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Abstract:  The isometric logratio transformation has been promoted by several authors as the 24 

theoretically correct way to contrast groups of parts in a compositional data set.  But this 25 

transformation has only attractive theoretical properties, the practical benefits of which are 26 

questionable.  A simple counter-example demonstrates the dangers of using the isometric 27 

logratio as a univariate response variable in practice.  The study is then extended to a real 28 

geochemical data set, where the practical value of isometric logratios is further investigated.  29 

When groups of parts are required in practical applications, preferably based on substantive 30 

knowledge, it is demonstrated that logratios of amalgamations serve as a simpler, more intuitive 31 

and more interpretable alternative to isometric logratios.  A reduced set of simple logratios of 32 

pairs of parts, possibly involving prescribed amalgamations, is adequate in accounting for the 33 

variance in a compositional data set, and highlights which parts are driving the data structure. 34 

 35 
Keywords:  amalgamation; compositional data; geometric mean; logratio transformation; 36 

logratio analysis; logratio distance; multivariate analysis; ratios; subcompositional coherence; 37 

univariate statistics. 38 

39 
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1   Introduction 40 

In the approach to compositional data analysis by Aitchison (1986)  based on a data set involving 41 

J compositional parts, various transformations have been proposed in the form of logarithms of 42 

ratios, or logratios.  The simplest examples are the log-transformed ratios of two parts of a 43 

composition, or pairwise logratios, which have been used since the earliest work of Aitchison.  44 

For a J-part composition, with a general set of values denoted by x1, x2, ..., xJ, there are ½ J ( J − 45 

1) unique logratios, a specific example of which is the set of  J−1 additive logratios (ALRs): 46 

 
J

j

x
x

Jj log),(ALR =  j =1,..., J − 1                                            (1) 47 

where each of the parts xi, except the last one, is ratioed with respect to the last one. Since the 48 

parts can be reordered so that any part is the last one, this gives a total of  J  possible sets of 49 

ALRs. 50 

The centered logratio (CLR)  is the logratio between a part and the geometric mean of all the 51 

parts.  The complete and only set of J CLRs is defined as: 52 
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=       j =1,..., J         (2) 53 

 The CLRs serve a very useful computational purpose, in that the set of J CLRs provides a 54 

computational shortcut to analyzing the complete set of pairwise logratios (see, for example, 55 

Aitchison and Greenacre 2002, Appendix A), but otherwise have no useful interpretation per se 56 

as representing the parts in univariate analysis.  57 

The isometric logratio (ILR), defined by Egozcue et al. (2003),  has been promoted by several 58 

authors as the correct way, from a theoretical viewpoint, to transform a compositional data set, to 59 

a set of J − 1 variables, called ILR "balances",  after which these ILRs are used in data analysis, 60 

modeling, and multivariate methods such as clustering and dimension reduction − see, for 61 
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example, Egozcue and Pawlowsky-Glahn (2006), Mateu-Figueras, Pawlowsky-Glahn and 62 

Egozcue (2011), van den Boogaart and Tolosona-Delgado (2013), Buccianti (2015), Hron et al. 63 

(2017), Morton et al. (2017), Washburne et al. (2017) and Martín-Fernández et al. (2018).   A 64 

single ILR contrasts two subsets of parts, denoted by J1 and J2,  by defining the logratio of their 65 

respective geometric means, with a scaling factor (Egozcue and Pawlowsky-Glahn 2005): 66 
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where |J1| and  |J2| denote the number of numerator parts and the denominator parts respectively, 68 

that is the cardinalities of the sets J1 and J2.  So-called ILR  "balances"  have the property that 69 

they are orthonormal, which means they have lengths equal to 1 and scalar products between 70 

distinct pairs equal to 0.   However, the number of possible sets of these "balances" skyrockets 71 

for higher-dimensional problems, equal to  (2J−2)!/(2J−1(J−1)!) (see Section 3.1.5) and their 72 

choice presents serious practical difficulties. 73 

A special case of a set of ILRs is a set of pivot logratios (PLRs), which are a succession of ILRs 74 

where the numerator in the ratio is always a single part and the denominator all those parts "to 75 

the right" in the ordered list of parts: 76 
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where  j =1,..., J − 1 and J2 is the set of parts J2 = {j+1, j+2, ..., J} (see, for example, Hron et al. 78 

2017).   Since any  set of  J − 1 PLRs depends on the order of the parts, there are again very 79 

many such sets of PLRs possible owing to the multitude of permutations of the parts: the number 80 

of different sets is equal to J ! / 2 since the last two parts can be in any order.    81 
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A PLR, with its single part in the numerator,  has the advantage of being able to be expressed 82 

and interpreted as an average of pairwise logratios. For example, the first PLR is, apart from the 83 

scalar multiplier, equal to  [log(x1/x2) + log(x1/x3)+···log(x1/xJ)]/( J − 1). Notice that these "first 84 

PLRs" (i.e., the J  PLRs that each have a different part in the numerator and all the J − 1 others in 85 

the denominator) are proportional to the set of CLRs, since the CLRs  just have an extra logratio, 86 

for example log(x1/x1) for the first CLR, which is equal to 0.  87 

Other ILRs with the same number of parts in the numerator and denominator can also be 88 

expressed as averages of pairwise logratios, but the expression is not unique; for example, 89 

log[(x1x2)½/(x3x4)½] = ½[log(x1/x3)+log(x2/x4)] = ½[log(x1/x4)+log(x2/x3)]. When ILRs have more 90 

than two and different numbers of parts in the numerator and denominator, no simple expression 91 

in terms of pairwise logratios is possible. 92 

Logratios of amalgamations of parts have not been widely used, although − paradoxically − 93 

parts, as defined in ILRs or PLRs, are often themselves equivalent to amalgamations.  Denoted 94 

here by SLR (standing for "summated logratio"), an amalgamation logratio (or "amalgamation 95 

balance") is more simply defined as: 96 
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
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Notice that a SLR is a logratio, without any scaling factor, just like any other pairwise logratio, 98 

and sets of SLRs do not pretend to have any mathematical properties such as orthonormality, nor 99 

do they need to. They are simple and easily understandable and interpretable transformations of 100 

the compositional data that have specific substantive meaning and value to the researcher.  In the 101 

approach taken here, the very many number of possible ways parts can be amalgamated is not an 102 

issue, since amalgamations and thus amalgamation balances will be defined on substantive 103 
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grounds by the specialist who has knowledge of the compositional data and the particular 104 

objective of the study.  Moreover, amalgamations are often performed in the simplex based on 105 

the understanding of the stoichiometric balances. 106 

In this investigation the following questions are considered: 107 

1. What is the interpretation of an ILR?  Having defined an ILR transformation on some 108 

compositional parts, is it clear what its values are measuring? 109 

2. What are the advantages of the ILR transformation? Are these advantages of practical 110 

worth? 111 

3. What are the disadvantages of the ILR transformation? Do these disadvantages have 112 

practical repercussions? 113 

4. Are ratios that involve amalgamations of parts a viable alternative to ILRs?  And what 114 

are the advantages and disadvantages of such amalgamation balances in practice? 115 

Two sets of data are used in order to answer these questions: first, a small artificially constructed 116 

data set, and second, a typical geochemical data set.  Section 2 describes these data sets as well 117 

as the methodology followed and software used. Section 3 gives the results for each of the data 118 

sets. Section 4 concludes with a discussion and overall conclusion.  Supplementary material is 119 

supplied, including data, additional tables and R code. 120 

  121 
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2   Material and methods 122 

2.1  Data set 1: a three-part artificial data set 123 

This artificial data set was provided by Martín-Fernández (2018) during an online debate of the 124 

Compositional Data Analysis (CoDa) Association about the use of ILRs*.  To give the example a 125 

context, it is supposed that a researcher is investigating the relationship between the monthly 126 

consumption of alcoholic spirits, beer and wine in 50 groups of consumers. The data are 127 

proportions and form a three-part composition and the researcher is studying the patterns of 128 

consumption, in particular whether the proportion of spirits consumed depends on the relative 129 

consumption of beer compared to wine.  The data are provided as supplementary online material. 130 

2.2  Data set 2: the Aar Massif data, a typical geochemical data set  131 

This 10-part data set consists of geochemical compositions of the major oxides in 87 samples of 132 

glacial sediment in the Aar Massif, Switzerland (Tolosana-Delgado and Eynatten 2010). The 133 

same data have been analysed by van den Boogaart and Tolosana-Delgado (2011) and Martín-134 

Fernández et al. (2018). The oxides are Al2O3, CaO, Fe2O3t, K2O, MgO, MnO, Na2O, P2O5, SiO2 135 

and TiO2.  These oxides have average percentages as low as 0.06 % (MnO) and as high as 70.81 136 

% (SiO2). The objective is to describe the patterns in the multivariate data set in a meaningful 137 

and  interpretable way. However, apart from understanding the structure of the parts there is 138 

interest in the following three groupings of oxides based on geochemical considerations: 139 

  Mafic: MgO, Fe2O3, MnO 140 

 Felsic: Na2O, SiO2, Al2O3, K2O  141 

 Carbonate: CaO, P2O5 142 

                                                 
* https://www.coda-association.org/en/coda-info/coda-letters/debate-1-2017june/ 
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Soils, sediments, igneous and metamorphic rocks are comprised of minerals. Minerals form 143 

under conditions governed by thermodynamics (temperature and pressure) and the bonds that the 144 

various elements form within a rigid framework and define the stoichiometry of the mineral. 145 

Each mineral has a different stoichiometric form. Combining the chemistry of minerals in 146 

varying abundances will yield bulk geochemical signatures that represent a linear combination of 147 

the stoichiometric framework of the minerals. 148 

 149 

2.3  Methods 150 

Apart from some standard summary statistics and statistical methods such as linear regression, 151 

the approach focuses on the analysis of logratios of parts or of amalgamated parts, compared to 152 

the use of isometric logratios.  Comparisons are made in terms of (i) measurement, substantive 153 

meaning and interpretation, (ii) logratio variance explained, (iii) identification of parts that 154 

account for the data structure, (iv) Procrustes correlation and (v) principal component analysis 155 

(PCA) of logratios. 156 

2.3.1 Measurement, substantive meaning and interpretation 157 

Here the scales of the particular logratios are investigated, namely what each logratio is actually 158 

measuring.  Their meaning and interpretation are judged relative to the objectives of the 159 

particular study, and it is investigated whether the logratios serve the purpose for which they are 160 

intended and whether they have a clear interpretation. 161 

2.3.2 Explained logratio variance 162 

The total logratio variance in a compositional data set quantifies the data content and is equal to 163 

the sum or the average of the variances of the CLRs, equivalently the sum or the average of all 164 

pairwise logratios (the average option is taken here, as in Greenacre (2018a, b), although it 165 

makes no difference to the results when percentages of variance explained are calculated).  166 
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Given any explanatory variables, the amount of the total logratio variance that is explained by 167 

these variables can be computed by regressing each of the J CLRs on these variables, obtaining 168 

the parts of variance explained in each case, summing these J explained parts and then 169 

expressing that sum relative to the total variance. This set of regressions is embodied in the 170 

method of redundancy analysis (Wollenberg 1994), which is used to obtain the percentage of 171 

explained variance in a simple matrix computation. 172 

The present application uses explanatory variables in the form of pairwise logratios, ILRs or 173 

SLRs, so that the objective is rather to quantify how much variance can be explained by a subset 174 

of the logratios themselves, and to compare with the corresponding results for ILRs. The rank of 175 

a J-part compositional data set is equal to J − 1 and a subset of J − 1 "independent" pairwise 176 

logratios explains 100 % of the total logratio variance − see, for example, Greenacre (2018b).   177 

2.3.3  Selecting logratios to identify parts that explain data structure 178 

To find a subset of logratios, Greenacre (2018b), inspired by Krzanowski (1987),  proposed a 179 

stepwise process where logratios are selected that explain a maximum part of the compositional 180 

data variability at each step.  Identifying such a subset implies identifying a subcompostion of 181 

parts that are the main drivers of the patterns in the data.  Amalgamations that are pre-defined by 182 

the practitioner and thus knowledge-driven groupings of the parts, are included as candidates for 183 

forming logratios. 184 

The stepwise procedure starts by first finding the logratio that explains the maximum variance, 185 

then the one that adds the most explained variance to the first, and so on, as described more fully 186 

by Greenacre (2018a,b).  The percentages of variance explained are computed to show how well 187 

chosen sets of logratios can serve as alternative variables to represent the compositional data set. 188 

2.3.4 Procrustes correlation 189 
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The samples can be displayed exactly in a (J − 1)-dimensional Euclidean space, where their 190 

interpoint distances match the Euclidean distances either between the ½ J ( J − 1) pairwise 191 

logratios or equivalently between the  J  CLRs, or between a set of ILR or PLR balances.  This 192 

logratio space of the samples is sometimes referred to as the "Aitchison geometry".  In order to 193 

see how closely this multivariate structure can be approximated by a smaller set of logratios or 194 

by logratios of amalgamations, the Procrustes correlation between the sample positions in the 195 

respective spaces is computed (Krzanowski 1987, Gower and Dijksterhuis 2004, Legendre and 196 

Legendre 2012, page 704) − see Greenacre (2018b, Appendix) for the mathematical definition. 197 

2.3.5 Principal component analysis of logratios and logratio analysis 198 

In order to visualize the structure of compositional data, logratio analysis (LRA) is used 199 

(Aitchison and Greenacre 2002, Greenacre 2010, 2018a,b) to reduce the dimensionality of the 200 

data, projecting them onto a subspace, usually of dimension two for ease of interpretation.  The 201 

subspace explains a maximum amount of logratio variance.  LRA is equivalent to the PCA of the 202 

full set of CLRs, where the resultant biplot shows the J parts with the interpretation focusing on 203 

the ½ J ( J − 1) links connecting pairs of parts.  These links represent the respective pairwise 204 

logratios, while the positions of the samples are such that their interpoint distances approximate 205 

the true logratio distances in the full ( J − 1)-dimensional space.  LRA is thus also equivalent to 206 

the PCA of the matrix of pairwise logratios. When a reduced subset of logratios is selected, 207 

possibly including logratios of amalgamations, their structure will be visualized and interpreted 208 

using PCA. 209 

2.4  Software 210 

Extensive use is made of the easyCODA package in R (R core team 2018), which accompanies 211 

the book by Greenacre (2018a).  Version 0.29 of easyCODA was used in the analyses presented 212 
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here. The package can be installed from CRAN but the latest version is always  available on R-213 

Forge using the command: 214 

   install.packages("easyCODA", repos="http://R-Forge.R-project.org") 215 

In particular, the functions LR() (for computing all pairwise logratios), ILR() (for computing a 216 

single ILR), CLR() (for computing the set of CLRs), PLR() (for computing a specified set of 217 

PLRs), LR.VAR() (for computing the total and individual logratio variances),  STEP() (for the 218 

stepwise selection of logratios) , PCA() (for computing the PCA of a set of logratios), and 219 

LRA() (for computing logratio analysis, i.e. the PCA of the CLRs), as well as several associated 220 

plotting functions.  The easyCODA package depends on the ca package (Nenadić and 221 

Greenacre 2007) and the vegan package (Oksanen et al 2015).  For example, the vegan 222 

function protest() is used to compute the Procrustes correlation between the exact logratio 223 

geometry and another one based on chosen logratios.  Ternary plots are drawn using function 224 

TernaryPlot()in the Ternary package (Smith 2017). 225 

A minor difference that should be mentioned in the ILR() and PLR() functions in the 226 

easyCODA package, compared to Eqns (3) and (4) of Section 1, is that part weights are used 227 

rather than counts.  Instead of the cardinality |J1|, for example, of subset J1, the combined 228 

weights of subset  J1 are used.  In this paper equal weighting is considered throughout, and the 229 

important weighting issue is avoided since it is not important to the present discussion.  Since all 230 

parts are considered equally weighted here, they each receive weight 1/J, and the computations 231 

of ILRs and PLRs in easyCODA differ by a simple constant scaling factor, being the original 232 

definitions (3) and (4) divided by the square root of J.  See Greenacre and Lewi (2009) for the 233 

justification of using unequal weights in compositional data analysis. 234 

  235 
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3     Results 236 

3.1  Artificial example as a counter-example to using ILRs  237 

3.1.1  A simple regression analysis according to the study's objective 238 

Since the researcher is principally interested in the proportion of spirits as a response variable, 239 

the researcher plots the amalgamation logratio of spirits/(beer+wine)  (i.e., spirits/(1-spirits) in 240 

this case, which is monotonically related to the proportion of spirits consumed) against the 241 

logratio of beer/wine (Figure 1a). The linear regression turns out to be highly significant (p < 242 

0.0001). The effect size in a log-log relationship is expressed in terms of percentage changes in 243 

both the independent and dependent variables and the slope of 0.189 in Fig. 1a translates to an 244 

estimated increase of 1.82 % in the spirits/(beer+wine) ratio for every 10 % increase in the 245 

beer/wine ratio. 246 

3.1.2  The ILR alternative 247 

As an alternative, the researcher uses isometric logratios for both variables, namely 248 

 )wine)(beerspiritslog(3/2 21// × versus  wine)beerlog(2/1 / , the latter logratio being the 249 

simple logratio used before along with the scaling constant that is inherent in the ILR definition.    250 

In this case the relationship, plotted in Fig. 1b, is no longer significant (p = 0.79) and presents the 251 

researcher with a dilemma, since different results are obtained depending on whether the 252 

amalgamation or isometric logratio is used as the response variable. 253 

  254 
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      (a)                                                                       (b) 255 

 256 

Figure 1 (a) Logratio of spirits relative to (beer+wine) plotted against the logratio of beer 257 

relative to wine. The regression shows a significant positive relationship (p<0.0001).   (b) 258 

Isometric logratio of spirits relative to beer and wine plotted against the isometric logratio 259 

of beer relative to wine. The regression shows no significant relationship (p=0.79). 260 

Notice that ILR(beer:wine) = log(beer/wine) / √2 , so the x-axes differ only by this 261 

scaling factor. 262 

3.1.3  The original data in a ternary plot 263 

In an attempt to understand which of the two analyses is reflecting the true situation, the data are 264 

visualized in a ternary plot (Fig. 2a). It is clear that, as the sample points are moving from left to 265 

right, for increasing beer/wine ratio, there is an increase in the proportion of spirits.  This visual 266 

display of the original compositional values corroborates the result of the first analysis. From 267 

Fig. 1a, over the range of the explanatory variable, the response has predicted a mean value 268 

going from −2.1 to −1.9, i.e. from 0.122 to 0.150 in the ratio spirits/ (beer+wine), which 269 

corresponds to a change in the proportion of spirits from 0.109 to 0.130.  Fig. 2b shows an 270 

enlargement of the points in the ternary plot, added to which is the fitted model in Fig. 1a back-271 
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transformed to ternary space as a curve.  The ascent of the curve is clear as the proportion of 272 

spirits rises with increasing beer to wine ratio.  273 

 274 

   275 

Figure 2.  (a) The ternary plot of the three-part compositional data of Table 1. (b) An 276 

enlargement of part of the scatterplot in (a), showing the regression line in Fig. 1a 277 

transformed back into ternary coordinates as a monotonically increasing curve.  278 

3.1.4  Fundamental difficulties with the interpretation of isometric logratios 279 

Why does the ILR conceal what is obvious in the ternary plot?  The reason is that the ILR does 280 

not truly contrast the proportion of spirits against that of the combination of beer and wine (or 281 

"non-spirits" in this case).  Its value depends as well on the relative values of beer and wine, 282 

which affect the geometric mean in the denominator of the ratio.  The present example has 283 

values of (beer+wine) on average 0.88.  Fig. 3 shows how much the geometric mean of beer and 284 

wine, i.e.  )winebeer × , can vary as a function of the ratio beer/wine, for a fixed value of 0.88 285 

of the sum beer+wine.   286 
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 287 

Figure 3. The changing value of the geometric mean according to the ratio of beer to 288 

wine, for a fixed value of the sum beer+wine = 0.88. The range of the beer/wine ratio is 289 

that found in the data set. 290 

 291 

Thus, for any fixed value of the amalgamation beer+wine, the value of the geometric mean in the 292 

denominator of the ILR  )winebeerspiritslog(3/2 ×/ changes depending on the ratio 293 

beer/wine.  This additional source of variation in the ILR value has effectively nullified  the 294 

relationship between spirits and the ratio beer/wine, a relationship that clearly exists and which is 295 

statistically significant.   296 

In the online debate referred to before, a data set is given that exhibits the reverse phenomenon, 297 

namely where there is no relationship between spirits and the beer/wine ratio, by construction of  298 

the data, and where the use of the ILR as a response variable actually creates a statistically 299 

significant relationship where none exists − see Greenacre (2018d). 300 

In summary so far, to understand the value of an ILR, it is necessary to understand the relative 301 

values of all the parts that constitute the geometric means in its definition.  It does not involve 302 

simple groupings of the parts, and should in no way be construed as a type of amalgamation of 303 

the parts.  Its interpretation is already complicated when just two parts are involved in a 304 
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geometric mean, as demonstrated in this simple example; when there are many parts, as in most 305 

real-life applications, an ILR is a variable with a very complex interpretation. Thinking of it 306 

simply as a ratio between two groupings of parts is erroneous and values defined by the ILR do 307 

not reflect values that have a clear meaning relative to the definition of the original parts. 308 

3.1.5  Selecting a set of ILR "balances" 309 

In this example, there are only three possible sets of ILR "balances",  each consisting of two 310 

contrasts, involving the following contrasts: {spirits vs. wine&beer, and wine vs. beer}, {wine 311 

vs. spirits&beer, and spirits vs. beer} and {beer vs. spirits&wine, and spirits vs. wine}, each of 312 

which can be represented as a dendrogram (Fig. 4).  Any one of these serves the purpose for 313 

which ILRs are intended, but it is the first one in Fig. 4a that was chosen to be used in Fig. 1, 314 

because of the nature of the researcher's objective. 315 

Notice that the dendrogram in Fig. 4a is drawn differently from the other two, because the 316 

contrast between spirits and wine&beer together is not as great as the contrast between wine and 317 

beer, whereas it is the opposite in Figs 4b and 4c, where wine has a greater contrast with 318 

spirits&beer, and similarly beer versus spirits&wine.   319 

 320 

  321 

Figure 4. The three sets of contrasts represented graphically. The first one (a) is the one 322 

used in the present study, contrasting spirits vs. wine&beer and then wine vs. beer.  323 

 324 
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Martín-Fernández et al. (2018) describe a recursive partitioning algorithm for choosing a set of  325 

"principal balances" where, starting from the full set of parts, an optimal split is found which 326 

engenders the greatest contrast.  This algorithm would favor Fig. 4b as the set of principal 327 

balances, because the contrast between wine and spirits&beer is the highest between two subsets 328 

of the three parts.  But the researcher would not be interested in such a split, since the objective 329 

is to compare spirits consumption with beer&wine consumption. An automatic choice is of no 330 

use in this case, where the choice should be decided by the practitioner. Furthermore, the 331 

enumeration of the possible sets of ILRs is trivial in this three-part problem, where there are only 332 

three possible dendrograms.  However, the number of possibilities becomes astronomical for 333 

higher-dimensional problems, since the number of possible dendrograms for a J-part 334 

compositional problem is equal to  (2J−2)!/(2J−1(J−1)!) (Murtagh 1984, Bóna 2006) − this is 335 

equal to 3 when J = 3, as above, but is equal to 34 459 425 when m = 10, as in the forthcoming 336 

geochemical example in Sect. 3.2, which with its 10 parts is a data set of quite modest 337 

dimensionality.  Martín-Fernández et al. (2018) admit that their exhaustive search algorithm is 338 

feasible computationally up to 15 parts, which is less than many geochemical data sets. 339 

3.2  Isometric and amalgamation logratios in geochemistry 340 

3.2.1 Influence of rare parts 341 

Suppose for sake of illustration that the ratio between the subset SiO2, Na2O and MnO relative to 342 

P2O5 was of interest, and the ILR computed:  OPMnO)ONa(SiOlog4/3 )( 52
1/3

22 /×× .  The 343 

oxide MnO happened to be the rarest of the parts, measured on average as 0.06 % and with a 344 

range across the samples from 0.02 % to 0.24 %.  Because rare parts often incur large relative 345 

errors, an alternative analysis of the data set excluding MnO was considered, using the 346 

corresponding nine-part subcomposition.  The ILR of interest was then 347 

 OPO)Na(SiOlog3/2 )( 52
1/2

22 /× .  Fig. 5a compares the ILR including MnO (x-axis) , with a 348 
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range of 0.57−1.12 with the ILR where MnO was dropped (y-axis), with a range of 1.04−1.70.  349 

This large overall difference in values, which is due to the mere inclusion or exclusion of a very 350 

rare part, presents a dilemma to the practitioner, but the dramatic change in the patterns of the 351 

values is even more perplexing. It seems that using one or the other might lead to different 352 

conclusions when related to other variables of interest. This is similar to the problem described 353 

in Sect. 3.1 in that the origin of this difference is the geometric mean in each numerator of the 354 

two respective calculations, compared in Fig 5b. The very low value of MnO pulls down the 355 

geometric mean from 0.171 (without MnO) to 0.024 (with MnO) on average, but by varying 356 

amounts depending on its value and the values of SiO2 and Na2O. On the other hand, the 357 

amalgamation logratios are hardly affected, because there are only very tiny differences in the 358 

amalgamations in the respective numerators (Fig. 5c). 359 

The same problem would be encountered in the CLRs − including or excluding a rare part such 360 

as MnO noticeably affects the values of the CLRs, so they are also not useful in univariate 361 

analysis.  362 

 (a)                                                 (b)                                                (c) 363 

 364 

Figure 5.  (a)  ILR of  SiO2, Na2O and MnO relative to P2O5  (y-axis)  versus ILR of  365 

SiO2 and  Na2O (i.e. without MnO) relative to P2O5  (x-axis) ; (b) Geometric means 366 

involved in the numerators of the two ILRs, respectively, in (a);  (c) amalgamation 367 
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logratio (SLR) of  SiO2, Na2O and MnO relative to P2O5  (y-axis)  versus SLR of  SiO2 368 

and  Na2O (i.e. without MnO) relative to P2O5  (x-axis)     369 

3.2.2  Logratios of amalgamations as alternative 370 

Rather than using ILRs, logratios of amalgamations (SLRs) can be used as variables that contrast 371 

parts or groups of parts with a simpler definition and interpretation. For example, the complete 372 

set of principal balances for the Aar Massif data set, as published by Martín-Fernandez et al. 373 

(2018) and reproduced in the supplementary material, was considered by Greenacre (2018b).   374 

Logratios using amalgamations instead of geometric means fulfilled the same role for all 375 

practical purposes (Greenacre 2018b, Appendix A.3, the relevant part of which is reproduced as 376 

supplementary material).  These amalgamation balances explained 99.97 %  of the variance in 377 

the data, only 0.03 % less than the theoretically expected 100% of the ILRs, which is one of their 378 

claimed benefits.   379 

Figure 6 shows the principal component analysis of the ILR balances and of the amalgamation 380 

balances. There is a strong similarity between the two results, with the Procrustes correlation 381 

between the two sample configurations equal to 0.97 in their respective full nine-dimensional 382 

spaces, and 0.96 in the two-dimensional spaces of Fig. 6.  The advantage of the amalgamation 383 

balances is that it is clear what is in each numerator and each denominator, simple sums of  parts, 384 

as opposed to geometric means which have been shown to depend on the relative values of the 385 

parts within each geometric mean. In other words, for the variables O1 to O9 in Fig. 6a it is 386 

difficult to pin down exactly what they are measuring, since they are subject to many sources of 387 

variation in the geometric means.  In Fig. 6b, by contrast, the corresponding amalgamation 388 

balances O1 to O9 involve groupings of parts that are simple and clearly comprehensible, just 389 

like pairwise logratios,  and with a more intuitive interpretation.  390 

 391 
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(a)                                                                         (b) 392 

 393 

Figure 6.  PCA of (a)  ILR balances; and (b) SLR balances using same partitioning of parts as 394 

for the ILRs.  The labels O1 to O9 of the logratios by Martín-Fernandez et al. (2018) are used 395 

− see supplementary material for their definitions.   396 

3.2.3  Ratio selection, including ratios of amalgamations 397 

The three amalgamations of Mafic, Felsic and Carbonate (see Section 2.1) were created by 398 

summing their compositional values. These amalgamations were allowed to form ratios with the 399 

oxides or with other amalgamations in the search for the set of logratios that maximized the 400 

explained variance of the compositional data set. The results of the stepwise search are given in 401 

Table 1, showing the ratios, their cumulative explained variance, and the Procrustes correlations 402 

of the sample configurations with the exact sample configuration. Fig. 7 shows a graph of the 403 

solution. 404 

The search was restricted to a set of nine ratios, which is the dimensionality of these 10-part 405 

compositional data.  The set of logratios involved the prescribed amalgamations of Felsic and 406 

Carbonate, and they even appeared together in a ratio. The explained variance was only 0.003% 407 

short of 100% (it was equal to 99.997%, rounded to 100.0 in Table 1), which shows that this set 408 
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can effectively replace the compositional data set, with a Procrustes correlation of their geometry 409 

compared to the exact logratio geometry of 0.993.  An even smaller set of ratios can be 410 

considered seeing that already with just four ratios more than 95% of the logratio variance is 411 

explained, with a Procrustes correlation of 0.976. 412 

             RATIO                  Cum % of   Procrustes  413 
                                            var.expl.    correlation 414 
   1.  MgO/Na2O           69.1    0.831 415 
   2.  K2O/P2O5           89.3    0.944 416 
   3.  SiO2/K2O           93.4    0.962 417 
   4.  TiO2/Na2O          96.6    0.976 418 
   5.  SiO2/Na2O          98.7    0.984 419 
   6.  Felsic/Carbonate   99.3    0.986 420 
   7.  MnO/Carbonate      99.8    0.989 421 
   8.  Al2O3/MgO          99.9    0.991 422 
   9.  TiO2/Fe2O3t       100.0    0.993   423 
  ___________________________________ 424 

Table 1: The ratios that maximize additional         Figure 7: Graph of the ratios in Table 1. The 425 

variance explained at each step, their cumu-           arrows point to the numerator of each ratio.              426 

lative explained variance and Procrustes                 The numbers refer to the ordering of the steps 427 

correlation with the exact logratio geometry.          in Table 1. The Mafic amalgamation does not  428 

                                                                                 enter into any ratio. 429 

To compare the original geometry of the compositional data set, using 45 pairwise logratios, 430 

with that of the reduced set of nine logratios, Fig. 8 shows the logratio analysis of the data set 431 

(i.e., the PCA of the centred logratios) and the PCA of the nine chosen logratios − the relative 432 

positions  of the samples are almost identical.  Notice also the similarity with the sample 433 

configurations in Fig. 6, apart from the inversion of the second axis. The difference here is that 434 

the variables defining the biplot arrows in Fig. 8b are well understood and clearly interpretable, 435 

whereas in Fig. 6a the loadings on the axes are difficult to interpret. 436 
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(a)                                                                      (b) 438 

 439 

Figure 8: (a) Logratio analysis (LRA) of the Aar massif data set; (b) PCA of the nine 440 

selected logratios. The contribution biplot scaling is used. 441 

Notice that in Fig. 8b any ratio can be inverted, in which case the biplot arrow will be reflected 442 

with respect to the origin. It might be preferred to show, for example the inverted logratio of 443 

Al2O3/MgO, i.e. MgO/Al2O3, aligned with MgO/Na2O, which would enhance the recognition of 444 

clay minerals in the Aar data. 445 

3.2.4  Knowledge-driven intervention in the stepwise process 446 

The completely automatic stepwise process, giving the results in Table 1, Fig. 7 and Fig. 8b, 447 

chooses the logratio that gives the highest additional explained logratio variance at each step.  In 448 

fact, there are several logratios competing for entry with very little difference in their explained 449 

variances.  This leaves the opportunity open for the geoscientist to intervene in the process and 450 

choose a logratio that is almost as good as the optimal one, but which is more meaningful in 451 

terms of describing the chemical processes. 452 

As an example, the amalgamation Mafic did not enter the stepwise process, as shown in Table 1 453 

and Fig. 7, but its components MgO, Fe2O3 and MnO are clearly aligned in Fig. 8a and opposing 454 

the Felsic parts Na2O, SiO2, Al2O3, K2O. From the positions of MgO and Na2O in Fig. 8a it is no 455 
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surprise that MgO/Na2O is the ratio of choice in the first step of the algorithm. This optimal 456 

logratio of a Mafic part with respect to a Felsic part has an optimal explained variance of 69.1%, 457 

but in fact there were many such ratios contrasting Mafic and Felsic parts competing to enter, 458 

including the respective amalgamations, as shown by the top 10 ratios for entering at the first 459 

step (Table 2). 460 

             RATIO                   Cum % of   Procrustes  461 
                                            var.expl.    correlation 462 
   1.  MgO/Na2O           69.1    0.831 463 
   2.  Mafic/Na2O         69.0    0.831 464 
   3.  MnO/Felsic         68.9    0.830 465 
   4.  Mafic/Felsic       68.8    0.829 466 
   5.  Mafic/Al2O3        68.6    0.829 467 
   6.  Fe2O3/Felsic       68.6    0.828 468 
   7.  Fe2O3/Na2O         68.6    0.828 469 
   8.  Fe2O3/Al2O3        68.1    0.825 470 
   9.  MgO/Felsic         67.8    0.824 471 
  10.  MgO/Al2O3          67.7    0.823  472 
  ___________________________________ 473 

Table 2: The top 10 ratios competing to enter in the first step of the logratio selection process, 474 

showing their explained variances in descending order and Procrustes correlations. 475 

 476 

The ratio Mafic/Felsic contrast is of interest because, based on the geochemistry of igneous and 477 

metamorphic rocks, it is one of a few ratios by which one can experiment with the possible 478 

mineralogical combinations that might exist.  Rather than the optimal pairwise ratio MgO/Na2O 479 

entering, it might be preferred that the logratio of Mafic/Felsic enters, which explains only 0.3% 480 

less than the optimal logratio, being the fourth in the list of Table 2.  After selecting this ratio as 481 

the first one, and then letting the stepwise process take its automatic course afterwards, a 482 

partially different selection of logratios is obtained, but still explaining 99.997% of the logratio 483 

variance, the same as before, and with a Procrustes correlation of 0.990, compared to 0.993 484 
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before.  The resulting PCA of the logratios is shown in Fig. 9, where the configuration of 485 

samples is practically identical to those in Fig. 8. 486 

 487 

Figure 9: PCA biplot of the 9 logratios selected after the Mafic/Felsic logratio is chosen 488 

at the first step 489 

 490 

3.2.5  Comparison of best single ratios of different types 491 

It is instructive to compare the best single ratios from different solutions, where "best" is 492 

measured in terms of highest percentage of logratio variance explained.  The highest, by 493 

construction, is that obtained by the first principal component of the CLRs, which can also be 494 

written as a logratio, involving powers of the parts. In descending order, the best ratios are: 495 

• the first principal component:      71.2 % 496 

• the first principal balance of Martín-Fernandez et al. (2018): 70.7 % 497 

• the first pairwise logratio of MgO/MnO in Table 1:   69.1 % 498 

• the CLR of Na2O:       68.6 % 499 

• the "first" PLR of Na2O versus the other oxides   68.6% 500 

Notice that the CLR and the PLR have the same explanatory power because they only differ by a 501 

scaling factor.   502 
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The single pairwise logratio of MgO/MnO, involving only two parts, compares very favorably 503 

with the others, all of which involve the complete set of 10 parts. Moreover, this ratio, found 504 

with minimal computational effort, explains only 1.6 percentage points less than the first 505 

principal balance, which involves an exhaustive and costly search algorithm to find the optimal 506 

ILR.  This good behavior of simple pairwise logratios has been found in different applications, 507 

for example Greenacre (2018a,b), Graeve and Greenacre (2018). 508 

4. Discussion  509 

Various articles on compositional data analysis have established a condition that using ILRs, or 510 

at least transformations to orthonormal coordinates, is mandatory for further statistical analysis. 511 

For example, Fačevicová et al. (2016) say that compositional vectors need to be expressed in 512 

orthonormal coordinates, thereby allowing further processing using standard statistical tools.  513 

Kynčlová, Hron and Filzmoser (2017) say that compositional data should be expressed with 514 

respect to orthonormal coordinates that "guarantee isometry between the Aitchison geometry and 515 

the real space".  Mateu-Figueras, Pawlowsky-Glahn and Egozcue (2011) insist on using 516 

coordinates with respect to an orthonormal basis based on ILRs but admit that "it is not obvious 517 

how to determine which basis is the most appropriate for any given problem". 518 

With this strict imposition in mind, several authors have substituted existing practice of using the 519 

values of compositional parts or amalgamations of parts in an analysis with the use of  single 520 

ILR equivalents, with unclear justification. For example, Buccianti (2015) revises a "classical 521 

diagram from a compositional data analysis perspective" in a study of water samples.  The 522 

"classical diagram" is the Gibbs diagram with logarithm of total dissolved solids (TDS, an 523 

amalgamation) on the vertical y-axis and, for example, the ratio (Na+Ca)/(Na+K+Ca) or 524 

Na/(Na+Ca), on a linear scale on the horizontal axis.  To revise this from a compositional data 525 

analysis perspective, Buccianti (2015) uses on the y-axis the logarithm of the "balance" of the 526 

eight dissolved solids versus the amalgamation of all the other components, i.e. the 527 
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log(geometric mean of the 8 TDS components/sum of all the other parts), and the "balance" 528 

log(Na/Ca) (which is a simple logratio) on the x-axis.  Both of these are questionably called ILR 529 

balances, especially the first one that has an amalgamation, and not a geometric mean, in the 530 

denominator.  The justification for  this "revision" is unclear, except that now the approach is 531 

stated as now being "coherent with the nature of compositional data, thus obtaining a simple tool 532 

to be used in a statistical sense, going beyond the descriptive approach"  (Buccianti 2015).  No 533 

attention is drawn to the fact that the value of the geometric mean of the 8 TDS components is 534 

minuscule compared to the other water components, and that the value of this "balance" is, for 535 

all practical purposes, almost exactly proportional to log(TDS) used in the "classical diagram". 536 

The sophistication of using the "balance" implies that there is some benefit over the "classical 537 

diagram", but it is difficult to see this benefit and adds an unnecessary complication in the plot's 538 

interpretation.  539 

Similarly, ILRs have entered the worlds of microbiology and "omics" (e.g. genomics, 540 

proteomics or metabolomics) as well, with unclear justification.  An example is Morton et al. 541 

(2017), where a sparse 88×116 data matrix of counts of 116 microbial species in 88 soil samples 542 

is related to several environmental variables.  One analysis consists of computing an ILR 543 

contrasting 86 species with the other 30, which is the logratio of the two respective geometric 544 

means. Plotting this ILR against the pH of the samples, a scatterplot is obtained with a clear 545 

negative correlation of −0.91. Using the same data, the much simpler logratio of the two 546 

respective amalgamations can be computed, which is the logratio of the sum of the first set of 86 547 

species values divided by the sum of the second set (in compositional proportional units, the 548 

latter sum is just 1 minus the first). An almost identical pattern is observed when plotted against 549 

pH and the correlation is −0.94 − see Greenacre (2018c). A practitioner might wonder why the 550 

properties of the ILR balance are given so much prominence, whereas it is clearly just the ratio 551 

between the totals of the two sets of species that seems to be operative. Added to this is the 552 
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difficulty that one would have in explaining what the ILR actually measures, since it depends on 553 

the relative values of all 86 species in the numerator and all 30 species in the denominator, 554 

making it difficult, if not impossible, to give it a clear interpretation.    This leaves the 555 

justification of using the ILR as a univariate statistic in considerable doubt.  556 

Everything said above applies to the pivot logratios, defined in (4), that have also entered the 557 

compositional data analysis literature (see, for example, Hron et al. 2017).  These are a special 558 

case of ILR balances with only one part in the numerator and the geometric mean of a set of 559 

parts in the denominator: first part vs. the rest, the second part vs. all the others except the first 560 

part, third part vs. all the others except the first and second parts, etc...).  Pivot balances depend 561 

on the ordering of the parts, so there are fewer sets of them compared to ILR balances: for J = 10 562 

there are J !/2 = 10!/2 = 1 814 400 possible sets of pivot balances.  The supposed advantage of a 563 

pivot balance is that it is proportional to the average of pairwise logratios of the numerator part 564 

with all the parts in the denominator (e.g., in the context of the simple example of Sect. 3.1, the 565 

pivot logratio of Spirits versus Beer and Wine is the average of the logratios log(Spirits/Beer) 566 

and log(Spirits/Wine).  This again presents an interpretability problem: what does the average of 567 

set of pairwise logratios measure, and how should a practitioner understand its meaning in the 568 

context of the particular compositional data set being investigated? 569 

There are mainly two professed benefits of ILRs: first, the definition of a new set of orthonormal 570 

coordinates for the data; and second, their role in grouping the parts. Both these benefits are 571 

debatable, and can impose unrealistic limitations in  practical applications. 572 

Concerning the geometry, in order to provide a new set of coordinates for a J-part compositional 573 

data set, a set of J−1 ILR balances needs to be defined (see Sect. 2.4).  These provide an 574 

isometric transformation of the compositional  data to a (J−1)-dimensional vector space defined 575 

by the ILR coordinates.  The logratio distances between the samples are identical to the 576 

Euclidean distances between the ILR coordinates, and this property is the main justification for 577 
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their definition.  The question that might be asked by the practitioner is: why is it necessary to 578 

reproduce the geometry of the samples exactly, using transformed variables that have a 579 

problematic interpretation?  Or, putting it another way, is there a way of reproducing the 580 

geometry of the samples with a good approximation, using new variables that do have a clear 581 

and geochemically  meaningful interpretation?  As shown in the present study, the answer to the 582 

first question is that it is not necessary to reproduce the geometry with mathematical exactitude, 583 

and to the second question, yes, there is an easier and more useful way. 584 

It is not necessary to satisfy the exactness of the isometric transformation to ILR coordinates 585 

because it is obvious that in practice the data themselves are not exact, but subject to all types of 586 

additional variability in the form of measurement error and random variation, so there is no 587 

reason to think that the exact geometry of the samples is the correct one. Hence, the quest to 588 

transform all the variability in the data set, including the random component, to another space in 589 

an exact manner seems to lack relevance.  For example, the principal component analysis (PCA) 590 

of the CLRs, called logratio analysis or LRA (Greenacre 2010, 2018) and used in Fig. 8a, is 591 

frequently used to separate non-random from random variation in a compositional data set, after 592 

which the non-random part on the major principal dimensions is interpreted, discarding the 593 

minor dimensions.  These lesser components may represent either random effects or under-594 

sampled processes (Grunsky and Kjarsgaard 2016).   So it seems perfectly acceptable that some 595 

non-informative variability in the compositional data set be removed initially by appropriate and 596 

meaningful transformations rather than using ILRs.  Selecting key logratios and possible ratios 597 

of amalgamations presents a more justifiable alternative for the practitioner. 598 

Concerning the second claimed benefit, the ILR balances are promoted as a meaningful grouping 599 

of the parts, for example that they are "easily interpreted in terms of grouped parts of a 600 

composition"  (Pawlowsky-Glahn, Egozcue and Tolosana-Delgado 2015, p. 38).  This statement 601 

is speculative −  Sect. 3.1 has already shown the simplest of examples to refute that they are 602 
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"easily interpreted" as single variables.  ILRs, although mathematically attractive, are 603 

complicated transformations of the data and it is not clear what their values are actually 604 

measuring.  Several authors believe that ILRs are validly comparing groups of parts, for example 605 

Washburne et al. (2017) say that "the balances in a rooted ILR transform ... can be intuited as the 606 

average difference between taxa in two groups".  Any claim or suggestion  that ILRs are 607 

contrasting groups of parts in the sense of amalgamating them (or averaging them, which is 608 

equivalent) should be viewed with the utmost skepticism.   609 

Amalgamations of parts are a more intuitive and interpretable alternative to geometric means.  610 

The specialist has knowledge about the possible models that the empirical relationships 611 

might reveal. Amalgamations fundamentally rely on this knowledge.  Alternatively, 612 

amalgamations can be applied if there are problems with the number of degrees of freedom 613 

and a preliminary examination of the data suggests that some amalgamations are useful.  614 

They can also partially solve the problem of zeros in compositional data, when parts with 615 

zeros are meaningfully combined with other parts. 616 

In the book by Pawlowsky-Glahn et al. (2015), amalgamations are ruled out, where they 617 

specifically state that "amalgamation is incompatible with the techniques presented in this 618 

book".  But then the same authors demonstrate the use of amalgamations in the form of a 619 

residual part: "note that using a fill-up or residual value is equivalent to using an 620 

amalgamated composition" and "if only some parts of the composition are available, a fill-up 621 

or residual value can be defined". 622 

A criticism repeatedly raised about using amalgamations is that they are not linear in the 623 

simplex (see, for example, Egozcue and Pawlowsky-Glahn 2006, p. 155).  The imposition of 624 

this mathematical condition restricts the practitioner from using alternatives that make 625 

perfect substantive sense in practical applications.  As demonstrated in this study, 626 
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amalgamations can be used profitably to represent geochemical processes and their 627 

performance in the form of logratios can be gauged objectively by the variance accounted for 628 

in a compositional data set. 629 

John Aitchison himself is quoted as saying that it is not that such structure (referring to ILRs and 630 

the orthonormal basis property) is unimportant, but that we must not let pure mathematical ideas 631 

drive us into making statistical modeling more complicated than it is necessary.  The drawback 632 

of the interpretability of ILRs has been expressed, for example, by van den Boogaart and 633 

Tolosana-Delgado (2013, page 45): "the strongest difficulty with the ilr-transformed values or 634 

any orthonormal coordinates [is that] each coordinate might involve many parts (potentially all), 635 

which makes it virtually impossible to interpret them in general... The generic ilr transformation 636 

is thus a perfect black box".  Aitchison also proposed the use of amalgamations, which he 637 

defined in Aitchison, (1986, p. 267), and the associated log-contrasts as a more intuitive and 638 

practical way of dealing with the problem of grouping of parts (Aitchison 2003).  These remarks 639 

are faithfully implemented in the present paper by demonstrating that amalgamations function 640 

well in compositional data analysis, supporting Aitchison's viewpoint. 641 

Amalgamations can be included in the logratio search process to find a small set of interpretable 642 

variables that effectively replace the complete set of logratios.  Certain amalgamations can even 643 

be forced into the selection, because of their important role in the context of the study − for 644 

example, in fatty acid studies the ratio of polyunsaturated to saturated fatty acids (PUFA/SFA) is 645 

a common ratio to include in any analysis, and these two groupings of subsets of fatty acids 646 

would never be defined by biochemists as geometric means.   Moreover, the practitioner can 647 

intervene in the stepwise process, as demonstrated in a study of fatty acid compositions by 648 

Graeve and Greenacre (2018) and in Sect. 3.2.4. It is often the case that a ratio which is not 649 

explaining the exact maximum variance, but slightly less, is a more meaningful and justifiable 650 
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ratio to select at a particular step, in which case this slightly sub-optimal ratio would be preferred 651 

by the specialist.   652 

An additional claimed benefit of the ILR transformation is that it reduces the J-part data set of 653 

rank to J − 1 to one of J − 1 variables that are linearly independent, and whose covariance matrix 654 

is easily inverted in matrix computations such as multiple regression analysis and computation of 655 

Mahalanobis distances.  But this is not an additional benefit, because the generalized inverse can 656 

be used directly on the singular covariance matrix of the J CLRs, for example, with identical 657 

results.   Moreover, any set of additive logratios (ALRs) has a nonsingular covariance matrix and 658 

induces the same Mahalanobis distances as those obtained using ILRs.   659 

5. Conclusion 660 

Our overall conclusion is that isometric logratios (logratios of geometric means) present 661 

significant barriers in the practice of compositional data analysis and can be substituted by 662 

simple logratios and logratios of amalgamations, which have a clearer and unambiguous 663 

interpretation.  The responses to the specific questions posed as objectives in Section 1 are as 664 

follows. 665 

1.  Interpretation of ILRs: Their interpretation is not clear, nor is it clear what they are 666 

measuring, since they depend on the relative values of the parts in the geometric means.  They 667 

should not be interpreted as the ratio of amalgamations of parts. 668 

2.  Advantages of ILRs: A full set of so-called ILR balances forms an orthonormal basis of the 669 

compositional data vectors. This is a notable mathematical property, but the practical 670 

consequences are not interesting because of the interpretability problems of these 671 

transformations, making the changing of basis of no real value in practice. The full set of ILR 672 

balances has a nonsingular covariance structure that makes it useful for methods that require 673 
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inversion of the covariance matrix, although, as stated above, a generalized inverse can be 674 

used in the case of CLRs. 675 

3.  Disadvantages of ILRs: Single ILRs have no inherent value as summary variables, nor as 676 

responses or explanatory variables in a regression analysis − examples can easily be found 677 

where their relationships with other variables are found to be misleading or counter-intuitive.. 678 

4.  Alternative use of amalgamations: Amalgamating parts is a straightforward and 679 

understandable way of combining parts in all applications of compositional data analysis, 680 

including geochemical applications.  Logratios of amalgamations are just like simple logratios 681 

and thus easy to interpret and can contribute, along with simple logratios of single parts, to 682 

forming a set of transformations that represents the quasi-totality of the variance in a 683 

compositional data set.  The criticism that they are nonlinear transformations of the parts is of 684 

no consequence to the practice of compositional data analysis.  Amalgamations do impose a 685 

model as determined by the researcher, which is a limitation. However, the researcher can use 686 

different amalgamations to extract different processes. 687 

 688 
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SUPPLEMENTARY MATERIAL 774 

 775 

1. Simple three-part data set supplied by Martín-Fernández (2018) 776 

2. Definition of parts in principal balances computed by Martín-Fernández et al. (2018, Table 3) 777 

3. Cumulative explained variances of ILRs and corresponding SLRs in explaining variance of 778 

the Aar Massif data, reproduced from Greenacre (2018b, Appendix A.3) 779 

4. R script for computing the results 780 

  781 
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Simple three-part data set supplied by Martín-Fernández (2018) 782 

    wine  beer spirits 783 
1  0.570 0.306   0.125 784 
2  0.622 0.265   0.113 785 
3  0.557 0.317   0.125 786 
4  0.700 0.200   0.100 787 
5  0.619 0.253   0.128 788 
6  0.550 0.312   0.139 789 
7  0.638 0.250   0.113 790 
8  0.655 0.239   0.106 791 
9  0.637 0.243   0.119 792 
10 0.591 0.290   0.119 793 
11 0.675 0.198   0.127 794 
12 0.630 0.254   0.116 795 
13 0.568 0.305   0.127 796 
14 0.474 0.399   0.126 797 
15 0.674 0.220   0.106 798 
16 0.605 0.275   0.120 799 
17 0.616 0.278   0.105 800 
18 0.652 0.224   0.124 801 
19 0.653 0.233   0.114 802 
20 0.629 0.239   0.132 803 
21 0.656 0.228   0.116 804 
22 0.656 0.236   0.108 805 
23 0.609 0.268   0.123 806 
24 0.493 0.389   0.118 807 
25 0.649 0.245   0.105 808 
26 0.604 0.276   0.121 809 
27 0.602 0.283   0.116 810 
28 0.521 0.355   0.125 811 
29 0.580 0.299   0.121 812 
30 0.635 0.254   0.111 813 
31 0.685 0.210   0.105 814 
32 0.603 0.279   0.118 815 
33 0.624 0.251   0.125 816 
34 0.613 0.280   0.107 817 
35 0.523 0.347   0.129 818 
36 0.582 0.294   0.123 819 
37 0.580 0.291   0.129 820 
38 0.606 0.277   0.116 821 
39 0.667 0.220   0.114 822 
40 0.649 0.235   0.116 823 
41 0.602 0.283   0.115 824 
42 0.587 0.284   0.129 825 
43 0.641 0.236   0.123 826 
44 0.636 0.244   0.120 827 
45 0.560 0.306   0.135 828 
46 0.564 0.310   0.126 829 
47 0.635 0.258   0.107 830 
48 0.654 0.237   0.109 831 
49 0.608 0.282   0.110 832 
50 0.660 0.231   0.109 833 
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Definition of parts in principal balances computed by Martín-Fernández et al. (2018, Table 834 

3), in the form of numerator parts | denominator parts 835 

O1: Al2O3, K2O, Na2O, SiO2  |  Fe2O3t, MgO, MnO, P2O5 836 

O6: Fe2O3t, MgO, MnO  |  P2O5  837 

O3: Al2O3, K2O  |   Na2O, SiO2   838 

O2: CaO  |  Al2O3, K2O, Na2O, SiO2, Fe2O3t, MgO, MnO, P2O5 839 

O8: MgO  |  MnO 840 

O7: TiO2  |  Al2O3, K2O, Na2O, SiO2   841 

O5: Na2O  |  SiO2 842 

O4: Al2O3  |  K2O 843 

O9: Fe2O3t  |  MgO, MnO 844 

  845 
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Cumulative explained variances of ILRs and corresponding SLRs in explaining variance of 846 

the Aar Massif data, reproduced from Greenacre (2018b, Appendix A.3) 847 

   ILR Principal    Amalgamation        848 
     Balances2        Balances3        849 
 -----------------  ------------    850 

 PB      CumVar        CumVar       851 

 -----------------  ------------   852 

 O1      0.7067        0.6901           853 

 O6      0.8940        0.8741           854 

 O3      0.9317        0.9292           855 

 O2      0.9507        0.9510           856 

 O8      0.9757        0.9729           857 

 O7      0.9944        0.9938          858 

 O5      0.9982        0.9966           859 

 O4      0.9994        0.9989           860 

 O9      1.0000        0.9997    861 

-----------------  ------------          862 

  863 



 41

R script for computing the results 864 

### Install easyCODA package from CRAN in usual way or from R-Forge: 865 
 866 
install.packages("easyCODA", repos="http://R-Forge.R-project.org") 867 
 868 
### (version 0.29 of easyCODA was used here) 869 
 870 
### 3-part data set of wine, beer and spirits assumed in data frame 'wbs' 871 
 872 
### Model and plot of amalgamation logratio vs. logratio, and ILR vs. logratio 873 
##  transformations 874 
#       alog = amalgamation logratio 875 
#       plog = single logratio 876 
#       ilog = isometric logratio 877 
 878 
attach(wbs) 879 
alog <- log(spirits/(beer+wine)) 880 
plog <- log(beer/wine)  881 
# ILR "by hand" classical definition 882 
ilog <- sqrt(2/3) * log(spirits / sqrt(beer*wine))  # using counts 883 
# using function ILR in easyCODA weights are used 884 
# so the result for option weight=FALSE (equal weighting) is  885 
# the classical definition divided by sqrt(number of parts) = sqrt(3) 886 
ILR(wbs, numer=3, denom=c(1,2), weight=FALSE)$LR 887 
# compare above result with 888 
ilog/sqrt(3) 889 
 890 
##  Model with amalgamation logratio and plotting of Fig. 1a 891 
 892 
mod1 <- lm(alog ~ plog) 893 
summary(mod1) 894 
# Coefficients: 895 
#             Estimate Std. Error t value Pr(>|t|)     896 
# (Intercept) -1.85503    0.03796 -48.872  < 2e-16 *** 897 
# plog         0.18915    0.04413   4.286 8.72e-05 *** 898 
 899 
mod1.pred <- predict(mod1, type="response", se.fit=T,  900 
                     newdata=data.frame(plog=seq(range(plog)[1], range(plog)[2],length=100))) 901 
 902 
par(mar=c(4.2,4,3,1), font.lab=2, cex.lab=1.2, mgp=c(2.7,0.7,0), las=1, mfrow=c(1,2)) 903 
plot(plog, alog, type="n", bty="n", xaxt="n", yaxt="n", xlab="log(beer/wine)",ylab="log[spirits/(beer+wine)]",  904 
     xlim=log(c(0.25,1)), ylim=c(-2.2,-1.8), las=1, main="Amalgamation logratio response") 905 
axis(1) 906 
axis(2) 907 
segments(range(plog)[1], mod1.pred$fit[1], range(plog)[2], mod1.pred$fit[100], lwd = 3, col = "blue") 908 
lines(seq(range(plog)[1], range(plog)[2],length=100), mod1.pred$fit+1.96*mod1.pred$se, lty = 3, lwd = 2, 909 
      col = "blue") 910 
lines(seq(range(plog)[1], range(plog)[2],length=100), mod1.pred$fit-1.96*mod1.pred$se, lty = 3, lwd = 2,  911 
      col = "blue") 912 
symbols(plog, alog, fg="black", bg="white", circles=rep(0.02, length(alog)), inches=F, add=T, lwd=2) 913 
 914 
##  Model with isometric logratio and plotting of Fig. 1b 915 
#   Notice that plog is now divided by sqrt(2) to be the ILR definition 916 
 917 
ilog2 <- plog/sqrt(2) 918 
mod2 <- lm(ilog ~ ilog2) 919 
summary(mod2) 920 
# Coefficients: 921 
#              Estimate Std. Error t value Pr(>|t|)     922 
# (Intercept) -0.99574    0.03066 -32.473   <2e-16 *** 923 
# ilog2        0.01366    0.05042   0.271    0.788     924 
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 925 
mod2.pred <- predict(mod2, type="response", se.fit=T,  926 
                     newdata=data.frame(ilog2=seq(range(ilog2)[1], range(ilog2)[2],length=100))) 927 
 928 
plot(ilog2, ilog, type="n", bty="n", xaxt="n", yaxt="n", xlab="ILR(beer:wine)", ylab="ILR(spirits:beer,wine)",  929 
     xlim=c(-1.0, 0), ylim=c(-1.15,-0.85), las=1, main="ILR response") 930 
axis(1)  931 
axis(2) 932 
segments(range(ilog2)[1], mod2.pred$fit[1], range(ilog2)[2], mod2.pred$fit[100], lwd = 3, col = "blue") 933 
lines(seq(range(ilog2)[1], range(ilog2)[2],length=100), mod2.pred$fit+1.96*mod2.pred$se, lty = 3, lwd = 2,  934 
      col = "blue") 935 
lines(seq(range(ilog2)[1], range(ilog2)[2],length=100), mod2.pred$fit-1.96*mod2.pred$se, lty = 3, lwd = 2,  936 
      col = "blue") 937 
symbols(ilog2, ilog, fg="black", bg="white", circles=rep(0.014, length(ilog)), inches=F, add=T, lwd=2) 938 
 939 
 940 
### Ternary plot (Figure 2) 941 
require(Ternary) 942 
 943 
#   full plot (Fig.2a) 944 
par(mfrow=c(1, 1), mar=rep(0.3, 4)) 945 
TernaryPlot(alab="Spirits \u2192", blab="Beer \u2192", clab="\u2190 Wine", 946 
            point='up', lab.cex=1.5, grid.minor.lines = 0, 947 
            grid.lty='solid', col=rgb(0.9, 0.9, 0.9), grid.col='white',  948 
            axis.col=rgb(0.6, 0.6, 0.6), ticks.col=rgb(0.6, 0.6, 0.6), 949 
            padding=0.08) 950 
AddToTernary(points, wbs[,c(3,2,1)], pch=21, cex=0.9, col="blue", bg="lightblue") 951 
 952 
#   partial plot (Fig. 2b) with regression model in Fig. 1a back-transformed 953 
for(i in 1:100) { 954 
  beerwine.seq[i] <- beer.seq[i]/wine.seq[i] 955 
  spirits.seq[i]  <- -1.855 + 0.1892 * log(beerwine.seq[i]) 956 
  spirits.seq[i]  <- exp(spirits.seq[i])/(1+exp(spirits.seq[i])) 957 
} 958 
wbs.add <- cbind(wine.seq, beer.seq, spirits.seq) 959 
TernaryPlot(xlim=c(-0.3,-0.08), ylim=c(0,0.17), alab="Spirits \u2192", blab="Beer \u2192", clab="\u2190 Wine", 960 
            point='up', lab.cex=1.5, grid.minor.lines = 0, grid.lty='solid', col=rgb(0.9, 0.9, 0.9), 961 
            grid.col='white', axis.col=rgb(0.6, 0.6, 0.6), ticks.col=rgb(0.6, 0.6, 0.6), padding=0.22) 962 
AddToTernary(points, wbs[,c(3,2,1)], pch=21, cex=0.9, col="blue", bg="lightblue") 963 
AddToTernary(lines, wbs.add[,c(3,2,1)], lwd=2, col="gray30") 964 
 965 
 966 
### For a fixed value of beer+wine=0.88, how does the geometric mean vary? (Figure 3) 967 
 968 
beer.sim <- seq(range(beer)[1], range(beer)[2], length=100) 969 
wine.sim <- 0.88-beer.sim 970 
beerwine.gm.sim <- sqrt(beer.sim*wine.sim) 971 
 972 
par(mar=c(4.2,4,3,1), font.lab=2, cex.lab=1.2, mgp=c(2.7,0.7,0), mfrow=c(1,1), las=1) 973 
plot(beer.sim/wine.sim, beerwine.gm.sim, type="n", xlab="beer/wine ratio", ylim=c(0.36,0.44), 974 
     ylab="geometric mean of beer and wine", main="For fixed sum beer+wine=0.88") 975 
lines(beer.sim/wine.sim, beerwine.gm.sim, lwd=2, col="blue") 976 
 977 
### Aar Massif data assumed in data.frame 'aar' 978 
 979 
### Comparison of ILRs and SLRs (Figure 4) for aar and aar.sub (without MnO) 980 
 981 
aar.sub <- aar[,-4] 982 
aar.sub <- aar.sub / apply(aar.sub, 1, sum) 983 
 984 
# SiO2, Na2O, MnO, P2O5 are numbers 1, 7, 4, 9 in aar 985 
# SiO2, Na2O, P2O5 are numbers 1, 6, 8 in aar.sub 986 
 987 
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# remember that ILR in easyCODA divides the classic definition by the square root 988 
# of the number of parts in the (sub)composition 989 
 990 
ilr1 <- ILR(aar, numer=c(1,7,4), denom=9, weight=FALSE)$LR 991 
ilr1.sub <- ILR(aar.sub, numer=c(1,6), denom=8, weight=FALSE)$LR 992 
par(mar=c(4.2,4,1,2), font.lab=2, cex.lab=1.3, mgp=c(3,0.7,0), mfrow=c(1,3), las=1) 993 
plot(ilr1.sub, ilr1, xlab="ILR of {SiO2, Na2O}:P2O5", ylab="ILR of {SiO2, Na2O, MnO}:P2O5") 994 
 995 
gm1 <- (aar[,1]*aar[,7]*aar[,4])^(1/3) 996 
gm1.sub <- (aar.sub[,1]*aar.sub[,6])^(1/2) 997 
plot(gm1.sub, gm1, xlab="GM of {SiO2, Na2O}", ylab="GM of {SiO2, Na2O, MnO}") 998 
 999 
slr1 <- SLR(aar, numer=c(1,7,4), denom=9, weight=FALSE)$LR 1000 
slr1.sub <- SLR(aar.sub, numer=c(1,6), denom=8, weight=FALSE)$LR 1001 
plot(slr1.sub, slr1, xlab="SLR of {SiO2, Na2O}:P2O5", ylab="SLR of {SiO2, Na2O, MnO}:P2O5") 1002 
 1003 
### Stepwise selection of ratios, including the three amalgamations 1004 
 1005 
#   Define the amalgamations and add them to the set of 10 parts 1006 
mafic      <- apply(aar[,c(5,10,4)], 1, sum) 1007 
felsic     <- apply(aar[,c(7,1,3,8)], 1, sum) 1008 
carbonate  <- apply(aar[,c(6,9)], 1, sum) 1009 
aar.amalg  <- cbind(aar, mafic, felsic, carbonate) 1010 
 1011 
#   Perform the stepwise analysis 1012 
aar.step   <- STEP(aar.amalg, aar, weight=FALSE) 1013 
 1014 
# Table 1 1015 
cbind(aar.step$ratios,  1016 
      round(100*aar.step$R2max,1),  1017 
      round(aar.step$pro.cor,3)) 1018 
 1019 
### LRA of original data and PCA of the 9 selected logratios 1020 
 1021 
rownames(aar) <- 1:nrow(aar) 1022 
par(mar=c(4.2,4,3,3), font.lab=2, cex.lab=1.2, mgp=c(2.7,0.7,0), las=1, mfrow=c(1,2)) 1023 
 1024 
### LRA of original data and PCA of the 9 selected logratios 1025 
 1026 
rownames(aar) <- 1:nrow(aar) 1027 
par(mar=c(4.2,4,3,3), font.lab=2, cex.lab=1.2, mgp=c(2.7,0.7,0), las=1, mfrow=c(1,2), cex.axis=0.8) 1028 
 1029 
#   LRA (logratio analysis, = PCA of the CLRs) 1030 
aar.lra <- LRA(aar, weight=FALSE) 1031 
PLOT.LRA(aar.lra, map="contribution") 1032 
 1033 
#   PCA of the selected logratios 1034 
rownames(aar.step$logratios) <- 1:nrow(aar) 1035 
# invert K2O/P2O5 1036 
aar.step$logratios[,2] <- -aar.step$logratios[,2] 1037 
colnames(aar.step$logratios)[2] <- "P2O5/K2O" 1038 
aar.ratios.pca <- PCA(aar.step$logratios, weight=FALSE) 1039 
PLOT.PCA(aar.ratios.pca, map="contribution", axes.inv=c(1,-1), rescale=2) 1040 
 1041 
#   Procrustes correlation of two configurations of samples in two dimensions 1042 
protest(aar.ratios.pca$rowpcoord[,1:2], aar.lra$rowpcoord[,1:2])$t0 1043 
# [1] 0.9971076 1044 
 1045 
#   Procrustes correlation of full-space geometry of samples 1046 
protest(aar.ratios.pca$rowpcoord, aar.lra$rowpcoord)$t0 1047 
# [1] 0.993197 1048 


