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Abstract

Despite intense scrutiny, estimates of the government spending multiplier remain highly

uncertain, with values ranging from 0.5 to 2. While an increase in government spending

is generally assumed to have the same (mirror-image) effect as a decrease in government

spending, we show that relaxing this assumption is important to understand the effects

of fiscal policy. Regardless of whether we identify government spending shocks from (i) a

narrative approach, or (ii) a timing restriction, we find that the contractionary multiplier

—the multiplier associated with a negative shock to government spending—is above 1, while

the expansionary multiplier —the multiplier associated with a positive shock— is substan-

tially below 1. The multiplier is largest in recessions, as found in previous studies, but only

because the contractionary multiplier is largest in recessions. The expansionary multiplier

is always below 1 and not larger in recessions. We argue that our results help understand

the wide range of multiplier estimates found in the literature.
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1 Introduction

Understanding the impact of expansionary fiscal policy on output is a central part of fiscal pol-

icy analysis, and the question received much attention as many OECD countries implemented

fiscal stimulus packages during the early stages of the 2008-2009 recession.1 As government

debt levels rose rapidly, a swift shift to fiscal consolidation followed (particularly in continen-

tal Europe) and spurred work on the mirror-image question —the effect of contractionary fiscal

policy—.2 However despite intense scrutiny, the range of estimates for the government spending

multiplier remains wide with estimates lying between 0.5 and 2.

Perhaps surprisingly, the literature has so far treated the two aforementioned questions

symmetrically: a contractionary policy is assumed to have the same (mirror-image) effect

as an expansionary policy, and previous studies on the government spending multiplier have

treated symmetrically the effects of contractionary and expansionary government spending

shocks.

In this paper, we relax this assumption using a novel econometric procedure, and we find

that treating separately expansionary and contractionary spending shocks is important to (i)

estimate the size of the government spending multiplier, and (ii) understand the wide range of

estimates across studies.

We obtain three main results. First, the effect of government spending on economic activ-

ity is highly asymmetric, and the size of the government spending multiplier depends crucially

on the sign of the fiscal intervention: the government spending multiplier is substantially

below 1 for expansionary shocks to government spending, but the multiplier is above 1 for

contractionary shocks. Second, the asymmetric effect of government spending is related to

the strong asymmetric response of investment: While a contractionary spending shock gen-

erates a significant drop in investment, an expansionary government spending shock crowds

1See e.g., Hall (2009), Ramey (2009), Mertens and Ravn (2010), Barro and Redlick (2011), Parker (2011),
Ramey (2011, 2012a, 2012b), Auerbach and Gorodnichenko (2012, 2013), Owyang, Ramey and Zubairy (2013)
and Ramey and Zubairy (2014), Caggiano, Castelnuovo, Colombo and Nodari (2015).

2See e.g., Alesina and Ardagna (2010), Guajardo, Leigh, and Pescatori (2011) and Jorda and Taylor (2013).
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out investment and thus also generates a significant drop in investment. In other words, any

shock to government spending appears to negatively affect private investment.3 Third, the

multiplier associated with contractionary shocks to government spending is state-dependent

—being largest and around 2 in recessions—, but the multiplier associated with expansionary

shocks to government spending is not state-dependent, —being always below 1 and not larger

in recessions—.

Importantly, we reach these same three conclusions regardless of whether we identify gov-

ernment spending shocks from —(i) a narrative identifying assumption (Ramey, 2011), or (ii) a

recursive identifying assumption (Blanchard and Perotti, 2002, Auerbach and Gorodnichenko,

2012)—, which have been the two main approaches to identifying government spending shocks

and their effects.

Treating expansionary and contractionary shocks separately also helps to reconcile seem-

ingly contradictory findings in the literature on government multipliers: While estimates from

shocks to defense spending (Barro and Redlick 2011, Ramey and Zubairy 2014) are significantly

less than 1, estimates from shocks recovered from Vector AutoRegressions (VARs) are often

close to or above 1 (although with some dispersion across studies),4 and studies of fiscal con-

solidations (Jorda and Taylor, 2013) can find even larger multipliers with values significantly

above 1 and closer to 2.

We argue that these different results stem in part from variations in the sample of fiscal

shocks recovered by each method and more specifically from variations in the relative frequency

of expansionary and contractionary shocks. Results obtained from shocks to defense spending

are driven primarily by positive shocks —unexpected increases in government spending—, be-

cause the narratively-identified shock series (Ramey, 2011) contains much more positive shocks

than negative shocks. As a result, the estimated multiplier is small, because the multiplier

associated with positive shocks is small. In contrast, the spending shocks identified in VARs

3An interesting corollary is that an increase in the variance of government spending shocks, i.e., an increase
in the uncertainty associated with the path of government spending lowers private investment.

4See for instance Blanchard and Perotti (2002), Fisher and Peters (2010), Auerbach and Gorodnichenko
(2012), Gordon and Krenn (2010), and Ben Zeev and Pappa (2015).
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are (by construction) evenly distributed between positive and negative values. As a result, the

multiplier is larger, lying in between our estimates of the expansionary multiplier and the con-

tractionary multiplier. Finally, Jorda and Taylor (2013)’s estimates are much larger than the

other lines of work simply because they strictly focus on fiscal consolidations. Their estimated

multiplier is thus that of a contractionary multiplier, which we also find to be large.

A similar reasoning can help reconcile seemingly contradictory estimates for state depen-

dence. While studies based on narratively-identified shocks (Owyang, Ramey and Zubairy

2013, Ramey and Zubairy 2014) find little evidence for state dependence, VAR-based stud-

ies such as Auerbach and Gorodnichenko (2012) find strong evidence for state dependence.

Again, the different distributions of shocks across studies can rationalize these conflicting re-

sults. Since narrative-studies are dominated by positive shocks to government spending, the

results should mostly reflect the effects of positive shocks, which (according to our results)

do not depend on the state of the business cycle. In contrast, since VAR-based studies have

similar distributions of positive and negative shocks, the results should reflect the fact that

(according to our results) negative shocks have state-dependent effects. Interestingly, while

Auerbach and Gorodnichenko (2012)’s findings have sometimes been interpreted as supporting

the case for fiscal stimulus in recessions, our results caution against such a conclusion. We find

no evidence that increases in government spending have larger multipliers during a recession

(in fact, the multiplier is consistently below 1) and thus no support for stimulus programs in

times of recession. However, we find that contractionary government spending shocks during

recessions have the largest multiplier, which suggests that austerity measures during recessions

can be especially harmful.

Part of the reason for the lack of studies on the possibly asymmetric (and state dependent)

nature of the government spending multiplier is methodological. On the one hand, standard

techniques are linear and make the exploration of non-linearities, in particular the asymmetric

effect of spending shocks and their state dependence, diffi cult. Structural VARs, as used by

Blanchard and Perotti (2002) and Auerbach and Gorodnichenko (2012) are ill-suited to allow
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the impulse response function of a shock to depend on the sign of that shock, because in such

cases the existence of a VAR representation is compromised.5 On the other hand, the narrative

approach to government spending shocks, pioneered by Ramey and Shapiro (1998) and Ramey

(2011), relies on autoregressive distributed lags (ADL) models or Local Projection (LP, Jorda,

2005), and these methods can allow for some non-linearities, as illustrated by Ramey and

Zubairy (2013) and Auerbach and Gorodnichenko (2013) for state dependence. However,

because of their non-parametric nature, these methods are limited by effi ciency considerations,

and simultaneously allowing for asymmetry and state dependence is diffi cult.6

To overcome these technical challenges, we use a new method that consists in (i) directly

estimating a structural moving average model of the economy, i.e., directly estimating the im-

pulse response functions to structural shocks (unlike the VAR approach, which first estimates

a reduced-form VAR and thus requires the existence of a VAR representation), and (ii) para-

meterizing the impulse response functions with a small number of Gaussian functions, which

offers effi ciency gains and allows for the exploration of a rich set of non-linearities (unlike the

non parametric ADL or LP approach).

Our Gaussian Mixture Approximation (GMA) of impulse responses builds on two premises:

(i) any mean-reverting impulse response function can be approximated by a mixture of Gaussian

basis functions, and (ii) a small number (one or two) of Gaussian functions can already cap-

5Regime-switching VAR models can capture certain types of non-linearities such as state dependence
(whereby the value of some state variable affects the impulse response functions), but they cannot capture
asymmetric effects of shocks (whereby the impulse response to a structural shock depends on the sign of that
shock). With regime-switching VAR models, it is assumed that the economy can be in a finite number of
regimes, and that each regime corresponds to a different set of VAR coeffi cients. However, if the true data gen-
erating process features asymmetric impulse responses, a new set of VAR coeffi cients would be necessary each
period, because the (non-linear) behavior of the economy at any point in time depends on all structural shocks
up to that point. As a result, such asymmetric data generating process cannot generally be approximated by a
small number of state variables such as in threshold VARs or Markov-switching models. In contrast, by working
directly with the structural moving-average representation, GMA models can easily capture asymmetric impulse
response functions (as well as state dependence).

6Riera-Crichton et al. (2015) use Jorda’s local projection method to study the state dependent response
of output growth to positive and negative government spending shocks. However because of effi ciency con-
siderations, they can only consider two states (expansion vs recession) and they must rely on cross-country
data to bring in additional information. Specifically, they use a semiannual sample of 30 OECD countries that
starts in 1985 at the earliest and impose that responses are the same across countries. Thanks to our more
effi cient procedure, we can focus on a single country, so that our results are not contaminated by cross-country
heterogeneity.
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ture a large variety of impulse response functions, and in fact capture the typical impulse

responses found in empirical or theoretical studies. For instance, the impulse response func-

tions of macroeconomic variables to government spending shocks are often found (or predicted)

to be monotonic or hump-shaped (e.g. Ramey, 2011, Gali et al., 2007). In such cases, a sin-

gle Gaussian function can already provide an excellent approximation of the impulse response

function. Thanks to the small number of free parameters allowed by our Gaussian mixture

approximation, it is possible to directly estimate the impulse response functions from the data

using maximum likelihood or Bayesian methods. The parsimony of the approach in turn allows

us to estimate more general non-linear models.

Our use of Gaussian functions to approximate (and parametrize) impulse response func-

tions builds on Barnichon and Matthes (2016) and relates to a large literature outside of

economics that relies on radial basis functions (of which Gaussian functions are one example)

to approximate arbitrary multivariate functions (e.g., Buhmann, 2003) or to approximate ar-

bitrary distributions using a mixture of Gaussian distributions (Alspach and Sorenson 1971,

1972, McLachlan and Peel, 2000). In economics, our parametrization of impulse responses

relates to an older literature on distributed lag models and in particular on the Almon (1965)

lag specification, in which the successive weights, i.e., the impulse response function in our

context, are given by a polynomial function.

Section 2 presents the empirical model, our method to approximate impulse responses

using Gaussian basis functions and the two main structural identifying restrictions used in the

literature, Section 3 describes our asymmetric GMA model and presents our results on the

asymmetric effects of shocks to government spending; Section 4 describes a GMA model with

asymmetry and state dependence, presents the results and discusses how the asymmetric effects

of government spending shocks helps reconcile the seemingly contradictory findings previously

reported in the literature; Section 5 concludes.
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2 Empirical model

Our goal in this paper is to study to what extent the size of the government spending multiplier,

and more generally the effects of government spending on the economy, depends on the sign

of the policy intervention and on the state of the business cycle at the time of the policy

intervention.

To capture these possibilities, we need a model that allows the impulse response functions

to depend on the sign of the shock as well as on the state of the economy at the time of

the shock.7 Our empirical model is thus a (non-linear) structural moving-average model, in

which the behavior of a vector of macroeconomic variables is dictated by its response to past

and present structural shocks. Specifically, denoting yt a vector of stationary macroeconomic

variables, the economy is described by

yt =
K∑
k=0

Ψk(εt−k, zt−k)εt−k (1)

where εt is the vector of structural innovations with Eεt = 0 and Eεtε′t = I, K is the number

of lags, which can be finite or infinite, zt is a stationary variable that is a function of lagged

values of yt or a function of variables exogenous to yt. Ψk is the matrix of lag coeffi cients —i.e.,

the matrix of impulse responses at horizon k—.

Model (1) is a non-linear vector moving average representation of the economy, because

the matrix of lag coeffi cients Ψk, i.e., the impulse responses of the economy, can depend on (i)

the values of the structural innovations ε and (ii) the value of the macroeconomic variable z:

With Ψk a function of εt−k, the impulse responses to a given structural shock depend on the

value of that shock at the time of shock. For instance, a positive shock may trigger a different

impulse responses than a negative shock. With Ψk a function of zt−k, the impulse responses

to a structural shock depend on the value of z at the time of that shock. For instance, the

impulse responses may be different depending on the state of the business cycle (e.g., the level

7As we argue in two paragraphs, a VAR is ill-suited to capture such non-linearities.
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of unemployment) at the time of the shock.

Importantly, our starting point is not a structural Vector AutoRegression (VAR). While

the use of a VAR is a common way to estimate a moving-average model, it relies on the

existence of a VAR representation. However, in a non-linear world where Ψk depends on the

sign of the shocks ε as in (1), the existence of a VAR is compromised, because inverting (1)

is diffi cult. Thus, in this paper, we work with an empirical method that side-steps the VAR

and instead directly estimates the vector moving average model (1). We do so by means of

Gaussian Mixture Approximations of the impulse responses that we describe next.

2.1 Gaussian Mixture Approximations (GMA) of impulse responses

Estimating moving-average model is notoriously diffi cult, because the number of free para-

meters Ψk in (1) is very large or infinite. To address this issue, our strategy consists in

parameterizing the impulse response functions, and more precisely in using Gaussian basis

functions to approximate impulse response functions.

Since the intuition and benefits of our approach can be understood in a linear context,

this section introduces the Gaussian Mixture Approximation (GMA) of impulse responses in

a linear context, i.e., where Ψk(εt−k, zt−k) = Ψk. We postpone non-linear models to the next

sections.

Denote ψ(k) the representative element of matrix Ψk, so that ψ(k) is the value of the

impulse response function ψ at horizon k. A Gaussian Mixture Approximation of ψ consists in

decomposing ψ into a sum of Gaussian basis functions, i.e., positing

ψ(k) =
N∑
n=1

ane
−( k−bn

cn
)2−( k−bn

cn
)2 , ∀k > 0 (2)

with an, bn, and cn parameters to be estimated. Since model (2) uses N Gaussian basis

functions, we refer to this model as a GMA of order N , or GMA(N).8

8The GMA parametrization of ψ may or may not include the contemporaneous impact coeffi cient, that is
one may choose to use the approximation (18) for k > 0 or for k ≥ 0. In this paper, we treat ψ(0) as a free
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The advantage of a GMA, and its use for studying the (possibly non-linear) effects of

shocks, rest on the fact that, in practice, only a very small number of Gaussian basis functions

are needed to approximate a typical impulse response function, allowing for effi ciency gains

and opening the door to estimating non-linearities.

Intuitively, impulse response functions of variables are often found to be monotonic or

hump-shaped. In such cases, one or two Gaussian functions can already provide a very good

approximate description of the impulse response. To illustrate this observation, Figure 1

plots the impulse response functions of government spending, taxes and output to a shock to

government spending estimated from a standard VAR specification with a recursive ordering,9

along with the corresponding GMA(1), the Gaussian approximations with only one Gaussian

function, i.e., using the approximation

ψ(k) ' ae−
(k−b)2

c2 , ∀k > 0. (3)

We can see that a one-Gaussian parametrization —a GMA(1)— already does a good job at

capturing the impulse responses implied by the VAR. With a GMA(2), the impulse responses

are very close to those of the VAR (Figure 1). For illustration, Figure 2 plots the Gaussian

basis functions used for each impulse response in the GMA(2) case.

The small number of free parameters (only three per impulse response function in the

one-Gaussian case), has two important advantages. First, it allows us to directly estimate

the impulse response functions from the MA representation (1).10 Second, it will allow us to

later add more degrees of freedom and allow for asymmetric or non-linear effects of shocks to

government spending.

parameter for additional flexibility.
9We describe the exact specification in the next section.
10For instance, with 4 variables, we only have 3 ∗ 42 = 48 parameters (ignoring intercepts) to estimate to

capture the whole set of impulse response functions {Ψk}∞k=1. In comparison, a corresponding VAR with 4 lags
has 64 parameters.
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2.2 The structural identifying assumptions

Models like (1) are under-identified without additional restrictions. To identify government

spending shocks, the fiscal policy literature has mainly followed two approaches:11 (i) a re-

cursive identification scheme, and (ii) a narrative identification scheme. In this paper, we will

consider both alternatives. This has two main advantages. First, it will allow us to assess the

robustness of our findings across identification schemes. Second, it will allows us to relate to

the current debate on the size of the multiplier and to better understand the wide range of

estimates in the literature.12

2.2.1 Identification from a recursive ordering

The first identification scheme was proposed by Blanchard and Perotti (2002) and consists of

a short-run restriction, i.e., a restriction on Ψ0, the matrix capturing the contemporaneous

impact of a shock. Government spending is assumed to react with a lag to shocks affecting

macro variables, so that in a system where yt includes government spending, taxes and output,

government spending is ordered first andΨ0 has its first row filled with 0 except for the diagonal

coeffi cient. This identification scheme was recently challenged because of anticipation effects

(Ramey, 2011), as some innovations to government spending were found to be anticipated by

agents. We thus follow Auerbach and Gorodnichenko (2012), who addressed the anticipation

issue by augmenting the vector yt with a professional forecast of the growth rate of government

spending in order to soak up the forecastable components of shocks to government spending.

We now briefly describe how to estimate a multivariate GMA(N) model with a short-

run restriction using Bayesian methods. More details are available in the Appendix and in

11See e.g., Perotti (2008) and Ramey (2011, 2012) for overviews of the main identification schemes used in
the literature.
12There is a third, methodological, advantage to considering both identification schemes. While Barnichon and

Matthes (2016) discuss the use of GMAs in a multivariate model where both the shocks and the impulse responses
are recovered simultaneously, they do not discuss univariate GMA models where shocks have been previously
identified (as with the narrative approach). That latter class of models (whose range of application extends
beyond that of fiscal shocks) is interesting because (i) estimation is very fast and (ii) with an independently
identified shock series, it is possible to obtain a good initial guess of the magnitudes of the non-linearities.
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Barnichon and Matthes (2016). The key to estimating a moving-average model (1) is the

construction of the likelihood function p(yT |θ) of a sample of size T for a moving-average

model with parameter vector θ and where a variable with a superscript denotes the sample of

that variable up to the date in the superscript.

We use the prediction error decomposition to break up the density p(yT |θ) as follows:13

p(yT |θ) =
T∏
t=1

p(yt|θ,yt−1). (4)

Then, to calculate the one-step-ahead conditional likelihood function p(yt|θ,yt−1), we assume

that all innovations {εt} are Gaussian with mean zero and variance one,14 and we note that

the density p(yt|yt−1,θ) can be re-written as p(yt|θ,yt−1) = p(Ψ0εt|θ,yt−1) since

yt = Ψ0εt +
K∑
k=1

Ψkεt−k. (5)

Since the contemporaneous impact matrix is a constant, p(Ψ0εt|θ,yt−1) is a straightforward

function of the density of εt.

To recursively construct εt as a function of θ and yt, we need to uniquely pin down the

value of the components of εt, that is we need that Ψ0 is invertible. We impose this restriction

by only keeping parameter draws for which Ψ0 is invertible. It is also at this stage that we

impose the identifying restriction. We order variables in y such that the professional forecast

of the growth rate of government spending enters first and government spending enters second.

Then, our identifying restriction is that Ψ0 has its first two rows filled with 0 except for the

diagonal coeffi cients. Finally, to initialize the recursion, we set the first K values of ε to

zero.15 ,16

13To derive the conditional densities in decomposition (4), our parameter vector θ thus implicitly also includes
the K initial values of the shocks: {ε−K ...ε0}. We will keep those fixed throughout the estimation and discuss
alternative initializations below.
14The estimation could easily be generalized to allow for non-normal innovations such as t-distributed errors.
15Alternatively, we could use the first K values of the shocks recovered from a structural VAR.
16When K, the lag length of the moving average (1), is infinite, we truncate the model at some horizon

K, large enough to ensure that the lag matrix coeffi cients ΨK are "close" to zero. Such a K exists since the
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To explore the posterior density, we use a Metropolis-within-Gibbs algorithm (Robert and

Casella, 2004) with the blocks given by the different groups of parameters in our model; a, b,

and c. The elicitation of priors is described in the Appendix.

2.2.2 Identification from a narrative approach

The second main identification scheme is based on a narrative approach and was proposed by

Ramey (2011), building on Ramey and Shapiro (1998).

In Ramey and Shapiro (1998), wars provide exogenous variations in government spending,

because the entries into war (such as World-War II or the Korean war) (i) were exogenous

to domestic economic developments, and (ii) led to large increases in defense spending. Gen-

eralizing this idea, Ramey (2011) identifies unexpected changes in anticipated future defense

expenditures by using news sources to measure expectations and expectation surprises.

Incorporating narrative identification shocks into a GMA model is relatively straightfor-

ward. Indeed, in that case, it is no longer necessary to specify a self-contained model capturing

the relevant features of the economy (and thus a multivariate moving average model), and one

can directly estimate a univariate model —a univariate GMA—capturing the impulse response

of any variable of interest to the independently identified structural shocks.

Taking yt to be one of the variables of yt, (1) implies that

yt =
K∑
k=0

ψ(k)εGt−k + uyt (6)

with
{
εGt
}
the (narratively-identified) shocks to government spending, ψ(.) the impulse re-

sponse function of y to shock εG, and uyt the residual.
17 By using a Gaussian Mixture Approx-

variables are stationary.

17The residual satisfies ut =
∑
j

K∑
k=0

ψj(k)ε
(j)
t−k where

{
ε
(j)
t

}
are the other j shocks affecting the economy and

ψj(.) captures the impulse response function to shock ε
(j)
t .
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imation of ψ(.) :

ψ(k) =

N∑
n=1

ane
−( k−bn

cn
)2 , ∀k > 0

we can estimate (6) in two ways: (i) with Bayesian methods assuming normally distributed

residuals {ut} to construct the likelihood or (ii) by minimizing the sum of squared residuals

(since the problem is relatively low dimensional). In practice, we will use a likelihood criteria to

be consistent with our Bayesian approach, but we will use the estimates from a sum-of-squared

residuals minimization (which has the advantage of not requiring a distribution assumption

for the residuals {ut}) as our initial guess. In addition, since the uts are serially correlated by

construction, in order to improve effi ciency, we will allow for serial correlation in ut by positing

that ut follows an autoregressive process. More details are provided in the Appendix.

2.3 Calculating government spending multipliers

We define the government spending multiplier as in the literature, and we consider two defin-

itions: (i) the "max" multiplier

mmax = max
k∈[0,K]

ψY (k)/ max
k∈[0,K]

ψG(k) (7)

and (ii) the “sum”multiplier

msum =
K∑
k=0

ψY (k)/
K∑
k=0

ψG(k) (8)

where ψY (.) and ψG(.) denote respectively the impulse response function of output (denoted

Y from now on) and government spending (denoted G from now on) to a spending shock.

Since the multiplier captures a ratio of changes in the levels of Y and G, while the impulse

responses are estimated for variables in logs, we need to convert the estimated impulse responses

into dollar units. While a standard approach in the literature is to use an ex-post conversion

based on the approximation dY
dG '

d lnY
d lnG

Y
G where Y

G is the sample average of the GDP to
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government spending ratio, Ramey, and Zubairy (2014) argue that this approach can lead to

biased multiplier estimates, because Y
G can display large movements over the sample period.

We thus use instead an ex-ante conversion approach as in Gordon and Krenn (2010) and Ramey

(2016), and before estimation we re-scale all variables by "potential output", where potential

output (Y pot) is estimated from a quadratic trend.

While obtaining the posterior distribution of the multiplier is straightforward in a multi-

variate GMA where we jointly estimate the impulse responses of Y and G (as in the recursive

identification scheme), the posterior distribution of the multiplier cannot be obtained from the

separate univariate models of Y and G (as in the narrative identification scheme). To address

this issue, while at the same time improving the effi ciency of our estimation procedure, we

thus estimate a SUR-type (Seemingly Unrelated Regression) model by jointly estimating the

impulse responses of y = Y/Y pot and g = G/Y pot to news to defense spending. Specifically,

we estimate the model  yt

gt

 =
K∑
k=0

 ψy(k)

ψg(k)

 εGt−k +

 uyt

ugt

 (9)

where the vector ut =

 uyt

ugt

 follows a VAR process with

ut = Υ(L)ut−1 + ηt

with Σ = Eηtη
′
t and Υ(L) matrices to be estimated. As in the univariate GMA case, the

likelihood can be constructed from the prediction error decomposition by assuming that ηt

is i.i.d. and follows a multivariate normal distribution. More details are provided in the

Appendix.

From the estimated posterior distribution of the parameters, it is straightforward to obtain

the posterior distribution of any function of ψy and ψg, and thus to obtain the posterior
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distribution of the multiplier.

3 The asymmetric government spending multiplier

We now turn to studying the (possibly) asymmetric effects of government spending shocks. We

first describe how to introduce asymmetry in a GMA model, and then present the estimation

results using (i) a recursive identification scheme à la Auerbach and Gorodnichenko (2012),

and (ii) a narrative identification scheme à la Ramey (2011). We leave a detail description of

the estimation of such models (which is a simple extension of the linear case described above)

for the appendix.

3.1 Introducing asymmetry

To allow for asymmetry, we let Ψk depend on the sign of the government spending shock εG,

i.e., we let Ψk take two possible values: Ψ+
k orΨ

−
k . Specifically, a general model that allows

for asymmetric effects of shocks would write

yt =

∞∑
k=0

[
Ψ+
k 1ε`,t−k>0 + Ψ−k 1ε`,t−k<0

]
εt−k (10)

with Ψ+
k and Ψ−k the lag matrices of coeffi cients for, respectively, positive and negative gov-

ernment spending shocks.

Denoting ψG+i (k), the impulse response of variable i at horizon k to a positive government

spending shock and similarly for ψG−i (k), a GMA(N) model of the impulse response function

ψG+i would write

ψG+i (k) =
N∑
n=1

a+i,ne
−
(
k−b+

i,n

c+
i,n

)2
, ∀k > 0 (11)

with a+i,n, b
+
i,n, c

+
i,n some constants to be estimated. A similar expression would hold for ψ

G−
i (k).
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3.2 Results from a recursive identification scheme

To identify innovations to government spending, we first follow Auerbach and Gorodnichenko

(2012), and we consider the vector
(

∆gFt|t−1, gt, τ t, yt
)′
, where g is log real government (federal,

state, and local) purchases (consumption and investment), τ is log real government receipts of

direct and indirect taxes net of transfers to businesses and individuals, and y is log real gross

domestic product (GDP) in chained 2000 dollars, and ∆gFt|t−1 is the growth rate of government

spending at time t forecasted at time t−1. As described in Section 2, we include the anticipated

growth rate of government spending in order to soak up any forecastable changes in government

spending. For ∆gFt|t−1, we combine Greenbook and SPF quarterly forecasts following Auerbach

and Gorodnichenko (2012) and extending their dataset so that our sample cover 1966q1-2014q4.

Figure 3 plots the impulse responses estimated using a VAR with 4 lags (dashed black line)

and a GMA(2), i.e., using 2 Gaussian basis functions (thick line) where we allow for a linear

trend for each variable.18 The error bands cover 90 percent of the posterior probability. The

upper panel plots the impulse responses to a positive shock to G, while the lower panel plots

the impulse responses to a negative shock to G.

When comparing impulse responses to positive and negative shocks, it is important to keep

in mind that the impulse responses to negative shocks were multiplied by -1 in order to ease

comparison across impulse responses. With this convention, when there is no asymmetry, the

impulse responses are identical in the top panel (responses to a positive shock) and in the

bottom panels (responses to a negative shock). Finally, the magnitude of the fiscal shock

is chosen to generate a peak effect on government spending of 1 in order to facilitate the

interpretation of the results.

The results show that the impulses responses are strongly asymmetric:19

18The loose priors for the GMA parameters are detailed in the Appendix. To determine the appropriate
number of Gaussian functions, i.e., the order N of the GMA, we use posterior odds ratios to compare models
with increasing number of mixtures. We select the model with the highest posterior odds ratio. This approach
can be seen as analogous to the choice of the number of lags in VAR models using Bayesian Information Criteria.
19Another way to evaluate the significance of our results is to use Bayesian model comparison. The asym-

metric GMA displays marginal data densities that are substantially larger than the marginal data density of a
corresponding Bayesian VAR with loose, but proper, Normal-Whishart priors.
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Starting with the left panels, the thick blue line depicts the response of G to a positive

spending shock (an expansionary shock), while the red line depicts the shock to a negative

spending shock (a contractionary shock). The responses to positive and negative shocks are

similar although the response to a negative shock appears slightly more persistent.

We now turn to the impulse response of output, where, thanks to our ex-ante conversion,

the peak of the impulse response can be directly read as the “max” government spending

multiplier. We can see that the response of output is strong following a contractionary G

shock but is not significantly different from zero following an expansionary G shock.

The strong asymmetric responses of Y imply strong asymmetries in the spending multiplier.

As shown in Table 1, the “max”multiplier is 1.42 for a contractionary shock but is only 0.12

for an expansionary shock. The asymmetry is also present if we consider the “sum”multiplier

(calculated over the first 20 quarters). Table 1 shows that the “sum”multiplier to a spending

contraction is 1.25 (taking a horizon of 20 quarters), while the expansionary multiplier is −0.15.

Figure 3 shows that the response of taxes is not behind the asymmetric size of the multi-

plier. While the response of taxes is not different from zero following an expansionary shock,

taxes declined markedly following a contractionary shock (recall that the impulse responses to

contractionary shocks are multiplied by -1). Thus, the tax response should make the adverse

effect of contractionary fiscal policy on output smaller, not larger.

3.3 Results from a narrative identification scheme

We now turn to Ramey’s narrative identification scheme, and we explore the asymmetry of

the multiplier following unexpected changes in anticipated future defense expenditures. We

estimate impulse response functions from a scalar GMA model with 2 Gaussian basis functions

using quarterly data over 1939-2014.20

Figure 4 plots the impulse responses of government spending and output to news shocks,

and Table 1 reports the corresponding sizes of the multiplier.

20The loose priors for the GMA parameters are detailed in the Appendix. The number of Gaussian basis
functions was determined by model comparison using Bayes factors.
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The multipliers estimated from a linear GMA model are significantly lower than 1, with a

point estimate of 0.72 for the “max”multiplier and 0.73 for the “sum”multiplier. But again,

the picture changes when we allow for asymmetry, and the impulse responses and the size of

the multiplier differ markedly between expansionary and contractionary shocks. The multiplier

following a positive news shock is lower than 1, at respectively 0.49 and 0.51 for the “max”and

“sum”multipliers. In contrast, the multiplier following a negative shock is above one, with

the “max”multiplier at 1.03 and the “sum”multiplier at 1.76.

Importantly, for both multipliers, the negative multiplier is significantly larger than the

negative multiplier. Thus, these results confirm our previous findings based on a recursive

identification scheme: the government multiplier is different for positive and negative shocks

to public spending, with the multiplier consistently significantly below 1 when government

spending increases but above one when government spending decreases.

3.4 Digging deeper: the behavior of investment, consumption and interest

rate

To dig deeper into the asymmetric response of the economy to government spending shocks,

we now study the impulse responses of different macro variables. As always, we present results

for the two identification schemes.

Figures 5 and 6 plot the impulse responses of investment (I), consumption (C) and the fed

funds rate (FFR) to positive and negative government spending shocks identified respectively

with a recursive scheme and a narrative approach. In addition, Figure 6 also reports the

response of the average marginal tax rate compiled by Barro and Redlick (2011). To obtain

these impulse responses, we estimate a univariate-GMA like equation (6) with the shock series

{εGt } given either by Ramey news shocks series or by the series of shocks identified from the

multivariate GMA with a recursive ordering.21

21 In the case of recursively identified shocks, the
{
εGt
}
shocks used in (6) are the shocks recovered from the

asymmetric vector-GMA. More specifically, the Bayesian estimation of the vector-GMA model (10) delivers
a posterior distribution of the

{
εGt
}
shocks, which can then be used in the univariate-GMA (6) to obtain a

posterior distribution of the impulse response function of C, I or FFR.
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When comparing impulse responses to positive and negative shocks, it is important to keep

in mind that the impulse responses to negative shocks were multiplied by -1 in order to ease

comparison across impulse responses. With this convention, when there is no asymmetry, the

impulse responses are identical in the left-hand panels (responses to a positive shock) and in

the right-hand panels (responses to a negative shock).

The main result that emerges across both identification schemes is that the asymmetric

size of the multiplier is related to the very asymmetric impulse response of investment. In fact,

investment significantly declines following a government spending shock, no matter the sign

of the shock: investment is crowded-out following an expansionary spending shock, and it is

not crowded-in following a contractionary spending shock. In contrast, the asymmetry in the

response of consumption is not as striking, and the estimates are uncertain as reflected by the

large posterior bands.

Turning to the response of the fed funds rate, we can see that, in both identification

schemes, the interest rate moves in opposite direction to government spending, suggesting that

the interest rate response amplifies the response of output to the spending shock. Although

the error bands are too large to be conclusive in the narrative approach, the response of the

fed funds rate is slightly stronger following a contractionary shock, which could explain some

of the asymmetry in the response of output and investment.

Finally, the last row of Figure 6 plots the response of the average marginal tax rate to a

Ramey news shock. We can see that the tax rate response displays little asymmetry, although

the response is somewhat larger following an expansionary shock. This picture is in contrast

with the tax response to a recursively-identified shock, where taxes did not respond following

an expansionary shock. The fact that the asymmetry in the size of the multiplier can be

present across different responses of the tax rate suggests that the method of financing is not

behind the asymmetry in the size of the multiplier.
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3.5 Robustness Check: Evidence of Asymmetry from Local Projections

Since our approach relies on the parametrization of the impulse response functions with

Gaussian basis functions, in this section, we examine the robustness of our previous results to

this parametrization. The idea of the robustness check is to not rely on a GMA but instead

to use a non-parametric method —Jorda’s (2005) Local Projections (LP)—, which imposes little

structure on the data generating process (DGP) and is thus more robust to mis-specification.

The main drawback of such an LP-based approach is that (unlike GMA) it does not simulta-

neously recover the shocks and model parameters. Instead, a series of shocks must have been

previously identified. In this robustness section, we thus only focus on the narrative approach

and on the effects of the (independently identified) Ramey news shocks.

To first have a linear LP benchmark for the effects of news shocks to defense spending, we

run linear Local Projections, i.e. we estimate H equations

yt+h = αh + βhε
G
t + γ′xt + uht , h = 0, 1, ...,H (12)

where yt+h is the variable of interest, xt contains four lags of yt and εGt is the Ramey news

shocks at time t. The estimates of the impulse response of y at horizon h, is then given by βh.

We use an horizon of H = 20 quarters (or 5 years).

To allow for asymmetric effects of credit shocks, we allow for sign-dependence in βh, that

is we estimate the H equations

yt+h = αh + β+h ε
G+
t + β−h ε

G−
t + γ′xt + uht , h = 0, 1, ...,H (13)

where β+h is the response to a positive credit supply shock ε
G+
t , and β−h is the response to a

negative credit supply shock εG−t . We estimate (12) and (13) for the main variables considered

so far, and Figure 7 shows the impulse response functions of government spending, output,

investment and consumption.

Overall, the results are very similar to the results obtained with GMA models, although
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the error bands are considerably larger with Local Projections, which is not surprising given

the lower effi ciency of this approach (see e.g., Ramey, 2012). First, we again obtain that the

multiplier is above 1 for a contractionary shock but is substantially below 1 for an expansionary

shock.22 Second, looking at the subcomponents of output, we find that both investment and

consumption decline whenever there is a news to government spending, i.e., regardless of

the sign of the shock to government spending.23 In other words, these estimates confirm our

striking conclusion from GMAmodels that shocks to government spending decrease investment,

regardless of the sign of the shock.

Overall, we conclude from this robustness exercise that a) nonlinearities in the effects of

government spending shocks are important, and b) our previous conclusions on the asymmetric

effects of shocks are not driven by the parametric restrictions imposed by Gaussian Mixture

Approximations.

4 The asymmetric and state-dependent government spending

multiplier

In an influential paper, Auerbach and Gorodnichenko (2012) find that the multiplier was

much larger in recessions than in expansions, with a multiplier above 1.5 during recessions but

below 0.5 during expansions. In contrast, Owyang, Ramey and Zubairy (2013) and Ramey

and Zubairy (2014) find no evidence of state dependence when using Ramey’s news shocks to

government defense spending.

In this section, we explore whether the size of the multiplier depends on the state of the

business cycle, and whether the magnitude of such state dependence depends on the sign of

the government intervention. We first describe how we introduce state dependence into a

22The point estimates for the symmetric multipliers are 0.72 and 0.73 for respectively mmax and msum (sim-
ilarly to GMA estimates), while the point estimates for the asymmetric multipliers are only 0.65 and 0.63 for
expansionary shocks but 1.18 and 1.70 for contractionary shocks.
23Recall that the impulse responses to negative shocks (right panels) were multiplied by -1, so that if there

were no asymmetry, the impulse responses should be identical in the left (response to a positive shock) and in
the right panels (response to a negative shock).
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GMA model and then present the estimation results using both identification schemes: (i)

the recursive identification scheme à la Auerbach and Gorodnichenko (2012), and (ii) the

narrative identification scheme à la Ramey (2011). We leave a description of the estimation

method (which is a simple extension of the asymmetric case above) for the appendix.

4.1 Introducing asymmetry and state-dependence

With asymmetry and state dependence in response to government spending shocks, the matrix

Ψ+
k becomesΨ+

k (zt−k), i.e., the impulse response to a positive shock depends on some indicator

variable zt (and similarly for Ψ−k ).

To construct a model that allows for both asymmetry and state dependence, we build on

the asymmetric GMA(N) model (11) and parametrize ψG+i , the impulse response function of

variable i to a positive innovation to government spending, as

ψG+i (k) = (1 + γ+i zt−k)
N∑
n=1

a+i,ne
−
(
k−b+

i,n

c+
i,n

)2
, ∀k > 0 (14)

with γ+i , a
+
i,n, b

+
i,n and c

+
i,n parameters to be estimated. An identical functional form holds for

ψG−i .

In this model, the amplitude of the impulse response depends on the state of the business

cycle (captured by the cyclical indicator zt) at the time of the shock. In (14), the amplitude of

the impulse response is a linear function of the indicator variable zt. Such a specification will

allow us to test whether a positive fiscal shock has a stronger effect on output in a recession

than in an expansion.

Note that in specification (14), the state of the cycle is allowed to stretch/contract the

impulse response, but the shape of the impulse response is fixed (because a, b and c are all

independent of zt). While one could allow for a more general model in which all variables a,

b and c depend on the indicator variable, specification (14) has two advantages. First, with

limited sample size, it will typically be necessary to impose some structure on the data, and
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imposing a constant shape for the impulse response is a natural starting point. Second, specifi-

cation (14) generalizes trivially to GMAs of any order. The order of the GMA only determines

the shape of the impulse response with higher order allowing for increasingly complex shapes.

Then, for a given shape, the γ coeffi cient can stretch or expand the impulse response depending

on the state of the cycle.

4.2 Results from a recursive identification scheme

We estimate model (14), where we use as cyclical indicator (zt) the unemployment rate de-

trended by CBO’s estimate of the natural rate (available from 1949 on).24

As a preliminary step, and to put our results into perspective, Figure 8 plots our cyclical

indicator along with the identified government spending shocks implied by the posterior mode

estimates. While the cyclical indicator has zero mean, it is right-skewed, a well-known property

of the unemployment rate (e.g., Neftci, 1984). As a result, fiscal shocks are observed over values

of (detrended) unemployment ranging mostly from −1 to 2.

The first row of Figure 9 shows how the “max” multiplier depends on the state of the

business cycle at the time of the shock.25 The left column reports the multiplier following

positive (expansionary) shocks, and the right column reports the multiplier following negative

(contractionary) shocks. The bottom panels of Figure 9 plot the histograms of the distributions

of respectively contractionary shocks and expansionary shocks over the business cycle. This

information is meant to get a sense of the range of (detrended) unemployment over which we

identify the coeffi cients capturing state dependence.

We can once more see a stark asymmetry between positive and negative shocks. The

multiplier associated with contractionary fiscal shocks depends strongly on the state of the cycle

and reaches its highest value in times on high unemployment. For instance, the contractionary

24We detrend the unemployment rate to make sure that our results are not driven by slow moving trends (e.g.,
due to demographics) in the unemployment rate, which could make the unemployment rate a poor indicator
of the amount of economic slack (see e.g. Barnichon and Mesters, 2015). Using the actual unemployment rate
gives similar qualitative results for state dependence, but a posterior odds ratio calculation favors a model with
detrended unemployment.
25Similar results hold for the “sum”multiplier.
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multiplier is about 1 around business cycle peaks but gets above to 2 around business cycle

troughs.26 In contrast, the multiplier associated with expansionary fiscal shocks does not

depend significantly or economically on the state of the cycle. It is small and not significantly

different from 0 regardless of the level of unemployment.

4.3 Results from a narrative identification scheme

We now perform the same exercise but using the Ramey news shocks in the SUR-type GMA

model with asymmetry and state dependence (model (9) with (14)) to allow the impulse

responses to depend on both the sign of the news shock as well as the state of the cycle (captured

by detrended unemployment) at the time of the shock. Since CBO’s natural rate estimate is

not available over 1939-2014 (the estimate only starts in 1949), we detrend unemployment with

an HP-filter (λ = 105).

Figure 10 presents the results using the same formatting as Figure 9. Although the error-

bands for the multiplier are larger than in Figure 9,27 the results are strikingly similar to the

ones obtained with the recursive identification: positive shocks have no state dependent effects

on output, —the multiplier remaining around 0.5 regardless of the state of the cycle—, while

negative shocks have stronger effects on output in recessions. And just like with the recursively

identified shocks, the contractionary multiplier is about 1 around business cycle peaks but rises

to about 2 around business cycle troughs.

26 Interestingly, these results are consistent with the recent work of Caggiano et al. (2015), who find that
state dependence in the size of the multiplier comes from extreme "events", and in particular deep recessions
versus strong expansionary periods. This is what one would expect if the effect of the state of the cycle on the
(contractionary) multiplier was close to linear: For small business cycle fluctuations, the size of the multiplier
will not vary very much (Figure 9) and its variations will be hard to detect. It is only when the unemployment
reaches high levels that the contractionary multiplier can reach values close to 2 and start differing markedly
from its level during expansionary times.
27Large error-bands on negative news shocks are to be expected given the small number of negative news

shocks in the Ramey sample.
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5 Understanding the range of estimates in the literature

The existence of asymmetry in the size of the multiplier helps reconcile seemingly contradic-

tory findings in the literature on government spending multipliers. In particular, multipliers

estimated from shocks to defense spending are often found to be smaller than multipliers esti-

mated from a recursive identification scheme. A useful (if only approximate) characterization

would be to say that narrative estimates generally imply multipliers less than one and not

larger in recessions (Ramey and Zubairy, 2014), while VAR-based estimates imply multipliers

close to or above one and larger in recessions (Auerbach and Gorodnichenko, 2012).

We now argue that these different results stem in part from variations in the sample of

fiscal shocks used for identification in each method, and more specifically from variations in

the relative importance of expansionary and contractionary shocks.

Figure 11 plots the distribution of Ramey news shocks along with the distribution of

recursively-identified shocks (as in Auerbach and Gorodnichenko, 2012). Unlike with recursively-

identified shocks whose distribution is (by construction) evenly distributed between positive

and negative shocks, a few very large positive shocks dominate the sample of Ramey news

shocks.28 As a result, the results from the narrative approach are more driven by positive

shocks —unexpected news of increases in government spending—, and the estimated multiplier

is small, because (according to our results) the multiplier associated with positive shocks is

small. In contrast, because the spending shocks identified using a recursive identification

scheme are more evenly distributed between positive and negative values, a recursive identi-

fication scheme will imply a larger multiplier than a narrative approach with an asymmetric

shock distribution.

A similar reasoning can help rationalize the different estimates for state dependence. Stud-

ies based on Ramey’s News shocks (Owyang, Ramey and Zubairy 2013, Ramey and Zubairy

2014) find little evidence for state dependence, because their results are more driven by posi-

28 Indeed, it has been argued (e.g., AG) that the results of Ramey (2011) were driven by the large shocks of
WWII and the Korean war.
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tive shocks, which (according to our results) display no state dependence. In contrast, studies

such as Auerbach and Gorodnichenko (2012) based on a VAR find some evidence for state

dependence, because (roughly) half of the identified shocks are negative shocks, which display

strong state dependence.

An interesting implication of our findings lies in the interpretation of Auerbach and Gorod-

nichenko (2012)’s results. While Auerbach and Gorodnichenko (2012)’s findings have some-

times been interpreted as supporting the case for fiscal stimuli in recessions, our results caution

against such a conclusion. We find no evidence that increases in government spending have

larger multipliers during a recession (in fact, the multiplier is consistently below 1) and thus no

support for stimulus programs in times of recession. However, we find that decreases in gov-

ernment spending during recessions have the largest multiplier, which suggests that austerity

measures during recessions can be especially harmful.

6 Conclusion

This paper estimates the asymmetric effects of shocks to government spending by using Gaussian

basis functions to approximate impulse response functions. Using either of the two main iden-

tification schemes in the literature —Blanchard-Perotti (2002) or Ramey (2011)—, we find that

the multiplier is above 1 for contractionary shocks to government spending, but substantially

below 1 for expansionary shocks. The spending multiplier is largest in recessions, as found

in some earlier studies, but only because the multiplier for contractionary shocks is largest

in recessions. The multiplier for expansionary shocks is always below 1 and not larger in

recessions.

These results have two interesting policy implications. First, they strongly weaken the case

for fiscal packages to stimulate the economy. Second, they caution that austerity measures

may have a much higher output cost than suggested by linear estimates.

Treating expansionary and contractionary fiscal shocks separately also allows us to reconcile

seemingly contradictory findings in the literature on government multipliers: While estimates
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from shocks to defense spending (Ramey, 2011, Barro and Redlick 2011) are generally less

than 1, estimates from shocks recovered from VARs are often close to or above 1 and larger

in recessions (Auerbach and Gorodnichenko, 2012). We argue that these different results

stem in part from variations in the sample of fiscal shocks recovered by each method and

more specifically from variations in the relative importance of expansionary and contractionary

shocks.

We find that the asymmetry in the size of the multiplier is related to the strong asymmetric

response of investment, with the results again consistent across the two different identification

schemes: While expansionary spending shocks generate a significant drop in investment (i.e.,

crowd out investment), contractionary spending shocks also generate a significant drop in

investment (i.e., do not crowd in investment). In other words, any shock to government

spending appears to adversely affect private investment. An interesting corollary is that an

increase in the variance of government spending shocks, i.e., an increase in the uncertainty

associated with the path of government spending, would lower private investment. This would

suggest that periods of high uncertainty in fiscal policy are detrimental for investment, a

possibility that echoes a large literature focused on the adverse effects of uncertainty on the

economy (Bloom, 2009, Baker, Bloom and Davis, 2015).

The strong asymmetry in the response of investment is also interesting in the context of

an earlier empirical literature aimed at informing the debate on the most likely transmission

mechanism of fiscal policy (Perotti, 2008, Ramey, 2011). While in most modern models the

effects of fiscal policy occur through the consumption (and hours) response of households,

our results indicate that the investment response may be a key channel in the transmission

mechanism of fiscal policy, as also advocated for instance by Alesina, Ardagna, Perotti and

Schiantarelli (2002).

Finally, an important goal for future research is to understand the mechanism generating

the asymmetric effect of fiscal policy, with possible mechanisms involving downward wage
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rigidity in a model like Alesina, Ardagna, Perotti and Schiantarelli (2002),29 or occasionally

binding constraints.30

29 In Alesina, Ardagna, Perotti and Schiantarelli (2002), an increase in government spending can lead to wage
pressures which hurt investment by the private sector. With downward wage rigidity, a decrease in government
spending would not lower wages and thus would not stimulate investment.
30For instance, in a New-Keynesian model like Gali, Lopez-Salido and Valles (2007) where the hand-to-mouth

behavior (and high MPC) of some agents could arise out of the presence of binding financial constraints, the size
of the multiplier could depend on the sign of the spending shock. However, since we found that the asymmetry
was strongest for the response of investment (and more uncertain for consumption), our results suggest that
the financial constraint most relevant for the effect of fiscal policy would be at the firm level rather than at the
household level.
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Appendix A1: Bayesian estimation of multivariate GMAmodels

In this section, we describe the implementation and estimation of multivariate GMA models

where government spending shocks are identified from a recursive ordering as in described

in the main text. We first describe how we construct the likelihood function by exploiting

the prediction-error decomposition, discuss the estimation routine based on a multiple-block

Metropolis-Hasting algorithm, prior elicitation, and finally determination of the order of the

GMA. This section draws from Barnichon and Matthes (2016).

Constructing the likelihood function

We now describe how to construct the likelihood function p(yT |θ, zT ) of a sample of size T for

the moving-average model (1) with parameter vector θ and where a variable with a superscript

denotes the sample of that variable up to the date in the superscript.

To start, we use the prediction error decomposition to break up the density p(yT |θ) as

follows:31

p(yT |θ) =
T∏
t=1

p(yt|θ,yt−1). (15)

To calculate the one-step-ahead conditional likelihood function needed for the prediction

error decomposition, we assume that all innovations {εt} are Gaussian with mean zero and

variance one, and we note that the density p(yt|yt−1,θ) can be re-written as p(yt|θ,yt−1) =

p(Ψ0εt|θ,yt−1) since

yt = Ψ0εt +

K∑
k=1

Ψkεt−k. (16)

Since the contemporaneous impact matrixΨ0 is a constant, p(Ψ0εt|θ,yt−1) is a straightforward

function of the density of εt.

To recursively construct εt as a function of θ and yt, we need to uniquely pin down the

value of the components of εt from (16), that is we need that Ψ0 is invertible. We impose this

31To derive the conditional densities in decomposition (15), our parameter vector θ thus implicitly also includes
the K initial values of the shocks: {ε−K ...ε0}. We will keep those fixed throughout the estimation and discuss
alternative initializations below.
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restriction by only keeping parameter draws for which Ψ0 is invertible.32 It is also at this stage

that we impose the identifying restriction that Ψ0 has its first two rows filled with 0 except

for the diagonal coeffi cients. Finally, to initialize the recursion, we set the first K innovations

{εj}0j=−K to zero.

In the non-linear case where we have Ψk = Ψk(εt−k, zt−k), we proceed similarly. However,

a complication arises when one allowsΨ0 to depend on the sign of the shock while also imposing

identifying restrictions on Ψ0. The complication arises, because with asymmetry the system

of equations implied by (16):

Ψ0(εt−k, zt−k)εt = ut (17)

where ut = yt −
K∑
k=1

Ψkεt−k need not have a unique solution vector εt, because Ψ0(εt), the

impact matrix, depends on the sign of the shocks, i.e., on the vector εt. However, in Barnichon

and Matthes (2016), we show that this is not a problem (so that (17) has a unique solution

vector εt) in a recursive identification scheme like the one considered in this paper.

Finally, when constructing the likelihood, to write down the one-step ahead forecast density

p(yt|θ,yt−1) as a function of past observations and model parameters, we use the standard

result (see e.g., Casella-Berger, 2002) that for Ψ0 a function of εt and zt, we have

p(Ψ0(εt, zt)εt|θ,yt−1) = Jtp(εt)

where Jt is the Jacobian of the (one-to-one) mapping from εt to Ψ0(εt, zt)εt and where p(εt)

is the density of εt.33 ,34

32Parameter restrictions (such as invertibility) are implemented by assigning a minus infinity value to the
likelihood whenever the restrictions are not met.
33Recall that we assume that the indicator variable zt is a function of lagged values of yt (so that zt is known

conditional on yt−1) or that zt is a function of variables exogenous to yt (and thus taken as given and known).
34 In our case with asymmetry, this Jacobian is simple to calculate, but the mapping is not differentiable at

ε = 0. Since we will never exactly observe ε = 0 in a finite sample, we can implicitly assume that in a small
neighborhood around 0, we replace the original mapping with a smooth function.
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Estimation routine and initial guess

To estimate our model, we use a Metropolis-within-Gibbs algorithm (Robert & Casella 2004)

with the blocks given by the different groups of parameters in our model (there is respectively

one block for the a parameters, one block for the b parameters, one block for the c parameters

and one block for the constant and contemporaneous impact matrix Ψ0).

To initialize the Metropolis-Hastings algorithm in an area of the parameter space that has

substantial posterior probability, we follow a two-step procedure: first, we estimate a standard

VAR using OLS on our data set, calculate the moving-average representation, and we use

the impulse response functions implied by the VAR as our starting point. More specifically,

we calculate the parameters of our GMA model to best fit the VAR-based impulse response

functions.35 Second, we use these parameters as a starting point for a simplex maximization

routine that then gives us a starting value for the Metropolis-Hastings algorithm.

In the non-linear models, we initialize the parameters capturing asymmetry and state

dependence at zero (i.e., no non-linearity). This approach is consistent with the starting point

(the null) of this paper: structural shocks have linear effects on the economy, and we are testing

this null against the alternative that shocks have some non-linear effects. We then center the

priors for these parameters at zero with loose priors, as described next.

Prior elicitation

We use (loose) Normal priors centered around the impulse response functions obtained from

the benchmark (linear) VAR. Specifically, we put priors on the a, b and c coeffi cients that are

centered on the values for a, b and c obtained by matching the impulse responses obtained

from the VAR, as described in the previous paragraph. Specifically, denote a0ij,n, b
0
ij,n and c

0
ij,n,

n ∈ {1, N} the values implied by fitting the GMA(N) to the VAR-based impulse response of

variable i to shock j. The priors for aij,n, bij,n and cij,n are centered on a0ij,n, b
0
ij,n and c

0
ij,n,

35Specifically, we set the parameters of our model (the a, b and c coeffi cients) to minimize the discrepancy
(sum of squared residuals) between the two sets of impulse responses.
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and the standard-deviations are set as follows σij,a = 10, σij,b = K and σij,c = K (K is the

maximum horizon of the impulse response function).36 While there is clearly some arbitrariness

in choosing the tightness of our priors, it is important to note that they are very loose and let

us explore a large class of alternative specifications.

The use of informative priors is not critical for our approach, but we do this for a number

of reason. First, since our current knowledge on the effect of government spending shocks is

based to a large extent on VAR evidence, it seems natural (and consistent with the Bayesian

approach) to impose priors centered on our current state of knowledge. Second, given the in-

herent diffi culty in estimating moving-average models, the priors help discipline the estimation

by keeping the parameters in a reasonable set of the parameter space. Finally, and while we

could have used improper uniform prior, the use of proper priors allows us to compute poste-

rior odds ratio, which are important to select the order of the moving-average and to compare

different GMA models.

Choosing N , the number of Gaussian basis functions

To choose N , the order of the GMA model, we use posterior odds ratios (assigning equal

probability to any two model) to compare models with increasing number of mixtures. We

select the model with the highest posterior odds ratio.

Appendix A2: Bayesian estimation of univariate and SUR-type

GMA models

The previous section described how to estimate multivariate GMA models when we simulta-

neously identify the structural shocks and estimate the impulse response functions. We now

describe how to estimate models when the shocks have been previously identified (for instance,

36Note that these priors are very loose. This is easy to see for a and b. For c, if it easy to show that c
√
ln 2

is the half-life of the effect of a shock. Thus, c = K corresponds to a very persistent impulse response function,
since K

√
ln 2 = 38 quarters.
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through a narrative approach as in Ramey, 2011). The model can be a univariate GMA model

like (6) or a SUR-type GMA model like (9).

For ease of exposition, we focus on the univariate model first, since the SUR-type model is

a simple extension of the univariate case. As with the multivariate GMA case, we use Bayesian

methods and the key part is the construction of the likelihood. Recall from section 3 that we

have a model of the form

yt =

K∑
k=0

ψ(k)εGt−k + ut (18)

with

ψ(k) =
N∑
n=1

ane
−( k−bn

cn
)2

where an, bn and cn can be functions of εGt−k (in the non-linear case), and where the residual

is ut ≡
∑
j

K∑
k=0

ψj(k)ε
(j)
t−k.

Since {ut} is serially correlated by construction, in order to improve effi ciency, we allow for

serial correlation in ut by positing that ut follows an AR(1) process. That is, we posit that

ut = ρut−1+ηt where ηt is Normally distributed N(0, σ2η) with ση a parameter to be estimated.

We set η−1 and η0 to zero, and from (18), it is straightforward to build the likelihood given

a series of previously identified shocks
{
εGt
}
. For prior elicitation, we proceed as with the

multivariate GMA, and use very loose priors with σa = 10, σb = K and σc = K.

For a SUR-type model like (9), the estimation proceeds along the same lines as above,

except that we take into account that the one-step forecast error ut is now a vector that

follows a VAR(1) process instead of an AR(1) process.

Finally, to select N (the number of Gaussian basis functions) in the initial guess, we use

Bayes factors (as in the multivariate GMA) to determine the preferred order of the GMA.

Estimation routine and initial guess

As with the multivariate GMA, we use a Metropolis-within-Gibbs algorithm. Regarding the

initial guess, an interesting advantage of a univariate GMA is that it is possible to compute a
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good initial guess, even in non-linear models.

Obtaining a non-linear initial guess

To obtain a good (possibly non-linear) initial guess in univariate and SUR-type GMA models,

we proceed in two steps.

1. Recovering the {an} factors given {bn, cn}

Assume that the parameters of the Gaussian kernels —{bn, cn}Nn=1—are known, so that we

have a "dictionary" of basis functions to decompose our impulse response. Then, estimating

the coeffi cients {an}Nn=1 in (18), a non-linear problem, can be recast into a linear problem that

can estimated by OLS.

To see that, consider first a linear model where ψ(k) is independent of εGt−k. We then

re-arrange (18) as follows:

K∑
k=0

ψ(k)εGt−k =
K∑
k=0

N∑
n=1

ane
−( k−bn

cn
)2εGt−k

=

N∑
n=1

an

K∑
k=0

e−(
k−bn
cn

)2εGt−k.

Defining

Xn,t =
K∑
k=0

e−(
k−bn
cn

)2εGt−k,

our estimation problem becomes a linear problem (conditional on knowing {bn, cn}Nn=1):

yt =

N∑
n=1

anXn,t + α+ βut (19)

where the {an} parameters can be recovered instantaneously by OLS. Assuming that ut follows

an AR(1), we can estimate the {an} with a simple NLS procedure.

34



The method described above in the linear case is straightforward to apply to a case with

non-linearities. Consider for instance the case with asymmetry

an(εGt−k) = a+n 1εG≥0 + a−n 1εG<0.

Then, we can proceed as in the previous section and define the following right-hand side

variables 
X+
n,t =

K∑
k=0

hn(k)εGt−k1ε≥0

X−n,t =
K∑
k=0

hn(k)εGt−k1ε<0

and use OLS to recover a+n and b
−
n .

2. Choosing {bn, cn}

To estimate {bn, cn}Nn=1 (and therefore {an}
N
n=1 from the OLS regression), we minimize the

sum of squared residuals of (19) using a simplex algorithm (Matlab’s fminsearch).

The advantages of this method are two folds: first, compared to a direct minimization of

(19) that treats all three sets of parameters a, b and c as free parameters, our procedure is

more effi cient because it exploits the effi ciency of OLS to recover {an} given {bn, cn} . Second,

compared to a likelihood-based method, the initial guess does not rely on the Normality of the

innovations ηt.
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Figure 1: Impulse response functions (in percent) of government spending, government rev-
enue ("Tax") and output to a one standard-deviation government spending shock. Impulse
responses estimated with a VAR (dashed-line) or approximated using one Gaussian basis func-
tion (GMA(1), left-panel, thick line) or two Gaussian basis functions (GMA(2), right panel
thick line). Estimation using quarterly data covering 1966-2014.
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Figure 2: Gaussian basis functions (dashed lines) used by a GMA(2) to approximate the
responses of unemployment, inflation and the fed funds rate to a monetary shock. The basis
functions are appropriately weighted so that their sum gives the GMA(2) parametrization of
the impulse response functions (solid lines) reported in the right-panels of Figure 1.
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Figure 3: Recursive identification scheme: Impulse response functions (in percent) of gov-
ernment spending, government revenue ("Tax") and output to a government spending shock
identified from a timing restriction. Estimation from a standard VAR (dashed-line) or from a
GMA (plain line). The thin lines cover 90% of the posterior probability. For ease of comparison
between the top and bottom panels, the responses to a contractionary shock are multiplied by
-1 in the bottom panels. Estimation using quarterly data covering 1966-2014.
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Figure 4: Narrative identification scheme: Impulse response functions (in percent) of gov-
ernment spending and output to a Ramey news shock identified from a narrative approach.
Estimation from a linear GMA(2) (dashed-line) or from an asymmetric GMA(2) (plain line).
The thin lines cover 90% of the posterior probability. For ease of comparison between the top
and bottom panels, the responses to a contractionary shock are multiplied by -1 in the bottom
panels. Estimation using quarterly data covering 1939-2014.
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Figure 5: Recursive identification scheme: Impulse response functions (in percent) of Invest-
ment (I), Consumption (C) and the fed funds rate (FFR) following an expansionary govern-
ment spending shock (left panel) and a contractionary shock (right panel). Estimates from a
GMA(2) model using government spending shocks identified from a recursive ordering. For ease
of comparison between the left and right panels, the responses to a contractionary shock are
multiplied by -1 in the right panels. The shaded area covers 90% of the posterior probability.
Estimation using quarterly data covering 1966-2014.
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Figure 6: Narrative identification scheme: Impulse response functions (in percent) of Invest-
ment (I), Consumption (C), the fed funds rate (FFR) and the average marginal tax rate (Tax)
following an expansionary Ramey news shock (left panel) and a contractionary Ramey news
shock (right panel). Estimates from a GMA(2) model. For ease of comparison between the
left and right panels, the responses to a contractionary shock are multiplied by -1 in the right
panels. The shaded area covers 90% of the posterior probability. Estimation using quarterly
data covering 1947-2014.
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Figure 7: Narrative identification scheme and Local Projections: Impulse response functions
(in percent) of Government Spending (G), Output (Y), Investment (I), and Consumption (C)
following an expansionary Ramey news shock (left panel) and a contractionary Ramey news
shock (right panel). Estimates from Local Projections. For ease of comparison between the
left and right panels, the responses to a contractionary shock are multiplied by -1 in the right
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to 2014 for C and I.
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Figure 8: The business cycle indicator —the unemployment rate detrended with CBO’s nat-
ural rate estimate—(solid line, left scale)—, and government spending shocks identified from a
recursive ordering (circles, right scale) with larger circles indicating larger shocks.
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Figure 9: Recursive identification scheme: Size of the “max”multiplier as a function of the state
of the business cycle (measured with detrended unemployment) for expansionary government
spending shocks (left panel) and contractionary government spending shocks (right panel). The
shaded areas respectively cover 68 and 90 percent of the posterior probability. The bottom
panels plot the distributions of (respectively) contractionary shocks and expansionary shocks
over the business cycle. Estimation using data covering 1966-2014.
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Figure 10: Narrative identification scheme: Size of the “max”multiplier as a function of the
state of the business cycle (measured with detrended unemployment) for expansionary Ramey
news shocks (left panel) and contractionary Ramey news shocks (right panel). The shaded
areas respectively cover 68 and 90 percent of the posterior probability. The bottom panel
plots the distribution of (respectively) contractionary shocks and expansionary shocks over the
business cycle. Estimation using data covering 1966-2014.
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Figure 11: Histograms of the distributions of government spending shocks (rescaled by their
standard-deviation). The upper-panel depicts the distribution of shocks recovered from a
recursive ordering (1966-2014), the bottom-panel depicts the distribution of Ramey news shocks
(1939-2014).
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Table 1: GMA estimates of government spending multipliers  

 “Max” multiplier “Sum” multiplier 

 Linear Expansionary 
shock 

Contractionary 
shock Linear Expansionary 

shock 
Contractionary 

shock 

       
 
AG shocks  
1966-2014 
 

1.41 
(0.6--2.2) 

 

0.12 
(-0.1--0.6) 

 

1.42 
(0.8--2.2) 

 

0.58 
(0.0--1.1) 

 

-0.15 
(-0.9--0.2) 

 

1.25 
(0.7--1.8) 

 

 
Ramey News 
shocks 
1939-2014 
 

0.72 
(0.6--0.8) 

0.49 
(0.4--0.6) 

1.03 
(0.6--1.6) 

0.73 
(0.6--0.8) 

0.51 
(0.3--0.6) 

1.76 
(1.1--2.7) 

Note: Estimates from GMA(2) models; i.e., using Gaussian Mixture Approximations of the impulse response functions with 2 Gaussians. Numbers in parenthesis cover 
90% of the posterior probability. AG shocks refer to shocks obtained as in Auerbach and Gorodnichenlo (2012) from a Blanchard-Perotti recursive identification scheme 
augmented with professional forecasts of government spending. Ramey news shocks are the unexpected changes in anticipated future expenditures constructed by Ramey 
(2011). The "sum" multiplier is calculated by taking the integral of the impulse responses over the first 20 quarters. 

 
 

 

  


