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Abstract

In moment structure analysis with nonnormal data, asymptotic vahd infer-
eces require the computation of a consistent (under general distributional as-
sumptions) estimate of the matrix I' of asymptotic variances of sample second-
order moments. Such a consistent estimate involves the fourth-order sample 1
moments of the data. In practice, the use of fourth-order moments leads to
computational burden and lack of robustness against small samples. In this pa-
per we show that, under certain assumptions, correct asymptotic inferences can
be attained when I is replaced by a matrix Q that involves only the second-order
moments of the data. The present paper extends to the context of multi-sample
analysis of second-order moment structures, results derived m the context of
{single-sample)} covariance structure analysis (Satorra and Bentler, 1990). The
results apply to a variety of estimation methods and general type of statistics.
An example involving a test of equality of means under covariance restrictions
illustrates theoretical aspects of the paper.

*This paper has been presented at the ”19th European Meeting of Statisticians, Bernoulli Society
Meeting” in Barcelona (September 1991) and the "Seventh International Conference on Multi-
variate Analysis” at Penn State University (May 1992). Work supported by Spanish DGICYT
grant PS89-0040.
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1 Introduction

Moment-structure analysis is widely used in behavioural, medical, social and
economic studies to analyze linear relations among variables some of which
may be latent (see, e.g., Joreskog and Sérbom, 1989; Bentler, 1989; Muthén,
1987; and references contained therein). Often it is of interest to undertake a
multi-sample analysis where samples from several populations are analyzed
simultaneously under a common model (Jéreskog, 1971; Lee and Tsui, 1982;
Bentler, 1989; Muthén, 1989). Recently, multi-sample analysis has been
shown to be af special relevance to deal with a single-sample with incomplete
data problems (Arminger and Sobel, 1990).

A very general approach to moment structure analysis is based on fitting
structured population moments to sample moments using minimum-distance
(MD) methods (Chamberlain, 1982; Browne, 1984; Shapiro 1986; Fuller,
1987, Section 4.2). It has been recognized that the asymptotic variance ma-
trix of the analyzed sample moments, which we call I', plays a fundamental
role in designing an efficient MD analysis and in assessing the sampling
variability of statistics of interest. The matrix I' will generally involve the
fourth-order moments of the observable variables. Not surprisingly, how-
ever, when the observable variables are normally distributed, i.e., under a
normal theory assumption, I is a function of second-order moments only.

There are practical reasons for using the normal theory (NT) form of
I' instead of the distribution-free form that involves moments to the fourth
order. For moderate size models the number of distinct fourth-order sam-
ple moments is large, hence they lead to computational burden and lack
of robustness against small samples. On the other hand, recent develop-
ments have shown the asymptotic robustness of inferences based on an NT
form of I in situations where the normality assumption does not hold ( An-
derson, 1987, 1989; Anderson and Amemiya, 1988; Browne, 1987; Browne
and Shapiro, 1988; Browne, 1990; Mooijart and Bentler, 1991; Satorra and
Bentler, 1990). The papers by Anderson-Amemiya, Browne-Shapiro and
Bentler-Mooijart deal with NT -MD methods. Satorra-Bentler’s work, how-
ever, deals with general type of MD analyses, and considers general type of
statistics also, like for instance the vector of moment-residuals (difference
between observed and fitted moments). All of the above mentioned work,
however, is confined to the analysis of covariance structures in a single-group
analysis, and consider only minimum-discrepancy type of estimators.

The present paper generalizes to multi-sample analysis of mean and co-
variance structures the above mentioned work on asymptotic robustness. A




broad class of estimators, that go beyond minimum-discrepancy methods,

will be encompassed under the present approach ( instrumental variable es-
fimators, for example, will be incdluded in this approach). Savorra-Dentler's

view of asymptotic robustness will be adopted here, in the sense that we
will study the validity of inferences based on replacing the correct form of
I' by another matrix, €2, which involves only second-order moments. The
proposed matrix {2 is even computationally simpler than the correct form of
T under normality.

In multivariate analysis a simple example of multi-sample analysis is the
test of equality of population means using independent samples. This test is
usually carried out under the assumption that the populations are normally
distributed. In the present paper we will provide asymptotic robustness
results for this test in the general case where restrictions on the variance
matrices of the populations are allowed.

The plan of the paper is as follows. Section 2, presents general results for
the analysis of second-order moment structures. The results of asymptotic
robustness are given in Section 3. Section 4 concludes with an illustration.

With respect to notation, vec A will denote the column-vector formed
by stacking columns of A one below the other. For a symmetric matrix
A, v(A) will denote the column vector obtained from stringing the non-
duplicated elements of A column-wise in a column vector. We will use
v(A) = DtvecA, where Dt is the Moore-Penrose inverse of the ”"Dupli-
cation” matrix D (Magnus & Neudecker, 1988). The usual notation o,(1)
(idem Op(1)) will be used for stochastic quantities that tend to zerc (idem,
are bounded) in probability. Two estimators, say 6 and 6, will be said to
be asymptotically equivalent when /7 (§ — 6) = 0,(1), and this will be de-
noted by 66 ( obviously, asymptotic equivalence implies equality of the
corresponding asymptotic distributions).

2  Multi-sample analysis of moment structures:
asymptotic theory

Let 25,9 = 1,...,G, be a p,-dimensional vector of observable variables with
second-order moment matrix

My = Ezz, (1)



where G is the number of groups and E denotes mathematical expectation.
Consider the multi-sample vector of population moments

H= [(UMI),a(UMQ),’-"’(UMG),],’ (2)

and let p = () be a specific moment-structure for p, where 8 is a g¢-
dimensional vector of parameters that varies in an open set © of R? and
i(.) is continuously differentiable. Let M, = M,(8), g=1,2,..., G, be the
moment-structure induced by g = p(8) in group g.

Consider the multi-sample data

{Zgi;izlvza'-'ang’g:1727""G} (3)

where the z;;’s are independent realizations of z4, and the z,’s are mutually
stochastically independent. Here n, is the sample size for group g, whereas
n =y i, Mg is the total sample size. Throughout the paper, n — oo means
that ny — oo for each g.

Consider now the sample second-order moment matrix for group g,

Tig
My = 242, g, (4)
i=1

the corresponding vector of sample moments my = v(M,), and the sample
vector of second-order moments of the G groups

m= [ml,>m2,7"'7mc,],‘ (5)

Straightforward application of the Central Limit theorem shows that
Vhgmg, g = 1,2,...,G, is asymptotically normal, with asymptotic variance
matrix (avar)

Iy = avar (rgmy) = E(v 2y )(v 292,") — E(v 292, )E(v 252, (6)

where "avar” denote asymptotic variance matrix. An estimate of I'y; which
is consistent regardless of the distribution of 2z, (provided that z, has finite
eigth-order moments) is the following p,* X py* matrix of fourth-order sample
moments:

By = 3o = )l = (g~ 1), )

where dg; = v (24i24i"). Throughout, we will use the notation py* = py(p, +
1)/2,9 =1,2,...,G.




Since the my’s, g=1,2,...,G, are independent, the asymptotic variance
matrix of \/nm is of the form
T = avar(y/nm) = diag(n/n,Ty,...,n/nyTy,....n/ngTq), (8)

where ”diag” denotes a block-diagonal matrix. Consequently, a consistent
estimate of I' will be

[ = avar(y/am) = diag (n/ni Iy, ...,n/ngfg,...,n/ngfc), (9)

where the I[';’s are given in (7). Note that the matrices I' and I are both of
order p X p, where p = Zngl Pg*.

Consider now the p x ¢ derivative matrix A = (9/08' )i(8), its orthogonal
complement, denoted A; (i.e., Aj is a p X (p — ¢) matrix of full column
rank such that A;’A = 0, a zero matrix), and the partitioned matrices

A=[Ar A AGY, (10)
where Ay = (/96 )v M4(6), and
Ay = [Hy,... H,,... Hg), (11)

say, conformably with the partition of A above.
Given an estimator of 8, say 6, consider the following matrix and vector
of fitted-moments for group g (g=1,2,...,G):

Yy = My(8)
and
69 = v (fig),
respectively, and the multi-sample vector of fitted moments
ﬂ = [ﬂl,7ﬂ2,7 oo H[LG,],
and vector of residuals
u=m-—f=[(m —mn),(m -ia),. .., (m-ic)]. (12)

Most of the estimators used in structural equation models can be shown
to be asymptotically equivalent to a continuously differentiable function of
sample moments. This is the case for instance of the minimum discrepancy
(MD) estimators defined as the solution 8 to

min(m — u(8)) Va(m = (6)), (13)



where O is the parameter space of § and V,, is a positive semi-definite matrix
that converges in probability to a positive semi-definite matrix V. A typical
expression for V;, will be

V, = diag (n1 /04, ...,ng /28y, ..., nc /70G) (14)

where )
Q, =2D% (M, ® M,)D*', (15)

which leads to the so called normal MD (NMD) estimates. It is also the
case of the pseudo maximum likelihood (PML) estimator which minimizes

G
F(m,u(8)) = X_:(ng/n)Fg(mg,#g(")) (16)
where
F(m,u(8)) =In | Mg | +tr Mg(My™") —In | My | —py. (17)

Other estimatars that are also functions of sample moments are the instru-
mental variable estimators (Jennrich, 1987). More specifically, assums that
8 £ 6(m), where 6(.) is a continuously differentiable vector valued function
of m with the property that

o(u(8)) = 8; (18)

that is, 6 is asymptotically equal to a Fisher-consistent estimate of 6 (Rao,
1973, p.345; Dijkstra, 1983, Kano, 1991, Satorra, 1989b). Clearly, since m
converges in probability to g, (18) yields

V(6 - 60) = 0,(1), (19)

ie., fisa y/n-consistent estimator of 8. Further, the delta-method (e.g.,
Rao, 1973) gives

avar v/n8(m) = avary/nf = OI'@’, (20)
where © = (9/0m')8(y). Since © = [04,....,0q,...,0¢5], where O, =
(0/0my)8(y), using (9), we can write (20) as

G
avar /nf(m) = »_ 0,10}, (21)
g9=1




Often the interest focuses on the asymptotic distribution of a subvector
7 of 8 ( for example, the regression estimates in a regression model). The
asymptotic variance matrix of 7 will be given by

G
avarv/nf = 0,0} = z 0,,1,07,, (22)
g=1

where @y, = (0/0m})T(p) with 7(.) being the corresponding subvector of

8(.).

An immediate implication of (18) (i.e. Fisher-consistency) is
0A =1, (23)

where I, denotes the ¢ x ¢ identity matrix; consequently, given an arbitrary
partition 8 = (6,',6;") of 8, it holds that

01A; =1,0,A; =1, 0,A7 = 0, O2A; = 0, (24)

where A = [Ay,A2] and © = [0,/,02/) are the partitions of A and ©
associated with the partition of 6 given above. Throughout the paper, I
and 0 will denote respectively the identity and zero matrices of dimensions
determined by the context.

By standard asymptotic arguments, the vector of residuals is asymptot-
ically normal with

avar v/au = [T - AGJT[I — ABY = C(AL'TAL)C', (25)

where C = [I — AOJA (AL'A1 )Y, This follows from (18) and (19) which
imply that

i=p+A0-6)=p+A0(m - p)+o(1/y/n), (26)
Note also that, from (9) and (10), we can write
G
ALTAL =) H,T H,. (27)
g=1

The following (residual-based) goodness-of-fit statistic will be of interest

T = nu' A, (28)



where A is a consistent estimate of !
A=A, (ATA) AL (29)

An obvious expression for A will be obtained from (29) by evaluating the
derivative matrix A at  and substituting T of (9) for I'. By standard argu-
ments on the distribution of quadratic forms of normal variables, when the
model holds T will be asymptotically chi-squared distributed with r degrees
of freedom, where 7 = rank(A,'TA}) (cf., Moore, 1977). In the case of
single-group analysis of covariance structures, T is Browne’s (1984, Propo-
sition 4) quadratic form chi-square goodness-of-fit statistic. The statistic T’
can also be shown to be asymptotically equal to other more conventional
goodness-of-fit statistics (see, e.g., Satorra, 1989a).

3 Asymptotic robustness

Assume 24,9 = 1,2,...,G, has the following linear latent-variable structure:
h(g)
Zg = Z Bigéig, (30)

1=1
where, B;; is a p; X 1;, matrix, and the é;;’s are mutually independent
Tig-dimensional random vectors (whose components may be observable or
latent).
Clearly, under (30), we can write

h(g)
veczgzy = Y (Big ® Big)vec(bighiy') + >_(Bjy ® Big)vec bigbis’s  (31)
i=1 i#j

thus, premultiplying both sides of the equality by D*, and taking expecta-
tions, we obtain

h(g)
g = D% vec E(zgzg') = Z D+(B,'g®B,'g)DV(I',','g+Z D+(B]'g®B,'g)VeC (I',']'g,
=1 1#]

(32)
where ®;;y = E(big6:,") and ®;;4 = E(6;50i4"). The following assumption
will be needed.

AssuMpTION A In addition to (30), assume that, for ¢ = 1,2,...,G,

"note that the right hand side of (29) is a generalized inverse of the right hand side of
(25)




a) Ebiy =0,1=1,...,h(g) — 1, and bj(y), is constant equal to 1.
b) 6 is unrestricted and partitioned as
6 = [TI, (V @221 )I, e ,(V @,’i] )I, ey (V Qh(l)h(l)l )I, e
cey (v @229)1, ce (v @,‘,’g)l, N % @h(g)h(g)g)l, cey

FIPEPEN (V @22(; )I, ceey (V ‘b,’iG )I, PN ,(V @h(g)h(g)g)l]l
= [, ¢], (33)

¢) Big = Biy(7) and ®115 = ®114(7) are continuously differentiable func-
tions

d) the é614s (g = 1,2,...,G) have the third- and fourth-order moments
as under normality

e) the 615’s (1 =2,...,n5,9 = 1,2,...,G) are mutually independent.
Clearly, under Assumption A, for g = 1,2,...,G, it holds that

h(g)
ng = )_(Big @ Big)Dv @iig; (34)

1=1

and, consequently, the derivative matrix Ay = (9/06 )uy(f) can be parti-
tioned as

Ay = [Ag1,0,D*(Bay @ Bag)D, ..., D*(Biy ® Biy)D,. ..
...... ’D+(Bh(g)g ® Bh(g)g)D,O], (35)

where Ay = (0/07")14(8). 1t should be noted that in the partitioned matrix
A=[Ay,...,A,...,Ag'], the elements above and below the submatrices
D% (B;; ® Biy)D are zero; consequently, HjA;, = 0 (¢ = 1,...,G), since
A'A = 0. Hence, using (11) and (35), we get

H,D%(Biy ® Bi))D =0, 1=2,3,...,h(yg); (36)
further, using (24), we get

@19D+(B,'g ®B,'g)D =0, 1= 2,...,h(g). (37)

Recall that Oy = (0/0p,")7(1). The following Lemma will now be needed.




LEMMA 2. (cf., Satorra (1991)) Let 2 = Z,L:l B;6; with the é;’s being
mutually independent and of zero mean, with the exception of 61, where the
mean vector Fér may differ from zero. Then

var(DYveczz') = 2D%(Ez ® Ez2')DY' (38)
L-1
+ > _{2D*(B; @ BL)|E6:(v6:6')|D'(B; @ B;) DY’
1=1
+2D+(B,' ® B,‘)D[E(U(S,’(S,‘I)(S,‘I](B,' ® BL)ID+,
+D+(B,' ® B;)D[var(v&ié,-')

—2D% E((S,‘(S,’I) ® E((S,‘(S,‘I)D+I]DI(B,' ® B,’)ID+I}
—2DY(Ez® Ez)(Ez @ Ez) D"

Proor. See Satorra (1991).
Note that if é;, say, is normally distributed then

var 1)(5]'5]") =2D% E(éjéj') ® E(éjﬁj')D+l (39)

E(v§;6;)6;' = 0; 40
(v6;657);

consequently, the terms on the right-hand side of (38) which correspond
to third- and fourth-order moments of §; vanish when §; is normally dis-
tributed. In particular, when all the é;’ s are normally distributed, then

var(Dtvecz?') =
2DV[(Ez2 @ E22') — (E2EZ @ EzEZ)|D*'.
We will now define
O = diag[n/niQ,...,n/ngQy,...,n/n,Q5]), (41)

where
Q, = 2D (Ezyz, @ Ezyz,/)D*". (42)

We will also define * as Q in (41) but replacing 2, by
Q) = 2DY[(Ez2 ® Ezyz,')— (EzE2 ® EzgEz)|DY'.  (43)

Note that a (consistent) estimate of {2, is obtained replacing in (42) M, of
(4) for Ez52,'. To obtain a consistent estimate of ) we will replace, in
addition, the sample mean of z, for Ez,. The following theorem synthesizes

10



the basic results of asymptotic robustness.

THEOREM 1 Let Assumption A hold. Then
0,70, = 0,00, = 6,0*0,’ (44)

and
AU'TAL = AUQAL = AUA (45)

Proor. It follows directly from the orthogonality results (36) and (37) and
Lemmal. m

Note that the matrix 2* is the asymptotic variance matrix of the multi-
sample vector m of sample moments, under a normality assumption. Hence,
the above theorem says that, under Assumption A, the vector of residuals
u, the test statistic 7" and the estimator ¥ have an asymptotic distribution
which is insensitive to the deviation of I' from its normal-theory form 2*.
Consequently, under Assumption A, in order to evaluate the asymptotic
variance matrix of the estimator 7 and vector of residuals u (formulae (22)
and (25) respectively), as well as to compute T (see (28) and (29)), a con-
sistent estimate of *, or of the simpler expression 1, can be used instead of
a consistent estimate of I'. The possibility of using an estimate of { instead
of an estimate of T will be of interest in practice since it will enable us to
compute consistent estimates of standard errors of parameter estimates and
residuals, and asymptotically chi-square test statistics, using only sample
second-order moments. The next section will provide an illustration of how
these results can be used.

4 An Illustration

Consider the example " Effects of Head Start Program” reported in the LIS-
REL 7 manual (Example 10.2, p. 280 of Joreskog and Sérbom, 1989; see
also "Example: Efects of Head Start”, in the EQS manual of Bentler, 1989,
p. 186). In Joreskog and Sorbom (1989) we read ”"Sorbom used data on
303 white children from Head Start summer program, consisting of a Head
Start sample (N=148) and a matched Control sample (N=155) [...]. The
variables used in Sérbom’s reanalysis were x1= Mother’s education, x2= Fa-
ther’s education, x3= Father’s occupation, x4= Family income, yl1=Score
on the Metropolitan Readiness Test, y2= Score on the Illinois Test of Psy-
cholinguistic Abilities” (p. 253). The variables x1 to x4 are regarded as

11




indicators of socio-economic status (SES) while y1 and y2 are indicators of
ability,

The main interest of the study is to see whether there is a significant
difference in the effects of the program among the two mentioned groups of
children. The model postulates the following structural relation:

Mg = 0y + 7g€g + Cga (46)

where 7, & and (gare Ability, SES and the disturbance term in the re-
gression equation, respectively, of group g, ¢ = 1,2. The coefficients ay
and 7, are respectively the intercept and slope parameters of group g. In
fact, significant difference among the two groups implies that the a,’s differ.
Measurement equations will be added to (46).

The model can be represented by a measurement equation (assumed to
be invariant for both groups)

Ygl 1 0 %1 €51
Yg2 Ay 0 Ly2 €92
Xg1 0 1 n Ty €93
Xg2 = 0 Arg Ly2 {g + €94 G = 1, 2, (47)
Xg3 0 /\:1:3 Lz3 1 €45
Xg4 0 Azg lz4 €96
1 0 0 1 0

the structural equation for Head Start Group (HSG):

m 0 1 a m (11
& =10 0 =« &L |+ | G2 | (48)
1 0 0 0 1 1

and the structural equation for the Control Group (CG):

m 0 72 O 7! Ca1
& |=10 0 0 &2 [+ ] G2 |- (49)
1 0 0 O 1 1

The diagonal elements of the covariance matrix of measurement error
terms 2 in (47) are free parameters, except for the last element of the diagonal
which is fixed to zero. The correlation between €;3 and €g4 is also set a free

2The so called matrix ”TE” in LISREL terminology
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parameter. The diagonal elements of the covariance matrix of the last vector
on the right hand side of (49) 3 are also free parameters.

The above model has the form of a linear structure (30), since we can
write 2z, = (Yy1,Y,2, Xg1, Xg2, Xg3,Xg4,1) and

b1g = (o1, bag = (g2,
039 = €n1 049 = €42
’ ’ 50
b5g = (€g3,€94)' b6 = €g5, (50)
074 = €gs, €gg =1

Note that the Big’s of (30), for ¢ = 1,2, 8, are, respectively, the 1st, 2nd
and 3rd columns of the following matrix product:

1 0 m

Ay 0 Ty2 -1

0 1 Trl 0 71 o«

0 Az To2 0 0 &« ; (51)
0 /\13 Tr3 0 0 0

0 Az To4

0 0 1

the Biy’s, for 1 = 3,4,6,7, are respectively the 1st, 2nd, 5th and 6th columns
of an identity matrix of dimension 7 X 7; finally, Bs, is the matrix formed
by the 3th and 4th columns of a 7 x 7 identity matrix. Moreover, oy and
Kg are set to zero when g = 2. Note that the variable dgy, noted by 1, is the
constant 1.

Joreskog and S6rbom (1989) say that ” There seems to be no significant
effect for the Head Start program when controlling for social status [...]”
(p- 257 ), on the bases that they observe a non-significant z-value (estimate
divided by its standard error) for a. Joreskog and S6rbom’s analysis was
based on the assumption that the distribution of the observable variables
was normal; in fact they carried out a PML analysis. Our concern here is
whether the above conclusion can still be defended without the normality
assumption, that is, whether the NT standard error of the estimate of « is
asymptotically correct even for non-normal data.

Since in this example the variances of the corresponding 6;4’s of (30) are
unrestricted, i.e. they are parameters of the model, if the §;4’s are assumed to
be independent (not necesarely normally distributed), Assumption A holds
and hence the conclusions of the Theorem. Consequently, under the above

3The matrix ”PSI”, in LISREL terminology
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assumption we can use { instead of I' to compute standard errors, chi-
square goodness-of-fit statistics and the variance matrix of the vector of
residuals. In fact this is the type of analysis undertaken when the ”multi-
sample” option of LISREL (Jo6reskog and Sorbom, 1984) is used with "ML”
as estimation method and "CM” as a "matrix to be analyzed”. The matrices
of each group to be analyzed are the moment matrices shown in Table 1
(which was deduced from Table 10.4 of Joreskog and Sérbom, 1988). Note
that M,,g = 1,2, can be partitioned as

where the M’s are (uncentered) sample second-order moments and the m’s
are sample mean vectors. The results of a PML analysis are shown in Table
2. It can be seen that figures on Table 2 match? with the figures shown on
Table 10.6 of the LISREL.

In conclusion, Theorem 1 applied to this example implies that even in
the case of non-normal distribution of latent factors and errors, if the é;4’s
are mutually stochastically independent, then correctness of some of tke NT
inferential statistics can be claimed. In particular, the standard errors that
in Table 2 appear with an asterisc (%) are asymptotically correct even under
non-normality. The robust inferential statistics are the standard errors of
the estimates of the parameters A’s, ¢’s, ¥’s and @ and k which correspond
to the subvector 7 of # of Section 3. Moreover, Theorem 1 ensures also
that the P-value of .238 associated to the chi-square goodness-of-fit test of
the model will also be valid with non-normal data under the assumption
of independence. Note, however, that the standard errors corresponding to
estimates of variances of the €’s £’s; and (’s will not necessarily be correct
when such variables are non-normally distributed.

‘up to rounding errors introduced when obtaining Table 1 from correlations and stan-
dard deviations reported in the LISREL manual

14
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Table 1: Moment matrices of first- and second-order moments

Group 1 ( Head Start Group)

14.165

11.598 11.134

7.665 6.713 5.515

19.932 17.125 12.261 35.720

70.619 61.889 41.917 106.240 401.155

34.620 29.897 20.688 52.637 194.794 98.598

3.520 3.081 2.088 5.358 19.672 9.562 1

Group 1 ( Control Group)

16,588

13.417 12.252

10.345 9.042  8.183

25.885 22.003 18.226 51.900

79.593 68.167 53.991 132.823 431.982

39.639 34.095 26.941 66.227 212.313 108.798

3.839  3.290 2.600 6.435 20.415 10.070 1
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Table 2: Parameter estimates with standard errors between brackets below
(Results obtained using LISREL 7 under the "ML” option and the moment
matrices shown in Table 1). The chi-square goodness-of-fit statistic was
equal to 27.44 (23 degrees of freedom, P = .238). With an ” x” we indicate
that the corresponding NT standard error is asymptotically valid even under
non-normality

[ 1.00 0.00 20.35

(.28)*
85 0  10.08
(.14) (.21)+
0 1 3.86
(.09)*
Ausceca = 0 85  3.33

(.14)x (.08)%
0 120  2.57

(.:22)% (.09)*
0 2.75  6.42

(.51)% (.22)%
0 0 1.0

0 2.13 0.18 0 213 0
R (.55)* (.37)« ) (.55)+
BHSG = 0 0 -.38 BCG = )
0 0 0
(.10)* 0 0 0
0 0 0 -
6.34 ] [ 6.18
R (1.47) ) (1.47)
Yusg = 0 31 Voo = 0 .40
(.10) (.13)
0 0 1] L O 0 1
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Ousc =

@)

e CG =

6.31
(1.53)
0

1.46
(0.98)
0

0

1.41
(0.18)
48
(.14)
0
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