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ABSTRACT

In the �xed design regression model, additional weights are considered for the

Nadaraya-Watson and Gasser-M�uller kernel estimators. We study their asymptotic

behavior and the relationships between new and classical estimators. For a simple

family of weights, and considering the AIMSE as global loss criterion, we show some

possible theoretical advantages. An empirical study illustrates the performance of

the weighted kernel estimators in theoretical ideal situations and in simulated data

sets. Also some results concerning the use of weights for local polynomial estimators

are given.

1. INTRODUCTION

Some of the most popular nonparametric regression smoothers are: the Nadaraya-

Watson (NW) estimator, independently proposed by Nadaraya (1964) and Watson

(1964) as an estimator of the regression curve; and the Gasser-M�uller (GM) esti-

mator, based on the convolution of a kernel function with a modi�cation of the

regressogram. An extensive comparison and discussion of their merits can be found

in Chu and Marron (1991).

The bulk of this paper is a proposal of variants of these estimators considering

additional weights in their associated local weighted averages. In Sections 2 and

3 the new estimators are de�ned and their asymptotic local behaviors are studied.

Section 4 examines the performance of their asymptotic integrated mean squared

error for a natural family of weights and the theoretical advantages of the new

estimators. Section 5 contains numerical results showing in practice the behavior

of the estimators under di�erent design and curve combinations. Finally, Section 6

deals with the use of weights for the local polynomial method.
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We consider a �xed design model given by Yi = g(ti) + ei; i = 1; : : : ; n. The

values ti 2 [0; 1] are generated by a regular density f with the usual properties (see,

e.g. M�uller, 1988, p. 26), and there exists a �2(�) function such that V (Yi) = �2(ti).

Extensions of the de�nitions and results to random designs are possible.

We assume that the kernels are symmetric densities of order 2 supported on

[�1; 1] and Lip1[�1; 1]. The weights will be de�ned by a function w : [0; 1]�! IR+.

We will study the asymptotic properties of the new estimators for t 2 (0; 1).

The boundary problems can be handled with the methods of Rice (1984) or Hall

and Wehrly (1991) for the NW estimators and with the classical modi�cations for

the GM case, |see e.g., M�uller (1988), Sec. 5.8|.

2. WEIGHTED NW ESTIMATORS

We de�ne the weighted NW estimator by

ĝ1(t; w) = ĝ1(t) =

Pn
i=1 w(ti)Kh(t� ti)YiPn
i=1w(ti)Kh(t� ti)

;

where Kh(z) = K(z=h)=h.

Its asymptotic behavior is given in the following result.

Proposition 1 Assume that w; f; g 2 C2[0; 1] and �2 2 C1[0; 1]. If h �! 0 and

nh �! 1 when n �! 1, then for t 2 (0; 1):

E(ĝ1(t)) = g(t) +
h2

2
�2(K)

 
g00(t) +

2g0(t) (w(t)f(t))0

w(t)f(t)

!
+ o

�
h2
�
+ O

�
1

nh

�
;

V (ĝ1(t)) =
1

nh
V (K)

�2(t)

f(t)
+ o

�
1

nh

�
;

where �2(K) =
R
u2K(u)du, V (K) =

R
K2(u)du.

remarks:

1) Regarding to asymptotic bias, the use of weights given by w is equivalent

to consider a design function proportional to wf . In particular, similar behavior is

obtained either using the NW estimator with data from a design f or the weighted

estimator with weight function w = f and equally spaced ti's. This could provide

advantages in certain practical situations.

2) The ideal choice g00(t)=g0(t) = �2 (w(t)f(t))0 = (w(t)f(t)), that is, wf /

(g0)�1=2, would eliminate the bias term O(h2) and it would give bias of order h4,

reducing the mean squared error.

3) The inclusion of the weight function has not e�ect on the asymptotic variance.

3. WEIGHTED GM ESTIMATORS

The second weighted estimator is de�ned by

ĝ2(t; w) = ĝ2(t) =

Pn
i=1 Yi

R si
si�1

w(u)Kh(t� u)du

D(t)
;
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where si is an interpolating sequence of the ti's, i.e. s0 = 0; ti � si � ti+1; sn = 1;

the function D(t) = (w �Kh)(t) =
R 1
0 w(u)Kh(t � u)du is introduced as a normal-

ization factor.

Its asymptotic properties are given in the following result.

Proposition 2 Assume that conditions of Proposition 1 hold. Then, for t 2 (0; 1)

E(ĝ2(t)) = g(t) +
h2

2
�2(K)

�
g00(t) +

2g0(t)w0(t)

w(t)

�
+ o

�
h2
�
+O

�
1

n

�
:

If furthermore si = (ti + ti+1)=2:

V (ĝ2(t)) =
1

nh
V (K)

�2(t)

f(t)
+ o

�
1

nh

�
:

remarks:

1) The estimator ĝ2(t) is de�ned by smoothing the function r(t; w) = w(t)Yi; si�1
< t � si, by means of its convolution with Kh. Another reasonable option is to con-

sider a direct weighting on each sum term or, equivalently, to smooth the `weighted

regressogram' de�ned as ~r(t; w) = w(ti)Yi; si�1 < t � si. This scheme would lead

to consider

~g2(t) =

�Pn
i=1 Yiw(ti)

R si
si�1

Kh(t� u)du
�

~D(t)
;

where ~D(t) =
Pn

i=1 w(ti)
R si
si�1

Kh(t � u)du. The selected approach makes no dif-

ference since it is easy to prove that the resulting estimators are asymptotically

equivalent in the sense that the leading terms of their means and variances are

equal.

2) The consideration of weights for GM estimators using w gives an asymptotic

bias equal to that obtained with a NW estimator under a design proportional to w.

This fact, joined with the Remark 1 after Proposition 1, will permit to relate the

weighted estimators with the classical ones.

3) The choice g00(t)=g0(t) = �2w0(t)=w(t) eliminates the bias term O(h2) and

will lead to bias of order h4.

4) Again, the asymptotic variance of the classical estimator it is not a�ected by

the weight function.

There exists the following relationship between the new estimators.

Proposition 3 (i) Given the estimator ĝ1(t; w), there is a function �w such that

ĝ2(t; �w) is asymptotically equivalent to ĝ1(t; w).

(ii) Given ĝ2(t; w), there is a function ~w such that ĝ1(t; ~w) is asymptotically equiv-

alent to ĝ2(t; w).

The assertion follows taking �w = wf and ~w = w=f in (i) and (ii), respectively.

remark: Consequently, given a NW estimator (respectively, a GM estimator),

it is possible to �nd an equivalent weighted estimator of type GM (respectively, NW)

by taking weights w = f (respectively, w = 1=f).
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4. GLOBAL BEHAVIOR

To study the global performance of the new estimators and to compare them

with the classical ones, we restrict ourselves to weight functions of type w(�; t) =

f�(t); � 2 IR. In another context {studying a uni�ed approach{, Jennen-Steinmetz

and Gasser (1988) considered a class of kernel estimators with variable bandwidth

given by a subfamily of w(�; t).

For several reasons w(�; t) seems an appropriate way of actuation on the pre-

dictor variable. Note that the relationships indicated in the last section were made

through this family. Also, according to the remark to Proposition 3, weights equal

to 1 and 1=f or, respectively, 1 and f , provide the NW and GM estimators. So, it

is natural consider `intermediate' weights; if we use the weighted geometric means:

(1=f)�11��, or, f�11��, � 2 [0; 1], respectively, we arrive to that family.

Let us point out that for the equally spaced design this weight family reduces to

the trivial function w(�; t) = 1. We recall that if the design is given by the uniform

density, the estimators NW and GW are asymptotically equivalent; therefore, the

`intermediate' estimators de�ned by using w(�; t) will be also equivalent to them.

To avoid this special case, we will henceforth consider non equally spaced designs.

The evaluation of the global performance of the estimators will be made accord-

ing to their integrated mean squared error, IMSE. For the family w(�; t), Propo-

sition 3 permits considering any of the weighted estimators. Working with, for

instance, the estimator ĝ2(t), we have as asymptotic mean squared error:

AMSE(�; t; h) =
h4

4
�22(K)C(t; �) +

1

nh
V (K)

�2(t)

f(t)
;

where

C(t; �) =

�
g00(t) + 2�

g0(t)f 0(t)

f(t)

�2

:

And the asymptotic IMSE will be

AIMSE(�; h) =
h4

4
�22(K)

Z
C(t; �)dt+

1

nh
V (K)

Z
�2(t)

f(t)
dt:

Di�erentiating with respect to h and equating to zero, we have as asymptotically

optimal global bandwidth

h(�) = n�1=5

0
@ V (K)

R �2(t)
f(t)

dt

�22(K)
R
C(t; �)dt

1
A
1=5

:

Therefore, the (asymptotically) optimal AIMSE is given by

AIMSE(�; h(�)) =
5

4
n�4=5

�
�22(K)

Z
C(t; �)dt

�1=5 
V (K)

Z
�2(t)

f(t)
dt

!4=5

:

Only the term  (�) =
R
C(t; �)dt depends on �; recalling the expression for C(t; �),

the minimum of  is attained at
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�0 = �
1

2

R g00g0f 0

fR �g0f 0
f

�2 ;
giving,

 (�0) =

Z
(g00)2 �

�R g00g0f 0

f

�2
R �g0f 0

f

�2 :

Observe that Cauchy{Schwarz inequality provides�Z
g00g0f 0

f

�2
�

�Z
(g00)2

� Z �
g0f 0

f

�2!
;

that is, AIMSE(�0; h(�0)) � 0, with equality if and only if,

g00 /
g0f 0

f
()

g00

g0
/
f 0

f
() f = k1(g

0)k2 :

This shows that a suitable election for the � parameter of our weighting family

may theoretically permit to reduce the AIMSE. Likewise, substantial reductions of

this error can be done in `special' situations with appropriate combinations between

the functions f and g and their derivatives. Nevertheless, to exploit in practice the

use of weighted estimators we will need an estimation of �0. This will be considered

in the next section.

5. EMPIRICAL STUDIES

A numerical study was conducted to analyze the behavior of our proposal. Its

main objective was to evaluate the advantages of using a weighted estimator instead

of usual kernel estimators. Moreover, relationships between the gains attained by

weighted regression and some characteristics of the regression function (as symmetry

and curvature) were also of interest. We have considered two situations: a theoretical

one, where the optimal parameter �0 is assumed to be known, and a practical one,

where the optimal value of � is estimated from the data.

The �rst part of our empirical study is a numerical exercise. We have consid-

ered the di�erent combinations of designs (truncated to [0; 1]) and regression curves

displayed in Table I. In an ideal theoretical frame where function g is assumed to

be known, we can use the asymptotic relative e�ciencies

REA(�0; hNW) =
AIMSE(� = 1; h = hNW )

AIMSE(�0; h(�0))

and REA(�0; hGM) (de�ned as above, but for � = 0 and h = hGM ) to compare our

proposal with NW and GM estimators. The computed �0, optimal values of the

parameter, and the asymptotic relative e�ciencies are displayed in the upper boxes

of the cells of Tables II (normal design) and III (mixed design): REA(�0; hNW)

above and REA(�0; hGM) below.

We point out some conclusions from this study. When the curvature of function

g(t) becomes larger (i.e., when  increases), �0 increases. Functions with moderate
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TABLE I: Scheme for empirical studies.

1: N(:5; � = :25) truncated to [0; 1]

Regular designs

2: 1
2
U([0; 1]) + 1

2
N(:5; � = :25) truncated to [0; 1]

g(t; �; ) = �t + (1� �)(1� t)

g(t) functions
� = :5; :65; :8; :95,  = 2; 3; 4; 6

Sample sizes n = 50; 200

Error distribution

�i = Yi � g(ti) � N(0; ��)
Relative dispersion = 4��

Range(g(t))+4��
= :2; :4

curvature ( = 2) produce �0 values increasing when the symmetry of g(t) is larger.

This is explained by the expression of �0 and by the existing symmetries in the

derivative of a symmetric function.

With regard to the theoretical relative e�ciency, usually REA(�0; hNW) is greater

than REA(�0; hGM). In general, REA(�0; hNW) > REA(�0; hGM) when �0 < :5 or,

equivalently, when the optimal parameter is closer to the GM estimator (� = 0)

than to the NW estimator (� = 1). The closeness to 0 or 1 of �0 (or, in real cases,

its estimation) answers, in some sense, the question \which of these kernel estima-

tors should be used, and when?", posed in Jones et al. (1994). Focusing on the

utility of the inclusion of weights we note that when the curvature of g increases,

the advantages obtained are more noteworthy.

The second part of the study is more interesting from a practical point of view.

It compares the weighted and unweighted estimators when our basic parameter �0,

and also bandwidths h for NW and GM estimators, are estimated from data. We use

plug-in estimations adapted to the theoretical expressions given in Section 4. The

required pilot estimations of the derivatives of g have been obtained using Fortran

routines CURVDAT (see K�ohler, 1990, and Gasser et al., 1991, where all aspects

concerning the CURVDAT programs are described).

The combinations of the functions g(t) with other elements, de�ned and given

in Table I, specify each simulated situation. The NW estimator is replaced by its

equivalent weighted GM version. The estimator with optimal weights is calculated

using its weighted GM version. Since we have used GM type estimators, we have

applied the usual boundary corrections. The simulation analysis runs through 300

times.

The evaluation of the quality of the estimations is also given by relative e�-

ciencies. Firstly, we consider the relative e�ciency (with respect to NW estimator)

based on AIMSE for estimated parameters:

REA(�̂; ĥNW) =
AIMSE(� = 1; h = ĥNW )

AIMSE(�̂; h(�̂))
:
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Since we have now �nite samples, we can use the IMSE distance to measure

relative e�ciencies. Thus,

REI(�0; hNW) =
IMSE(� = 1; h = hNW )

IMSE(�0; h(�0))

permits to evaluate the �nite sample e�ciency of the weighted estimator in the ideal

situation of known parameter �0. Also, the quotient

REI(�̂; ĥNW) =
IMSE(� = 1; h = ĥNW )

IMSE(�̂; h(�̂))

takes into account the estimation of � and the �nite sample situation. Similar

de�nitions are done for GM estimator.

Main results are shown in the lower boxes of Tables II and III. The block in

the left upper position shows the average value of the estimations �̂ obtained in

simulation. Each of the three remaining blocks contains two numbers (the upper

one for NW information and the lower one for GM). Right upper position is reserved

for REA(�̂; ĥ), left lower for REI(�0; h0) and right lower for REI(�̂; ĥ). (h0 and ĥ

represent optimal and estimated bandwidth for usual kernel estimators.)

We conclude by pointing out some results of this study. With respect to the

estimation of parameter �, the averages of �̂ values are reasonably near to the

optimal values �0 and the variation is acceptable. One detected regularity is the

decrease of standard error of estimated � when either �,  or n increase and when

the dispersion of residuals decreases.

Some agreement is also observed between theoretical AIMSE's and the corre-

sponding values obtained from estimations of �0, hNW and hGM in simulation. The

values of REA(�̂; ĥ) are always under REA(�0; h0) values. Thus, as it should be

expected, the estimation of � implies a reduction in the asymptotic e�ciency of the

weighted estimator.

The values ofREI(�0; h0) are always around the mean value of 1 and REA(�0; h0).

Thus, when IMSE is used instead of AIMSE, the gain for using weighted estimators is

not so substantial. This reduction of e�ciency is more important than that implied

by the estimation of � (and analyzed by REA(�̂; ĥ)). If we look at values REI(�̂; ĥ)

we observe that the e�ects (�nite samples and estimation of �) are added, giving a

more important reduction in the e�ciency than they do separately. Nevertheless,

most of these values are above one, so the weighted estimator improves NW and

GM even if we estimate � and use IMSE's to evaluate accuracy.

In general, the relative e�ciences obtained from simulation show patterns agree-

ing with the theoretical ones discussed at the beginning of this section (with lower

values in simulation). Therefore, our comments about the relationship between sym-

metry and curvature and the previous recomendations of using weights, are also valid

for small sample sizes and appreciable dispersions. The previously noted agreement

is clearer, as we could expect, under large sample size or small model dispersion.
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TABLE II: Normal design.



� 2 3 4 6

.208 1.80 .208 1.80 .263 1.86 .392 1.92

1.18 1.18 1.30 1.63

.50 .332 1.32 .260 1.46 .279 1.46 .357 1.55

1.19 1.18 1.20 1.33

1.38 1.13 1.40 1.18 1.45 1.20 1.35 1.16

1.08 1.04 1.08 1.03 1.15 1.05 1.25 1.11

.181 1.82 .203 1.84 .262 1.89 .392 1.93

1.14 1.18 1.31 1.63

.65 .265 1.42 .207 1.53 .280 1.59 .378 1.61

1.17 1.17 1.23 1.38

1.38 1.16 1.38 1.20 1.47 1.29 1.46 1.26

1.07 1.03 1.09 1.03 1.13 1.07 1.30 1.17

.130 1.90 .192 1.92 .259 1.95 .391 1.95

1.09 1.20 1.34 1.65

.80 .156 1.56 .200 1.66 .256 1.72 .384 1.69

1.13 1.17 1.26 1.44

1.45 1.23 1.44 1.29 1.47 1.32 1.44 1.30

1.05 1.01 1.09 1.03 1.16 1.09 1.27 1.18

.089 2.02 .182 2.04 .256 2.04 .391 1.97

1.06 1.22 1.38 1.66

.95 .092 1.76 .191 1.81 .264 1.83 .372 1.76

1.09 1.19 1.31 1.47

1.56 1.38 1.52 1.37 1.49 1.36 1.42 1.31

1.03 1.00 1.11 1.05 1.16 1.11 1.33 1.25

Relative dispersion .2; n = 200. Table shows �0, average value of �̂'s in simulations

and relative e�ciency of weighted estimator with respect to NW and GM evaluated

by REA(�0; h0), REI(�0; h0), REA(�̂; ĥ) and REI(�̂; ĥ). Each cell displays:

�0 REA(�0; h0)

�̂ REA(�̂; ĥ)

REI(�0; h0) REI(�̂; ĥ)
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TABLE III: Mixed design.



� 2 3 4 6

.761 1.04 .761 1.04 .955 1.00 1.488 1.36

1.27 1.27 1.44 2.04

.50 .915 1.18 .729 1.17 .991 1.15 1.231 1.20

1.13 1.13 1.21 1.34

1.00 1.03 1.00 1.03 1.00 1.00 1.04 1.05

1.11 1.03 1.14 1.02 1.22 1.05 1.34 1.15

.629 1.08 .732 1.05 .946 1.00 1.487 1.37

1.19 1.27 1.46 2.06

.65 .608 1.19 .698 1.16 .871 1.15 1.238 1.22

1.10 1.13 1.23 1.42

1.03 1.04 1.02 1.03 1.00 1.00 1.11 1.05

1.11 1.02 1.18 1.05 1.21 1.08 1.47 1.21

.414 1.17 .671 1.09 .928 1.01 1.485 1.40

1.10 1.27 1.50 2.12

.80 .389 1.19 .596 1.17 .848 1.13 1.199 1.18

1.06 1.14 1.24 1.48

1.11 1.08 1.04 1.03 1.00 1.01 1.15 1.05

1.04 .99 1.18 1.05 1.31 1.13 1.60 1.31

.263 1.28 .615 1.15 .909 1.02 1.483 1.44

1.06 1.29 1.57 2.19

.95 .281 1.27 .554 1.16 .794 1.12 1.258 1.20

1.05 1.17 1.31 1.59

1.18 1.14 1.06 1.03 1.01 1.00 1.18 1.06

1.04 .99 1.17 1.08 1.31 1.16 1.62 1.35

Relative dispersion .2; n = 200. Table shows �0, average value of �̂'s in simulations

and relative e�ciency of weighted estimator with respect to NW and GM evaluated

by REA(�0; h0), REI(�0; h0), REA(�̂; ĥ) and REI(�̂; ĥ). Each cell displays:

�0 REA(�0; h0)

�̂ REA(�̂; ĥ)

REI(�0; h0) REI(�̂; ĥ)
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6. WEIGHTED LOCAL POLYNOMIAL ESTIMATORS

Local polynomial (LP) regression has a long tradition and has received a renewed

interest due to a set of recent �ndings. A complete collection of its atractive features

and properties is given in Fan and Gijbels (1996). A nice introductory exposition

can be found in Wand and Jones (1995), Chapter 5.

The idea of weighting can be translated to this method. Let �̂w = (�̂0; �̂1; : : : ; �̂p)
t

the vector minimizing

nX
i=1

�
Yi �

pX
j=1

(�j(ti � t)j)
�2
Kh(ti � t)w(ti):

We de�ne the weighted LP estimator by ĝ3(t; w; p) = ĝ3(t; p) = �̂0.

To study this estimator, the following notation (Ruppert and Wand, 1994) is

useful. If �j =
R
ujK(u)du, let Np be the (p + 1) � (p + 1) matrix with (i; j)th

entry equal to �i+j�2, and let Mp(u) be the same as Np but with the �rst col-

umn replaced by (1; u; : : : ; up)T ; �nally, let K(p) be the kernel given by K(p)(u) =

(jMp(u)j=jNpj)K(u). The asymptotic bias and variance are given by the next result.

Proposition 4 Assume that w; f 2 C2[0; 1]; �2 2 C1[0; 1]; g 2 Cp+2[0; 1]. If h �! 0

and nh �! 1 when n �! 1, then for t 2 (0; 1) and p odd

E(ĝ3(t; p)) = g(t) + hp+1
g(p+1)(t)

(p+ 1)!
�p+1(K(p)) + o

�
hp+1

�
;

while for even p

E(ĝ3(t; p)) = g(t) + hp+2

(
g(p+1)(t)

(p+ 1)!

[w(t)f(t)]0

w(t)f(t)
+
g(p+2)(t)

(p+ 2)!

)
�p+2(K(p)) + o

�
hp+2

�
:

In either case

V (ĝ3(t; p)) =
1

nh
V (K(p))

�2(t)

f(t)
+ o

�
1

nh

�
;

where �j(K(p)) =
R
ujK(p)(u)du, V (K(p)) =

R
K2

(p)(u)du.

remarks:

1) Let p be an even number. Taking w(t) = 1=f(t), the asymptotic bias of

ĝ3(t; p) is equal to those of ĝ3(t; p + 1) and the LP estimator of order p + 1. The

same happens for their AIMSE's. (We note that K(p) = K(p+1) for p even.)

2) If p is an even number, it is possible to �nd a weight function (depending of

the unknown function g) giving bias of order o
�
hp+2

�
.

3) Consider weight functions w(t) = f�(t) and assume p is even. It exists a

theoretical �0 such that the AIMSE of ĝ3(t; p) is lower than or equal to the AIMSE

for the LP estimators of orders p and p+ 1.
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APPENDIX: PROOFS

Lemma 1 Assume K 2 Lip1[�1; 1]; s 2 Lip1[0; 1]. If h �! 0 and nh �! 1 when

n �! 1, then for any t 2 (0; 1)

Z 1

0
f(u)s(u)Kh(t� u)du =

1

n

nX
i=1

s(ti)Kh(t� ti) + O

�
1

nh

�
:

For powers of kernel, K� ; � � 1, if nh� �! 1Z 1

0
f(u)s(u)K�

h(t� u)du =
1

n

nX
i=1

s(ti)K
�
h(t� ti) + O

�
1

nh�

�
:

Proof. Let li = ti � ti�1; i = 1; : : : ; n + 1; t0 = 0; tn+1 = 1; then li = (nf(ti))
�1 +

O
�
1=n2

�
. De�ning It =

n
ij
R ti
ti�1

Kh(t� u)du 6= 0
o

and using mean values �i 2

[ti�1; ti], we have R 1
0 f(u)s(u)Kh(t� u)du =

=
Pn

i=1

R ti
ti�1

f(u)s(u)Kh(t� u)du =
P

It
lif(�i)s(�i)Kh(t� �i) =

=
P

It O
�

1
n2

�
f(�i)s(�i)Kh(t� �i) +

P
It

1
nf(ti)

f(�i)s(�i)Kh(t� �i) =

= O
�
1
n

�
+
P

It
1

nf(ti)

h
f(ti) + O

�
1
n

�i h
s(ti) + O

�
1
n

�i h
Kh(t� ti) + O

�
1

nh2

�i
=

= 1
n

Pn
i=1 s(ti)Kh(t� ti) + O

�
1
nh

�
;

where we have made use of Card(It) = O(nh) and K 0

h(x) = O
�
1=h2

�
. For �> 1 the

result is proved with a similar argument. 2

Lemma 2 Under the assumptions of Lemma 1 and s; f 2 C2[0; 1]:

1

n

nX
i=1

s(ti)Kh(t� ti) = s(t)f(t) +
1

2
h2�2(K)[s(t)f(t)]00+ o

�
h2
�
+O

�
1

nh

�
:

Proof. Let p(t) = s(t)f(t); from Lemma 1 it follows that

1
n

Pn
i=1 s(ti)Kh(t� ti) + O

�
1
nh

�
=
R 1
0 p(u)Kh(t � u)du =

R 1
�1 p(t� hx)K(x)dx =

= p(t) + 1
2
h2p00(t)

R 1
�1 x

2K(x)dx+ o
�
h2
�
:

2

Proof of Proposition 1.

De�ne ĝ1(t) = N(t)=M(t), and let p(t) = w(t)f(t). Lemma 2 gives

1
n
E(N(t)) = 1

n

Pn
i=1 w(ti)Kh(t� ti)g(ti) =

= p(t)g(t) + 1
2
h2�2(K) [p(t)g(t)]00 + o

�
h2
�
+ O

�
1
nh

�
;

1
nM(t) = 1

n

Pn
i=1 w(ti)Kh(t� ti) = p(t) + 1

2h
2�2(K)p00(t) + o

�
h2
�
+O

�
1
nh

�
:

11



Therefore, denoting C = �2(K)=2 and, for the sake of simple presentation, omitting

the dependence on t, we have

E (ĝ1(t)) =
pg+Ch2(pg00+2p0g0+p00g)+o(h2)+O(1=nh)

p+Ch2p00+o(h2)+O(1=nh)
=

=
pg+O(1=nh)

p+Ch2p00+o(h2)+O(1=nh)
+

Ch2(pg00+2p0g0+p00g)+o(h2)
p+O(h2)

=

= g �
Ch2p00g+o(h2)

p+O(h2)
+

Ch2(pg00+2p0g0+p00g)+o(h2)
p+O(h2)

+O
�

1
nh

�
=

= g + Ch2R
p

+ o
�
h2
�
+ O

�
1
nh

�
;

where R = pg00 + 2p0g0, and the �rst part is proved.

Using Lemma 1 with �=2, we have

1
n2
V (N(t)) = 1

n

h
1
n

Pn
i=1w

2(ti)�
2(ti)K

2
h(t� ti)

i
=

= 1
n

h
1
h

R 1
�1 f(t � hx)�

2(t � hx)w2(t � hx)K2(x)dx+O
�

1
nh2

�i
=

= 1
nh

hR 1
�1(f(t) + o (1))(�2(t) + o (1))(w2(t) + o (1))K2(x)dx

i
+O

�
1

nh2

�
=

= 1
nh

�
V (K)f(t)�2(t)w2(t) + o (1)

�
:

Using again Lemma 1

1
n2
M2(t) =

h
1
n

Pn
i=1w(ti)Kh(t� ti)

i2
=

=
hR 1

�1K(x)f(t� hx)w(t� hx)dx+ O
�

1
nh

�i2
= f2(t)w2(t) + o (1) :

Since V (ĝ1(t)) = V (N(t))=M2(t), the second part follows. 2

Lemma 3 If g 2 C1[0; 1]; r is a bounded function on [0; 1], and si is an interpolating

sequence of ti, i.e. s0 = 0; ti � si � ti+1; sn = 1, then

Z 1

0
r(u)g(u)du =

nX
i=1

g(ti)

Z si

si�1

r(u)du+ O

�
1

n

�
:

Proof. Observe that

R 1
0 r(u)g(u)du=

Pn
i=1

R si
si�1

r(u)g(u)du=

=
Pn

i=1

R si
si�1

r(u) [g(ti) + (u� ti)g
0(�i(u))]du

=
Pn

i=1 g(ti)
R si
si�1

r(u) +
Pn

i=1

R si
si�1

r(u)g0(�i(u))O
�
1
n

�
du;

where �i(u) are intermediate values between ti and u. Therefore

j
R 1
0 r(u)g(u)du�

Pn
i=1 g(ti)

R si
si�1

r(u)duj � max(r)max(g0)O
�
1
n

�
= O

�
1
n

�
: 2

Proof of Proposition 2.

By Lemma 3 we have

D(t)E(ĝ2(t)) =
Pn

i=n g(ti)
R si
si�1

w(u)Kh(t� u)du =

=
R 1
0 w(u)g(u)Kh(t� u)du+O

�
1
n

�
=
R 1
�1 w(t� hx)g(t� hx)K(x)dx+ O

�
1
n

�
:

12



Hence D(t)E(ĝ2(t)� g(t)) =

=
R 1
�1 w(t� hx)K(x)[g(t� hx)� g(t)]dx+O

�
1
n

�
:

Taylor expansions of w(t� hx) and g(t� hx) give straightforwardly

D(t)E(ĝ2(t)� g(t)) = h2

2 �2(K) (w(t)g00(t) + 2g0(t)w0(t)) + o
�
h2
�
+O

�
1
n

�
:

Since
D(t) =

R 1
�1w(t� hx)K(x)dx = w(t) + O

�
h2
�
;

the �rst part follows.
The proof for the second part is given, for the sake of simplicity, when �2(t) is

constant; the needed changes under heteroscedasticity are simples and analogous to

those ones used in the second part of the proof of Proposition 1.

Recalling the de�nition of It and using

si � si�1 =
1

nf(�i)
+ O

�
1

n2

�
; �i 2 [ti�1; ti+1]

(see, for instance, M�uller, 1988, p.28), we have

D2(t)V (ĝ2(t)) = �2
P

It

h
1
h

R si
si�1

w(u)K
�
t�u
h

�
du
i2

=

= �2

h2

P
It

h
1

nf(�i)
+ O

�
1
n2

�i
w(�i)K

�
t��i
h

� R si
si�1

w(u)K
�
t�u
h

�
du;

where �i 2 [si�1; si]. Observe thatR si
si�1

w2(u)K2
�
t�u
h

�
du =

=
R si
si�1

w(u)K
�
t�u
h

�
[w(�i) + O (u� �i)]

h
K
�
t��i
h

�
+O

�
u��i
h

�i
du =

= w(�i)K
�
t��i
h

� R si
si�1

w(u)K
�
t�u
h

�
du+ O

�
h
n

�
:

Since for i 2 It 1

nf(�i)
=

1

n(f(t) + O (h))
;

we obtain D2(t)V (ĝ2(t)) =

= �2

h2

P
It

�
1

n(f(t)+O(h))
+ O

�
1
n2

�� hR si
si�1

w2(u)K2
�
t�u
h

�
du+ o (h)

i
=

= �2

nh2(f(t)+O(h))

hR 1
0 w

2(u)K2
�
t�u
h

�
du+ O

�
h2
�i
+

+O
�

1
n2h2

� R 1
0 w

2(u)K2
�
t�u
h

�
du+O

�
1
n2

�
=

= �2

nh(f(t)+O(h))

R 1
�1 w

2(t� hx)K2(x)dx+ o
�

1
nh

�
=

= �2

nh(f(t)+O(h))

hR 1
�1w

2(t)K2(x)dx+ O
�
h2
�i
+ o

�
1
nh

�
=

= �2

nhf(t)

hR 1
�1 w

2(t)K2(x)dx
i
+ o

�
1
nh

�
=

�2w2(t)
nhf(t)

V (K) + o
�

1
nh

�
:

Noting that D2(t) = w2(t) + O
�
h2
�
, the result follows. 2

13



Proof of Proposition 4.

It is based on the proof of Theorem 4.1 in Ruppert and Wand (1994).

We have

E(ĝ3(t; p)) = et1(X
t

tWtXt)
�1Xt

tWt(g(t1); : : : ; g(tn))
t;

where Xt = (C0(t); C1(t); : : : ; Cp(t)), Cr(t) = ((t1 � t)
r; : : : ; (tn � t)

r)t, r � 0, Wt =

diagfw(ti)Kh(ti � t); i = 1; : : : ; ng and et1 = (1; 0; : : : ; 0). The expansion of g(ti)

around t gives

bias(ĝ3(t; p)) = et1(X
t

tWtXt)
�1Xt

tWt(Rp+2(t) + R(t));

where

Rp+2(t) =
P2

j=1
g(p+j)(t)
(p+j)!

Cp+j(t);

and R(t) is a vector of remainder terms. We also can write

bias(ĝ3(t; p)) = et1S
�1
n

�P2
j=1

g(p+j)(t)
(p+j)!

1
nX

t

tWtCp+j(t)
�
+R�(t); (1)

where Sn = n�1(Xt

tWtXt). De�ning s
r
w(t) = n�1

Pn
i=1(ti�t)

rw(ti)Kh(t�ti), the Sn
matrix has (i; j)th entry equal to si+j�2w (t), and the (p+1) vector n�1Xt

tWtCp+j(t)

has jth element equal to sp+jw (t).

Lemma 1 provides

srw(t) =
R 1
0 f(u)(u� t)

rw(u)Kh(u� t)du+O
�

1
nh

�
=

=
R 1
�1(hx)

rf(t + hx)w(t+ hx)K(x)dx+ O
�

1
nh

�
=

= hrp(t)�r + hr+1p0(t)�r+1 + o
�
hr+1

�
= (2)

= hrp(t)�r + o (hr) ; (3)

where p(t) = f(t)w(t).

Let H = diagf1; h; : : : ; hpg. It follows from (3) that

Sn = H (p(t)Np + hp0(t)Qp)H + o (hH1H) ;

where Qp is the (p+ 1)� (p+ 1) matrix having (i; j)th entry equal to �i+j�1 and 1

is a (p+ 1)� (p+ 1) matrix with all the elements equal to 1. Therefore

et1Sn = 1
p(t)

�
et1N

�1
p � h

p0(t)
p(t)

et1N
�1
p QpN

�1
p

�
H�1 + o

�
h1H�1

�
: (4)

From (2), we have similarly

n�1Xt

tWtCp+1(t) = hp+1p(t)H(�p+1; �p+2; : : : ; �2p+1)
t+

+hp+2p0(t)H(�p+2; �p+3; : : : ; �2p+2)
t + o

�
hp+2

�
;

and

n�1Xt

tWtCp+2(t) = hp+2p0(t)H(�p+2; �p+3; : : : ; �2p+2)
t + o

�
hp+2

�
:
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Using these results and (4), we have that

bias(ĝ3(t; p)) =

�Pp+1
j=1

�
N�1
p

�
1j
�p+j+1

�
g(p+1)(t)
(p+1)!

hp+1+��Pp+1
j=1

�
N�1
p

�
1j
�p+j+2

�
g(p+2)(t)
(p+2)!

+�Pp+1
j=1

�
N�1
p

�
1j
�p+j+2 � et1N

�1
p QpN

�1
p (�p+1; �p+2; : : : ; �2p+1)

t

�
g(p+1)(t)
(p+1)!

p0(t)
p(t)

�
hp+2 + o

�
hp+2

�
:

The agreement of the kernel dependent constants with those given in the Proposi-

tion 4 is proved in Ruppert and Wand (1994), pp. 1365-1366.

For the variance, �rst note that

V (ĝ3(t; p)) = n�1et1S
�1
n VnS

�1
n e1; (5)

where Vn = n�1Xt

tWt�tWtXt, and �t = diagf�2i (t); i = 1; : : : ; ng.

Now, let

vrw(t) = n�1
Pn

i=1(ti � t)rw2(ti)K
2
h(ti � t)�2(ti);

so, the (i; j)th entry of matrix Vn is vi+j�2w (t).

Using Lemma 1 with � = 2, we obtain

vrw(t) =
R 1
0 f(u)(u� t)rw2(u)K2

h(u� t)�
2(u)du;

and, analogously to (3),

vrw(t) = hr�1f(t)w2(t)�2(t)�r + o
�
hr�1

�
;

where �r =
R
urK2(u)du. Consequently, we have

Vn = n�1f(t)w2(t)�2(t)HRpH + o
�
1
h
H1H

�
;

where Rp is analogous to Np but with �i+j�2 replaced by �i+j�2.

Using (3), we obtain

Sn = f(t)w(t)HNpH + o
�
1
h
H1H

�
:

Finally, we have from (5)

V (ĝ3(t; p)) =
�2(t)
nh et1N

�1
p RpN

�1
p e1 + o

�
1
nh

�
:

Ruppert and Wand (1994), p. 1366, prove that et1N
�1
p RpN

�1
p e1 =

R
K2

(p)(u)du,

giving the required result. 2
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