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Abstract:  Compositional data are nonnegative data with the property of closure: that is, each set 

of values on their components, or so-called parts, has a fixed sum, usually 1 or 100%.  

Compositional data  cannot be analyzed by conventional statistical methods, since the value of 

any part depends on the choice of the other parts of the composition of interest.  For example, 

reporting the mean and standard deviation of a specific part makes no sense, neither does the 

correlation between two parts.  I propose that a small set of ratios of parts can be determined, 

either by expert choice or by automatic selection, which effectively replaces the compositional 

data set.  This set can be determined to explain 100% of the variance in the compositional data, 

or as close to 100% as required.  These part ratios can then be validly summarized and analyzed 

by conventional univariate methods, as well as multivariate methods, where the ratios are 

preferably log-transformed. 

 

Keywords:  compositional data, logarithmic transformation, log-ratio analysis, multivariate 

analysis, ratios, univariate statistics. 
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1.  Introduction 
 

Compositional data (Aitchison 1986) are sets of non-negative data that have been expressed 

relative to a fixed total (usually as proportions summing to 1 or percentages summing to 100%).  

The original totals are not of interest − rather, the relative values, or composition, are relevant for 

summarizing and statistical analysis. The components of a composition are called its parts.   If a 

subset of the parts are considered and the data are re-expressed with respect to the new subtotals, 

this is called a subcomposition.  In several situations, where the total of the original data is the 

same for all samples, considering a subcomposition is usually not an issue.  For example, in the 

case of time budget data where activities such as sleeping, eating, leisure, work, transport, etc., 

are recorded during a 24-hour day, there is usually no point in dropping an activity and re-

expressing the parts relative to the total without that activity.  Similarly, concentrations in parts 

per million (ppm), for example, are analysed as such, without re-expression as proportions.  In 

this technical note I concentrate on compositional data where subcompositions or extended 

compositions are possible, for example, geochemical data, or fatty acid data in ecology, in other 

words where the proportions depend on the particular choice of parts made by the researcher.   

The act of converting a set of values into its set of relative values by dividing by the total, is 

called closure.  The term normalization is also used;  for example, it is said that “the data are 

normalized”, “the data are closed”, “some parts are excluded and the data are renormalized, or 

reclosed”, etc…   It is exactly because the compositional values associated with the parts change, 

after renormalization, that makes compositional data unique, and needing special approaches.    

In spite of the compositional values depending on the particular mix of parts chosen by the user, 

parts of a composition are still often summarized by statistics such as the mean and correlation 

coefficient.  Clearly, these summary statistics make no sense when comparing different studies, 

unless studies have chosen exactly the same set of parts.   In multivariate analysis of 
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compositional data, it has long been recognized that a valid approach to compositional data is to 

analyse ratios of parts, which are invariant to the choice of the set of parts.  Basing the analysis 

on ratios is an approach with the property of subcompositional coherence (see, for example, 

Greenacre and Lewi, 2005).  Log-ratio analysis (Aitchison 1990, Aitchison and Greenacre 2002) 

is a variant of principal component analysis that displays the reduced dimensional structure of all 

log-ratios of the parts. 

Given the central role of ratios in the subcompositionally coherent approach to compositional 

data analysis, abbreviated as CoDA, it seems obvious that when it comes to reporting univariate 

statistics, these should be on ratios of parts rather than the parts themselves.  In certain research 

areas, for example in fatty acid analyses in studies of the marine food web, some ratios are 

actually proposed as indicators of certain phenomena  see, for example, Kraft et al. (2015).  In 

my opinion, reporting ratios should be the norm rather than the exception, since these are the 

only quantities that are comparable across studies.  The problem is that if there are p parts, then 

there are ½p(p  1) ratios to consider.  But we do know that the dimensionality of a 

compositional data set with p parts is p  1, and thus only p  1 ratios are required to reproduce 

the variance of the whole data set.  In this paper I will show how a relatively small set of ratios 

can be chosen and evaluated for their ability to replace the original compositional data.  The 

advantage will be that these can be summarized and analysed by regular statistical methods.  

Section 2 defines the total variance in a compositional data set, which is important because the 

chosen ratios will be evaluated according to how well they explain this variance.  In Section 3 I 

will discuss how a "good" set of ratios can be chosen, and how they can be summarized.  In 

Section 4 an application will be described, for an archaeological data set by Baxter, Cool and 

Heyworth (1990) on the oxide compositions of a set of Roman glass cups.  Section 5 concludes 

with a discussion and conclusion. 
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2.  Total variance of a compositional data set 

 

The total variance in a compositional data set, following Aitchison's approach, is measured by 

the total log-ratio variance.  Suppose that the data are in a samples-by-parts matrix X (np), 

where the rows of X sum to a constant, which can be set to 1 without loss of generality (hence 

the data are proportions). Then the (unweighted) log-ratio variance, defined by Aitchison (1983), 

is 
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where, for example,    'jj
indicates the double summation on all unique pairs of the index, 

i.e. ½p(p  1) pairs of parts in this case.   The second version on the right hand side of (1) shows 

that the log-ratio variance is the sum of squares of all the logarithmically transformed odds-ratios 

based on all unique pairs of rows and columns of the data matrix. Greenacre and Lewi (2009) 

proposed a weighted version where the rows and columns of the table are weighted 

proportionally to their marginal totals.  These weights sum to 1 in each case, so the row weights 

are ri = 1/n, constant across samples, and the column weights are cj = jth part mean.  This is the 

same weighting used by "spectral mapping" (Lewi 1976, 1980; Wouters et al. 2003).   The 

(weighted) log-ratio variance incorporates the weights as follows, using the second version of (1) 

in terms of odds-ratios 
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 The advantage of the weighted version over the unweighted one has been shown by Greenacre 

and Lewi (2009) and Greenacre (2015), hence I maintain the weighted version in Eq. (2) as the 

definition of the log-ratio variance, and qualify it with the adjective "unweighted" when referring 
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to Aitchison's original definition in Eq. (1).  The log-ratio variance can be shown to be identical 

to the weighted average of the variances of the p columns of the matrix Y of so-called centred 

log-ratios 
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Notice that the rows of the log-transformed data matrix X are first centred by their respective 

weighted average row means to obtain the matrix Y, which is then centred by the arithmetic 

column means.  Hence jij yy  is a double-centring of the matrix log(X), with elements log(xij), 

using the column and row weights cj  and 1/n respectively, then squared and summed using the 

column and row weights again.   In matrix notation, where the column and row weights are 

gathered in vectors c and r respectively, the centred log-ratio matrix is  

   Y = log(X)(I 1cT) T            (4) 

and the double-centred matrix is  

   Z = Y1rTY = (I 1rT)log(X)(I 1cT) T        (5) 

Then the total log-ratio variance in (2) and (3) is the weighted sum of squares of Z 

                                   variance =  trace(Dr 
Z Dc Z 

T).             (6) 

where Dr and Dc are the respective diagonal matrices of the weights. 

3.  Choosing a set of ratios for univariate analysis 

 

The most obvious way of choosing a set of ratios is that experts do it based on their knowledge 

of the compositional parts.  Whatever the choice is, the relationship of the ratios to the original 

data set can be measured, as I will explain below.  As an alternative, the ratios can be chosen 

automatically based on statistical criteria, selected to represent the original data set in an optimal 
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way.  A further option is a combination of expert and automatic selection, illustrated in the 

application of Section 4. 

Given a proposed set of  ratios, the proportion of total variance in Eq. (6), equivalently in Eqs. 

(2) and (3), that is explained by the set of log-ratios can be calculated. This is conveniently 

evaluated using the rda function for redundancy analysis in R (R core team 2015) in the vegan 

package (Oksanen et al. 2015).  Redundancy analysis (Rao 1964, van den Wollenberg 1977)  is a 

generalization of multiple regression analysis, where a set of  interval-level response variables is 

modelled as a linear function of observed predictors.  Alternatively in the vegan package, the 

adonis function can be used, which has the flexibility of being able to take a rectangular matrix 

or square symmetric distance matrix as the response matrix.  In the present application, the 

response matrix should be the double-centred matrix Z scaled by the square roots of the row and 

column weights, so that the sum of squares of the response matrix is the total variance: i.e., the 

response matrix is 2/12/1
cr ZDD  (cf. Eq. (6)). 

An automatic way of identifying a "good" set of ratios can proceed in a stepwise fashion, trying 

in the first step every individual log-ratio as an explanatory variable in explaining the variance in 

Eq. (6), and selecting the one with the highest percentage of variance explained.  This ratio is 

then fixed as the first log-ratio and then the second best log-ratio in combination with the first is 

sought, then fixed, and so on.  Care must be taken to choose ratios that are "independent" of the 

ones already chosen: for example, if A/B and B/C have already been selected, then A/C is no 

longer a candidate for selection, since it depends on the others, or on the log-scale, log(A) 

log(C)  is linearly dependent on log(A) log(B)  and log(B) log(C). Since the dimensionality 

of a p-part compositional data set is p  1, and if all the parts have appeared in at least one log-

ratio after p 1 steps of the above procedure, the variance explained will be 100%, as is the case 

in the application of the following section.  
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4.  Application: oxides in ancient Roman glass cups 

 

To illustrate the procedure, the data set of Baxter et al. (1990) on the percentages by weight of 11 

different oxides in a sample of 47 Roman glass cups found in archaeological sites in Colchester, 

where oxygen is combined with silicon (Si), aluminium (Al), iron (Fe), magnesium (Mg), 

calcium (Ca), sodium (Na), potassium (K), titanium (Ti), phosphorus (P), manganese (Mn) and 

antimony (Sb).   The data are reproduced in Table 2 of Greenacre and Lewi (2009), who also 

highlight the difference between unweighted and weighted log-ratio analysis of these data.  The 

total log-ratio variance of this data set is 0.002339, a quite low value in the range of log-ratio 

variances, due to the high similarity between the compositions of the cups. 

The process of selecting the log-ratios starts with looking for the one that explains the most of 

this variance  I used the adonis function in R mentioned above, although the same results are 

obtained using the rda function.  Of the ½1110 = 55 possible ratios, the log-ratio of Si/Ca 

turned out to be the best, explaining 61.5% of the variance.  The second best is Si/Sb, explaining 

an additional 12.6%, bringing the variance explained up to 74.1%, and so on.  The sequence of 

ratios and their accumulated variances are given in Table 1.  In addition, Table 1 reports the 

medians of these ratios, as well as their reference ranges based on the estimated 0.025 and 0.975 

quantiles (i.e., 2.5% and 97.5% percentiles).  These statistics are perfectly comparable with other 

comparable archaeological studies, whether the list of oxides is extended or not, since the ratios 

are invariant to the parts chosen by the researcher. 

What is not clear from the stepwise selection is that at some steps there are more than one ratio 

competing for entry, giving the same additional benefit of variance explained.  For example, in 

Table 1, the third ratio chosen was Na/Sb explaining an additional 12.3% of the variance 

(increasing from 74.1%  to 86.4%), but exactly the same increase would have been obtained if  
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Si/Na or Ca/Na had entered.  The important aspect of this third step is the entry of Na, which can 

be in a ratio with either Si, Ca or Sb.  in my algorithm the ratio was chosen randomly from the 

three possibilities and turned out to be Na/Sb.   It is at this point that an expert could intervene to 

choose one of the "competing" ratios that has some relevant substantive meaning and 

interpretation in the context of the data. 

Figure 1 sheds light on the choice of the ratios.  This is the (weighted) log-ratio biplot (see 

Greenacre and Lewi 2005, Greenacre 2009, 2010, 2011), where the contribution biplot scaling 

(Greenacre 2013) is used, where the parts most contributing to the variance are shown more 

distant from the origin. Clearly the Si vs. Ca opposition is the most important along the first axis, 

hence the choice of the first ratio as Si/Ca.  It is no surprise either that Si/Sb is then chosen, to 

include Sb which is the most important contributor on the second axis. 

Figure 2 shows the principal component analysis (PCA) biplot based on the 10 log-ratios of 

Table 1.  This analysis requires the ratios to be weighted proportional to the products of the 

weights of the pair of parts, as in (2).  The resemblance with Fig. 1 is clear, and there is a large 

increase in variance explained (remember that both Figure 1, explaining 79.7% of the variance, 

and Fig. 2, explaining 88.5%, are explaining the same total log-ratio variance). 

Furthermore, the three most important ratios, Si/Ca, Si/Sb and Na/Sb are clearly dominating the 

two-dimensional solution, so Fig. 3 is the same analysis using just these three ratios, and hardly 

differs from Fig. 2.  Notice that the high variance explained of 99.9% in Fig. 3 is relative to the 

total variance of just these three ratios. 

Based on expert knowledge, a selection of ratios can be made that have a substantive 

interpretation, or a combination of expert knowledge and automatic selection can be made.  For 

example, Tanimoto and Rehren (2008) consider the composition of glasses from the late bronze 

age and point out some elements that are "rather heterogeneous in their composition, particularly 

in their ratios of soda (Na2O) to potash (K2O) and lime (CaO) to magnesium (MgO)".  These 
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ratios can be "forced" into the first two steps of the present algorithm, after which the same 

stepwise procedure can be performed.  In the present data set it turns out that those two ratios 

explain only 16.6% of the variance. The automatic selection that follows immediately brings in 

Si/Ca (or equivalently Si/Na), which increases the variance explained dramatically to 74.1% . A 

sequence of ratios then follows, bringing in a similar sequence of elements as in Table 1, and 

reaching 100% with 10 ratios, as before. 

5.  Discussion and conclusion 

 

The main point of this article is to show that a simple choice of ratios can account for all the 

variance in a compositional data set, and can be used for univariate or multivariate analysis as a 

substitute for the original data.  Univariate analysis of the ratios is particularly relevant since 

these are subcompositionally coherent and comparable across studies, whereas univariate 

statistics of the original parts are not.   The definitive book on CoDa, edited by Pawlowsky-

Glahn and Buccianti (2011), contains almost no mention of univariate analysis of compositional 

data, except a passing reference by Lovell et al. (2011) to a paper by Filtzmoser, Hron and 

Reimann (2009), who use the isometric log-ratio transformation to arrive at a set of p  1 

variables that replace the original data set.  These new variables are defined as proportional to 

ratios of parts to geometric means of  parts as follows (the constant of proportionality is not 

relevant here) 
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The problem with these log-ratios is that they have no easy interpretative meaning and also 

depend on a trivial property of the parts, namely their ordering in the data set.  However, the 
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parts could be re-ordered so that the first ratio is the highest variance-explaining one and so on, 

in a stepwise manner again.   

Another approach is to use so-called balances (Egozcue and Pawlowsky-Glahn 2011), which are 

log-ratios of geometric means of groups of parts.  If these are defined as a sequential binary 

partition, involving p  1 balances, then there is an ordering in terms of highest-to-lowest 

variance explanation in the sequence of balances. This is reminiscent of fatty acid compositional 

studies where researchers might express the sum of saturated fatty acids, for example, in a ratio 

with the sum of the unsaturated ones.  This is not the ratio of two geometric means, but the ratio 

of two sums, and the ratio of two sums of subsets of parts is not subcompositionally coherent, 

but it is the same general idea as a balance.  Basing balances on expert knowledge could once 

more increase the interpretative value of these new log-ratios, combined with other ratios to 

increase the log-ratio variance explained. 

A specifically chosen set of simple part ratios, as I propose here, serves the same purpose as the 

above approaches, and has an easier interpretation, especially if guided by experts who are 

familiar with the data context.  These also provide simple univariate statistics that can be validly 

summarized by regular statistical measures of centrality such as the mean and median, and 

dispersion measures such as standard deviation and quantiles.  These ratios can even be 

correlated or combined in multivariate analyses such as regression and principal component 

analysis, with the assurance that they are subcompositionally coherent. In a particular field, for 

example the archaeology of ancient glass where the set of parts is fairly similar across studies, 

one can imagine a set of ratios becoming a benchmark for easier comparison of data sets. 
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Table caption 
 

 

Table 1: List of 10 ratios, selected sequentially, which on a log-scale add the most 

variance explained stepwise to the total log-ratio variance of the 4711 compositional 

data set of Baxter et al. (1990).  Median ratios and 95% reference range, based on 0.025 

and 0.975 quantiles, are also given. 
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Table 1 
 
 
                                            Cumulative  
                                               Explained                                               95% 
                         Ratio             Variance                 Median         Reference Range 

  Si/Ca      61.5%         13.3      10.1-15.0 

  Si/Sb      74.1%        206.5     120.4-403.5 

  Na/Sb      86.4%         53.3      32.1-93.6    

  Fe/Sb      93.6%         0.871    0.437-1.422 

  Ca/K       96.6%         11.4       9.3-14.7 

  Mg/Na      98.4%        0.0255   0.0179-0.0310 

  Al/Ca      99.2%         0.347    0.291-0.389 

  Si/Ti      99.5%         1043       726-1485   

  Ti/Mn      99.8%         6.00      3.08-8.00 

  Al/P      100.0%         38.4      25.9-48.1 
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Figure captions 

 

Figure 1: Log-ratio contribution biplot of the glass cups data set. 

 

Figure 2: PCA biplot of the log-ratios of Table 1, using the contribution biplot scaling for the 

ratios. 

 

Figure 3: PCA contribution biplot of the three top log-ratios of Table 1 (also the most outlying in 

the PCA contribution biplot of Fig. 2).  
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Figure 1 
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Figure 2 
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Figure 3 
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