, 2014) through the OPTI Toolbox interface (Currie and
Wilson, 2012).
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Results are reported in Table 5, showing that our proposed confidence interval
delivers valid (although conservative) coverage rates for both DGPs across different
values of Nagar bias NTSLS(β, C, W), sample sizes T, and number of instruments K2 .

Table 5: Coverage rates for the Nagar bias

Panel A. Heteroskedastic IV model
K2 = 1 K2 = 2 K2 = 3 K2 = 4

T\NTSLS 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 -0.3 -0.1 -0.05

100 0.94 0.90 0.86 0.92 0.90 0.89 0.94 0.95 0.96 0.93 0.90 0.80
250 0.96 0.94 0.93 0.96 0.95 0.95 0.96 0.96 0.97 0.97 0.97 0.95
500 0.96 0.96 0.95 0.96 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.97
1000 0.96 0.96 0.96 0.98 0.98 0.97 0.98 0.99 0.99 0.98 0.98 0.98

Panel B. Heteroskedastic and autocorrelated IV model
K2 = 1 K2 = 2 K2 = 3 K2 = 4

T\NTSLS 0.3 0.1 0.05 0.3 0.1 0.05 0.3 0.1 0.05 -0.3 -0.1 -0.05

100 0.89 0.83 0.76 0.88 0.86 0.84 0.86 0.89 0.89 0.84 0.75 0.87
250 0.94 0.92 0.89 0.93 0.93 0.92 0.94 0.95 0.95 0.93 0.91 0.95
500 0.96 0.95 0.93 0.96 0.95 0.94 0.96 0.97 0.97 0.97 0.97 0.97
1000 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.98 0.98

Note: The upper panel shows the empirical coverage rates of the proposed confidence interval for
the Nagar bias NTSLS(β, C, W) for different sample sizes T, values of the Nagar bias, and number of
instruments K2 fot DGP 1 in Section 4.2. The lower panel displays analogous results, based on DGP 2.
The number of Monte Carlo simulations is 2000. The nominal coverage level is (1− α) = 0.90.

5 EMPIRICAL ANALYSIS

5.1 Estimating the Intertemporal Elasticity of Substitution

The intertemporal elasticity of substitution (IES) is often estimated using a linearized
Euler equation, which is commonly derived as an optimality condition of the house-
hold’s problem in modern macroeconomic models. We illustrate our proposed method-
ology by using the same specifications of the consumption Euler equation as Yogo
(2004) and Montiel Olea and Pflueger (2013). The model is a linear IV model, and
we consider both the homoskedastic, and the heteroskedastic and serially correlated
cases.

In particular, the structural equation is either of the following:

∆ct+1 = ν + ψrt+1 + ut+1 , (55)

rt+1 = ξ + ψ−1∆ct+1 + ηt+1 , (56)

where ∆ denotes the first difference operator, ct is the logarithm of the level of
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consumption, ∆ct+1 is consumption growth, and rt+1 is a real asset return, ψ is the
IES parameter, ν and ξ are constants, while ut+1 and ηt+1 are stochastic disturbances,
which can be conditionally heteroskedastic or autocorrelated. Note that eq. (56)
expresses the same relationship between consumption growth and returns as eq. (55),
but often the estimates of ψ are vastly different between these two specifications. Yogo
(2004) argued that weak identification can explain these contradicting results.

To facilitate the comparison between their results and ours, we borrow the quarterly
data set used by Yogo (2004) and Montiel Olea and Pflueger (2013) focusing on the US
between 1947:Q3 and 1998:Q4. In eqs. (55) and (56), we use real per capita consumption
growth for ∆ct+1, and the real return on the short-term interest rate for rt+1. As Yogo
(2004) notes, by using instruments dated t − 1, ψ or its reciprocal ψ−1 can be still
identified even if asset returns or consumption are conditionally heteroskedastic. We
use the same instruments as Montiel Olea and Pflueger (2013), notably consumption
growth, nominal interest rate, inflation rate, and the logarithm of the dividend-price
ratio. Section B of the Online Appendix contains a detailed description of the data.

The estimation results are summarized in Table 6. Panel A reports results for the
heteroskedastic and serially correlated linear IV model, while Panel B focuses on the
homoskedastic IV model. Note that, by comparing the results on the left and right
panels, the point estimates suggest contradicting values for ψ, an empirical result also
emphasized by Yogo (2004) and Montiel Olea and Pflueger (2013).

Furthermore, for the specification in eq. (56) both the Montiel Olea and Pflueger
(2013) and the Stock and Yogo (2005) methods signal weak instruments, and our
confidence interval for the Nagar bias agrees with them. However, the results are
different when considering the specification in eq. (55): according to the Stock and
Yogo (2005) test, the instruments are strong if one is willing to tolerate 10% bias or
size distortion, while they are weak when applying the Montiel Olea and Pflueger
(2013) test with τ = 10% maximum relative bias. This confirms the latter authors’
finding, that the test developed for the homoskedastic case can be misleading in the
presence of heteroskedasticity or autocorrelation. Surprisingly, our analysis reveals
that the confidence interval for the Nagar bias is [−0.00, 0.02], signaling almost no
bias. What could explain these seemingly conflicting results? Recall that the Montiel
Olea and Pflueger (2013) method tests the Nagar bias of the TSLS estimator relative to
a benchmark, while our confidence interval is directly applicable without the need
to specify a reference bias. Hence, if the benchmark bias (which is not consistently
estimable) itself is small, then this could resolve the seemingly different results. The
low IES estimate and the corresponding negligible Nagar bias are in line with the
results of Havránek (2015), who finds in a large-scale meta analysis of the literature
that after correcting for publication bias, IES estimates based on macroeconomic data
are centered around zero.
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Table 6: Intertemporal elasticity of substitution

Panel A. Heteroskedastic/serially correlated IV model IES ψ IES ψ−1

TSLS estimate (standard error) 0.06 (0.098) 0.68 (0.813)
CINTSLS

0.95 [−0.00, 0.02] [20.28, 12695.44]
F̂eff 8.14 2.65
Critical value (τ = 0.1) 15.49 13.99
Critical value (τ = 0.3) 7.75 7.04

Panel B. Homoskedastic IV model IES ψ IES ψ−1

TSLS estimate (standard error) 0.06 (0.086) 0.68 (0.474)
95% Confidence Interval for bias [0.021, 0.058] [0.069, 0.786]
95% Confidence Interval for size distortion [0.034, 0.090] [0.105, 0.816]
F-statistic 15.53 2.93
Critical value (5% bias) 16.85 16.85
Critical value (10% bias) 10.27 10.27
Critical value (5% size distortion) 24.58 24.58
Critical value (10% size distortion) 13.96 13.96

Note: The table displays the estimation results of the consumption Euler equations with ∆ct+1

regressed on rt+1 (specification IES ψ in eq. (55)), and rt+1 regressed on ∆ct+1 (specification IES ψ−1

in eq. (56)). Panel A shows results based on the heteroskedastic and autocorrelated IV model: TSLS
point estimates and HAC standard errors (Newey and West’s (1987) HAC estimator with 6 lags, as in
Montiel Olea and Pflueger (2013)), the 95% level confidence interval for the Nagar bias, along with
the effective F-statistics F̂eff and the corresponding 5% critical values, allowing for τ relative bias. The
asymptotic covariance matrix W was estimated by the Newey and West (1987) HAC estimator, with 6
lags, as in Montiel Olea and Pflueger (2013). Panel B displays results based on the homoskedastic IV
model: the 95% level confidence interval (based on the non-central χ2 method) for the relative bias
and size distortion (assuming a nominal 5% level Wald test), the Stock and Yogo (2005) F-statistics
and the corresponding critical values (at the 5% significance level). In both panels, critical values in
bold correspond to strong instruments according to the specific threshold.

5.2 Estimating fiscal multipliers by Local Projections–IV

As the second empirical example, we provide confidence intervals for the Nagar
bias in a local projections–IV model. In their recent study, Ramey and Zubairy
(2018) estimated both state-dependent and state-independent government spending
multipliers for the US, using quarterly data in a sample period spanning 1889 – 2015.
In this paper, we build on their analysis and estimate cumulative fiscal multipliers
when the state of the economy corresponds to zero lower bound (ZLB) or non-ZLB
(“normal”) periods, in addition to state-independent (“linear”) multipliers.

Ramey and Zubairy (2018) estimate the following structural equations for the ZLB,
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non-ZLB and state-independent specifications:

h

∑
j=0

yt+j = cZLB
h + γZLB

h It−1 + φZLB
h (L)zt−1 It−1 + mZLB

h

h

∑
j=0

gt+j It−1 + ωZLB
t+h , (57)

h

∑
j=0

yt+j = cnormal
h + γnormal

h (1− It−1) + φnormal
h (L)zt−1 (1− It−1)

+ mnormal
h

h

∑
j=0

gt+j (1− It−1) + ωnormal
t+h ,

(58)

h

∑
j=0

yt+j = clinear
h + φlinear

h (L)zt−1 + mlinear
h

h

∑
j=0

gt+j + ωlinear
t+h , (59)

where ∑h
j=0 yt+j is the sum of real GDP divided by potential GDP over periods t to

t + h; It−1 is a dummy variable indicating the state of the economy when the shock
hits (It−1 = 1 in the ZLB period and It−1 = 0 in the normal period); ∑h

j=0 gt+j is the
sum of real government spending divided by potential GDP between t and t + h; zt−1

is the same vector of control variables as used by the original authors containing: real
GDP over its potential level, real government spending over potential real GDP, and
the defense news shock variable (introduced later) when it is used as an instrument.
For s = {ZLB, normal, linear}, cs

h, γs
h are scalar coefficients; φs

h(L) are polynomials
in the lag operator L up to four lags; ms

h are the government spending multipliers,
which are the structural parameters of interest. The error terms ωs

t+h are potentially
serially correlated and heteroskedastic. For a detailed description of the data, we refer
to Section B of the Online Appendix.

Ramey and Zubairy (2018) estimate the government spending multipliers at the 2
and 4 year horizons (corresponding to h = 7 and h = 15, denoted by 2Y and 4Y) by
LP-IV, instrumenting the cumulative government spending variable. As instruments,
they use either the Blanchard and Perotti (2002) shock (current normalized government
spending, denoted by "BP"), or Ramey’s (2011) defense news shock series (rescaled by
lagged GDP deflator times trend GDP, denoted by “News”), or both.

Table 7 reports the empirical results. The columns labeled "Estimates" are the
same as in Ramey and Zubairy (2018) and display the TSLS estimates, together with
their HAC standard errors in parentheses. We show estimates for both the state-
dependent multipliers (the specifications labeled “ZLB” and “Normal”, referring to
the ZLB and non-ZLB periods, respectively) and the state-independent (labeled as
“Linear”) specifications. The columns labeled “Confidence intervals for bias” report
the confidence intervals for the Nagar bias of the TSLS estimator. The last three
columns contain of the Montiel Olea and Pflueger (2013) test statistics (cases of strong
instruments in bold), along with the 5% level critical values corresponding to τ = 0.1
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Table 7: Government spending multipliers

IV(s) Horizon Estimates Confidence intervals for bias F̂eff and c.v. (τ = 0.1)
Linear ZLB Normal Linear ZLB Normal Linear ZLB Normal

News
2Y 0.66

(0.07)
0.77
(0.11)

0.63
(0.15)

[0.00, 0.13] [0.00, 0.12] [0.00, 0.04] 19.95
[23.11]

22.61
[23.11]

43.68
[23.11]

4Y 0.71
(0.04)

0.77
(0.06)

0.77
(0.38)

[0.00, 0.22] [0.00, 0.54] [−0.04, 0.20] 11.55
[23.11]

10.21
[23.11]

24.06
[23.11]

BP
2Y 0.38

(0.11)
0.64
(0.03)

0.10
(0.11)

[−0.07,−0.01] [−0.00, 0.00] [−0.01, 0.00] 36.72
[23.11]

53.98
[23.11]

70.60
[23.11]

4Y 0.47
(0.11)

0.71
(0.03)

0.12
(0.12)

[−0.21,−0.00] [−0.00, 0.02] [−0.02, 0.01] 20.11
[23.11]

21.03
[23.11]

36.44
[23.11]

News & BP
2Y 0.42

(0.10)
0.67
(0.03)

0.26
(0.10)

∅ [−0.00, 0.00] [−0.00,−0.00] 37.85
[13.19]

37.20
[13.56]

37.99
[13.06]

4Y 0.56
(0.08)

0.76
(0.04)

0.21
(0.14)

∅ [−0.01, 0.00] [−0.07, 0.00] 14.90
[15.46]

12.11
[15.89]

19.43
[18.20]

Note: The columns labeled "Estimates" report TSLS point estimates of fiscal multipliers, and Newey–West (1987)
standard errors in parentheses, with Newey and West’s (1994) automatic bandwidth selection. The columns labeled
"Confidence intervals for bias" report the 95% confidence intervals for the Nagar bias. The last three columns report
the effective F-statistics, and the 5% critical values in brackets corresponding to a maximum relative bias of τ = 0.1.
Significant effective F-statistics indicating strong instruments are in bold. Blocks labeled “News” (“BP”) refer to using
Ramey’s (Blanchard and Perotti’s) shock as instrument, while News & BP means using both instruments at the same
time. 2Y and 4Y correspond to the 2-year-horizon and 4-year-horizon, respectively. The symbol ∅ means an empty
confidence interval for the Nagar bias.

maximum relative bias in parentheses.
Researchers might want to be informed of the true instrument strength in addition

to the testing procedure when using the news shocks in the linear and ZLB specifica-
tions at the 2-year-horizon, or the Blanchard–Perotti shock in the same specifications
at the 4-year-horizon. Given that in these cases the effective F-statistics are slightly
below their critical values, the instruments are potentially weak, leading to biased
point estimates.

Overall, we find negligible biases when estimating the state-dependent model,
either using the Blanchard–Perotti or both the Blanchard–Perotti and the news shocks
as instruments, while we find some positive bias when using only the news shock
instrument. After correcting the TSLS point estimate by the confidence interval for
the Nagar bias, the estimates in the zero lower bound period based on using only the
news shock instrument are very similar to those obtained using the other instruments:
they range between 0.65 and 0.77 for the two-year multiplier, and between 0.23 and
0.77 for the four-year one. These results demonstrate that our proposed confidence
can indeed provide additional and useful information to researchers.

Turning to the linear, state-independent specification of the model in eq. (59),
labeled "Linear" in the table, when using one instrument at a time, our confidence
intervals imply some positive bias, especially at the 4-year-horizon when using the
news shock instrument, and negative bias when using the Blanchard–Perotti instru-

31



ment. However, when using both the Blanchard–Perotti and the news shock series at
the same time, our results point in the direction of the invalidity of the instruments, as
the confidence set CIC,β

1−α is empty, meaning there is no (C̃, β̃) ∈ R3 which would be
consistent with the model. This was also mentioned by Ramey and Zubairy (2018),
who note in their Footnote 36 that the overidentifying restrictions are rejected.

6 CONCLUSION

In this paper we propose confidence intervals for the strength of identification, and in
particular, bias and size distortion in the homoskedastic IV model, and Nagar bias
in the heteroskedastic/autocorrelated linear IV model as well as local projections–
IV models. Our proposed methodologies allow researchers working with either
microeconomic or macroeconomic data to determine how strong their instruments are
and how big their size distortion and bias can be. The practical implementation of our
proposed methodologies has the benefit of being easy and computationally simple.
Monte Carlo simulations show that the proposed confidence intervals have correct
coverage even for moderate sample sizes.

The application of our new methodology uncovers a series of interesting empirical
facts. In particular, our analysis of the consumption Euler equation confirms that weak
identification poses a serious challenge to estimating the intertemporal elasticity of
substitution parameter. However, in one model specification, our results suggest that
the bias of the point estimate might be minor, and the available testing procedure
only implies weak instruments due to its formulation in terms of a benchmark bias.
In contrast, our method is applicable without reference to such a benchmark bias.
Furthermore, our local projections–IV analysis shows that the presence of biases can
help reconcile the differences in the fiscal policy multipliers across different sets of
instruments in the zero lower bound period.

SUPPLEMENTARY MATERIALS

The online supplementary materials contain the proofs, further theoretical and Monte
Carlo results, a description of the data sets used in the present paper, and all the code
to replicate our results.
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