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Abstract. A common approach in decision analysis is to infer a preference model in form

of a value function from the holistic decision examples. This paper introduces an analytical

framework for joint estimation of preferences of a group of decision makers through uncovering

structural patterns that regulate general shapes of individual value functions. We investigated

the impact of incorporating information on such structural patterns governing the general shape

of value functions on the preference estimation process through an extensive simulation study and

analysis of real decision makers’ preferences. We found that accounting for structural patterns at

the group level vastly improves predictive performance of the constructed value functions at the

individual level. This finding is confirmed across a wide range of decision scenarios. Moreover,

improvement in the predictive performance is larger when considering the entire ranking of

alternatives rather than the top choice, but it is not affected by the level of heterogeneity among

the decision makers. We also found that improvement in the predictive performance in ranking

problems is independent of individual characteristics of decision makers, and is larger when

smaller amount of preference information is available, while for choice problems this improvement

is individual-specific and invariant to the amount of input preference information.

Keywords: value function, decision analysis, convex optimization, simulation, structural patterns

1 Introduction

Shape of value function is of great importance in different areas of research in decision analysis.

In multiple criteria decision making, such a shape decides upon the contribution of different

performances into comprehensive value of an alternative. In decision making under risk, it

captures risk attitude of a decision maker (Keeney and Raiffa, 1993). Specifically, convex or

concave curvature of a value function is usually interpreted as whether the decision maker

is risk seeking or risk averse, respectively, when expected utility is assumed (Fishburn and

Kochenberger, 1979), and it provides information on decision maker’s risk preference when

prospect theory is assumed (Tversky and Kahneman, 1992; Abdellaoui et al., 2007). Moreover,

S-shaped value function, proposed in the prospect theory, relates the decision maker’s risk

attitude to the type of outcomes (Kahneman and Tversky, 1979). In conjoint analysis, this shape
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describes consumers trade-off behavior (Green and Srinivasan, 1978, 1990) by revealing how they

would react to the changes in product’s performance levels, which, in turn, provides insights on

the sensitivity of a target market to the changes in features of a product or service (Ghaderi,

2017).

The debate on shape of value function has a long history in behavioral economics and decision

making (Kahneman and Tversky, 1979; Tversky and Wakker, 1995; Markowitz, 1952; Abdel-

laoui, 2000; Kilka and Weber, 2001; Pennings and Smidts, 2003). Based on the psychological

foundations (Kahneman and Tversky, 1979), empirical evidences (Fishburn and Kochenberger,

1979), and recent insights from neuroscience (Trepel et al., 2005), several functional shapes were

proposed to explain and predict consumers’ choices. For instance, neoclassical economists sug-

gested a concave shape for the value functions based on the law of diminishing marginal utility.

Alternatively, Kahneman and Tversky (1979) proposed a shape that is determined by diminish-

ing marginal sensitivity in the domains of both gains and losses. Furthermore, Markowitz (1952)

considered an S-shaped value function to incorporate both reference points and loss-aversion in

decision making. In addition, Friedman and Savage (1948) proposed a shape with two concave

regions at the two ends of the performance scale, with a convex region between them. On the

contrary, researchers in decision analysis emphasize that the decision maker’s value function may

hold any shape and no prior assumptions about its functional form should be made (Keeney

and Raiffa, 1993; Keeney, 1996). While recognizing the merits of parametric studies, Abdellaoui

(2000) argues that their findings might have been confounded by the particular parametric fam-

ilies chosen. Hence a disadvantage of such approach is that the estimations depend critically on

the assumed functional form (Bleichrodt and Pinto, 2000).

The selection of an appropriate shape of value function is not straightforward. According

to Keeney and Raiffa (1993), suitability of different techniques for assessment of value function

depends on the decision problem, its context, and the decision maker’s characteristics. In the

context of constructing value functions, based on a series of experimental analysis and empirical

research, Hershey et al. (1982) reported a significant impact of several contextual factors on the

shape of value functions. Gonzalez and Wu (1999) reported a striking amount of heterogeneity

in the value function’s degree of curvature across individual decision makers. A relationship
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between the curvature of the individual value function and individual differences in preferred

decision modes, i.e. intuitive versus deliberative, was found by Schunk and Betsch (2006) through

an analysis of preferences of 200 students. In addition, Pennings and Smidts (2003) made a

distinction between the local shape of a value function, such as local measures of curvature, and

global shape of a value function, defined as the general shape of a value function over the entire

outcome domain. Based on the analysis of preferences of 332 owner-managers, they reported

that the global shape of value function reflects the manager’s strategic decision structure, being

linked to the organizational behavior (i.e., the production system employed), and is more stable

than local shape that seems to drive tactical decision making (Pennings and Smidts, 2000).

Similarly, Pennings and Garcia (2009) suggest a relationship between the global shape of value

function and higher-order decisions. By analysis of preferences of portfolio managers, they

found that the global shape, rather than the curvature, of value functions is related to the asset

allocation strategies. Moreover, they suggest that the environment in which managers operate

may play a role in shaping the global shape of the decision makers value function.

In this paper we aim at developing an analytical framework for constructing value functions

of a group of decision makers with no prior assumptions on their shape, while acknowledging

the potential existence of structural forms that would govern the general shape of these func-

tions. The framework introduced in this paper searches for regularities in the general shape of

value functions by uncovering the structural interdependencies among different regions of value

functions over the performance scales or domains of outcomes. To this objective, in a unified

framework, individual value functions for all decision makers are examined within each region

of a performance scale and are contrasted over pairs of different regions. Comparisons over the

regions are exploited to capture structural patterns that regulate the general shape of value func-

tions. Then, these structural patterns, if any, are incorporated into the preference estimation

process. Using simulation analysis and data from real decision makers, we show that accounting

for structural patterns in estimation process of preferences considerably improves the predictive

accuracy of constructed value functions. The underlying analytical framework is formulated

in terms of convex optimization based on quadratic programming, which is computationally

efficient and applicable to problems of realistic size.
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2 Construction of Value Functions

Consider a set of decision makers D consisting of R decision makers {d1, d2, · · · , dr, · · · , dR}.

The universe of alternatives A consists of N alternatives {a1, a2, · · · , an, · · · , aN}. Each decision

maker dr provides a set of choice examples over a subset of alternatives Ar ⊆ A. In our frame-

work we allow heterogeneous choice sets with different choice set size across the decision makers,

and across the choice tasks for the same decision maker. We also admit indifference between

profiles. These properties add a substantial flexibility in the input information, and are argued

to provide several theoretical benefits in the context of choice experiment (Sándor and Wedel,

2005). In the simplest case, input information from decision makers are permitted at the minimal

level, that is a set of choice examples from choice sets consisting of two profiles, where indiffer-

ence between profiles is permitted. In other situations where the choice set consists of a larger

number of profiles, more preference relations can be derived from the decision maker’s choice

examples. Alternatives are evaluated based on a family of criteria G = {g1, g2, · · · , gm, · · · , gM}.

We use the notion of ”criteria” as a general concept, which can represent product attributes,

decision consequences, or different points of view in assessments of decision alternatives. Each

criterion gm ∈ G evaluates each alternative according to the criterion’s evaluation scale Xm,

i.e. gm : A → Xm. The evaluation scale Xm might be ratio, interval, or ordinal. Consequently,

X =
∏
mXm is the evaluation space, and x = (x1, x2, · · · , xm, · · · , xM ) denotes a profile in the

evaluation space.

The input preference information from a decision maker dr ∈ D is based on holistic pairwise

judgments, derived from weak preference relation %r onAr. For a pair of alternatives ai, aj ∈ Ar,

ai %r aj means that ai is at least as good as aj according to dr’s preferences. An indifference ∼r

is a symmetric part of %r, and a strict preference relation �r is its asymmetric part. Therefore,

each decision maker is characterized by a collection of pairwise comparisons, represented by a

mixed graph (Ar,∼r,�r) with the set of nodes Ar, the set of edges ∼r, and the set of arcs �r.

In special case where the indifference relation is empty, ∼r= ∅, the mixed graph will be reduced

to a directed acyclic graph (DAG).

In general, if the dr’s choice set in choice task t is defined by Atr ⊆ Ar, Atr 6= ∅, and her

choice involves Atcr ⊆ Atr, then the set of new edges derived from choice task t to be added to ∼r
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in the mixed graph (Ar,∼r,�r) is defined by all the 2-subsets of Atcr , and the new arcs derived

from choice task t to be added to �r in the same mixed graph are defined by elements of the

Cartesian product Atcr × Atr \ Atcr . For example, assume that A = {a1, a2, a3, a4, a5}, and that

decision maker dr considers Ar = {a1, a3, a4, a5}. Suppose that in choice task 1 she is facing the

choice set A1
r = {a1, a3, a4} and her choice involves A1c

r = {a1, a4}. From this choice example,

{a1, a4} (all 2-subsets of A1c
r ) will be added to the edges of the mixed graph (Ar,∼r,�r). In

addition, all elements of {a1, a4}×{a1, a3, a4}\{a1, a4} = {(a1, a3), (a4, a3)} will define the new

arcs in the same mixed graph. Similarly, if in the second choice task, dr chooses A2c
r = {a5} in

choice set A2
r = {a4, a5}, then the mixed graph (Ar,∼r,�r) will be enriched by adding the new

arc (a5, a4) to �r.

Preferences over the universe of alternatives are captured by a value function V : X → R.

The value function V is used to construct an antisymmetric and transitive relation %, which

subsequently induces a preorder or ranking over the universe of alternatives. In this paper, we

consider an additive form for the value function V , such that, for a profile x ∈ X, V (x) =∑
m vm(xm), where vm : Xm → R is the marginal value function corresponding to criterion

gm. Each marginal value function associates a numerical score with alternative’s performances,

hence representing their values from the perspective of a corresponding criterion. Marginal

value functions are assumed to be monotonic, i.e. each criterion is of either gain- or cost-

type and the corresponding marginal value function is increasing or decreasing, respectively.

For a comprehensive discussion on non-monotonicity in preferences, see (Ghaderi et al., 2017;

Ghaderi, 2017). Finally, we assume a piecewise linear form for the marginal value functions vm by

defining a set of breakpoints over the evaluation scales Xm. Note that additivity, monotonicity,

and piecewise-linearity are the only assumptions that we make on the form of value function,

without any further assumption on the structure of preferences or general shape of value function.

Without loss of generality, we assume that the greater gm(an), the better is an on gm. Also, to

simplify the notion, when considering any alternative an ∈ A, we shall write V (an) instead of

V (g1(an), · · · , gM (an)), and vm(an) instead of vm(gm(an)), even if V : X → R and vm : Xm → R.

The evaluation scaleXm is divided into αm ≥ 1 subinterval [x0m, x
1
m], [x1m, x

2
m], · · · , [xαm−1m , xαmm ]

by defining αm + 1 breakpoints x0m, x
1
m, · · · , xαmm on the evaluation scale Xm. Moreover, x0m and
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xαmm are, respectively, the minimal and maximal performances on the evaluation scale Xm. There

are various ways to define the breakpoints, for instance dividing the range of performances on

the evaluation scale into equal subintervals, or defining the breakpoints in such a way that each

subinterval included approximately equal number of observed performances. For a comprehen-

sive discussion on strategies for selection of breakpoints, see (Kadziński et al., 2017). In this

paper, the breakpoints are defined by the entire set of distinct performance values observed over

the set of alternatives; e.g. each observed performance value gm(an) is considered as a break-

point.

2.1 Independent Preference Estimation Process

In this section, we present a Linear Programming (LP) technique for constructing value function

for a single decision maker, dr, from her choice examples. For a decision maker dr with pairwise

comparisons (Ar,∼r,�r), a value function V r composed of a set of marginal value functions

vrm : Xm →
[
0, 1
]

is constructed, so that the preference information provided by the decision

maker is reproduced. For a decision maker dr, an unknown parameter vrjm is associated to each

breakpoint xjm, where vrjm = vrm(xjm)− vrm(xj−1m ), 1 ≤ j ≤ αm. Therefore, the marginal value for

dr at a breakpoint x`m is obtained as vrm(x`m) =
∑`

j=1 v
rj
m . Note that the unknown parameters

vrjm are defined as the difference between marginal values of two consecutive breakpoints, hence

linked to the slope of marginal value function. Such definition of unknown parameters has com-

putational, theoretical, and practical advantages. First, it reduces the size of the optimization

problem substantially by reducing number of constraints through converting the monotonicity

constraints to sign constraints on the parameters. Second, while it is hard to interpret absolute

level of marginal value function at a particular point, the change in marginal values is directly

associated to the customer’s source sensitivity and provides information on the trade-off analy-

sis in the customer’s assessments of alternatives. Third, identification of structural patterns in

our framework is based on such source sensitivities, hence definition of unknown parameter in

the current form fulfills the task more conveniently. For a dr, the mixed graph (Ar,∼r,�r) is
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translated into a set of linear constraints:

for ai, aj ∈ Ar :

V r(ai)− V r(aj) ≥ εr, if (ai, aj) ∈�r

V r(ai)− V r(aj) = 0, if {ai, aj} ∈∼r

 EArdr (1)

where εr is a positive parameter used to discriminate between comprehensive values of alter-

natives in �r. The set of all value functions Ur compatible with (Ar,∼r,�r) is defined by the

following set of constraints:

EArdr ,

vrm(x0m) = 0, m = 1, · · · ,M,∑M
m=1 v

r
m(xαmm ) = 1,

vrjm ≥ 0, j = 1, · · · , αm, m = 1, · · · ,M,


E(Ur) (2)

with the last three constraints defining the conditions on normalization and monotonicity of

value functions. In order to obtain the most discriminant value function in Ur representing the

preferences of dr ∈ D, the following LP problem has to be solved:

Maximize εr, subject to E(Ur). (3)

Let us denote by ε∗r the optimal value of εr by solving the above LP problem. There exists

at least one value function compatible with (Ar,∼r,�r), if E(Ur) is feasible and ε∗r > 0. Oth-

erwise, some comparisons of reference alternatives cannot be reproduced. The reason for such

an incompatibility could be in the assumptions made about the preference model (i.e., mono-

tonic and additive value function) or inconsistency between the decision maker’s judgments. In

decision aid practices where an interaction with the decision maker is admissible and desirable,

she would be asked to revise some comparisons in order to obtain a compatible value function,

or to pursue the analysis while accepting some level of incompatibility. In situations where

interaction with the decision maker is not possible, other techniques (e.g., identifying a minimal

set of comparisons to be dropped) might be pursued. For a detailed discussion on dealing with

incompatibility, see (Greco et al., 2008).
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3 Proposed Framework: Accounting for Structural

Patterns in Construction of Value Functions

The proposed framework aims at constructing value functions for a group of decision makers

with no prior assumption on their shapes, while accounting for the regularities observed in the

general shape of these functions captured with some structural rules governing their curvature

and global shape. The framework is based on identifying the interdependencies among different

regions of a value function by joint evaluation of individual value functions across a group of

decision makers.

3.1 Theoretical Framework

In the proposed framework, we base our analysis on the slope of value functions, i.e., sensitivity

to the decision output or source sensitivity, which controls curvature of a value function. For

each region of the performance scale on a given criterion and for each individual decision maker,

we compare deviation of the individual source sensitivity from the group’s mean. deviation of

dr’s source sensitivity from the group’s mean is defined as the individual’s relative sensitivity,

that can be positive or negative. Then we examine the interdependencies between different

regions of a value function in terms of relative sensitivities. Our objective is to identify the

patterns governing curvature and global shape of a value function over some performance sub-

regions or the entire domain of performance scale. To this aim, all regions of value function are

compared pairwise in terms of individual relative sensitivities. Comparing marginal values over

two adjacent subintervals captures concavity of the constructed value function at the shared

breakpoint of the subintervals, therefore, accounting for the curvature. However, by comparing

relative sensitivities across all possible pairs of subintervals, rather than merely the adjacent

ones, our approach accounts for the general shape of value functions.

Note that identification of the structural patterns is not based on a particular family of value

functions, neither similarities in utility levels (values), source sensitivities (slopes), curvatures, or

general shapes. Instead, regularities are explored at a higher level of abstraction by investigating

interdependencies among deviations of source sensitivities from the group’s mean over the entire
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region of evaluation scale across all the decision makers. From this perspective, this approach

is ”borrowing” information at the group-level to incorporate in the preference estimation at the

individual-level, while capturing heterogeneity in preferences at a maximal level.

To clarify this idea, let us consider an illustrative example with a group consisting of five

decision makers with three different general shapes in their value functions: concave, convex, and

linear (see Figure 1). By examining their value functions, a comparison between regions A and

C implies that the decision makers with a positive relative sensitivity (greater source sensitivity

relative to the group’s mean) over region A tend to demonstrate a negative relative sensitivity

(smaller source sensitivity relative to the group’s mean) over region C. This observation is

confirmed for the two decision makers with concave value functions. Moreover, the decision

makers with a negative relative sensitivity over region A tend to demonstrate a positive relative

sensitivity over region C, an observation confirmed by the two decision makers with convex value

functions. The two observations together reveal a negative association between regions A and C

in terms of relative sensitivities. Such information can be incorporated in the estimation process

regardless of curvature or general shape of value function for a decision maker. Furthermore,

the decision makers demonstrate roughly similar level of source sensitivity in region B. In the

proposed framework, this is captured by adjusting the source sensitivities with reference to the

group’s mean, depending on the variation level in the relative sensitivities across the entire

group.

In the above example, comparisons are made over three regions of the performance scale

for value functions of standard forms. However, similar arguments can be extended to value

functions with a more complex shape. The proposed framework can capture the structural

forms regardless of the shape of value function or level of heterogeneity in value functions’

shapes across the decision makers. This is due to comparing all αm × (αm − 1)/2 pairs of

regions over the performance scale of each criterion gm, seeking for consistent and systematic

interdependencies among these regions in terms of relative sensitivities. Therefore, effectiveness

of the proposed framework is not influenced by the level of complexities in functional form of

value functions.
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Figure 1: Interdependencies among the regions of value functions in the presence of

heterogeneous decision makers.

3.2 Analytical Framework: Joint Preference Estimation Process

The proposed analytical framework estimates preferences of all decision makers jointly and si-

multaneously by exploiting their preference structures and accounting for the structural patterns

in the preference models. Suppose that vrjm , j ∈ {1, · · · , αm}, is a gain in the marginal value

when improving the performance from xj−1m to xjm for decision maker dr ∈ D over the jth subin-

terval on evaluation scale Xm. Further, v·jm is the average of gains in the marginal values over the

jth subinterval of Xm for all decision makers in D. Define σjm as the empirical standard deviation

of vrjm − v·jm values. Term σjm represents the heterogeneity in relative sensitivities. Moreover,

define ρjkm as the empirical Pearson correlation coefficient between the relative sensitivities in

the jth and kth subintervals. Term ρjkm ∈ [−1, 1] denotes the level of association between relative

sensitivities over the jth and kth subintervals on Xm.

A large positive value of ρjkm implies that individual’s relative sensitivities tend to be in

the same direction over the jth and kth subintervals, while a negative ρjkm means the opposite.

In other words, a positive value of ρjkm implies that a decision maker with a greater (smaller),
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relative to the group, source sensitivity over the jth subinterval tends to demonstrate a greater

(smaller) source sensitivity over the kth subinterval too. Similarly, a negative value of ρjkm implies

that the decision maker’s attitudes to the performance changes over the jth and kth subintervals

are, relative to the group, opposite.

To operationalize this idea, the following two objectives are considered simultaneously:

i) ρjkm (vrjm − v·jm)(vrkm − v·km),

ii) (1− σjm
2∑αm

`=1 σ
`
m

2 )(vrjm − v·jm)2,

∀j, k ∈ {1, · · · , αm},m ∈ {1, · · · ,M}, r ∈ {1, · · · , R}.

(4)

The first term, to be maximized, accounts for the interdependencies between two subintervals

in terms of relative sensitivities. A positive (negative) correlation between two subintervals

implies the reinforcement of slope deviations form the group’s mean over the two subintervals in

the same (opposite) direction. The intensity of this reinforcement depends on the correlation’s

strength.

The other term, to be minimized, readjusts the marginal value of dr ∈ D over a subinterval

by accounting for variation in relative sensitivities across the group. The level of variation in a

given subinterval is standardized with respect to the total variation in relative sensitivities over

the entire performance scale. The higher the variation level, the weaker a ”push” to the group’s

mean.

The two terms, considered together, uncover the structural forms in value functions by

accounting for the interdependencies among pairs of subintervals and the variations within each

subinterval. Consequently, a value function for each decision maker is obtained by solving the

following convex optimization problem:

Maximize 1
η

1
κ∗1

∑
r εr + 1

κ∗2

(∑
m,j,k ρ

jk
m
∑

r(v
rj
m − 1

R

∑
r v

rj
m )(vrkm − 1

R

∑
r v

rk
m )

−
∑

m,j(1−
σjm

2∑αm
`=1 σ

`
m

2 )
∑

r(v
rj
m − 1

R

∑
r v

rj
m )2

)
s.t. E(Ur), EArdr ,

εr ≥ tr,∀r ∈ {1, · · · , R},

(5)

where 0 < tr ≤ ε∗r is a predefined small positive value, ensuring a minimal level of discrimination

between comprehensive values of pairs of alternatives belonging to the strict preference relation
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in the constructed value function for each decision maker (with ε∗r being the maximal value of

parameter εr according to the choice examples of dr ∈ D), and is set to 0.001 in all the subsequent

analysis in this paper. The exogenous parameter η determines an extent to which the uncovered

structural patterns at the group-level are incorporated in the preference estimation process at

the individual-level. Constructed value functions converge to those derived from independent

estimation of value functions when η approaches zero.

Moreover, parameters ρjkm and σjm indicate the interdependencies between the regions and

variation within regions, respectively, in terms of relative sensitivities. Their values are estimated

from the individually and independently inferred value functions for each decision maker. The

values of variables vrjm and εr are to be determined. Finally, the following two constants 1
κ∗1

and

1
κ∗2

are scale factors. Constant κ∗1 is equal to
∑

r ε
∗
r , whereas κ∗2 is computed by plugging in the

estimated vrjm values from the independent estimation of preferences into the second and third

terms of the objective function. In addition to the computational benefits, these scale factors

make the three terms in the objective function unit-less and comparable in magnitude, thus

making the interpretation of parameter η independent from the particular decision setting. Let

us emphasize that the proposed analytical framework can be applied to both qualitative and

quantitative criteria as it builds on the associations between the deviations in marginal values

rather than the original performances of alternatives.

3.3 Illustrative Example

Let us consider an example decision problem involving R = 4 decision makers and N = 4

alternatives evaluated in terms of M = 2 quantitative criteria. Note that in our framework

criteria can also be qualitative with an ordinal evaluation scale. Nevertheless, for simplicity in

description, we consider only quantitative criteria in this illustrative example. The performances

of alternatives over the two criteria are provided in Table 1. Assume that the decision makers

evaluate the alternatives according to their individual value functions which are presented in

Table 2, hence obtaining different rankings, as presented in the same table.

Suppose that each decision maker provides incomplete preference information in form of

pairwise comparisons presented in Figure 2. When analyzing preferences of each decision maker

13
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Table 1: Performances of alternatives on two criteria considered in the illustrative decision

problem.

g1 g2

a1 0.8 0.3

a2 0.0 1.0

a3 1.0 0.0

a4 0.3 0.8

Table 2: Value functions and respective rankings of alternatives for the four decision

makers.

Decision Maker Value function Ranking

d1 V 1(x1, x2) = 0.6x21 + 0.4x2 a3 � a1 � a2 � a4
d2 V 2(x1, x2) = 0.35x21 + 0.65(1− (1− x2)2) a4 � a2 � a1 � a3
d3 V 3(x1, x2) = 0.4x1 + 0.6(1− (1− x2)2) a4 � a1 � a2 � a3
d4 V 4(x1, x2) = 0.5(1− (1− x1)2) + 0.5x22 a4 � a1 � a2 ∼ a3

independently with the standard preference disaggregation approach in Section 2.1, we obtained

their individual value functions as presented in Figure 3.

a 
1   

a 
2   a 

3   

a 
4   

d 1   

a 
1   

a 
2   a 

3   

a 
4   

d 2   

a 
1   

a 2   a 3   

a 
4   

d 3   

 

a 
1   

a 
2   a 

3   

a 
4   

d 4   

Figure 2: Pairwise comparisons provided by the four decision makers.

In our method, we aim at discovering structural patterns in the general shape of value

functions by comparing all pairs of the subintervals in performance scale of each criterion in

terms of slope deviations from the group’s mean, and by joint consideration of the entire set of

decision makers. By focusing on g1 and comparing the marginal values of individual decision
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Figure 3: Constructed value functions with the standard preference disaggregation ap-

proach for the four decision makers.

makers with the group’s average (dashed line in Figure 3), a negative correlation between the

first and third subintervals is observed. That is, when for a value function the slope over the

first subinterval is greater (lesser) than the average one, the slope over the third subinterval

is lesser (greater) than the average slope. The marginal values over each subinterval for each

decision maker and the average values, obtained from the independent estimation of preferences,

are presented in Table 3.

Table 3: Changes in the marginal values over each subinterval of X1 and X2 for the four

decision makers.

Criterion g1 Criterion g2

Subinterval d1 d2 d3 d4 Average slope Subinterval d1 d2 d3 d4 Average slope

[0.0, 0.3] 0.0 0.5 1.0 0.5 0.5 [0.0, 0.3] 0.0 0.0 0.0 0.5 0.125

[0.3, 0.8] 0.0 0.0 0.0 0.0 0.0 [0.3, 0.8] 0.0 0.5 0.0 0.0 0.125

[0.8, 1.0] 1.0 0.0 0.0 0.0 0.25 [0.8, 1.0] 0.0 0.0 0.0 0.0 0.0

By comparing individual source sensitivities in each subinterval with the group’s average, we

can compute the variances of relative sensitivities in each subinterval and correlations between
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pairs of subintervals. For example, the correlation between the first and third subintervals of

X1 can be calculated as follows:

ρ131 =
covariance([0− 0.5, 0.5− 0.5, 1− 0.5, 0.5− 0.5], [1− 0.25, 0− 0.25, 0− 0.25, 0− 0.25])√

variance([0− 0.5, 0.5− 0.5, 1− 0.5, 0.5− 0.5]) · variance([1− 0.25, 0− 0.25, 0− 0.25, 0− 0.25])
=

=
1
3 [(−0.5) · .75 + 0.5 · (−0.25)]√

1
3 [(−0.5)2 + 0.52] · 13 [0.752 + (−0.25)2 + (−0.25)2 + (−0.25)2]

= −0.82.

The computed variances and correlations for all subintervals are presented in Table 4.

Table 4: Variances at each subinterval and correlations between different pairs of subin-

tervals for X1 and X2.

Criterion g1 Criterion g2

Subinterval [0.0, 0.3] [0.3, 0.8] [0.8, 1.0] Subinterval [0.0, 0.3] [0.3, 0.8] [0.8, 1.0]

[0.0, 0.3] 0.6 [0.0, 0.3] 0.5

[0.3, 0.8] 0.0 1.0 [0.3, 0.8] 0.33 0.5

[0.8, 1.0] -0.82 0.0 0.4 [0.8, 1.0] 0.0 0.0 1.0

These measures are incorporated in the σjm and ρjkm values in the convex optimization prob-

lem (5). Moreover, the scaling factors κ∗1 and κ∗2 are computed from the independent estimation

of preferences as 3 and 1.52, respectively. For the considered example, the optimization problem
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takes the following form:

Maximize 1
η ×

1
3(ε1 + ε2 + ε3 + ε4)

+ 1
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s.t. E(U), EArdr ,

εr ≥ 0.001,∀r ∈ {1, 2, 3, 4}.

(6)

Solving it for η = 1 leads to a simultaneous construction of value functions presented in

Figure 4 for all decision makers. These functions exhibit some noticeable differences with respect

to those obtained individually for each decision maker (see Figure 3). For example, slope of

marginal value function over the first subinterval on X1 is greater for d4. In fact, the correlation

between the first and third subintervals for X1 is −0.82. Initially, the slope over the third

subinterval for the value function of d4 was less than the average slope, so we could expect

a steeper slope compared to the group’s average over the first subinterval. Nonetheless, the

resulting slope over the first subinterval was equal to the mean.

The true comprehensive values of alternatives based on the assumed value functions as well

as the values derived from the independent and joint estimations of preferences are presented in

Table 5. The respective rankings are given in Table 6. Let us compare these rankings for each

decision maker.

For d1, the joint estimation could correctly separate a1 from a2, consistent with the true

ranking, while the independent estimation failed to do so. Nonetheless, neither of the estimation

procedures managed to separate a2 and a4. In fact, discriminating between these two alternatives

is expected to be difficult when considering a small difference between their true comprehensive

values (0.40 and 0.37). For d2, the rankings derived from the two estimation procedures are
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Figure 4: Value functions derived with a joint estimation of preferences by solving the

convex optimization problem.

Table 5: Ground truth, independently estimated, and jointly estimated comprehensive

values of alternatives.

Ground truth Independent estimation Joint estimation

d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4

a1 0.50 0.56 0.63 0.53 0.0 0.50 1.0 1.0 0.20 0.50 0.97 0.94

a2 0.40 0.65 0.60 0.50 0.0 0.50 0.0 0.50 0.0 0.50 0.11 0.47

a3 0.60 0.35 0.40 0.50 1.0 0.5 1.0 0.50 1.0 0.5 0.89 0.53

a4 0.37 0.66 0.70 0.58 0.0 1.0 1.0 1.0 0.0 1.0 0.96 1.0

Table 6: Ground truth, independently estimated and jointly estimated rankings.

Decision Maker Ground truth Independent estimation Joint estimation

d1 a3 � a1 � a2 � a4 a3 � a1 ∼ a2 ∼ a4 a3 � a1 � a2 ∼ a4
d2 a4 � a2 � a1 � a3 a4 � a2 ∼ a1 ∼ a3 a4 � a2 ∼ a1 ∼ a3
d3 a4 � a1 � a2 � a3 a1 ∼ a4 ∼ a3 � a2 a1 � a4 � a3 � a2
d4 a4 � a1 � a2 ∼ a3 a1 ∼ a4 � a2 ∼ a3 a4 � a1 � a3 � a2
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identical. For d3, in the joint estimation a4 and a3, as well as a1 and a3, are separated in

the same way as in the true ranking, while the independent estimation failed to reproduce

the preference relations for both these pairs. Finally, for d4, when compared with the true

preferences, the joint estimation correctly predicted the best choice and separated a4 from a1,

whereas the independent estimation failed to do so.

When analyzing the rankings for all decision makers, the sole relation which is predicted bet-

ter with the independent estimation is the indifference between a2 and a3 for d4. For the values

of Kendall’s τ quantifying the similarities between the rankings derived from the independent

and joint estimations with the true ranking, see Table 7. Specifically, the rankings for d1 and

d3 are considerably improved when accounting for the structural patterns in the joint estima-

tion of preferences. Note that these two are the decision makers with relatively less preference

information compared to the group.

Table 7: Kendall’s τ quantifying the similarities between the rankings obtained with the

independent and joint estimations and the true ranking for each decision maker.

τindependet τjoint

d1 0.0 0.67

d2 0.0 0.0

d3 -0.33 0.33

d4 0.67 0.67

4 Experimental Analysis Based on Simulation

In this section, we present a comprehensive experimental analysis based on a large number of

randomly generated decision problems covering a variety of settings. The simulation parameters

and their corresponding levels are presented in Table 8. In particular, we consider decision prob-

lems with different numbers of alternatives, criteria, decision makers, and pairwise comparisons

provided by each decision maker. To simulate the holistic decision makers’ preferences, two

dimensions are considered: criteria weights and general shape of marginal value functions. Pa-
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rameter λ defines the heterogeneity level among the decision makers in terms of criteria weights

in their preferences – weights are interpreted as the maximal shares of criteria in the comprehen-

sive value. In addition, the shapes of value functions are simulated as linear, concave or convex

with different levels of curvature, or random. Finally, parameter η determines the intensity of

incorporating structural patterns in the preference estimation procedure, i.e., a trade-off factor

in the optimization problem (5).

Table 8: Simulation parameters and their corresponding levels used in the experimental

analysis (R – number of decision makers, N – number of alternatives, M – number

of criteria, P – number of pairwise comparisons provided by each decision maker, λ

– heterogeneity level among decision makers, η – trade-off factor in the optimization

problem).

Parameter R N M P λ Shape of value function η

Levels
{5, 10,

15}

{6, 9,

12}

{3, 4,

5, 6}

{3, 5,

7}

{0.02, 0.1,

0.2, +∞}

{linear, random,

concave/convex}

{0.1, 0.4, 0.7,

1, 2, 4}

4.1 Simulation Design

The design of the simulation study consists of the following steps:

Step 1: Randomly generate N alternatives evaluated in terms of M criteria. The performances

are randomly sampled from a uniform distribution in the range [0, 1]. The alternatives are

verified to be distinct and incomparable in terms of a dominance relation.

Step 2: For each decision maker dr, randomly select P distinct pairs of alternatives to be

compared according to the decision maker’s simulated preferences. We ensured that the relation

for none of the pairs could be inferred from the transitivity of preferences or indifference relations.

In case such a pair was detected, it was replaced by another randomly selected one.

Step 3: Preferences and rankings of alternatives for the decision makers are estimated inde-

pendently and individually using the independent preference estimation approach, as well as by

accounting for the structural patterns based on the proposed framework for the joint estimation
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of preferences. The two estimated rankings are compared against the decision maker’s “true”

ranking that is derived from the decision maker’s simulated preference model. The results of this

comparison refer to correctly predicting the top choice (best alternative) for the decision maker,

indicated by α (equal to 1 if the top choice is predicted correctly) and Kendall’s τ , accounting

for the agreement level between all pairwise preference relations in the ranking. The reported

values of α and τ are averaged over all decision makers.

To increase reliability and provide statistically invariant results, each decision setting is

repeated 100 times, i.e., for each configuration, 100 different decision problems involving R

decision makers are generated. In each replication, two values of Kendall’s τ for each decision

maker are computed, one for the rankings obtained with independent preference estimation

(τind), and the other for joint estimation of preferences (τjoint). These values are averaged over

the 100 replications and R decision makers. Analogously, we derive the proportion of decision

scenarios for which the top choice is correctly predicted by either independent (αind) or joint

(αjoint) estimation of preferences. Moreover, for each configuration, the differences between two

measures are computed as δτ = τjoint− τind and δα = αjoint−αind. A positive value of δτ (δα)

for a given configuration indicates an improvement gained in predicting a full ranking (a top

choice) by employing the joint rather than the independent preference estimation approach.

4.2 Simulating Preference Models

The preference models are simulated along the following two dimensions: criteria weights and

general shape of value functions.

Generating weights: For each decision maker, the criteria weights are generated considering

different levels of heterogeneity among the decision makers. In the extreme case of a fully

heterogeneous group of decision makers, these weights are generated from a uniform distribution

independently for each decision maker seperately according to the following algorithm:

Step 1: Generate M − 1 uniformly distributed random numbers θ1, θ2, · · · , θM−1 in the range

[0, 1].

Step 2: Sort these numbers in an ascending order θ̂1 ≤ θ̂2 ≤ · · · ≤ θ̂M−1. Also, define θ̂0 = 0

and θ̂M = 1.
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Step 3: Compute weight of each criterion gm ∈ G as wrm = θ̂m − θ̂m−1.

This extreme case in which decision makers form a fully heterogeneous group in terms of

criteria weights is rather non-realistic. The criteria weights, e.g. relative importance of prod-

uct attributes, might share a level of similarity across the decision makers and usually are not

completely independent due to several factors including interaction among the decision makers,

information diffusion, or context-dependent nature of some decision problems. In our simulation

design, the level of heterogeneity among decision makers is directly controlled through an ex-

ogenous parameter that determines the dispersion of R points in an M -dimensional hyperspace,

where each point corresponds to a weight vector for a decision maker, and M is the number of

criteria.

To control the heterogeneity, we first generate a random weight vector in the M -dimensional

hyperspace, which is treated as a reference point denoted by wref . Then, for each dr ∈ D, we

compute her criteria weights wr = (wr1, · · · , wrM ) in the following way:

wr = wref +
M∑
m=1

δm × (em −wref ), r = 1, · · · , R, (7)

where em is a unit vector with its mth component being equal to 1 and other components being 0,

δm is the mth component of a random vector ∆ that is drawn from a truncated multivariate

normal distribution on the interval [0, 1] with a mean 0 and a standard deviation λIM , i.e.,

∆ ∼ N[0,1](0, λIM ), where IM is an M -dimensional identity matrix.

We control the dispersion of R weight vectors, distributed around the reference point, by

specifying the value of λ. This is demonstrated in Figure 5 for a decision problem with M = 3

criteria. The shaded triangle represents a space of all feasible weight vectors [w1, w2, w3] such

that w1 + w2 + w3 = 1 and w1, w2, w3 ≥ 0. The generated weights are conical combinations,

with the coefficients δ1, δ2 and δ3 of the three vectors connecting reference weight vector wref

to the three vertices, hence always satisfying the normalization constraint w1 + w2 + w3 = 1.

In case condition 0 ≤ wm ≤ 1 is not satisfied for at least one criterion, the generation process

is repeated. Coefficients δ1, δ2, and δ3 are drawn from N[0,1](0, λI3). Value of λ decides upon

variation in magnitudes of conical combination coefficients and hence dispersion of weight vectors

around the reference point wref . This phenomenon is illustrated in Figure 6 for the case of two
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arbitrary levels of heterogeneity, which are applied to generate R = 15 weight vectors from the

same reference point.

w1

w2

w3

e1-wref e2-wref

e3-wref

Figure 5: Generating weights by controlling heterogeneity for a problem involving M = 3

criteria.

Generating value functions: To ensure that there exists at least one value function compati-

ble with the sampled P pairwise comparisons, alternatives are compared based on the simulated

linear marginal value functions. To ensure that our results are not driven by a specific shape of

value functions, we consider two additional general shapes for these functions: concave/convex

and random. However, once the class of marginal value function shape is specified, all marginal

value functions for all decision makers are simulated within the same class (hence being linear,

or concave/convex, or completely random).

In case of concave/convex shape, each marginal value function is simulated as follows:

v(x) =
1− e−cx

1− e−c
, (8)

where c 6= 0 is a Pratt-Arrow coefficient of absolute risk aversion and is drawn from a uniform
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Figure 6: Weight vectors (empty circles) generated from the randomly selected reference

weight vector (filled circle) for R = 15 decision makers and M = 3 criteria with λ = 0.05

(left) and λ = 0.2 (right) heterogeneity levels.

distribution over the interval [−10, 10]. This parameter determines curvature of the marginal

value function. In fact, c > 0 (c < 0) corresponds to a concave (convex) function. For illustrative

purpose, we present the marginal value functions for different levels of c in Figure 7.

Figure 7: Simulated concave/convex marginal value functions for different curvature levels

(a straight line in the middle corresponds to a risk neutral marginal value function v(x) =

x).

In turn, a fully random shape of a marginal value function with αm + 1 breakpoints is

simulated by generating αm − 1 random numbers in the interval [0, 1], sorting them in an as-
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cending order, θ̂1, θ̂2, · · · , θ̂αm−1, adding θ̂0 = 0 and θ̂αm = 1, and defining v(xj) = θ̂j , for

j = 0, 1, · · · , αm. The example random functions generated for R = 5 decision makers are

presented in Figure 8.

Figure 8: Simulated random marginal value functions for R = 5 decision makers.

After simulating criteria weights using either a completely heterogeneous approach or a spe-

cific level of λ, and marginal value functions with linear, concave/convex or random shapes

for each dr ∈ D, the P randomly selected pairs of alternatives are compared in terms of their

comprehensive values computed as follows: V r(an) =
∑M

m=1w
r
m · vrm(an). Overall, 1, 296, 000

decision problems in 7, 776 different settings were generated.

4.3 Results

The distributions of improvements in prediction accuracies with respect to the full ranking (δτ)

and top choice (δα) when employing a joint rather than an independent preference estimation

method are presented in Figures 9 and 10, respectively. The respective descriptive statistics

derived from the simulation study are provided in Table 9. They show a remarkable improvement

in the prediction accuracy when accounting for the structural patterns in the estimation process.

The improvement in α measure is by 0.022 (from 0.468 to 0.491), being statistically significant

(t = 92.7 and p − value < 0.001), whereas the Kendall’s τ measure is radically improved from

0.208 to 0.487 (t = 226.6 and p− value < 0.001).
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Table 9: Descriptive statistics of the performance measures for the independent and joint

estimations of preferences (count= 7776).

Min Max Mean S.E. mean 95% Conf. Interval

τind −0.139 0.626 0.208 0.0023 0.203 0.213

τjoint 0.096 0.777 0.487 0.0015 0.484 0.490

αind 0.224 0.792 0.468 0.0015 0.465 0.471

αjoint 0.226 0.812 0.491 0.0015 0.488 0.494

δτ 0.049 0.589 0.279 0.0012 0.277 0.282

δα −0.117 0.126 0.022 0.0002 0.022 0.023

Figure 9: Distribution of gain in Kendall’s τ when employing a joint preference estimation

for different shapes of the simulated value functions and levels of heterogeneity in the

simulated weight vectors (a dashed line is used to mark a zero value on the horizontal

axis).

Figures 11 and 12 reveal that prediction accuracies in ranking and choice problems increase

with the number of decision makers, and these results remain unchanged for different complexity
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Figure 10: Distribution of gain in α measure when employing a joint preference estimation

method for different shapes of the simulated value functions and levels of heterogeneity in

the simulated weight vectors (a dashed line is used to mark a zero value on the horizontal

axis).

levels in the simulated value functions. When a larger number of decision makers are involved

in the decision making process, richer information on the structural patterns in value functions

become available, resulting in better prediction accuracies in joint preference estimation method.

On the contrary, the number of decision makers does not have any impact on the performance

of the independent preference estimation approach.

Figures 13 and 14 reveal similar results for different levels of heterogeneity in the simulated

weight vectors. The performance, in terms of prediction accuracy, of independent preference

estimation method is not affected by the group size (R), whereas for the joint preference esti-

mation approach the performance improves with a greater number of decision makers. Again,

this conclusion is not affected by the level of heterogeneity in the simulated weight vectors.

Figures 15 and 16 show that the improvement in the predictive accuracy when employing
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Figure 11: Average values of τjoint (solid line) and τind (dashed line) vs. the number of

decision makers (R) for three general shapes of the simulated value functions (the bars

indicate 95% confidence interval).

Figure 12: Average values of αjoint (solid line) and αind (dashed line) vs. the number of

decision makers (R) for three general shapes of the simulated value functions (the bars

indicate 95% confidence interval).
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Figure 13: Average values of τjoint (solid line) and τind (dashed line) versus number of

decision makers (R) for different levels of heterogeneity in simulated weight vectors (λ)

(bars indicate 95% confidence interval).

Figure 14: Average values of αjoint (solid line) and αind (dashed line) vs. the number of

decision makers (R) for different levels of heterogeneity in simulated weight vectors (λ)

(the bars indicate 95% confidence interval).

the joint preference estimation method (δτ and δα) increases with a greater number of decision

makers. Note that δτ is strictly increasing with R, whereas for most cases δα increases when

passing from low to medium number of decision makers, while not changing much from medium

to high number of decision makers. These findings are not affected by shape or heterogene-
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ity factors. This observation demonstrates applicability of the proposed framework to a wide

range of decision contexts irrespective of the composition of the group of decision makers and

complexity levels in their value systems.

Figure 15: Average values of τjoint − τind for different numbers of decision makers (blue –

low; yellow – medium; purple – high) for different levels of heterogeneity in the simulated

weight vectors (λ) and complexity levels in the simulated value functions (linear – left;

concave/convex – middle; random – right) (the bars indicate 95% confidence interval).

The above discussed results demonstrate that employing a joint preference estimation method

always improves predictive accuracy for the estimation of an entire ranking. The improvement

in predicting a top choice, although being overall considerable and statistically significant, is not

guaranteed for all scenarios as indicated, e.g., in Figure 10. In fact, for 9.8% of 7, 776 decision

settings (i.e., 765 cases) the α measure is deteriorated when applying a joint preference esti-

mation method. Out of this, 507 cases (i.e., 6.6%) involve a small number of decision makers.

Hence, we do not recommend the joint preference estimation approach for decision problems

focusing solely on the top choice when the group’s size is very small. Figure 17 shows that

particularly in decision settings with a small number of decision makers, there exists an optimal

level of parameter η that implies the highest improvement in the correct prediction of a top

choice. Thus, even for such a disadvantageous setting, the proposed method can slightly im-

prove the predictive accuracy in case the value of η is set properly (e.g., using a cross validation
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Figure 16: Average values of αjoint−αind for different numbers of decision makers (blue –

low; yellow – medium; purple – high) for different levels of heterogeneity in the simulated

weight vectors (λ) and complexity levels in the simulated value functions (linear – left;

concave/convex – middle; random – right) (the bars indicate 95% confidence interval).

technique).

Figure 17: Average values of αjoint− αind for different numbers of Decision Makers (solid

– low; long dash – medium; dashed – high) and shapes of the simulated value functions

(linear – left; convex/concave – middle; random – right) (the bars indicate 95% confidence

interval).
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Finally, we found that both measures of predictive validity (τ and α) for both joint and

independent estimation methods decreased with an increase in the numbers of alternatives and

criteria and a decrease in the number of supplied pairwise comparisons. Nevertheless, we ob-

served that compared to an independent estimation method, the decline in τjoint and αjoint is

less when increasing the number of alternatives (i.e., δτ and δα are increasing with the number

of alternatives). However, regarding the sensitivity of the two methods to the numbers of criteria

and pairwise comparisons, we observed the opposite trend in τ and α measures. We found that

τjoint (αjoint) was less (more) affected compared to τind (αind) with greater number of criteria

(i.e., δτ (δα) is increasing (decreasing) with the number of criteria). Conversely, αjoint increased

more rapidly than αind when more pairwise comparisons were available, while the pattern for τ

was inverse.

5 Analysis of Real Decision Makers’ Preferences

In this section, we analyze the preferences of real decision makers using the independent and

joint preference estimation methods, and compare the respective predictive accuracies. There

are two crucial differences between the analysis of preferences elicited from real decision makers

and the simulated preferences that are described in Section 4.2. First, data from real decision

makers is typically noisy. Second, it does not provide any explicit information on the level of

heterogeneity among the decision makers or complexity in their value systems.

We report the results of two studies based on the preferences from real decision makers. In

the first study, we investigate the predictive accuracies of the independent and joint preference

estimation methods while controlling the amount of preference information supplied by each

decision maker. In the other study, we allow for the heterogeneity in the number of provided

choice examples, as is typical for real-world problems, and compare the two methods across

decision makers, while accounting for the idiosyncratic factors. In both studies, the impact of

preference structure (i.e., choices of pairs of alternatives to be compared by each decision maker)

is controlled through replications in sampling of pairs and averaging the results. Moreover, in

the second study, we account for two sources of variations in predictive accuracy measures, the
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Ghaderi and Kadziński: Structural Patterns in Construction of Value Functions

idiosyncratic factors related to the individual decision maker, and relative amount of preference

information provided by each decision maker compared to other decision makers, by replicating

across both dimensions. To account for sources of variation in predictive accuracy measures, in

addition to sample design, we also employ hierarchical linear models (Luke, 2004; Hox et al.,

2017) for the analysis of data in both studies.

5.1 Data

Preference information was collected from 94 real decision makers who were asked to rank 10 real

phone contracts from the leading Polish mobile network operators. The packages were described

based on four criteria (see Table 10). The preference elicitation was conducted following an

active learning strategy selecting pairwise questions with the greatest potential information

gain (Ciomek et al., 2017). The subjects were students from different programs at Poznan

University of Technology. They answered the questions using a dedicated desktop application

during independent sessions that were conducted in different time periods within an interval of

one month. The preference elicitation was conducted until a ranking of phone contracts was

obtained for each individual decision makers. In what follows, we call each participant of the

experiment as a decision maker.

5.2 Study 1: the same amount of preference information pro-

vided by each decision maker

In the first study, we consider settings with the same number of pairwise comparisons provided

by each decision maker. Specifically, we randomly select P = 3, P = 5 or P = 7 pairs of phone

contracts compared in the same way as in the true ranking of N = 10 alternatives obtained for

each decision maker. These sampled comparisons are treated as an input for the independent

and joint preference estimation methods with different values of parameter η. For each decision

maker, the ranking obtained with each method is compared with the decision maker’s true

ranking in terms of Kendall’s τ and α measures. For each decision maker, we also derive values

of ε obtained with the independent and joint estimated methods, denoted by ε∗ind and ε∗joint,
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Table 10: Performances of 10 real phone contracts in terms of four criteria.

Fee per month Contract’s length Internet data Roaming calls in EU (min.)

Alternative g1 (cost) g2 (cost) g3 (gain) g4 (gain)

a1 30 20 1 0

a2 70 12 5 400

a3 50 12 5 120

a4 40 12 1 0

a5 130 24 20 400

a6 50 24 7 0

a7 60 20 5 400

a8 70 12 7 120

a9 60 24 10 0

a10 80 12 10 120

respectively. To ensure that these measures are not affected by the choice of phone contracts

involved in the input comparisons, the procedure is repeated 30 times with different pairs of

alternatives. In this way, the differences in Kendall’s τ and α among the decision makers reflect

different levels of difficulty in reproducing their preferences using an additive value function,

which, in turn, is implied by various levels of complexities in their value systems or heuristics

that they employ in their judgments to evaluate the alternatives.

For each decision maker and each method, we report the values of ε, Kendall’s τ and α

averaged over 30 replications. For illustrative purpose, we provide the results for a single decision

maker (d1) in Table 11 for the 18 different configurations involving 3 × 6 levels of P and η,

respectively. The complete table of results consists of measurements from 94 decision makers,

thus, 1692 measurements in overall.

Model Specification and Analysis: The predictive accuracies of the independent and joint

preference estimation methods are analyzed through graphical inspection and hierarchical linear

models to control the individual differences. Multiple observations from the same decision

maker cannot be regarded as independent from each other. Since the idiosyncratic factors

and individual characteristics of decision makers (e.g., complexity level in their value system or
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Table 11: Results of the experimental analysis in Study 1 (averaged over 30 replications

for each level of P ) for decision maker d1 for different levels of P and η.

Decision Maker P η εind τind αind εjoint τjoint αjoint δε δτ δα

d1 3 0.1 0.61 0.08 0.13 0.61 0.29 0.17 0.00 0.21 0.03

d1 3 0.4 0.61 0.08 0.13 0.60 0.33 0.17 0.00 0.25 0.03

d1 3 0.7 0.61 0.08 0.13 0.58 0.48 0.33 -0.03 0.40 0.20

d1 3 1 0.61 0.08 0.13 0.54 0.55 0.33 -0.06 0.47 0.20

d1 3 2 0.61 0.08 0.13 0.45 0.63 0.50 -0.15 0.55 0.37

d1 3 4 0.61 0.08 0.13 0.35 0.69 0.57 -0.26 0.60 0.43

d1 5 0.1 0.41 0.32 0.40 0.41 0.49 0.37 0.00 0.17 -0.03

d1 5 0.4 0.41 0.32 0.40 0.41 0.52 0.40 0.00 0.19 0.00

d1 5 0.7 0.41 0.32 0.40 0.40 0.57 0.37 -0.01 0.24 -0.03

d1 5 1 0.41 0.32 0.40 0.39 0.63 0.43 -0.02 0.31 0.03

d1 5 2 0.41 0.32 0.40 0.34 0.71 0.50 -0.07 0.39 0.10

d1 5 4 0.41 0.32 0.40 0.24 0.73 0.60 -0.17 0.41 0.20

d1 7 0.1 0.30 0.45 0.53 0.30 0.58 0.60 0.00 0.13 0.07

d1 7 0.4 0.30 0.45 0.53 0.29 0.60 0.63 0.00 0.15 0.10

d1 7 0.7 0.30 0.45 0.53 0.29 0.63 0.60 -0.01 0.19 0.07

d1 7 1 0.30 0.45 0.53 0.28 0.66 0.60 -0.02 0.21 0.07

d1 7 2 0.30 0.45 0.53 0.23 0.73 0.67 -0.07 0.28 0.13

d1 7 4 0.30 0.45 0.53 0.17 0.78 0.80 -0.13 0.33 0.27

employed decision heuristic) might have an influence on effectiveness of the preference estimation

methods, we employ hierarchical linear models to control for such factors.

In the employed multilevel modelling, the analysis is conducted at the following two levels:

the level of individuals, I; level 1, and the level of decision setting, defined by (P, η); level 2.

First, we examine Intraclass Correlation Coefficient (ICC) for all nine variables of interest (i.e.,

τ , α, and ε for the two methods, as well as δτ , δα, and δε). If the ICC measure or observations

from the graphical inspections indicate variation among the individuals, we employ a random
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intercept model with P as predictor in one model, and P and η as predictors in another model.

We cannot treat the impact of η as a random effect because number of observations from

each decision maker at each level of η is small (three) hence the estimated effect sizes will

not be reliable (Snijders, 2005). The models are compared and validated using the likelihood

ratio tests (changes in deviances) and based on the Schwarz’s Bayesian Information Criterion

(BIC) (Schwarz, 1978). For all validated models, we examined the residual plots and observed

no obvious deviation from homoscedasticity or normality. For each variable of interest, we test

the following two models in the same order of presentation:

My
1 : yij = β0j +

∑
t β

(t)
1 P (t) + rij , rij ∼ N(0, σ2r )

β0j = γ00 + u0j , u0j ∼ N(0, σ2u0)

My
2 : yij = β0j +

∑
t β

(t)
1 P (t) +

∑
q β

(q)
2 η(q) + rij , rij ∼ N(0, σ2r )

β0j = γ00 + u0j , u0j ∼ N(0, σ2u0)

y ∈ {τind, αind, εind, τjoint, αjoint, εjoint, δτ, δα, δε},

(9)

where yij is the observation for configuration i ∈ η × P for individual j. Variables P and η are

treated as categorical with the least values as baseline, and dichotomous variables P (t) and η(q)

are defined to represent their other values, where P (t) = 1 if P = t, and 0 otherwise; similarly

η(q) = 1 if η = q, and 0 otherwise. Note that the models My
2 are tested only for the observations

from the joint preference estimation method, as measurements from the independent preference

estimation method are not influenced by the parameter η.

Results: The descriptive statistics derived from the analysis are presented in Table 12. The

results show that the predictive validity measures for both ranking and choice problems are

improved by employing the joint preference estimation method. In addition, a gain in the

predictive validity is attained at the cost of model’s expressiveness, which is quantified with ε.

The results show that particularly in predicting a full ranking, the gain in the predictive

validity is remarkably large (δ̄τ = 0.299, t = 97.1, p− value < 0.001), and it is relatively greater

when smaller amount of preference information is available (F = 235.8, p − value < 0.001) as

shown in Figures 18 and 19. Note that the gain in predictive validity is non-decreasing with η,
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Table 12: Descriptive statistics for the analysis of real decision makers’ preferences using

the joint and independent preference estimation methods in Study 1 (count= 1692).

Measure Min Max Mean S.E. Mean 95% Conf. Interval

τind -0.243 0.507 0.193 0.0041 0.185 0.201

τjoint -0.025 0.828 0.491 0.0039 0.484 0.499

αind 0.000 0.967 0.328 0.0061 0.315 0.340

αjoint 0.033 0.967 0.384 0.0040 0.376 0.392

εind 0.205 0.728 0.429 0.0032 0.422 0.435

εjoint 0.108 0.728 0.377 0.0032 0.370 0.383

δτ 0.061 0.713 0.299 0.0031 0.293 0.305

δα -0.667 0.700 0.056 0.0044 0.048 0.065

δε -0.337 0.000 -0.052 0.0017 -0.055 -0.049

which is understandable in view of the simulation results from Section 4.2 when the number of

decision makers is large (R = 94). We also observed that τjoint obtained for η ≥ 1 and only

P = 3 pairwise comparisons given by each decision maker was greater than τind for the case with

P = 7 pairwise comparisons provided by each decision maker, i.e. τjoint(P = 3, η ≥ 1) ≥ 0.403

and τind(P = 7) = 0.359, as shown in Figure 20.

Graphical analysis and ICC values demonstrate that for τind, τjoint, αind, αjoint, and δα,

variations among the individuals are considerably large relative to the total variation. However,

small ICC values are observed for εind, εjoint, δε, and δτ (e.g., ICC = 0.03 for εind and ICC <

0.01 for others). This observation is particularly important when considering δτ . Small variation

of δτ across the individuals implies that even though accuracies in predicting a full ranking in

both preference estimation methods differ from one decision maker to another and from one

(η, P ) configuration to another, the improvement in predictive validity when accounting for

structural patterns does not vary across the individual decision makers. Such a finding supports

generalizability of the joint preference estimation method in ranking problems, beyond decision

makers’ individual characteristics. This result is consistent with the findings from the simulation

study, where the gain in the predictive validity was found to be independent from the level of

complexity in the simulated value functions or heterogeneity in the weight vectors.
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Figure 18: Average values of τjoint (solid line) and τind (dashed line) versus η for different

numbers of pairwise comparisons provided by each decision maker in Study 1 (the bars

indicate 95% Confidence Interval).

Figure 19: Average values of αjoint (solid line) and αind (dashed line) vs. the levels of

η for numbers of pairwise comparisons provided by each decision maker in Study 1 (the

bars indicate 95% Confidence Interval).

When comparing M
τjoint
1 and M

τjoint
2 , we observed that η has a significantly positive impact

on τjoint (χ2 = 2904, p− value < 0.001) with a logarithmic pattern (i.e., the marginal influence
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Figure 20: Comparison of τjoint (black) and τind (grey) for different levels of P and η in

study 1 (the red dashed line compares τjoint for η ≥ 1 and P = 3 with τind for P = 7).

is smaller when η grows). An in-depth analysis of τjoint in a random intercept model with P

and η as the categorical predictors (model M
τjoint
2 ) indicates a considerable individual variation

in the intercepts (ranging from 0.02 to 0.39 with mean equal to 0.25 and St.D – 0.08), which

reflects a high level of heterogeneity among the decision makers (St.D. of intercepts was observed

to be 0.075 in M τind
1 ). Furthermore, by allowing an individual variation for the slope coefficients

corresponding to levels of η, no improvement was observed in the model fit (in fact, BIC increased

from −5279 in model M
τjoint
2 to −5212 in a model by random intercepts and random slopes).

This implies that the impact of η on predictive accuracy in estimating an entire ranking is

independent from the individual characteristics of decision makers (see Figure 21 in Appendix A),

even though – as suggested by the results of simulation study – it might still depend on the

particular decision settings (e.g., the number of decision makers).

In contrast to δτ , our results show that variation in δα is considerably large across the

individuals (ICC = 0.43). However, δτ appeared to be significantly and negatively affected by
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P , while no significant differences in δα were observed among different levels of P (F = 1.03,

p − value = 0.36). This means that when more preference information becomes available, τind

grows faster than τjoint, but the impacts on αind and αjoint are similar (see Figures 18 and 19).

Accounting for these two observations, we test model M δα
2 and by excluding P . As a result,

BIC decreased from −2526 to −2534. Even though the impact of η on δα is positive at the

aggregate level, a graphical analysis reveals that this impact differs across the individuals in

both magnitude and direction (see Figure 22 in Appendix A). That is, the use of greater values

of η results in larger values of δα for most individuals, but for some others – this impact is

negative or appears to follow a trend of an inverted “U”. In support of this observation, BIC

decreased considerably by allowing random slopes inM δα
2 (from−2534 to−3360), demonstrating

a variation in the impact of η on δα among the individuals. However, the estimated effect sizes at

the individual level for this model are not reliable due to a small number (three) of observations

for each decision maker at each level of η (Snijders, 2005). Therefore, we cannot draw any

concrete conclusions from this model. This issue will be addressed in the other part of the study

in Section 5.3.

Results of the multilevel analysis are presented in Table 13. They demonstrate a remarkably

large improvement in predictive accuracy for ranking problem. The intercept for τjoint is con-

siderably larger than that of τind, with approximately the same level of uncertainty attributed

to superpopulation, i.e. the estimates of σu0 . Moreover, η demonstrates a significantly positive

impact on τjoint with a large effect size. Note that based on the estimated coefficients in the

multilevel models, the predicted value for τjoint with P = 3 and η = 1 is larger than that of τind

with P = 7 (0.253 + 0.146 versus 0.355), which confirms our earlier observation from graphical

analysis (see Figure 20).

When considering δα, the improvement is significant only when η is sufficiently large. This

is consistent with our finding from the simulation analysis that the improvement in predictive

accuracy for choice problem is increasing with η in case of a sufficiently large number of decision

makers being involved (see Figure 17). Despite the positive and significant impact of η on δα

at the group level, large variation in the intercepts at the individual level (σu0 = 0.149) as well

as relatively small effect sizes for levels of η (ranging from 0.005 for η = 0.4 to 0.061 for η = 4
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Table 13: Maximum likelihood estimates of parameters of multilevel models in Study 1,

and OLS estimates for δτ (tests of significance in multilevel models are performed by

Satterthwaite’s method).

τind τjoint δτ αind αjoint δα

Fixed-Effects

Intercept .004 .253∗∗∗ .249∗∗∗ .253∗∗∗ .280∗∗∗ .031

P (5) .211∗∗∗ .131∗∗∗ −.080∗∗∗ .076∗∗∗ .088∗∗∗

P (7) .355∗∗∗ .211∗∗∗ −.145∗∗∗ .149∗∗∗ .147∗∗∗

η(0.4) .020∗∗∗ .020∗∗∗ .005 .005

η(0.7) .091∗∗∗ .091∗∗∗ .015 .015

η(1) .146∗∗∗ .146∗∗∗ .026∗∗ .026∗∗

η(2) .231∗∗∗ .231∗∗∗ .045∗∗∗ .045∗∗∗

η(4) .259∗∗∗ .259∗∗∗ .061∗∗∗ .061∗∗∗

Random Effects

σr .037 .044 .073 0.106 .102

σu0
.075 .082 .234 0.111 .149

Model Fit

BIC −5878 −5279 −3542 −2425 −2534

Log − Likelihood 2958 2677 1789 1249 1297

Significance codes: < 0.001 – ∗∗∗, 0.001 – ∗∗ , 0.01 – ∗

For δτ , adjusted R2 = 0.816

in a logarithmic pattern) imply high level of uncertainty in the overall value of δα.

Finally, similar to τjoint, we observe that αjoint increases – with the same pace as αind –

when more preference information is available. However, this impact is smaller in magnitude

compared to the case of τjoint. In other words, after accounting for the individual differences,

more preference information has a larger positive impact on the predictive accuracy for ranking

problems (τind and τjoint measures) than for choice problems (αind and αjoint measures).
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5.3 Study 2: different amount of preference information pro-

vided by each decision maker

In this section, we use the same data on preferences of real decision makers to examine the

predictive accuracies of the two methods by allowing variation among the decision makers in

terms of the amount of provided input information. This is closer to a typical real world

situation where the amount of supplied preferences differs from one individual to another. We are

interested in verifying how contributions of each individual in the supplied preference information

(i.e., relative amount of preference information provided by the individual compared to the

group) affects the predictive accuracy of the constructed value function. Specifically, we aim at

answering how such an accuracy is affected if, relative to the group, there is less information

available about the decision maker’s preferences compared to other individuals; also how well

the joint preference estimation method performs in capturing heterogeneity in value functions

in such settings.

To simulate a scenario with unbalanced preference information among decision makers, we

first randomly assigned a number of pairwise comparisons pr ∈ {3, 5, 7} to be sampled from

the ranking of N = 10 phone contracts for each of R = 94 individual decision makers dr ∈ D.

Then, the individual value functions were constructed using the independent and joint prefer-

ence estimation methods, and the respective predictive accuracies were quantified in terms of

Kendall’s τ and α measures. To ensure that these measures were not affected by the choice of

phone contracts for pairwise comparisons, the results were averaged over 30 runs with different

randomly selected pr pairs for each decision maker. The analysis was repeated 100 times with

different values of pr assigned to the decision makers. Note than pr is fundamentally different

than parameter P used in Study 1, even though they both represent the numbers of provided

pairwise comparisons. The parameter pr demonstrates a relative amount of preference informa-

tion provided by a particular decision maker compared to the group, while P represents a total

amount of preference information available from the group that is balanced over individuals.

Model Specification and Analysis: In the joint estimation of preferences with heterogeneous

amount of preference information from the decision makers, one concern is that the constructed

value functions are biased towards the decision makers who have provided richer preference
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information. In such case, the constructed value functions for the decision makers with rela-

tively less amount of preference information, might be dominated by those with more preference

information, hence the heterogeneity in preferences would not be captured adequately in the

estimated preference models. To address this concern, we compare improvements in predictive

validity of constructed value functions when employing joint preference estimation method be-

tween groups of decision makers with different amount of supplied preference information. For

this purpose, in our analysis, we controlled two sources of variation in predictive accuracy mea-

sures: variation due to the individual differences between decision makers, and variation due to

the relative position of a decision maker compared to the group in terms of number of supplied

pairwise comparisons. A graphical inspection presented in Section B shows these two sources of

variation are considerably large for most measures.

The graphical analysis confirms a high variation by individual for all the predictive measures

but δτ . In fact, the analysis of variance demonstrates that variation by individual accounts only

for 6% of the total variation in δτ – whereas in case of P it is already 16%. This observation

supports our finding from the simulation study and from the analysis of preferences in Section 5.2

related to the gain in the predictive accuracy for ranking problems being independent from the

individual characteristics of decision makers.

Conversely, the improvement in the predictive accuracy measures for choice problems, i.e.

δα, demonstrates a high variation by individuals and a small variation by P . In other words,

such a gain appears to be independent from the decision maker’s relative position with respect

to the amount of supplied preference information. Note that with more pairwise comparisons

provided by the decision maker, the predictive accuracy measures τind, τjoint, αind, and αjoint

are greater. However, the magnitude of impact is comparable for both αind and αjoint, resulting

in a similar gain in the predictive accuracy for different decision makers, irrespective of whether

they provide more or less preference information compared to the group.

Further inspection reveals that the impact of parameter η on δτ and τjoint is similar across

both individuals and levels of P , as presented in Figures 33 and 34, respectively. Both measures

increase with η following a logarithmic trend for all individuals and with P (parallel curves for

different levels of P ). Taking into account the variation across individuals and across relative
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preference information groups, as well as an invariance in effect of η over the individuals and

relative preference information groups, the following multilevel models are specified to examine

the variation in δτ and τ :

δτip = β0p +
∑

q β
(q)
1 η(q) + rip, rip ∼ N(0, σ2r )

β0p = γ00 + v0p, v0p ∼ N(0, σ2v0)

τjointijp = β0jp +
∑

q β
(q)
1 η(q) + rijp, rijp ∼ N(0, σ2r )

β0jp = γ000 + u0j0 + v00p, u0j0 ∼ N(0, σ2u0), v00p ∼ N(0, σ2v0)

(10)

where δτip is the ith observation at level p of relative preference information, and τijp is the

ith observation for individual j at level p of relative preference information. Terms v0p and

v00p capture variation in δτ and τjoint, respectively, by relative supplied preference information,

whereas term u0j0 captures variation by individual in τjoint.

In contrast to the τ measures, the impact of η on δα and αjoint was observed to vary by

individuals, as shown in Figures 35 and 36. Furthermore, even though a variation in αjoint is

considerable between the groups defined by different levels of P – see Figure 32 – no strong

evidence indicating a variation in the impact of η on αjoint by levels of P was observed – the

curves plotting αjoint versus η in Figure 36 are approximately parallel for almost all individuals.

Moreover, variation in δα was observed to be negligible by P , as discussed before. Taking into

account these observations, the two following multilevel models are employed to investigate δα

and αjoint, respectively:

δαij = β0j +
∑

q β
(q)
1j η

(q) + rij , rij ∼ N(0, σ2r )

β0j = γ00 + u0j , u0j ∼ N(0, σ2u0)

β
(q)
1j = γ

(q)
10 + u1j , u1j ∼ N(0, σ2u1)

αjointijp = β0jp +
∑

q β
(q)
1j η

(q) + rijp, rijp ∼ N(0, σ2r )

β0jp = γ000 + u0j0 + v00p, u0j0 ∼ N(0, σ2u0), v00p ∼ N(0, σ2v0)

β
(q)
1j = γ

(q)
10 + u

(q)
1j , u

(q)
1j ∼ N(0, σ2

u
(q)
1

)

(11)

44
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Note that the random intercepts vary by groups distinguished by different levels of preference

information for δτ , by individuals for δα, by individuals and by groups defined by different

levels of P for τjoint and αjoint. Moreover, random effects of η vary by individuals for δα and

αjoint measures. To estimate the fixed and random coefficients, we used a maximum likelihood

estimation. Executions were performed using lme4 library in the R package (Bates et al., 2014).

Results: The descriptive statistics derived from the analysis are presented in Table 14. The

results show that, similarly to the scenarios with balanced preference information for different

decision makers, the predictive validity for both ranking and choice problems is improved when

employing the joint preference estimation method in heterogeneous preference information set-

ting. Compared to the scenario with the same amount of pairwise comparisons for all decision

makers, the predictive accuracy measures demonstrate wider range, but narrower confidence

intervals of the mean at 95% level of confidence. However, no considerable difference in the

mean values was observed.

Table 14: Descriptive statistics for the analysis of real decision makers’ preferences using

the joint and independent preference estimation methods with heterogenous amount of

preference information in Study 2 (count= 56400).

Measure Min Max Mean S.E. Mean 95% Conf. Interval

τind -0.271 0.550 0.194 0.0007 0.193 0.196

τjoint -0.119 0.861 0.489 0.0007 0.487 0.490

αind 0.000 1.000 0.327 0.0011 0.325 0.329

αjoint 0.000 1.000 0.380 0.0007 0.378 0.381

εind 0.180 0.764 0.427 0.0006 0.426 0.428

εjoint 0.086 0.764 0.375 0.0006 0.374 0.376

δτ 0.027 0.787 0.294 0.0005 0.293 0.295

δα -0.767 0.767 0.052 0.0008 0.051 0.054

δε -0.376 0.000 -0.052 0.0003 -0.053 -0.051

Results from the analysis of multilevel models in (10) and (11) are presented in Table 15.

By comparing the intercepts, while accounting for the variation by individuals and by relative
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Table 15: Maximum likelihood estimation of parameters of multilevel models in Study 2

(tests of significance are performed by Satterthwaite’s method).

τind τjoint δτ αind αjoint δα

Fixed-Effects

Intercept .193 .364∗∗ 0.171∗ .327∗∗∗ .356∗∗∗ .029∗∗∗

η(0.4) .020∗∗∗ .020∗∗∗ .005∗∗ .005∗∗∗

η(0.7) .088∗∗∗ .088∗∗∗ .016∗∗ .016∗∗∗

η(1) .145∗∗∗ .145∗∗∗ .023 .023∗∗∗

η(2) .230∗∗∗ .230∗∗∗ .040 .040∗∗∗

η(4) .261∗∗∗ .261∗∗∗ .058 .058∗∗∗

Random Effects

σr .043 .048 .057 .085 .089 .083

σu0 .072 .079 .229 .233 .047

σv0 .142 .092 .051 .061 .128

σ
u
(0.4)
1

.006 .006

σ
u
(0.7)
1

.049 .026

σ
u
(1)
1

.099 .054

σ
u
(2)
1

.194 .096

σ
u
(4)
1

.277 .139

Predicted v00p

P = 3 -0,184 -0,120 .064 -0,074 -0,072

P = 5 .022 .019 -0.003 .005 .006

P = 7 .162 .101 -0.061 .069 .066

Model Fit

BIC -194649 -180815 -162196 -116802 -111150 -119005

Log − Likelihood 97347 90457 81142 58423 55734 59656

Significance codes: < 0.001 – ∗∗∗, 0.001 – ∗∗ , 0.01 – ∗

preference information groups, these results show that the improvement in predictive accuracy

for ranking problem is remarkably large, and for choice problems it is significantly positive,

though much smaller in magnitude.

46
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The predicted values for the random coefficients related to the groups defined by the rela-

tive preference information, i.e. random parameter v00p, show that the predictive accuracy for

individuals with larger number of supplied pairwise comparisons, relative to the group, is higher

than for those with relatively smaller number of pairwise comparisons, for both independent

and joint preference estimation methods. Moreover, the effect sizes are roughly similar for the α

measures, and are not very different for the τ measures. However, τind appears to increase faster

with P than τjoint does. Therefore the gain in the predictive accuracy for ranking problems is

larger for the individuals with fewer preference information pieces (v003 = 0.064 for δτ). This

means that the individuals with poorer preference information benefit more from accounting for

the structural patterns in the global shape of value functions. The value function for an individ-

ual with fewer pairwise comparisons is subjected to a smaller number of constraints and entails

more degrees of freedom. Thus, incorporating information on the structural patterns yields a

greater improvement in the predictive accuracy of these constructed value function. For choice

problems, the differences in predicted values for the random parameter related to the groups dis-

tinguished by different amount of preference information are negligible between the independent

and joint preference estimation methods. The latter is consistent with our observation from the

graphical analysis. In fact, by allowing a variation in the intercepts by groups with different

amount of preference information, the BIC measure for δα did not decrease (it increased from

−119005 to −118999). Finally, after controlling the sources of variation by individuals and by

groups with different numbers of pairwise comparisons, it can be seen that η has a significantly

positive impact on the predictive validity measures, demonstrating a logarithmic pattern.

Overall, the results for both ranking and choice problems provide no evidence for supporting

the hypothesis that the decision makers who are under-represented in terms of the input pref-

erence information to the joint preference estimation method are affected negatively in terms of

the predictive validity of their constructed value functions.

Technical details: The simulations, sampling and preference estimations were implemented in

MATLAB R2017a package, and computations were performed on OS X v10.9.4 Mac PC with

2,93 GHz Intel core i7 processor and 16GB memory. The total execution time was 59.5, 4, and

42 hours for the Simulation Analysis, Study 1, and Study 2, respectively.
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6 Conclusions

Results from empirical research and experimental analysis in the literature attributes global

shape of a value function to the higher-order factors underlying the decision problem, such

as organizational behavior (Pennings and Smidts, 2003), decision environment (Pennings and

Garcia, 2009), and contextual factors (Hershey et al., 1982). In this paper, we introduced an

analytical framework for a joint estimation of preferences of a group of decision makers by

accounting for structural patterns in global shape of value functions.

The proposed framework, based on convex optimization, aims at constructing value functions

for a group of decision makers, without making any assumption on the shape of value function or

uniformity of general shapes across the decision makers, by capturing the structural patterns that

regulate a value function’s general shape, and by incorporating them in the preference estimation

process in a unified framework. The method compares pairwise the regions of a performance scale

in terms of slope deviations of value functions from the group’s mean. Since the comparisons are

made both across all pairs of regions in search of the systematic interdependencies, and for all

individual regions in search of uniformity in sensitivities, the framework captures general shapes

of value functions. Moreover, regularities in the local shape, i.e. curvature, is captured through

comparing the neighbor regions of value functions.

Let us summarize the main findings discussed in the paper:

• We found that – when dealing with ranking problems – accounting for the structural pat-

terns in the global shape of value function always improves the predictive validity, and

the improvement is independent from the individual characteristics of decision makers.

For choice problems, however, even if the improvement in the predictive accuracy at the

aggregate level is positive, the impact demonstrates large variation across the individuals.

Analysis of the preferences from real decision makers with unbalanced preference informa-

tion revealed that for 49% of individuals such an impact was increasing with η, for 26%

it followed an inverted U shape, and for the rest it was decreasing.
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• We confirmed that the improvement in the predictive validity for ranking problems was

particularly larger when smaller amount of preference information was available (confirmed

by both simulation analysis and Study 1), or for decision makers with relatively smaller

number of pairwise comparisons compared to the population (confirmed by Study 2).

This is intuitive, because in an extreme case where excessively large amount of preference

information is supplied by the decision makers, no further information – including that on

structural patterns – is needed to improve the predictive accuracy, and an independent

estimation method for construction of value functions should work well.

• We found that for choice problems, improvement in the predictive accuracy by accounting

for structural patterns is independent from the amount of preference information, and it

is larger when greater number of decision makers are involved.

These findings are confirmed by an extensive simulation analysis, as well as analysis of

preferences of real decision makers with different levels of available preference information and

various positions with respect to their contribution to an overall supplied preference information.
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Appendices

A Graphical representation of the experimental re-

sults for Study 1

Figures 21 and 22 represent how predictive accuracy measures in Study 1 vary with η across

individual decision makers.

Figure 21: Relation between τjoint and η for the R = 94 decision makers for different

levels of P (blue – 3; purple – 5; green – 7) in Study 1.
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Figure 22: Relation between δα and η for the R = 94 decision makers in Study 1.

B Graphical representation of the experimental re-

sults for Study 2

Figures 23 to 28 represent variations in predictive accuracy measures in Study 2 across the

individual decision makers; Figures 29, 30, and 31 represent such variations in the expressiveness

measures; Figure 32 represents variations in the predictive accuracy and expressiveness measures

by the groups defined in Study 2 according to the relative preference information; and Figures 33

to 36 represent how predictive accuracy measures in Study 2 vary with η across individual
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decision makers.

Individual Decision Maker 

Figure 23: Variation of δτ by individuals in Study 2.
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Individual Decision Maker 

Figure 24: Variation of δα by individuals in Study 2.

Individual Decision Maker 

Figure 25: Variation of τjoint by individuals in Study 2.
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Individual Decision Maker 

Figure 26: Variation of αjoint by individuals in Study 2.

Individual Decision Maker 

Figure 27: Variation of τind by individuals in Study 2.
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Individual Decision Maker 

Figure 28: Variation of αind by individuals in Study 2.

Individual Decision Maker 

Figure 29: Variation of εind by individuals in Study 2.
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Individual Decision Maker 

Figure 30: Variation of εjoint by individuals in Study 2.

Individual Decision Maker 

Figure 31: Variation of δε by individuals in Study 2.
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Number of Pairwise Comparisons Number of Pairwise Comparisons Number of Pairwise Comparisons 

Number of Pairwise Comparisons Number of Pairwise Comparisons Number of Pairwise Comparisons 

Number of Pairwise Comparisons Number of Pairwise Comparisons Number of Pairwise Comparisons 

Figure 32: Variation of τ (left), α (middle) and ε (right) measures in Study 2 obtained by

employing the independent estimation method (top), joint estimation method (middle),

and variation in differences of such measures obtained by the two methods (bottom) by

levels of P (3, 5, 7, from the left to the right side in each box, respectively).
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Figure 33: Relation between δτ and η for the R = 94 decision makers for different levels

of P (blue – 3; purple – 5; green – 7) in Study 2.

61
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Figure 34: Relation between τjoint and η for the R = 94 decision makers for different

levels of P (blue – 3; purple – 5; green – 7) in Study 2.
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Figure 35: Relation between δα and η for the R = 94 decision makers in Study 2.
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Figure 36: Relation between αjoint and η for the R = 94 decision makers for different

levels of P (blue – 3; purple – 5; green – 7) in Study 2.
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