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Abstract 

The reporting and graphing of ecological data and statistical results often leave a lot to 

be desired.  One reason can be a misunderstanding or confusion of some basic concepts 

in statistics such as standard deviation, standard error, margin of error, confidence 

interval, skewness of distribution and correlation.  The implications of having small 

sample sizes are also often glossed over.  In several situations, statistics and associated 

graphical representations are made for comparing groups of samples, where the issues 

become even more complex.  Here, I aim to clarify these basic concepts and ways of 

reporting and visualizing summaries of variables in ecological research, both for single 

variables as well as pairs of variables.  Specific recommendations about better practice 

are made, for example describing precision of the mean by the margin of error and 

bootstrapping to obtain confidence intervals. The role of the logarithmic transformation 

of positive data is described, as well as its implications in the reporting of results in 

multiplicative rather than additive form.  Comments are also made about ordination 

plots derived from multivariate analyses, such as principal component analysis and 

canonical correspondence analysis, with suggested improvements.  Some data sets from 

this Kongsfjord special issue are amongst those used as examples. 

 

 

Keywords:  confidence interval, confidence plot, logarithmic transformation, margin of 

error, ordination, skewness, standard deviation, standard error. 
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Introduction 

Quantitative ecological research involves collecting data, either through observation or 

experimentation, then analysing the data using statistical methodology, and finally 

reporting and interpreting the results. In this last stage, either for research articles, 

reports or presentations, data and results are summarized in tables and figures.   

However, the numerical tabulations as well as the visual display of the data are often 

poor and can be improved. For example, I often find that the selected graphical styles 

serve to disguise the data rather than to show them! Visual literacy and graphical design 

are subjects that are not specifically taught in a regular scientific curriculum, and most 

scientific publications tend to concentrate more on correct textual expression than on the 

format of the graphics and tables.   

Another problem is the choice of statistics that are the basis of the data presentation, 

both in tabular or graphical form. The best graphic in the world cannot improve 

unsuitable statistical analysis, so careful attention has to be paid to aspects such as 

appropriate summary measures, scale of measurement and data transformations.   

Having treated these aspects properly, data presentation and visualization can be 

performed.  Articles in certain fields of ecology tend to follow the style of previous 

articles when it comes to the choice of statistics and graphics, and there is a certain 

resistance to change.  One reason could be the existence of statistical packages with 

their prepared analytical and graphical options, with few researchers being willing to 

extend their programming skills to create innovative graphics in environments such as 

R and Matlab.   

The dangers of incorrect use of statistical summary measures and graphical 

presentations are numerous. Groups can appear to be similar when in fact they are 
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statistically different. Or, conversely, groups can be judged different when in fact there 

is no significant difference between them.  Variables can seem unrelated when there are 

indeed interesting relationships amongst them, or their actual inter-relationships can be 

incorrectly inferred. Comparisons of results from similar studies, where only data and 

model summaries are reported, not the original data, can suffer from incorrect 

judgements due to the misspecification or misrepresentation of the data distribution.  

For example, since positive data are often skew and have some very high values, 

summarizing them as if their distribution were symmetric can miss these upper tails of 

the distribution completely, leading to incorrect comparisons of the same variable 

observed in two comparable studies. 

I will consider some examples of univariate, bivariate and multivariate data, some of 

which are extracted from articles in this special issue of Polar Biology,  in order to 

convince readers that there are better ways to summarize and visualize their data. This 

will involve clarifying some statistical concepts, especially those of variability, which in 

my experience many researchers find confusing. Thus, I hope that this article leads to a 

radical change in the way ecological data are considered, and convinces researchers to 

leave behind the inappropriate, yet apparently accepted, ways of reporting data 

numerically and visually.   

 

Some typical univariate data 

Ecological and biological data are often characterized by unusual distributions, not 

resembling the idealized bell-shaped and symmetric normal distribution, and sometimes 

quite small samples. The data in Fig. 1a are a typical example: 15 values of egg counts 
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of a species in a control group of an experiment (later a set of values for a treatment 

group will be introduced as a comparison with the control). 

Before showing some typical misleading plots of these data, let me point out that I 

could have alternatively presented the data set in one of the two equivalent forms shown 

in Fig. 1b.   This is a very neat way of showing all the data values as well as a visual 

impression of their distribution, called a "stem-and-leaf" plot, due to the most 

innovative of data analysts, John Tukey (Tukey 1977).  The "stems" of the plot are 0 

(for values 0 to 9), 1 (for values 10 to 19), 2 (for values 20 to 29) and 3 (for values 30 to 

39).  The "leaves" are the second digit: hence there are 4 0s, 3 1s, 2 2s, a 3 and an 8, 

then values of 16, 20, 26 and 31. All the data values are given, and in addition the 

approximate shape of the distribution can be seen, very positively skew, as most count 

data are, with a lot of low values and a few high values. After a simple sorting of the 

data in ascending order, this plot can be constructed very easily by simple keyboard 

entry, especially the horizontal form on the left.  But clearly it is only appropriate to 

certain data sets where the first two or at most three significant digits are accurate 

enough to report the values. I just mention stem-and-leaf plots in passing to demonstrate 

that there is always room for innovation in data presentation, and one does not 

necessarily have to follow the same ways that are inculcated in the literature. 

 

Numerical reporting of summary statistics 

Now consider some of the ways these data are typically summarized, first numerically 

in terms of the mean and three alternative measures of dispersion: 
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       mean        SD                       mean       SE                       mean       ME  

        7.40      10.54                      7.40       2.72                      7.40       5.82  

 where SD=standard deviation, SE=standard error, ME=margin of error.  Each measure 

of dispersion has its own objective and interpretation. The first is the standard deviation 

(SD), which is the square root of the variance. The variance in turn is the average of the 

squared differences of the values from the mean. If one considers all the numerical 

observations on a number line, a geometric interpretation of the mean is that it is the 

closest point to all the observations as measured by sum-of-squared distances, and the 

variance is the value of the measure of closeness that is minimized. Thus, in the simple 

dot plot  representation of the data in Fig. 1c, the mean is the point on the line that 

minimizes the sum-of-squared distances to all the points1.  Some points have very large 

squared distances to the mean, for example the rightmost point 31 has a squared 

distance of (31-7.40)2 = 557 from the mean, while the four points piling up at the value 

0 each have a squared distance of 7.402 = 55 from the mean. Thinking about the mean in 

this way makes it obvious that its value will be highly influenced by outlying data 

points, which pull the mean towards them. The squared distances are on average2

                                                            
1 This same least-squares principle is used in a more general form in multivariate ordination methods, to 

define closest subspaces to a set of points, to be treated later. 

 equal 

to 111.1, which is the variance, the minimum value that can be obtained in measuring 

squared distances of the data to a point on the line. The square root of the variance is the 

SD, equal to 10.54 here (notice that the SD is the same unit of measurement as raw data, 

 
2 Strictly speaking, for theoretical reasons, the sum-of-squared distances (i.e. the sum of the squared 

deviations from the mean) is divided by n − 1, not the sample size n, to obtain the "average".  In practice, 

this only makes noticeable differences in the case of very small sample sizes. 
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and thus the mean too).  However, the SD is a useful single measure of spread of the 

data only when data are distributed symmetrically about the mean. If the data happen to 

be distributed according to a normal distribution (we usually say "normally 

distributed"), then approximately two SDs on both sides of the mean include 95 % of 

the observations. This way of thinking about the SD as a single all-purpose measure of 

spread of the data is clearly inappropriate in this case where the data values are highly 

skewed. Even one standard deviation on the left hand side of the mean extends into 

negative values, which is impossible for the egg count variable. One can partially solve 

this problem by separating the terms of the variance calculation into two parts, those for 

values above the mean and those below the mean.   Then the average sum of squares of 

values below the mean is computed separately from those above the mean, leading to 

two measures of standard deviation, which in this example would be 6.82 to the left of 

the mean and 15.07 to the right, clearly very asymmetric and not suitable for applying 

the 2SD rule below and above the mean (for a single SD estimate). If one is prepared to 

summarize the dispersion of the data by two numbers, then a straightforward alternative 

is to report estimates of the 0.025 and 0.975 quantiles (i.e., 2.5 % and 97.5 % 

percentiles) of the data set, which give an estimate of the limits of 95 % of the observed 

values: in this example this gives the interval [ 0 ,  29.25 ], rounded to [ 0 ,  29 ] for 

these integer-valued data3

                                                            
3 The lower 0.025 quantile is clearly 0, while the upper 0.975 quantile is based on an interpolation 

between the 14th and 15th ordered values of 26 and 31, and closer to the 31 than the 26.  There are at 

least nine slightly different ways of computing this interpolation, as detailed in the documentation of the 

R function quantile, the default option of which was used to obtain the estimate of 29.25. 

.  In medical reporting, benchmark values for a particular 

parameter in a population are given in the form of a reference range (or reference 

interval), usually with 95 % coverage; for example, Total Cholesterol: 120 to 200 

mg/dL.  In the present context, it is not necessarily a normal group that is being 
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described, so I suggest using the term disperson range (or dispersion interval), which 

can be quantified with the percentage such as 95 %.  Hence, the estimated 95 % 

dispersion interval for the egg counts in the control group would be 0 to 29. 

To understand the difference between a standard deviation (SD) and a standard error 

(SE) one has to make a clear distinction between the variability of the original data and 

the variability of means computed on potentially infinite repetitions of the sampling, 

each of the same size as the original sample, from the same parent population (this is the 

aspect that I find many students get confused about). This subject is treated in all 

introductory statistics books, a good example of which is Quinn and Keough (2002, 

chapter 2), aimed at biologists.  In this example we would like to know how the means 

would vary when computed for repeated (hypothetical) samples of size 15 from the 

same original distribution, in other words what other possible values of the mean could 

have been obtained.  Intuitively, means based respectively on multiple samples will be 

less dispersed, i.e. less variable and more stable, compared to the dispersion of the 

individual observations. The mean also starts to become approximately normally 

distributed as the sample size increases (see below). The SE is just the SD of the mean, 

so its reporting implies that interest lies in describing the behaviour of the mean itself 

and not in describing the dispersion of the original data. The SE is equal to the SD 

divided by the square root of the sample size: in this example, SE =10.54/√15  = 

10.54/3.87 = 10.54/3.87 = 2.72. Once more, whereas the SD refers to the variability of 

the original individual data values, the SE refers to the variability of means computed, 

notionally at least, on multiple samples (in this case, samples each of size 15). The SE is 

obviously less than the SD and diminishes in value as the sample size increases and the 

mean becomes estimated more precisely. In practice, to describe dispersion researchers 
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use the SD or SE with approximately equal frequency in research papers, according to 

Krzywinski and Altman (2013). 

If interest is in the mean of a variable, possibly for comparing with means computed for 

other groups of samples, then one wishes to know the variability in the mean that is 

reasonably expected due to sampling, because the mean would be different if you had 

sampled again.   This brings us to the margin of error (ME), which leads to the 

definition of  a confidence interval for the mean.  Curiously, even though this is the 

most useful way of expressing knowledge about the mean's variability, it is rarely 

reported in the ecological literature.  The ME is approximately equal to the standard 

error multiplied by 2, which comes from normal theory (where the exact multiplying 

factor is 1.96 for large sample sizes) − we often say "two standard errors around the 

mean".   More accurately than 2, the value is obtained from the t-distribution with 

degrees of freedom one less than the sample size n, i.e. n−1.  In the present example, 

where n = 15, the value corresponding to the t-distribution with 14 degrees of freedom 

is  2.14, which is the value used to compute the ME in this example: ME = 2.14 × 2.72 

= 5.82.  Especially for "large" (>30) samples, the ME can justifiably be reported with 

the prefix ± ("plus or minus"), because it is the value that can be added to and subtracted 

from the mean to give a 95 % confidence interval.  In the present example where n = 15 

and the data are quite asymmetrically distributed, the confidence interval would be 

roughly approximated as [7.40 − 5.82, 7.40 + 5.82]  = [1.58, 13.22] − in the next section 

the confidence interval will be shown to be slightly asymmetric.   A 95 % confidence 

interval includes the true mean of the underlying distribution with a probability of 0.95.    

Equivalently, the probability is 0.05 that the interval does not include the true mean, 

which is the conventional low level of risk that researchers are prepared to take that 

their estimated confidence interval is "off target".  The ± prefix is often used, 
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erroneously in my opinion, for the one SD and one SE forms − they do not give useful 

intervals, since ±SE gives a 68 % confidence interval, which is not intuitive.  The ±ME 

form, on the other hand, includes the true mean with a probability of 0.95 (i.e. 95 % 

confidence interval), which is more familiar and conventionally used to indicate high 

confidence about the mean's true value.   

In summary, in the case of ecological data, which are most often not symmetrically 

distributed, the SD is a poor dispersion measure of the distribution.  To measure 

precision of the mean, the SE in itself is not useful, but it is stepping-stone to compute 

the ME, which provides a useful confidence interval for the mean.  So my first 

recommendations are the following:  

 

 

 

 

 

 

 

 

 

 

 

1. Avoid reporting SD and SE, but if you have to report one of them don't 

use ± to precede them.  An option is to put them inside parentheses after 

the mean.  

2. If you have to report SDs (assuming then that your aim is to summarize 

the behaviour of the individual data, not the mean), check the skewness of 

your observations and consider the possibility of reporting estimated 

quantiles that include 95 % of the data distribution, giving what I call a 

dispersion interval.   

3. If interest is in the behaviour of the mean rather than the original 

individual values, for example in group comparisons, report the margin of 

error (ME).  The ME defines the actual precision of the estimate, namely 

the interval that most likely includes the true mean, i.e. with high 

confidence (usually 95 %). The ME can justifiably be preceded with the 

sign ± because it applies to the distribution of the mean, which is usually 

quite symmetrical, especially in larger samples (n > 30). 
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Graphical ways of showing the distribution 

When it comes to visualizing a set of data graphically, the situation is even more 

problematic, especially for small samples.  Summary statistics of the egg count data are 

displayed in 11 different ways in Fig. 2. 

The dot plot (Fig. 2a, the vertical equivalent of Fig. 1c) shows the complete situation, 

whereas all the others are summaries.  The boxplot (Fig. 2b), also invented by Tukey 

(1977), is one of the best ways shown here to summarize the distribution of the original 

individual observations (but not for very small samples, say less than 10).  Instead of the 

mean, Tukey's boxplot shows the median (i.e. the 50th percentile) as the horizontal bar, 

then the 25th and 75th percentiles as a box, and whiskers extending to the minimum and 

maximum values.  Some versions of the boxplot include a heuristic rule that identifies  

outliers, as illustrated in this particular case where the highest value of 31 is signalled as 

an outlier − see Wickham and Stryjewski, 2011).   The upper whisker is then extended 

to the next highest value, which is 26 in this example. The boxplot clearly shows that 

the distribution of egg counts is very skewed. 

Frequently, biologists display the mean of a variable as a bar rising from zero to the 

mean value.  Fig. 2c is a typical example, adding a whisker equal to 1 SD to the mean 

value.  In my opinion, this is one of the worst summaries of the distribution, and Fig. 

2d, where a 1 SD whisker is added as well as subtracted from the mean (another typical 

display used by biologists) shows the reason. There is no hint of the skewness of the 

distribution and the standard deviation is so high that plus/minus 1 SD extends into 

negative values in this particular example, which is impossible.  One could rather say 

that this is the best way of disguising the actual data!  This problem becomes acute and 

almost nonsensical for very small samples: for example, for a sample of size 2 (Fig. 3a), 
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the mean is at the midpoint of the two observations and the standard deviation is 

approximately 0.7 times the range of the two observations (the standard error would be 

half the range); and for a sample of size 3 (Fig. 3b), exactly the same bar and whiskers 

can be obtained for samples with three completely different configurations.  Thus, for 

small samples, the best option is to show the actual data in a dot plot and dispense with 

any summaries of variability.  

Returning to Figure 2, the asymmetric SD plot (Fig. 2e) gives a more realistic 

impression of the distribution below and above the mean, so this form can be used if 

one really insists on using the standard deviation measure, but two summary measures 

of dispersion are involved (i.e., 6.82, 15.07). The quantile plot (Fig. 2f), showing the 

estimated extent of 95 % of the data's distribution, is also acceptable, but again involves 

two different values  to be reported numerically (i.e., 0, 29.25).    

The remaining plots (Figs 2f-j) for SE and ME are trying to summarize the distribution 

of the mean, not the distribution of the individual data values, and the distribution of the 

mean will be less skewed than the parent distribution, thanks to the central limit 

theorem. This fundamental theorem of statistics states that as the sample size increases, 

the distribution of the mean of the sample tends to become normal, no matter what the 

original distribution of the individual values is.  But the applicability of this theorem 

depends on the sample size.  Conventionally, this theorem can be regarded to "kick in" 

seriously for samples of 30 or more, although if the data are not too skewed to begin 

with, means will be approximately normally distributed for smaller sample sizes. In the 

present example of Fig. 1, the data are very skewed and the sample size is only 15, so 

the theorem is not wholly operative. 
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As explained before, there is no clear reason why the SE should be of interest 

graphically (Figs 2g and h), since it is rather the ME that is interpretable. The double-

whisker version of the ME plot (Fig. 2j) is an acceptable option, but not the best, since it 

assumes symmetry in the distribution of the mean. If I had to choose the best option for 

displaying the mean's variation, I would choose Fig. 2k, based on "bootstrapping" the 

mean − this is explained in the next section. Notice that the confidence interval in Fig. 

2k is asymmetric, as might be expected in this example of a highly skewed distribution 

of the original data and a relatively small sample size.  The way this can be reported 

numerically is to state the mean, which is 7.4, and then the confidence interval, either as 

an interval in parentheses, (3.2, 13.7), or in the range format 3.2 − 13.7, or 3.2 to 13.7.  

An alternative notation is 7.4−4.2
+6.3

 , i.e. the mean and the different MEs respectively 

above and below the mean shown as super- and subscripts. 

My next recommendations are: 

 

 

 

 

 

 

 

 

4.  Boxplots or quantile plots are a realistic representation of the distribution of 

the original data.  

5.  For displaying variability of the mean, always choose margins of error rather 

than standard deviations or standard errors, since margins of error define 

confidence intervals (usually at 95 % confidence level). 

6.  Consider the alternative option of the bootstrap confidence interval, which 

assumes that the sample is representative of the population and does not rely on 

any assumption of the distribution − see the next section. 
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Skewness and small samples 

As sample size increases, the distribution of the mean becomes more symmetric.  As 

stated above, a rule of thumb is that sample sizes greater than 30 can be considered 

large enough for normality of the mean to be assumed.  In this case, the ME can be 

computed, using the rule of thumb of 2 times the SE (or, more accurately, the critical 

point of the appropriate t-distribution), and then the distribution of the mean can be 

summarized numerically or graphically as mean ± ME.  In the present example of 

sample size 15, however, we should be a bit more cautious, since it may well be that the 

confidence interval for the mean is not symmetric, given that the data themselves are 

highly skewed.  There are two ways to approach the problem, either transform the data 

to make the parent distribution more symmetric, even close to normal if we are lucky, or 

use the modern resampling-based approach of bootstrapping (see, for example, David 

and Hinkley 1997).    

One of the standard transformations of positive data is the log-transform (see later 

section below), but this is tricky here since there are data zeros, which complicates the 

situation even more, but there are theoretical treatments of this case, as indicated by 

Tian (2005). Adding a constant to the value before taking logs is a "cosmetic" way out  

of this problem, for example log(1+x) in this case for integer count data, but the choice 

of the constant and its effect on the results is usually not considered. Taking a root 

transformation, usually the square root or fourth root, is another cosmetic solution, often 

with no justification of the choice of root transformation other than it "acceptably" 

reduces the skewness of the distribution. Interestingly, the cube root (i.e., third root) is 

never considered, showing how arbitrary the choice is.  
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An alternative approach is to use the bootstrap.  Bootstrapping has become more and 

more prevalent in package software, e.g. Stata (Statcorp. 2015), and is easy to execute 

in R, using the boot package, for example.  The idea is to take a large number (in our 

application, 10000) of samples of size 15 of the original sample, with replacement, and 

to compute the mean on each one, giving an approximate empirical distribution of the 

mean, from which any percentiles can be estimated.  A summary of the distribution of 

these simulated means (Fig. 4) shows the estimated confidence interval, where whiskers 

extend from the mean (shown as a dot), to the upper 97.5th and lower 2.5th percentiles, 

thus giving an estimated 95 % confidence interval for the mean, which I call a 

confidence plot (these are the same limits used in Fig. 2k). To enhance the interval in a 

style similar to the boxplot, a box has been added to show the boundaries of the 75th and 

25th percentiles, thus enclosing 50 % of the mean's distribution. Thus there is a 50:50 

chance that the true mean lies within the box, and a 95 % chance that it lies in the range 

of the interval. (Coincidentally and independently, in a recently published book 

Gierlinski (2015, Figure 1-1) makes similar plots to summarize the distribution of 

individual values, where "boxes encompass data between the 25th and 75th percentile; 

whiskers span between the 5th and 95th percentiles", hence a 90 % dispersion interval 

in that case). In my confidence plot, the box is of secondary importance and can be 

omitted, especially if it is confused with Tukey's boxplot.  Once again, at the risk of 

repetition, the boxplot, such as the one in Fig. 2b, shows the variability in individual 

values, whereas the confidence plot in Fig. 4 shows the variability in the mean. 

The bootstrap should not be used for very small samples, however, where the sample 

distribution is often a poor image of the population distribution − generally, for n = 10 

and higher it starts to be acceptable, but not for smaller samples.  There are 
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enhancements to the bootstrap that improve its properties − see, for example, Good 

(2005, Section 3.3.3). 

 

A further recommendation is thus: 

 

 

 

 

 

 

The format of the confidence plot (Fig. 4) lends itself to comparisons between means of 

different data sets, which is the subject of the next section. 

 

Comparisons of two sets of data 

Suppose that another data set of 15 egg count observations is available for a treatment 

group, with values shown in stem-and-leaf form side-by-side with the previous control 

data, as well as a "back-to-back" version for an even easier comparison (Fig. 5a). The 

treatment group has values generally higher than those in the control group, but is the 

difference in the group means statistically significant?   Using the confidence plot style 

(Fig. 4) and bootstrapping the mean of the new data set gives Fig. 5b. The confidence 

intervals overlap, which gives the impression that the means are not significantly 

7. For sample sizes 30 or higher, the mean ± ME gives a good approximation to 

the confidence interval.  For smaller samples, and for data from very skewed 

or non-normal distributions,  a realistic confidence interval for the mean is 

achieved by bootstrapping the sample to obtain an empirical distribution of 

the mean, and thus any percentiles.  The bootstrapping option for drawing 

confidence plots is valid for any sample size (except very small ones, less 

than 10, say), and is distribution-free, so is a good choice in general for all 

cases. 
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different. However, the overlapping of two 95 % confidence intervals does not 

necessarily imply non-significance of a difference at the 5 % significance level. No 

overlap, however, almost surely implies significance, as pointed out by several authors, 

for example Krzywinski and Altman (2013). The 95 % confidence plot is thus 

conservative when comparing groups, but being conservative is, in any case, an 

advantage when several comparisons are being made. The graphical display is not 

intended to be an inferential instrument, only an indication of difference. In all cases, 

whether confidence intervals overlap or not, the actual p-value should be computed − in 

this example an exact permutation test, using the coin package in R, gives a p-value of 

0.06 (and consistently above 0.05 for other randomizations), so the means are not 

significantly different at the 0.05 significance level. 

So the next recommendation is: 

      

 

 

 

 

 

The logarithmic transformation and multiplicative effects 

Figs 4 and 5b showed non-symmetric confidence intervals for the mean, achieved by  

bootstrap resampling.   The errors above and below the mean are different because of 

the skewness of the data and the small sample size, so to report the confidence interval 

8. Use 95 % confidence intervals in plots that are comparing means from 

different data sets, with the understanding that these are conservative for 

showing significant differences.  The actual hypothesis test that is 

appropriate for the data, which leads to a p-value, is the accurate way of 

arriving at a conclusion.  If the confidence intervals do not overlap, then it is 

highly likely that the means will be found to be significantly different. 
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numerically one would have to specify two errors, which may be cumbersome.   In 

describing the distribution of the original data, or the distribution of the mean, it is 

common practice to report a table such as Table 1 (extracted from Table 1 of Piquet et 

al., 2016, this volume), showing means and SDs of temperature and NOx (nitrates & 

nitrites) for two seasons at five stations. These values are supposed to summarize a 

central value (the mean) and a deviation from this value (the SD) for the raw data.  As 

discussed earlier, the use of the symbol ± really has no meaning here and should be 

dropped if the SDs are required to be reported, similarly if SEs are reported. For the 

temperature data, the addition and subtraction of some quantity to describe the 

distribution has some inherent sense, because temperature is considered a variable on an 

interval scale, can take negative values and might even be approximately normally 

distributed. Adding and subtracting a quantity to the NOx mean, on the other hand, can 

lead to paradoxes such as the "Late Spring" values, several of which drop below zero if 

the SD is subtracted from the mean, e.g. 1.08 ± 2.19 for sample "M", and 0.80 ± 1.10 

for sample "KG". A solution to this dilemma is to think of variables that measure 

positive quantities on a ratio scale, which implies that any differences, and in particular 

measures of variability, are expressed as multiplicative (or percentage) differences. 

It is true that almost every computation involved in regular statistical analysis is one of 

adding (e.g. summing values to obtain a mean), or subtracting (e.g. computing 

differences to obtain a variance). Confidence intervals for estimates such as means, 

group differences and regression coefficients are often expressed by the estimated value 

plus or minus a single value, the ME. For ratio-scale data, however, one should be 

thinking of multiplying and dividing rather than adding or subtracting. A good test of 

how data differences are inherently considered is the following: suppose you have two 
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samples A and B in a nutrient analysis with these values of inorganic phosphorus and 

NOx: 

   Inorganic phosphorus (µM) NOx (µM) 

 Sample A      0.50        5.00 

 Sample B      0.52        5.02 

For both variables, which use the same measurement scale (µM), sample B contains 

0.02 units more than sample A.  But are these the same differences, or is the difference 

in inorganic phosphorus larger, because 0.52 is 4 % more than 0.50 whereas 5.02 is only 

0.4 % higher than 5.00?  If the latter case is preferable for comparing the samples, then 

the researcher is − consciously or unconsciously − thinking of the scale as multiplicative 

and not additive.  And the simplest way to pass from a multiplicative scale to an 

additive one, so that all the usual additive statistical methodology can be applied, is to 

transform to logarithms.  On the log scale the differences are:  

            Inorganic phosphorus:                        NOx: 

 log(0.52) − log(0.50) = 0.03922         log(5.02) − log(5.00) = 0.00399     

showing that the difference for the first variable is measured about 10 times larger than 

the second one. The property of the logarithm to convert ratios to interval differences is 

exemplified by the identity: log(x/y) = log(x) − log(y). Moreover, positive data are often 

skewed to the right, in which case the log-transform pulls in the high values and makes 

the distribution more symmetric, which is an additional benefit for many statistical 

model assumptions. 

There are, however, some notable repercussions of this transformation and of seemingly 

innocuous statements found in many "Methods" descriptions, such as "Data were log-

transformed prior to analysis" (quoted from an article in this special issue). If one really 
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needs a single number for reporting the dispersion of a ratio-scale variable, one needs a 

statistical model for the underlying distribution of the data, and the log-normal 

distribution provides the most obvious solution, just like the normal distribution is 

natural for symmetrically distributed interval-scale data. The log-normal distribution is 

the distribution of a variable X, whose log-transform log(X) is normally distributed. 

Thus, doing classical statistics like computing means, variances and regressions on log-

transformed data, using the normal distribution, implies that one is assuming the log-

normal distribution as the underlying distribution of the untransformed data. However, 

computing the mean and SD on log-transformed data and then simply back-

transforming to the mean and SD on the original scale, using the exponential function, 

does not give the correct estimates of the mean and SD of the log-normally distributed 

variable.  Because the log-transformation is not linear,  the mean of the logged data is 

not the correct estimate of the log of the mean.  The acceptable way of transforming 

back to the original scale involves a bias-correction, which is well-known in the 

statistical literature, but not so familiar to ecologists.  It results in a SD "factor", a value 

higher than 1, which multiplies and divides the estimated mean in order to give a region 

of dispersion, rather than a SD that is added and subtracted (for more technical details, 

see Aitchison and Brown (1957) or Feng et al. (2014) − the method is programmed in 

the R package EnvStats by Millard (2013)). I illustrate this alternative approach with 

the data set from the study of Piquet et al. (2016, this volume), part of which was given 

earlier in Table 1.  In this table there is a reported mean of 0.80 and SD of 1.10 for the 

variable NOx, for a subsample of the data defined by season "Late spring", and station 

"KG".   The NOx data for this subsample, with n = 10 observations,  along with a 

dotplot of the values and a boxplot summary, are given in Fig. 6. 
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The data are clearly very skewed, with an outlying high value of 3.71, which has caused 

the SD to be very high. Summarizing these data by their mean and SD, which implicitly 

assumes a normal − or, at least, a symmetric − distribution, once again does not reflect 

the true nature of these data, like the egg count example discussed before.  The model-

based alternative introduced in this section is to assume that the data follow a log-

normal distribution. The distributional assumption can be checked visually by doing a 

quantile plot.  For normally distributed data the plotted values should lie approximately 

on a straight line, and can be more formally verified by a test of normality, e.g. the 

Shapiro-Wilks test.  Fig. 7 shows that for the original untransformed NOx values the 

pattern of points in the quantile plot is convex, indicating right-skewness, and normality 

is soundly rejected (Shapiro-Wilks test for normality has p-value p = 0.0004), whereas 

for the log-transformed data the pattern is approximately linear and normality is 

accepted (p = 0.99). Thus, the log-normal distribution is a good assumption here. 

Here are some summary statistics of this data set, where the variable NOx is denoted by 

x, and the log-transformed variable by y = log(x): 

   mean of x:  𝑥 = 0.796 mean of y:   𝑦 = −0.922 exp ( 𝑦 ) = 0.398  

   SD of  x:    sx = 1.106  SD of  y:     sy =  1.278 exp (sy) = 3.590 

The SD sy  is also larger than the mean  𝑦, but logarithms are allowed to be negative, so 

one might be tempted to compute statistics on the log-scale and then transform back to 

the original one using the exponential function.  This is not correct, however, and all 

estimates will be biased: for example, the exponential of  𝑦, exp(−0.922) = 0.398, is a 

severe under-estimate of the mean of the log-normally distributed  x in this case.   The 

theory of the log-normal distribution leads to the following estimates of the mean of the 
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log-normal and a multiplicative factor defining its variability  (see, for example, 

Aitchison and Brown 1957, Parkin et al. 1990, Limpert et al. 2001).  

First, the mean of x is estimated by exponentiating 𝑦 plus a term that depends on the 

variance 𝑠𝑦2: 

    Estimated mean: exp ( 𝑦 + 𝑠𝑦2/2 ) = exp(−0.922 + 1.2782/2) = 0.900     (1) 

i.e. the back-transformed value of exp ( 𝑦 ) = 0.398 is multiplied by the factor             

exp ( 𝑠𝑦2/2 ) = exp(1.2782/2) = 2.263.   

Second, the standard deviation is this estimated mean multiplied by  �exp ( 𝑠𝑦2) − 1  :  

    Estimated SD:  exp ( 𝑦 + 𝑠𝑦2/2)�exp ( 𝑠𝑦2) − 1  = 0.900 × 2.030 = 1.827     (2) 

Hence, the quantity  �exp ( 𝑠𝑦2) − 1  is equal to the SD divided by the mean, which is 

the coefficient of variation of the log-normal distribution. 

The estimated SD in (2) is a multiplicative factor that has to be multiplied, or divided, 

by the mean to get one standard deviation above or one standard deviation below the 

mean: 0.900 / 1.827 = 0.493 and 0.900 × 1.827 = 1.644.   Two SDs above and below the 

mean would be calculated as 0.900 / 1.8272  = 0.270 and 0.900 × 1.8272 = 3.004 (notice 

that the multiplicative factor is squared, not doubled). These would be the limits of an 

interval including approximately 95 % of the data (for this particular sample it covers 

only 6 out of the 10 actual observations, but this is due to the low sample size).   

In summary, an alternative model-based way of reporting a mean and the variability of 

positive observations considered to be on a ratio scale and lognormally distributed, is 

given by the estimated mean of a log-normal distribution, along with a multiplicative 
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SD factor that is always greater than 1, in this case 0.900 (1.827) − this would replace 

Piquet et al.'s mean and SD of 0.80 (1.10).   

Computing a 95 % confidence interval for the mean of lognormally distributed data 

involves a more complicated calculation (see, for example, Land 1972, Parkin et al. 

1990), but − similar to the SD − the ME is a factor that multiplies and divides the mean 

to get the interval limits. In this example, this factor turns out to be 3.343, so rather than 

"plus-minus", a "multiply-divide" symbol is required, e.g. ×÷, or the symbol ×/  

proposed by Limpert et al. (2001): 0.900 ×/ 3.343.  The confidence interval is (0.269, 

3.009). 

This "multiply-divide" style is such a radical change in reporting summary statistics of 

positive-valued right-skewed data in the biological literature, that I do not recommend it 

(at least, not yet), even though it is a logically consistent model-based approach to the 

summarising of such ratio-scale data, analogous to the usual normal distribution 

approach to interval-scale data. The above results depend on the data being lognormally 

distributed and this is not always the case, and the only benefit of this approach appears 

to be the ability to summarize dispersion by a single number (the multiplicative SD or 

ME factors) rather than two numbers (the lower and upper limits of an interval, or the 

deviations below and above the estimated mean).  

This description of the lognormal case is included here so that researchers can realize 

the non-trivial consequences of a log-transformation, or any other non-linear 

transformation such as the square root for that matter.  The consequences for the 

estimation of the mean are particularly important.  For estimating a confidence interval 

for the mean, a nonparametric distribution-free alternative such as the bootstrap 

confidence interval is one of the most suitable.  Another important comment about the 
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use of the log-transformation in the statistical modelling of count data is that it can be 

avoided, as maintained by O'Hara and Kotze (2010), who prefer using the correct 

theoretical distribution, which can be Poisson or negative binomial, amongst others, 

depending on the data's properties.   

 

Bivariate data 

Considering two variables simultaneously is also common in ecology, for example the 

joint analysis of stable isotopes of carbon (δ13 C) and nitrogen (δ15 N) − see Huenerlage, 

Graeve and Buchholz (2016, this volume, Figure 5), who show a scatterplot of the 

means of five krill species, and margin of error bars in the directions of the "x" (δ13 C) 

and "y" (δ15 N) axes.  This plot is repeated here (Fig. 8a), but using the distribution-free 

bootstrap approach described earlier, showing rather symmetric confidence intervals, 

thanks to the original data not being particularly skewed.  Hence, there is no noticeable 

difference between Fig. 8a and Huenerlage et al.'s Figure 5, which is based on normal 

theory.   The symmetry  in this case gives some assurance that the means of such small 

samples (of sizes 21, 9, 6, 5 and 5, respectively, for the five species abbreviated as Ti, 

Tr, TL, Mn and Nm) might be close to normal. 

As a comparison with the 95 % confidence intervals, Fig. 8b shows the 68 % confidence 

intervals, based on plus/minus a single SE and hence much shorter. Fig. 8b is again not 

recommended, since it gives a too optimistic view of the group differences. This can be 

seen in Table 2, which details the overlapping or not of the plotted intervals in the two 

cases, as well as the actual p-values obtained by the standard t-test between pairs of 

species and by the distribution-free permutation test (notice that we avoid the issue of 

multiple comparisons for the moment, to be discussed in the next section).   Looking at 
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the first two columns, there are in a few cases large differences between the p-values 

obtained by the t-test, restrictive in its assumptions, and the distribution-free exact 

permutation test.  The conservative 95 % confidence intervals perform well when 

compared to the p-values, while the 68 % confidence intervals are too optimistic, as 

expected, showing some apparent differences that are not significant according to the 

respective tests.   Given that the 95 % confidence level is a familiar concept to most 

researchers, it can again be concluded that it is the preferred approach for visualizing 

precision in means.  

The style of Fig. 8 might give the impression that the confidence region for the mean of 

each species lies in a square area, but these regions tend to be elliptical due to the 

additional effect of correlation between the two variables.   Following the bootstrapping 

approach, the resampling of the data for each species leads to an estimation of the 

distribution of the mean in the plane of the two variables, and 95 % confidence regions 

can be defined, shown as ellipses in Fig. 9.  Technically, this is done by generating a 

large number, 10000 say, of bivariate means on bootstrapped samples, and then the 

ellipse function in the R package ellipse is used to compute the elliptical regions.  

This pattern suggests that species TL and Mn have different isotopic signals from all the 

others, and Tr is different from Nm or, putting it another way, the only non-significant 

differences are between Ti and Tr and between Ti and Nm.  These conclusions are 

confirmed by multivariate ANOVA (MANOVA) tests performed on each pair of 

species (Table 3). 
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In summary, recommendations about the display of grouped bivariate data are: 

 

 

 

 

 

Multiple testing  

The issue of multiple testing, ignored up to now, can be illustrated using the p-values in 

Table 3. The conventional significance level of 0.05 (or 5 %), equivalent to a 

confidence interval of 95 %, means that a risk of 1 in 20 is taken that a result found to 

be significant is actually just random variation (called the "type I error"). If we do 10 

tests, as in Table 3, then this risk is increasing on the individual results to a probability 

of 0.40 of finding one of the results to be significant by chance. This problem is well-

known and often referred to as increasing the false positive rate. Hence, some 

adjustment needs to be made to the significance level, reducing it so that the 5 % risk of 

the type I error is not increased but applies to the whole family of tests. In statistical 

jargon, "the false positive rate is controlled so that the family-wise probability of a type 

I error is 0.05". There are many ways of coping with this problem, the most well-known 

being the Bonferroni correction − see, for example, Moran (2003). This is a simple 

division of 0.05 by the number of tests being made, i.e. 0.05/10 = 0.005 in the case of 

Table 3, to obtain the significance level one should use. The Bonferroni correction is 

9. Use 95 % confidence ellipses to show the variability of bivariate group 

means.  As for univariate data, if two confidence ellipses do not overlap, then 

it is highly likely that the two respective groups have means that are 

significantly different.  

10. Nevertheless, the appropriate statistical test, using MANOVA or the 

distribution-free permutation test, should be conducted to obtain a p-value to 

quantify the significance of the difference. 
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too extreme, since it assumes that all the tests are totally independent of one another, 

which is clearly not true. Performing all the tests could be avoided by pre-specifying a 

smaller set of comparisons that are planned beforehand according to some research  

hypotheses.  When all comparisons are of interest in an exploratory analysis, an 

alternative approach, which is popular in the biostatistical literature and easy to 

implement, is the Benjamini-Hochberg step-up procedure (Benjamini and Hochberg 

1995). The m, say, p-values of all the tests are ordered from lowest to highest, and in 

parallel a list is made of the arithmetic series 0.05×{1,2,...,m}/m, i.e. in our example 

starting with 0.05/10, and then moving up in steps of 0.05/10 until 0.05 (assuming that 

0.05 is the desired overall significance level): 

p:             0.0001    0.0006    0.0009    0.001    0.001    0.002     0.003    0.029   |   0.072    0.099 

series:      0.005      0.010       0.015     0.020    0.025    0.030     0.035    0.040   |   0.045    0.050 

As long as the p-value stays below the corresponding value of the series, the p-value 

can be regarded as significant, which includes all the p-values up to 0.029, to the left of 

the vertical bar. To the right of the bar the p-values are greater than the corresponding 

series values. Notice that the series starts at the Bonferroni corrected level and moves in 

equal steps up to the 0.05 level, so it is only the smallest p-value that needs to be below 

the Bonferroni level, not all of them. If we had used the stricter Bonferroni adjustment 

for all tests, the difference between Tr and Mn would have been declared non-

significant, even though p = 0.029. 

  



28 
 

Recommendations for controlling the false positive rate when many tests are conducted 

on the same data are thus: 

 

 

 

 

 

 

 

Multivariate data  

It is still possible to visualize data on three variables (i.e. trivariate data) simultaneously 

by using several three-dimensional orientations of the points or even animations to give 

a three-dimensional effect.  Some examples of dynamic graphics are given by 

Greenacre and Hastie (2010), and the original animations can be seen at 

http://www.econ.upf.edu/~michael/dynamic  (last accessed 1 July 2016). An 

example of the trivariate means of six groups is shown in Fig. 10, where the equivalent 

of ellipses in three dimensions, called ellipsoids, describe 95 % confidence volumes for 

the three-dimensional means. Two different views of these confidence volumes are 

shown: first in Fig. 10a, where the groups A5 and A6 clearly separate from the others in 

the direction of  variable 1, whereas the others are generally overlapping but with A1 

and A4 visibly separated. The different viewpoint in Fig. 10b, where the display has 

been rotated 90° around the axis of variable 1, shows that the ellipsoids of A2 and A4 

11. Think carefully, preferably before the data are collected, about which 

hypothesis tests you want to perform. 

12. Eventually gather together all the p-values of this set of m tests being 

performed and order them from smallest to largest. 

13. Using the Benjamin-Hochberg approach, compare this ordered list to an 

arithmetic series starting from α/m, incrementing in steps of α/m until α (the 

overall significance level, usually 0.05).  The p-values that are below the 

corresponding values of the series indicate significant tests. 
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are separated, and A1 and A3 overlapping only slightly. Hence, the three-dimensional 

configuration has to be inspected from different angles to judge whether the ellipsoids 

really do overlap or not in their three-dimensional positions. Again, the acid test is to 

compute p-values using MANOVA (reported in Table 4) or a permutation test. Table 4 

confirms the visual inspection, showing that A2 and A4 are significantly different as 

well as A1 and A3. 

In this section, however, I will be more concerned with multivariate data that exist in a 

high-dimensional space, usually much higher than three, so it impossible to see the data 

exactly. In order to visualize such data, a dimension-reducing algorithm is used to 

produce "flat" two-dimensional planar versions that minimize loss of information, since 

information is necessarily lost by any such reduction. In practice, this is exactly the 

same objective as described previously, where the mean was defined as the point that 

came closest to all the observations in terms of least squares − the only difference is that 

here the objective is to identify a plane that comes closest to all the points. This 

approach is typical of methods such as principal component analysis (PCA), 

multidimensional scaling (MDS), correspondence analysis (CA), redundancy analysis 

(RDA) and canonical correspondence analysis (CCA).  The general idea in these 

methods is that the data points have positions in a high-dimensional space, which is 

impossible to view, but that their positions can be approximated in a two-dimensional 

space, called an ordination. This technology is enhanced by adding points that represent 

the original variables to the scatter of points in the ordination, called a biplot, as well as 

adding confidence ellipses if points are grouped. Most of the issues for visualizing 

bivariate data, discussed in the previous section, apply to these two-dimensional 

ordination plots, whose axes are no longer actual variables, but combinations of several 

variables that account for the most variation in the data. 



30 
 

As an example, the data of Voronkov et al. (2016, this volume) were re-analysed using 

CCA, presented in Fig. 11 (see that paper for a description of the samples, which are 

classified into seven groups, the species variables and the environmental variables used 

to constrain the solution). There are minor differences here compared to their Figure 7, 

mostly in scaling factors along the two ordination axes, but these are of no consequence 

for the general interpretation of the result. As is common for CCA ordinations of this 

type, there are three possible sets of points in the resultant triplot: the samples, the 

species and the constraining variables. Several enhancements have been added 

compared to the output of standard software.  

Firstly, not all the species are shown in Fig. 11 (notice that in Voronkov et al.'s Figure 7 

no species are shown at all, possibly because of the proliferation of points). The 

coordinates of the species in Fig. 11 are chosen to be the so-called contribution co-

ordinates, which show the small subset of species that contribute more than average to 

one of the ordination dimensions (Greenacre 2012).  These highly contributing species 

have positions in this display far from the centre, whereas all lower-contributing 

species, with positions close to the centre, have simply been eliminated from the 

ordination since they are not worth interpreting.  But there are three other species that 

are highly correlated with the ordination, even though they have not contributed highly 

to it, and these are added with a smaller font size. Filtering out these highly correlated 

species is performed slightly differently from distinguishing the highly contributing 

species, which contribute more than average to the CCA solution.  The percentages of 

inertia on the ordination axes (see Fig. 11) are 50.6 % and 16.4 % respectively, which 

are overall measures of how much the axes explain the data and are the averages over 

the individual percentages for the species (or for the samples).  The squared correlations 

of individual species with the axes are measures of how much the axes explain each 
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species. Hence, those species that are explained more than 50.6 % by axis 1 or more 

than 16.4 % by axis 2 are judged to be correlated more than average. 

Secondly, the 95 % confidence ellipses of the means of the seven groups are shown in 

the ordination.  These are actually the projections of the multivariate hyper-ellipsoids 

onto the two-dimensional ordination, so separation of the ellipses again indicates 

significant difference, but again a formal test should be conducted.  Overlap of the 

ellipses, however, does not imply that they might in fact be separated in the "full space" 

of the data − they are just overlapping in the projected ordination space that is the 

support of the visualization.  Only groups 4 and 5 are overlapping in the ordination, and 

permutation tests on all pairs of groups show that indeed these two groups are not 

significantly different, whereas all the others are.  Notice that several group ellipses do 

separate horizontally as well as vertically, suggesting that these axes are significant.  To 

confirm this, the permutation test in the vegan package (Oksanen et al. 2014) in R 

shows both these axes to be highly significant (p < 0.001). 

The ordination thus shows the directions of the environmental variables used to 

constrain the ordination space, the positions of the samples (numbered points), their 

group means and confidence regions (larger numbers and ellipses), and the species that 

are highly contributing to the separation of the samples, with a total of 67 % of the 

constrained inertia explained. This is a very concise summary of the features of a large 

data set, showing just the essential features necessary for the ecological interpretation.       
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When reporting results of ordinations, the following recommendations are relevant:  

  

 

 

 

 

 

 

Discussion and concluding remarks 

In his seminal book on statistical graphics, Tufte (2001) states two basic principles: "1. 

Above all else, show the data;  2. Avoid chartjunk by maximizing the data to ink ratio".  

The aim of summarizing observed data into some numbers (e.g., mean or median and 

some measure(s) of dispersion) or visualizing data in some graphical form, be it 

univariate, bivariate or multivariate, is to communicate the features in the data to the 

reader or observer. As I have tried to demonstrate, several tabular and graphical styles in 

common use can be misleading and should be avoided − the researcher's choice of data 

summaries and visual presentation should aim to reveal the data's features rather than 

disguise them. This topic is not often treated in the biological literature beyond the mere 

description of certain well-known graphical representations found in standard software 

packages. An exception is the book by Quinn and McKeough (2002), who include a 

specific chapter on exploratory data analysis and graphics, but with little critical 

comment on graphics found in present-day literature. The recent paper by Weissgerber 

14. Try to include only those points and symbols that are necessary for the 

interpretation of the ordination.  In this respect, using contribution 

coordinates and showing only highly contributing species is one way to cut 

down the number of points showing the biological variables. 

15. When sample points are grouped, use confidence regions (as for bivariate 

data) to show the variability in the group means, and perform multivariate 

tests of differences between group means, thereby controlling the false 

positive rate. 
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et al. (2015), pointed out by a referee, is closely aligned to my ideas in the present 

paper, where they say, for example, that "as scientists, we urgently need to change our 

practices for presenting continuous data in small sample size studies". In their 

investigation of 703 research articles, they found that "most papers presented 

continuous data in bar and line graphs", which is "problematic as many different data 

distributions can lead to the same bar or line graph" (cf. my Fig. 3). These authors go so 

far as to recommend that journals change their policies and peer review practices so as 

to "discourage the use of bar graphs" and "provide specific guidance about what types 

of figures are preferred". They further conclude, coinciding with my experience, that 

"scientists need better training in how to select the appropriate type of figure for their 

data".   

Concerning the practice of reporting standard deviations or standard errors alongside 

mean estimates of a variable, I have made a strong case for replacing this with estimated 

quantiles, when intervals are required to show the dispersion of the data values 

themselves, or  confidence intervals to express precision of the estimated mean.  A 

referee makes the following defence of the standard deviation: "...even with asymmetric 

distributions it can still be useful, as a larger SD means more spread".  The problem 

with this statement is that spread can be measured in many different ways, so why use 

the SD rather than, say, the inter-quartile range or the mean (or median) absolute 

deviation from the mean, which also go up when the dispersion of the values increases.  

The issue is: what is the meaning of the SD in the context of the particular data at hand?  

The SD has relevance only when the data are symmetrically distributed, and has specific 

quantifiable and interpretable meaning for normally distributed data.  Ecological data 

are typically not symmetrically distributed, so this rules out any single figure summary 

of dispersion about the mean.  A lesson can be learnt from the reports provided by a 
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medical laboratory, where the patient's values on cholesterol, sugar, etc., are reported, 

alongside a reference range, consisting of two values, a lower and upper one, computed 

on data from a healthy population − this reference range would never be reported by a 

mean and an SD!  As for confidence intervals, I have also made a strong case for 

reporting bootstrap estimates.  While bootstrapping has some drawbacks, especially for 

small samples, it is nevertheless a good all-purpose distribution-free alternative that can 

be used for continuous data in general and an improvement over much of common 

practice at present. 

I have made several specific recommendations in this article to improve data 

presentation in ecology − these are my particular and personal suggestions (out of many 

more potential ones) inspired by many years of working with ecologists and considering 

the statistical aspects of this special Kongsfjorden issue.  I do not expect all researchers 

to follow my advice, since it is difficult to change established ways, such as reporting 

large tables of means and standard deviations and showing bar plots of means with a 

single "whisker" showing a standard deviation or standard error. Yet I hope that this 

article serves, at least, to alert readers to the problems surrounding the reporting and 

graphing of numerical data, to show them alternative ways of proceeding and to lead to 

an eventual improvement of statistical reporting in the ecological literature. 

To assist readers to improve their data presentation skills, I have set up a webpage at the 

address www.econ.upf.edu/~michael/graphicsR , with commented R scripts that 

reproduce most of the graphics and statistics in this article. 
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Table 1: Extract from Piquet et al. (2016, this volume, Table 1), showing means and 

standard deviations of two variables for various subsamples of the data set. 

 

                             Station         Temperature             NOx 

                      Early spring          

                                  O                1.35 (±0.38)      8.25 (±2.48) 
.                                 M               1.14 (±0.26)      7.10 (±2.34) 
                                  G                0.05 (±0.57)      7.33 (±1.57) 
                                  KM             0.10 (±0.40)      8.71 (±2.06) 
                                  KG            −0.30 (±0.64)      9.17 (±1.76) 

                      Late spring 

                                  O                2.91 (±1.38)      0.62 (±0.68) 
                                  M               2.74 (±1.49)      1.08 (±2.19) 
                                  G                3.07 (±1.60)      1.23 (±0.74) 
                                  KM             2.89 (±1.26)      0.36 (±0.36) 
                                  KG              3.14 (±0.86)      0.80 (±1.10) 
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Table 2: Significance of pairwise species comparisons (critical level of 0.05), using 

classical t-test as well as distribution-free exact permutation test, and whether the 

confidence intervals are non-overlapping. 

 

                                       p-values                              non-overlap 
Comparison        t-test             exact             in 95% CI     in 68% CI 

      δ13 C 

Ti vs. Tr    0.696 0.623  no                 no 

Ti vs. TL   0.020           <0.001              yes                yes     

Ti vs. Mn <0.001             0.001              yes                yes 

Ti vs. Nm   0.098 0.077  no                 yes 

Tr vs. TL   0.020 0.026

Tr vs. Mn   0.053 0.102               no                 yes 

              yes                yes 

Tr vs. Nm   0.381 0.453   no                 no 

TL vs. Mn   0.002 0.002              yes                yes 

TL vs. Nm   0.004 0.006               yes                yes 

Mn vs. Nm   0.163 0.191  no                 yes 

      δ13 N 

Ti vs. Tr    0.064 0.036  no                 yes  

Ti vs. TL   0.004           <0.001              yes                yes     

Ti vs. Mn   0.004             0.065              yes                yes 

Ti vs. Nm   0.018 0.091  no                 yes 

Tr vs. TL   0.078 0.084  no                 yes  

Tr vs. Mn   0.870 0.914  no                 no  

Tr vs. Nm   0.004 0.012              yes                yes  

TL vs. Mn   0.041 0.056               yes                yes 

TL vs. Nm <0.001 0.004                yes                yes 

Mn vs. Nm   0.004 0.008                yes                yes 
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Table 3: p-values from MANOVAs performed on the pairs of species, with significant 

p-values (p < 0.05) shown in bold and underlined. 

      

                          Tr           TL          Mn         Nm 

               Ti         0.072    0.0001    0.001      0.099 

               Tr                       0.001      0.029     0.0009       

               TL                                      0.002       0.003 

               Mn                                                    0.0006 
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Table 4: p-values from MANOVAs performed on the pairs of group means in Fig. 12, 

with significant p-values (p < 0.05) shown in bold and underlined. 

 

                                A2          A3          A4          A5          A6 

               A1         0.235   0.003    <0.001    <0.001   <0.001 

               A2                      0.164      0.003     <0.001   <0.001      

               A3                                      0.243     <0.001   <0.001 

               A4                                                     <0.001   <0.001 

               A5                                                                    <0.001 

 

  



43 
 

Figure captions 

Fig. 1  (a) Sample of 15 egg counts in an experiment on Calanus glacialis  (b) 

Horizontal and vertical stem-and-leaf plots of this small data set (c)  Dot-plot 

representation of the data 

Fig. 2  Different representations of the count data: (a-f) attempt to show the distribution 

of individual values; (g-k) attempt to show the distribution of the mean; from (c) 

onwards, with the exception of (f), a box is drawn from the zero to the mean value.  (a) 

the actual raw data as a dot plot; (b) a boxplot showing median, quartiles and extreme 

values; (c) and (d) one standard deviation (SD) above the mean, first as a whisker above 

the mean, then as a whisker above and below the mean; (e) an attempt to reflect the 

asymmetry of the distribution, showing the SD computed for values below the mean 

and a separate computation for values above the mean; (f) the mean and whiskers 

extending to the estimated 2.5 % and 97.5 % quantiles (so that 95 % of the estimated 

distribution lies between these limits; (g) and (h) one standard error (SE) above the 

mean and then above and below; (i) and (j) the margin of error (ME) for 95 % 

confidence level above the mean and then the same margin of error above and below the 

mean, i.e. the 95 % confidence interval according to normal theory; (k) the  95 % 

confidence interval based on distribution-free bootstrap sampling.  Two ticks ( ) 

indicate acceptable ways of visualizing the variability of the data or the mean, one tick 

() is borderline and a cross ( ) is unacceptable. Horizontal bars drawn at the end of 

the whiskers enclose intervals that have clear substantive meaning 

Fig. 3 (a) Sample of size 2 and mean  SD plot.  (b) Three samples of size 3 in 

completely different configurations, which give exactly the same mean  SD plots, and 
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which are identical in turn to the plot in (a). The horizontal dashed line indicates the 

mean common to all the configurations 

Fig. 4   95 % confidence plot for mean egg count, based on 10000 bootstrap samples. 

This is the same as Fig. 2i, but visualized in a different style reminiscent of a boxplot. 

The mean is indicated by a dot (as opposed to a line for the median in a boxplot). The 

box encloses a 50 % confidence interval for the mean, and the whiskers a 95 % 

confidence interval 

Fig. 5  (a) Stem-and-leaf plots of two sets of egg-count data, for control and treatment 

groups, as well as a back-to-back plot  (b)  95 % confidence plots for the means 

(C=control, T=Treatment) 

Fig. 6  NOx data (n = 10), corresponding dot plot display (with points jittered where 

there are overlaps), and boxplot. 

Fig. 7  Normal quantile plots for the original NOx values and their log-transformed 

ones. 

Fig. 8  Separate confidence intervals for variables 13 C and 13 N at two levels of 

confidence: (a) 95 % and (b) 68 % (one standard error), obtained by bootstrapping 

Fig. 9  Elliptical 95 % confidence regions for the bivariate means of the five species, 

based on bootstrapping 

Fig. 10  Perspective views of a three-variable example of the ellipsoidal 95 % 

confidence regions of six group means, from two different angles. In (a) the ellipsoids 

of groups A2 and A4 appear to be overlapping, whereas in the different view of (b), 

with variable 3 shown vertically, they are seen to be separated 
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Fig. 11  Two-dimensional CCA ordination of the data of Voronkov et al. (2016, this 

volume), showing (i) the samples, in seven numbered groups (there is only one sample 

from group 2), (ii) the 95% confidence ellipses for the group means (except for group 

2), shaded with the group number in boldface, (iii) the 13 species that contribute more 

than the average to one of the two dimensions, (iv) the three additional species (in 

smaller font, lower left), that contribute less than average but nevertheless are more than 

average highly correlated with the ordination, and (v) the seven constraining variables 

(in grey).  For abbreviations see Voronkov et al. (2016, this volume) 
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Fig. 1 
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Fig. 2 (should be rotated) 
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Fig. 3  
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Fig. 4 
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Fig. 5 

            Control data                       Treatment data                   Control       Treatment 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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