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Abstract

We study a principal-agent interaction where investments and rewards arrive stochas-

tically over time, and are privately observed by the agent. Investments (costly for the

agent, beneficial for the principal) can be concealed by the agent. Rewards (beneficial

for the agent, costly for the principal) can be forbidden by the principal. We ask how

rewards should be used and which investments incentivized. We identify the unique

optimal mechanism and analyze the dynamic investment and compensation policies.

When all rewards are identical, the unique optimal way to provide incentives is by a

“carte-blanche” to pursue all rewards arriving in a predetermined timeframe.
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1 Introduction

Optimal incentivization when the interests of the involved parties are not aligned is a long-

standing and intensively studied question in economics. Most of the literature focuses on

issues of imperfect action observability (e.g., hidden effort) or private information (e.g., cost

of effort) and assumes monetary compensation. However, in some applications, instanta-

neous monetary transfers are infeasible or inferior to other methods of compensation and,

more importantly, there is uncertainty regarding the availability of future compensation op-

portunities. Examples of such situations are abundant: an employer can shorten work-days

when business is slow or allow certain perks when they become available (e.g., attend exclu-

sive events held by corporate partners or professional conferences); a start-up firm may be

unable to pay its employees until it locates an investor to finance it; an anti-trust authority

may incentivize welfare-increasing mergers by supporting profit-increasing mergers in the

future; or the management of a large organization may incentivize its divisions by granting

preferred access to the organization’s capital when the need arises.

For a more concrete example consider an ongoing relationship between the city mayor

and a subordinate bureaucrat whose salary is fixed by regulations. Occasionally the bu-

reaucrat’s position allows him to recognize opportunities that are either “investments” that

benefit the mayor but are costly for himself (e.g., informally facilitate the application pro-

cess of a desired project), or “rewards” that constitute a personal benefit for the bureaucrat

and entail some cost for the mayor (e.g., appoint associates to vacated municipal positions).

While investments can easily be concealed by the bureaucrat and rewards banned by the

mayor, there are multiple ways in which the randomly arriving rewards can be used to in-

centivize investments. What is the optimal method of incentivization in this environment?

Which investments should be incentivized? How does the optimal policy change over time?

To address these questions we consider a dynamic principal-agent model with a feature

that, to the best of our knowledge, is novel in this literature: both investments and re-

wards (compensation opportunities) arrive stochastically over time, and are either taken

immediately or foregone. The implementation of investments is costly for the agent and

so the principal uses the randomly arriving rewards for incentivization. While investment

and reward availability is privately observed by the agent, his past actions (implemented

investments and rewards) are perfectly observed by the principal who can restrict the set of

allowed actions based on past implementation. We identify the unique optimal mechanism

which is economically appealing due to its simplicity and clear interpretation.
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To understand the problem faced by the principal, consider first a situation with one

type of reward activity, that is, every implemented reward generates the same (positive)

payoff for the agent and entails the same cost (possibly zero) for the principal. Even in

this relatively simple case, the optimal form of compensation is not obvious. For example,

the agent may be allowed to pursue a fixed number of reward activities (no matter how

long it takes), or enjoy all reward activities that arrive in a fixed time interval (no matter

how many of them there are). The principal may begin compensation immediately (“front-

loading”) or delay it for as long as possible (“back-loading”). We show that the unique

optimal way to compensate the agent is via a “time-constrained carte-blanche,” i.e., allow-

ing all rewards that arrive in a fixed time interval that begins at the present moment. In our

mayor-bureaucrat example, this implies that after the bureaucrat identifies and implements

an investment for the mayor, the most efficient way to provide compensation is by grant-

ing him complete freedom to fill vacated positions in his department for a predetermined

amount of time. Section 3.1 explains the economic intuition behind this result.

When there are multiple types of investments and rewards the principal has to decide

on how jointly to use the different reward activities and to determine which investment

opportunities are worth pursuing. Our main result shows that there is a unique optimal

mechanism which we call the generalized time mechanism. Under this mechanism the prin-

cipal compensates the agent by specifying a (separate) time interval for each type of reward

activity within which all rewards of that type are allowed. When a desirable investment is

implemented the principal increases the length of (some of) these time intervals.

The generalized time mechanism exhibits several notable economic properties that only

arise when there are multiple types of investments and rewards. Firstly, the set of allowed

rewards at each point in time depends on the amount of compensation owed to the agent

and thus changes over time. When owed compensation is high, the principal permits multi-

ple types of reward activities at the same time. Surprisingly, the principal permits reward

activities with a high cost of providing a util to the agent even when it is not necessary to do

so. In other words, even though the principal can incentivize the agent by only increasing

the time interval in which cheap rewards are allowed, she allows more expensive rewards as

well. As time goes by, the principal gradually reduces the set of allowed rewards, until a

new investment is implemented.

Secondly, investment decisions change non-monotonically over time. Periods with many

completed investments are followed by periods in which only high-quality investments are

incentivized. If such investment opportunities do not arrive quickly enough, the princi-
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pal gradually becomes less selective about the investments she is willing to incentivize.

Consequently, the principal may incentivize an investment opportunity similar to one she

previously chose to forgo. Additionally, the principal eventually allows the agent to enjoy

all rewards indefinitely, at which point she will be unable to incentivize further investments.

In our mayor-bureaucrat example this implies that ultimately the bureaucrat will have com-

plete freedom to enjoy personal benefits and cease pursuing opportunities that benefit the

mayor.

The only information asymmetry assumed in this paper is with regard to the availabil-

ity of investments and rewards. We abstract away from additional adverse selection and

moral hazard problems by assuming that the payoffs from implemented actions are per-

fectly observable and that investments and rewards arrive according to independent Poisson

processes. In particular, this implies that the agent cannot hasten the arrival of rewards

and that both players always have the same beliefs about the availability of investments and

rewards in the future. We discuss the assumptions of information asymmetry and Poisson

arrivals in detail in Section 7.

The paper proceeds as follows. Section 2 introduces the model and presents some pre-

liminary analysis. In Section 3 we highlight the economic intuition and the implications of

our main result in a model with a single type of investment project and a single type of

reward activity. In Section 4 we prove that there exists a unique optimal mechanism and

study its qualitative properties. In Section 5 we discuss the use of multiple compensation

devices in general and extend our main results to an environment where both monetary and

nonmonetary incentivization is available. Section 6 offers a review of the related literature.

Section 7 discusses the role of key assumptions. All proofs are relegated to the Appendix.

2 Model

We consider an infinite-horizon continuous-time mechanism design problem in which a prin-

cipal (she) incentivizes an agent (he) to implement stochastically arriving investments via

stochastically arriving rewards. Investment projects and reward activities arrive according

to independent Poisson processes. There are I ∈ N types of investment projects: invest-

ment i ∈ I has an arrival rate µi, its implementation incurs a loss of li for the agent, and

it generates a benefit of Bi for the principal. Without loss of generality we order the types

of investment projects such that the rate of return on investments, B
i

li , is weakly decreasing

in i. Similarly, there are J ∈ N types of reward activities: reward j ∈ J has an arrival rate

4



λj , generates a gain of gj for the agent, and entails a cost of Cj for the principal. Again,

without loss of generality, we order the reward types such that the cost of providing a util,
Cj

gj , is weakly increasing in j. All model parameters are non-negative. All investments and

rewards can be “scaled down” and implemented at an intensity of1 α ∈ [0, 1].

We assume that both players discount the future using the same (strictly) positive dis-

count factor r. Thus, an infinite history, in which investment project i (reward activity j)

is performed at times tin (tjn) at intensities αin (αjn), induces the principal’s value∑
i

∑
n

e−rt
i
nBiαin −

∑
j

∑
n

e−rt
j
nCjαjn,

and the agent’s utility ∑
j

∑
n

e−rt
j
ngjαjn −

∑
i

∑
n

e−rt
i
n liαin.

We assume that both players are expected-utility maximizers, and we refer throughout to

the principal’s value and agent’s utility as the expectation of these variables given the play-

ers’ current information.

We assume that only the agent observes whether investments and rewards are available.2

At each point in time the agent can take only actions that are both available (by nature)

and allowed (by the principal). To specify what actions are allowed at a given point in time

we define delegation lists. A delegation list is a vector of the form

D = Dinv ×Drew ∈ [0, 1]
I × [0, 1]J

where the k − th coordinate of Dinv (Drew) is the intensity at which the k − th investment

project (reward activity) is allowed. When an action is permitted at intensity zero, we say

that it is forbidden. Without loss of generality we consider delegation lists that are “tight”

in the sense that there is a unique intensity at which each investment and reward activity

is allowed.3

1When players are expected-utility maximizers and a public randomization device is available, assuming

that actions can be scaled down is equivalent to assuming that the principal can commit to approving actions

probabilistically.
2The assumption of asymmetric information regarding reward availability is immaterial for our results.

See Section 7 for a detailed discussion on publicly observable investments and rewards.
3A fully general specification would allow the agent to implement investments and rewards at multiple

intensities. However, if doing that were useful, the agent must be indifferent between different intensities.

In which case the principal could select the intensity for the agent and permit only that single intensity.
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The public information at time t consists of the delegation list at time t and the agent’s

action (if any) at time t. A public history at time t is then given by the function ht, which

describes the public information for each s ∈ [0, t). We assume that the principal has full

commitment power and can choose, at the beginning of the interaction, any (measurable)

delegation function that maps public histories into delegation lists. A deterministic delega-

tion mechanism is a (measurable) delegation function. We allow for stochastic delegation

mechanisms that are generated by the addition of an appropriately defined randomization

device to the public history.

2.1 Markovian Solution

In the stationary environment of this model it is well known that attention can be restricted

to mechanisms that use the agent’s expected continuation utility, u, as a state variable.4

Observe that, for the agent, the set of continuation utilities is bounded below by 0, since

he can always conceal all future investment opportunities, and bounded from above by his

expected utility from enjoying all future rewards without carrying out any investments:

ū ≡
∫ ∞

0

e−rt
∑
j∈J

gjλjdt =

∑
j∈J g

jλj

r
.

Any continuation utility in the interval [0, ū] is feasible.

To specify a Markovian delegation mechanism we need to define a delegation function

specifying the delegation list for every possible continuation utility, D(u), and the “law of

motion,” du, according to which the agent’s continuation utility changes. Aside from the

requisite measurability restrictions, we do not impose any restrictions on the process du.

Clearly, the agent’s continuation utility can be updated upon implementation of investments

or rewards, and so we allow for (possibly stochastic) jumps in u in such cases. In addition,

even if no action was taken we allow (mean-preserving) lotteries over the agent’s continua-

tion utility. Finally, we allow for a drift in the stochastic process du, which corresponds to

the continuous change of u in the absence of jumps.

Formally, a Markovian delegation mechanism is defined by a delegation function, D(u),

and a stochastic process, ut ∈ [0, ū], with a starting value of u0. The dynamics of u is given

4See, for example, Spear and Srivastava (1987).
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by

du = η(u)dt+ σ(u)dzt +
∑
i∈I

ϕinvi (u)dN inv
i +

∑
j∈J

ϕrewj (u)dNrew
j

+(1− max
i∈I,j∈J

{dN inv
i , dNrew

j })ϕ(u)dNU∗ (1)

where zt is a standard Brownian motion process. The deterministic drift of the process at u

is given by η(u), the stochastic drift is given by σ(u), and all other terms are related to jumps

in the process. The counting process N inv
i (Nrew

j ) counts the number of times the i − th
investment (j − th reward) is implemented (at any positive intensity), and ϕinvi (u), ϕrewj (u)

are random variables that generate stochastic jumps in u when an action is taken in state

u. The countable set in which the principal initiates lotteries independently of the agent’s

actions is denoted by U∗, and the distribution of these lotteries is given by the random

variables ϕ(u), whose support is contained in5 [−u, ū − u]\U∗. The counting process NU∗

counts the number of times u enters the set U∗. We assume that all the aforementioned

random variables are independent of each other.

2.2 The Principal’s Problem

The principal’s objective is to choose a delegation function and a stochastic process for the

agent’s continuation utility that maximize her expected value at time zero:

sup
D(u),du,u0

E[

∫ ∞
0

e−rt
(∑
i∈I

Dinv
i (ut)B

idN inv
i,t −

∑
j∈J

Drew
j (ut)C

jdNrew
j,t

)
dt], (OBJ)

where the dynamics of the process u is given by equation (1) and is subject to the promise-

keeping constraint that stipulates that u is indeed the agent’s expected continuation utility:

us = E[

∫ ∞
s

e−r(t−s)
(∑
j∈J

Drew
j (ut)g

jdNrew
j,t −

∑
i∈I

Dinv
i (ut)l

idN inv
i,t

)
dt]. (PK)

Moreover, the chosen mechanism must incentivize the agent to implement available actions

at the allowed intensity:

E[ϕinvi (u)]−Dinv
i (u)li ≥ 0 ∀u ∈ [0, ū], i ∈ I, (ICinv)

E[ϕrewj (u)] +Drew
j (u)gj ≥ 0 ∀u ∈ [0, ū], j ∈ J. (ICrew)

5To prevent multiple instantaneous jumps, we assume that the support of these jumps does not contain

any elements from U∗. This assumption is without loss of generality, as any sequence of jumps is a compound

lottery that can be reduced.
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We do not need an explicit IR constraint since by concealing all investments, the agent

guarantees himself a non-negative continuation utility. Thus, any IC mechanism is also

interim-IR.

The principal’s value function corresponding to the solution of the above problem is

denoted by V (u). This value function is weakly concave due to the existence of a public

randomization device.6

2.3 Preliminary Analysis

To provide sufficient incentives for the agent to implement an investment of type i the prin-

cipal must increase his continuation utility by at least li. The cost of providing one util by

using rewards of type j is Cj

gj , and so the expected cost of incentivizing an investment of

type i via rewards of type j is li C
j

gj . Therefore, incentivizing such an investment in this way

can generate a positive profit only if Bi > li C
j

gj .

A certain type of investment is said to be redundant if incentivizing it via the most

efficient reward activity (type j = 1) is not profitable. Similarly, if it is not profitable to

exclusively use rewards of a given type in order to incentivize the investment with the high-

est return (type i = 1), we say that this type of reward is redundant. Clearly, redundant

rewards will never be used for compensation and the principal will never incentivize redun-

dant investments. To simplify the exposition of our results we assume that all investment

opportunities and reward activities are non-redundant. Formally, we make the following

parametric assumptions:
BI

lI
>
C1

g1
,

and
CJ

gJ
<
B1

l1
.

Since the principal observes the exact type of implemented investments at no point does

she need to offer expected compensation in excess of the agent’s cost.

Lemma 1. In an optimal mechanism, u0 = 0.

6Were the value function to have a convex region, the principal could increase her continuation payoff by

offering the agent a fair lottery over his continuation utility in this region.
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An immediate corollary of this lemma is that the expected increase in the agent’s con-

tinuation utility when he implements an investment equals his cost of implementation.7

Corollary 1. Under an optimal mechanism, for all i ∈ I and u ∈ [0, ū],

E[ϕinvi (u)] = liDinv
i (u).

A key feature of this model is that compensation opportunities are both limited and per-

ishable. This implies that the principal has a limited capacity to incentivize investments,

and that this capacity is wasted if not used in time. When an investment opportunity is

available, the principal can commit some of her capacity in order to incentivize it. If an

investment opportunity arrives, the principal forgoes it (and risks wasting some capacity)

only if she prefers to save her limited capacity so that she can incentivize better investments

in the future. Consequently, an investment project of type 1, i.e., the project with the

highest return, is implemented at full intensity (or at the maximal possible intensity if full

intensity is not incentive compatible). This is formalized by the following lemma.

Lemma 2. In an optimal mechanism,

Dinv
1 (u) = min{1, ū− u

l1
}.

3 A Special Case: One Investment, One Reward

In this section we illustrate and discuss a main property of the optimal mechanism: the

unique optimal method for providing compensation by means of a certain type of reward

activity is via a time allowance. That is, the principal allows the agent to enjoy all rewards

that arrive within a given time interval that starts at the present moment. To illustrate

this property and its implications in the most transparent way we consider the case with

one type of investment project and one type of reward activity. Clearly, this dramatically

simplifies the problem and mutes many of its dimensions; the principal need calculate nei-

ther the optimal combination of rewards nor which investment projects to incentivize if they

become available (Lemma 2). However, even in this simple case, there are multiple ways in

which the principal can compensate the agent. In addition to the proposed time-allowance

solution, the principal can, for example, allow the agent to pursue a fixed number of reward

activities, or allow him to enjoy many rewards in the distant future.

7All subsequent results hold up to changes in the delegation mechanism that effect the implementation

of future actions with probability zero.
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We begin with an intuitive presentation of the time mechanism (henceforth TM). Al-

though this mechanism is a Markovian delegation mechanism, it is instructive to start with

an alternative representation that uses the length of time in which the agent is allowed to

enjoy rewards as a state variable. To simplify the exposition in this section, we omit invest-

ment and reward indexes.

Time Mechanism Let s ∈ [0,∞] denote the amount of time, starting at the present

moment, in which the agent is allowed to enjoy all available reward activities. Set s0 = 0;

that is, the agent’s initial time allowance is zero. When the state is s, and there is f(s) ∈ R+

that solves the indifference condition∫ f(s)

0

e−rtλgdt− l =

∫ s

0

e−rtλgdt,

the principal allows the investment project at full intensity, and increases the agent’s time

allowance to f(s) if an investment is implemented. If there is no such f(s) ∈ R+, the

principal allows the investment project at the intensity α that solves∫ ∞
0

e−rtλgdt− αl =

∫ s

0

e−rtλgdt,

and increases the agent’s time allowance to s =∞ if an investment is implemented.8

The agent’s expected continuation utility when his time allowance is s is

u(s) ≡
∫ s

0

e−rtλgdt =
1− e−rs

r
λg.

Therefore, it is possible to transform TM back into the general language of Markovian del-

egation mechanisms that use the agent’s continuation utility as a state variable. A formal

definition of TM as a Markovian delegation mechanism is provided in Appendix B.

3.1 Optimality and Uniqueness

Proposition 1. The time mechanism is the unique optimal mechanism.

Proof. This proposition is a special case of Proposition 2.

8Simple algebra shows that as long as the current time allowance, s, is less than
ln(λg)−ln(lr)

r
, investments

are implemented at full intensity and the time allowance is increased by
ln
(

gλ
gλ−lrers

)
r

. If the time allowance

is greater than the above threshold, the investment project is executed at the maximal possible intensity,

e−rs gλ
lr

.
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The simplicity of the J = I = 1 case enables us to explain the intuition behind this result

and to highlight its main driving forces using basic economic concepts. Firstly, it is strictly

desirable for the principal to provide compensation as quickly as possible in order to increase

her available capacity to incentivize future investment opportunities (henceforth, we refer

to the principal’s capacity to incentivize investments as her capacity). It is instructive to

begin by considering the extreme situation where the principal has already committed to

allowing the agent to enjoy all rewards indefinitely. In this case, the principal cannot in-

centivize additional investments and her continuation value is the expected cost of allowing

all future rewards, C
g ū. If the principal were offered a one-time opportunity to provide the

agent with ū utils immediately at a cost of Cg ū, she would strictly benefit from accepting this

offer, because she would incur an identical direct cost of compensation, but also be able to

incentivize profitable investments in the future. More generally, the principal has a limited

capacity and hence she will eventually be forced to forgo profitable investments. Thus, if

the principal has an opportunity to increase her capacity (by permitting an available reward

activity), she will strictly prefer to do so.

Secondly, conditional on every possible arrival time of the next investment, τ , TM max-

imizes the principal’s expected capacity at τ . To see this, let u > 0, and denote by s the

corresponding time allowance under TM. Notice that if τ ≥ s, the agent’s continuation

utility at τ equals zero (which is the lower bound for any IC mechanism), and hence the

principal has the maximal available capacity, ū. Now consider the case where τ < s. By

the definition of TM, regardless of the actual reward arrival process, all rewards arriving

before time τ are allowed. Therefore, TM attains the lower bound on the agent’s expected

continuation utility at τ , and hence maximizes the principal’s expected capacity at τ .

Thirdly, by the construction of TM, conditional on the value of τ there is no uncertainty

regarding the principal’s available capacity at τ . Recall, that the principal has a (weakly)

concave value function over u, which implies that she also has a weakly concave value func-

tion over her capacity, ū − u. Thus, minimizing the risk associated with the availability of

future capacity is desirable for the principal.

We have shown that TM provides the best expected outcome up to any time τ with no

uncertainty for the (weakly) risk-averse principal, hence, TM must be an optimal mecha-

nism. Moreover, for any mechanism that is distinct from TM, there are values of τ for which

there exist histories in which some rewards are not allowed at full intensity before time τ .

Thus, under such a mechanism, in expectation, the agent receives less compensation than

under TM, and hence the principal’s expected capacity at τ is strictly lower than under
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TM. As the arrival time of the next investment opportunity is a random variable with full

support, it follows that TM is the unique optimal mechanism.

3.1.1 Sub-optimality of Allowing a Fixed Number of Rewards

An important implication of Proposition 1 is that the intuitive compensation method of

allowing the agent to enjoy a fixed number of rewards is not optimal. In this subsection

we illustrate why such incentivization needlessly wastes compensation opportunities and is

therefore sub-optimal.

Assume that the agent is currently allowed to enjoy one reward and consider two histories

in which no investments arrive until time τ . However, in the first history, hist1, no rewards

arrive before τ and in the second history, hist2, two rewards arrive. In hist1, at τ the agent

is still allowed to enjoy one reward and so his continuation utility is strictly positive, while

in hist2, by time τ the agent has already enjoyed all the rewards he was entitled to and so

his continuation utility is zero.

hist1 -

τ

uτ > 0

hist2 -

τ

uτ = 0

rew1

r r
rew2

Figure 1: The type of histories used to construct an improvement.

In hist2 the agent was not allowed to enjoy the last reward that arrived. To avoid

such a waste of incentives the principal can make an offer of the following gist to the agent

at time9 0. She can promise to allow the agent to enjoy both rewards that arrive in the

second history and in return decrease the agent’s continuation utility at time τ if the first

history is realized. The decrease is chosen such that the agent’s current continuation utility

will not be affected by this change. This type of offer increases the principal’s capacity to

incentivize investments after τ if the first history is realized without affecting the expected

cost of compensating the agent or the principal’s capacity after τ in the second history, and

hence it is profitable.

9Without details, we note that the “improvement” we suggest is not well defined. This subsection aims

only to provide a general intuition for why allowing a fixed number of rewards is sub-optimal. Formally,

this result follows from Proposition 2.
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3.2 Value Function

The use of time allowances enables us to define a notion of the resources that the principal

has at her disposal. If, at state s, the principal were required to marginally increase the

agent’s continuation utility, she would do so by allowing him to enjoy all rewards that arrive

in an infinitesimal time interval starting at s units of time in the future. Thus, the marginal

resource at state s is the right to enjoy all reward activities in that interval.

The principal’s value at u is determined by the cost of paying the current debt (the

agent’s continuation utility) and by the amount of remaining resources that will successfully

be utilized in expectation. In the limiting case of always-available investment projects (µ =

∞), the principal will successfully use all her resources to incentivize additional investment

projects. Therefore, the value function in this limit case has a linear form given by

V∞(u) =
B

l
(ū− u)− λC

r
.

In the opposite limiting case of µ = 0, only the cost of compensation remains. All of the

uncommitted incentivization resources will be wasted as no further investment opportunities

are expected. Thus, the value function is given by

V0(u) = −C
g
u.

For any µ ∈ (0,∞), the value function is strictly decreasing and lies inside the wedge

created by the extreme value functions (an example is depicted in Figure 2). In Appendix

C we provide an algorithm for analytically deriving the value function.

The value obtained from successfully utilizing the marginal resource is constant; how-

ever, for any 0 < µ < ∞, the probability of successfully utilizing the marginal resource

depends on the state s. At the beginning of the interaction (and whenever s = 0) there

is no compensation until an investment project is carried out and, therefore, the marginal

resource is wasted. By contrast, when s > 0 the marginal resource will be wasted only if

no investment opportunity arrives in s units of time. Thus, the probability of successfully

utilizing the marginal resource is increasing in s. Therefore, the value function is strictly

concave in s. Due to discounting, the amount of time required to provide u utils via TM is

convex in u. This, in turn, implies that the value function is strictly concave in u despite

the risk neutrality of both players and the linearity of the environment.10

10We prove this for our general model in Lemma 7.
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Figure 2: Value function and its bounds for r = 1
20
, µ = 5

20
, λ = 3

20
, B = 5, l = g = C = 1.

3.3 Properties of the Time Mechanism

Reward Independence The realized arrival of rewards is not taken into account under TM.

Thus, our result does not depend on the assumption that the principal observes implemented

rewards. In some cases, it might be natural to assume that the principal only partially ob-

serves which rewards were implemented, possibly with some delay. In these environments,

TM remains the unique optimal mechanism.

Notice that in TM the players are exposed precisely to the exogenous risk generated by

the stochastic arrival of reward activities. They do not co-insure against this risk (as would

happen if the principal compensated the agent by allowing him to enjoy a fixed number of

rewards) nor do they generate additional risk by using explicit lotteries. Furthermore, ex-

plicit lotteries whether they be mean-preserving gambles over different values of the agent’s

continuation utility or lotteries that induce a probabilistic implementation of an available

reward, are inconsistent with optimality.

Foregone Investment Opportunities Under TM, after a finite amount of time the mech-

anism reaches an absorbing state in which no investments are implemented.11 In contrast,

if the principal could provide instantaneous compensation (e.g., via monetary transfers12)

with an identical direct cost to the one she incurs if reward activities are used for compen-

11By Lemma 2 and the Borel–Cantelli lemma, the agent’s continuation utility reaches ū in a finite time

with probability one. In this absorbing state, the agent’s continuation utility never decreases and no further

investments are implemented.
12Throughout this paper we refer to transfers as a non-negative payment the principal can deliver to the

agent.
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sation, all available investments would be implemented. However, reaching this absorbing

state is an ex-ante desirable outcome for the principal since it implies that all of her lim-

ited resources will have been efficiently used to incentivize investments. Forgoing some

investment opportunities is an unavoidable consequence of the scarcity of compensation op-

portunities. The expected amount of time it takes to reach this absorbing state determines

the (expected) welfare loss resulting from the lack of transfers. The time it takes to reach

this state is decreasing in the arrival rate of investment projects and their implementation

cost, and increasing in the principal’s capacity to compensate the agent (ū).13

Front-loading The front-loading of compensation under TM is manifested in two distinct

ways. Firstly, the principal front-loads compensation within a history by using the earliest

available opportunities to compensate the agent. Secondly, the principal front-loads com-

pensation across different histories by providing compensation via a time allowance. Were

the time required to provide the promised continuation utility different in two histories,

compensation could be front-loaded by shifting a fraction of the compensation that should

be paid in the distant future in one realization to an earlier point in time in the other re-

alization. Doing so is desirable as the risk of wasting resources is higher in the realization

with the earlier payment. This property stands in contrast to the common practice of back-

loading, which is the recommended policy in many settings where transfers are allowed.14

Renegotiation Proofness The principal’s value function is strictly decreasing in the

agent’s continuation utility. Therefore, the principal and agent can never find a Pareto

improvement by re-negotiating the continuation mechanism at some state of TM.

4 The General Case

Our main result is that in the general model presented in Section 2, there is a unique

optimal mechanism under which the principal selectively incentivizes investments and uses

reward-specific time allowances to compensate the agent. Formally, we say that a Markovian

delegation mechanism is a multidimensional time mechanism if for every agent’s continua-

tion utility u his promised compensation can be represented in the form of J time allowances

(sj)j∈J , such that the agent is allowed to enjoy all reward activities of type j that arrive in

the next sj ≥ 0 units of time.

13There is no non-trivial bound on the welfare loss due to lack of transfers. One can easily construct

examples in which the percentage of implemented discounted investments approaches one or zero.
14See, for example, Harris and Holmström (1982), Lazear (1981), and Ray (2002).
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Proposition 2. There is a unique optimal mechanism. Moreover, this mechanism is a

multidimensional time mechanism.

We refer to the optimal mechanism as the generalized time mechanism (henceforth GTM).

When I = J = 1, TM is the only (unidimensional) time mechanism that satisfies Lem-

mas 1 and 2, and thus Proposition 2 pins down the unique optimal mechanism. In the

general case, there are many multidimensional time mechanisms that satisfy both lemmas.

For example, with two types of reward activities there are many (two-dimensional) time

allowances that can provide the same level of expected compensation. In addition, when

there are two investments, the two-dimensional time mechanisms can differ in regard to

when investments of type 2 are incentivized.

The simple case with one type of investment and reward discussed above is illuminating

in many aspects; however, it is not rich enough to address two major aspects of the princi-

pal’s problem: the choice of what types of rewards to permit and what types of investments

to incentivize. In the next subsection we address these aspects.

4.1 Optimal Investment and Compensation Policies

For ease of exposition, we assume that the cost of providing a util, Cj

gj , is strictly increas-

ing in j and that the rate of return on investments, Bi

li , is strictly decreasing in15 i. This

assumption entails no loss of generality (see Appendix D).

4.1.1 Dynamic Compensation Structure

In Section 3 we argued that front-loading compensation reduces the waste of compensation

opportunities and minimizes the indirect (opportunity) cost of compensation. The same

reasoning suggests that the principal is inclined to permit rewards of different types si-

multaneously. On the other hand, different types of rewards are associated with different

direct costs for the principal. Thus, the principal might prefer to avoid permitting expensive

rewards. The optimal compensation structure balances the trade-off between minimizing

these two distinct costs.

15Recall that we have already ordered actions such that both ratios are weakly monotone.

16



It is easy to see that if a reward activity of type j̃ is allowed at u, rewards with a lower

direct cost (j < j̃) should also be allowed. Therefore, for j < j̃, we must have sj ≥ sj̃ . This

implies that there exist weakly increasing activation thresholds {ûrewj }Jj=1 such that reward

activity j is permitted when the agent’s continuation utility u satisfies u ≥ ûrewj .

A more interesting feature of compensation under GTM is that the above activation

thresholds are interior in the following sense: (1) the activation thresholds are strictly in-

creasing and (2) the principal permits inefficient rewards before it is strictly necessary to do

so.16 In other words, even though the principal can incentivize an investment by increasing

the agent’s time allowance for cheap reward activities, at some states she will prefer to

incentivize it using both cheap and expensive rewards. In particular, this implies that the

principal does not permit the agent to enjoy any single reward activity indefinitely, until

she is forced to allow him to enjoy all rewards indefinitely at the absorbing state of u = ū.

For the next proposition, recall that the agent’s expected continuation utility from enjoying

all future rewards of type j is
∫∞

0
e−rtλjgjdt = λjgj

r .

Proposition 3. Activation thresholds of reward activities, ûrewj , are strictly increasing in

j and satisfy ûrewj <
∑j−1
k=1

λkgk

r .

Rephrasing this proposition into the language of time-allowances gives the following

corollary.

Corollary 2.

1. If the time allowance of reward j is positive and finite, it is strictly greater than the

time allowance of rewards j̃ > j.

2. The time allowance of reward j is infinite if and only if the time allowance of all

rewards is infinite.

To understand the intuition behind this result it is instructive to consider the case of two

types of rewards and a single type of investment. When the agent’s continuation utility is

very low, the amount of time required to compensate him by using only the cheaper reward

activity is very small. In such cases, with very high probability, by the time the next in-

vestment opportunity arrives the agent will have already received all his compensation even

if only rewards of type 1 are used. Therefore, using the more expensive type of rewards is

unlikely to increase the number of investments that will be implemented in the future, but

16Recall that we compare different types of rewards in terms of the direct cost of providing one util,
Cj
gj

,

to the agent and that this ratio is strictly increasing.
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it will definitely increase the cost of compensation. Thus, for sufficiently low levels of u,

only the rewards of type 1 are allowed.

The intuition for why the principal uses the more expensive rewards before the capacity

of the cheapest reward is exhausted is a bit more complicated. Suppose to the contrary

that she does not do so and that at present the agent is allowed to enjoy rewards of type 1

indefinitely and rewards of type 2 are forbidden. We now construct a profitable deviation.

The principal reduces the agent’s allowance for rewards of type 1 to a large but finite time,

and to keep the agent’s continuation utility unchanged grants him a small time allowance

for rewards of type 2. Furthermore, the principal will incentivize future investments by

first returning the time allowance for the cheap reward to infinity and then reverting to

increasing the time allowance for the expensive reward.

This deviation clearly increases the cost of paying the existing debt to the agent as some

fraction of it is now paid with rewards of type 2. However, it also increases the princi-

pal’s continuation value in two distinct ways. Firstly, this deviation reduces the cost of

incentivizing future investments as, instead of using only rewards of type 2, the principal

incentivizes some of these investments with rewards of type 1. Secondly, permitting the

agent to enjoy both rewards for a small amount of time increases the principal’s capacity to

incentivize additional investments since it decreases the agent’s continuation utility when

the next investment arrives compared to the original mechanism.

For sufficiently small changes, the benefits created by this deviation outweigh the cost.

To see why, assume that the next investment arrives sufficiently fast so that increasing

the agent’s time allowance for the cheap reward to infinity is not sufficient to incentivize

the agent to implement it. In this case, the present value of the decrease in the cost of

incentivizing the next investment is equal to the increase in the cost of paying the initial

debt. However, the principal is left with the benefit of an increased capacity to incentivize

additional investments. Clearly, by reducing the agent’s time allowance for rewards of type

1 from infinity to a finite but sufficiently large time allowance, the principal can ensure that

the first investment arrives “quickly enough” with an arbitrarily high probability.

4.1.2 Dynamic Investment Policy

In GTM there are three separate forces that lead the principal to become more selective

about the investments she incentivizes at higher levels of u. Firstly, as the agent’s con-

tinuation utility increases, the principal’s capacity to incentivize additional investments
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decreases. Secondly, by Proposition 3 the direct cost of incentivizing the agent is increasing

in his continuation utility. Thirdly, the use of time allowances for compensation implies that

the probability of a better investment opportunity arriving before the marginal resource (of

any type of reward) is wasted is increasing in the agent’s continuation utility. In the next

proposition we show that there exist thresholds {ûinvi }Ii=1, such that investment project i is

incentivized if and only if u ≤ ûinvi . The strict concavity of the value function implies that

the thresholds ûinvi are in fact strictly decreasing in i.

Proposition 4. There exist thresholds ū = ûinv1 > ûinv2 > ... > ûinvJ > 0 such that:

1. If u ≤ ûinvi , then investments of type i are incentivized at intensity min{1, û
inv
i −u
li }.

2. If u > ûinvi , then investments of type i are not incentivized.

This proposition, and the implication of Proposition 3 that the agent’s continuation

utility drifts down as long as investments are not implemented and u ∈ (0, ū), provides in-

sights into the nature of dynamic investment decisions. Specifically, it suggests a potential

explanation of why an investment opportunity similar to one that was forgone in the past is

implemented at present. After a large and profitable investment is carried out the principal

requires a high return on her limited resources to justify the incentivization of an invest-

ment. Therefore, despite the principal having the resources, some investments opportunities

are temporarily forgone, until the agent’s continuation utility decreases and the return on

such investments is deemed acceptable.

5 Modes of Compensation

Most principal-agent models focus on studying how the principal should condition the

agent’s compensation on the outcomes she can observe. The literature generally makes

the natural assumption that compensation is provided via monetary transfers that can be

made at arbitrary times and be of arbitrary size. When monetary transfers are not the

exclusive compensation tool, the principal’s problem becomes more complicated since, in

addition to the provision of sufficient incentives, she also needs to choose the optimal com-

pensation bundle.

Our results suggest that when comparing non-instantaneous compensation devices, two

(main) features should be considered: (1) The cost of compensation, i.e., the direct cost of
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providing one util to the agent using a given compensation tool. (2) The speed of compen-

sation, i.e., the amount of time it takes to provide one util to the agent.

This classification could be valuable in future research on compensation devices. Ques-

tions that could be analyzed within this framework include: What restrictions should a se-

nior manager impose on the incentivization tools that a junior manager has at his disposal?

What compensation devices should be permitted under a collective bargaining agreement?

How does one determine the number and allocation of nonmonetary rewards among hetero-

geneous employees?

In the aforementioned problems the principal must select a compensation device (more

generally, a subset of devices) from a feasible set. There is a natural partial ranking: a

compensation device that is both quicker and cheaper is obviously preferred. The specific

characteristics of the feasible investment projects will induce indifference curves over the

space of compensation devices. In general, when investment opportunities are rare, the

principal is inclined to prefer cheap compensation devices as it is unlikely that the low

speed of compensation will prevent investment projects in the near future. On the other

hand, when investment opportunities are abundant she expects to utilize a high percentage

of the incentives at her disposal, and thus is inclined to increase her capacity to provide

incentives even if doing so reduces the net benefit from each investment project. The fact

that there is a non-trivial trade-off between the two dimensions in the selection problem

implies that the preferences regarding the choice of a compensation device are different

from their activation order in GTM.

5.1 Adding Monetary Transfers

The main insights of our model remain valid in an environment where monetary transfers

are allowed on top of other compensation devices. The optimal mechanism in such environ-

ments is similar to GTM, with a few minor modifications.

Firstly, in contrast to GTM, the principal does not use reward activities that are more

expensive than monetary transfers. To see this, note that the principal’s ability to provide

incentives via monetary transfers is unlimited and she is better off using transfers rather

than more costly reward activities. Secondly, all rewards that are cheaper than transfers

are used and, moreover, transfers are used only when all such rewards are exhausted. By

contrast, under GTM all compensation devices are used before any are exhausted. This

difference reflects the unique nature of transfers as an instantaneous and non-perishable
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Figure 3: Used and unused compensation devices when transfers are available.

compensation device, a property that negates the need to start using transfers before it is

strictly necessary to do so.

6 Related Literature

Our work contributes to the literature on dynamic principal-agent interactions by provid-

ing the first analysis of a dynamic model with uncertain availability of investments and

rewards. The existing literature has addressed a plethora of economic questions in rich

environments;17 however, it does so by assuming compensation (solely) via monetary trans-

fers. We consider a model where the complexity stems from the dynamic stochasticity of

action availability. On other dimensions, our environment is simple, indeed, so simple that

a direct comparison between our model and previous dynamic principal-agent models is not

insightful. However, our model provides new insights into two (related) features of optimal

compensation that are frequently debated in the literature: the timing of compensation and

the retirement of the agent.

The optimal timing of compensation is a long-standing question in economics. Earlier

work such as Lazear (1981) and Harris and Holmström (1982) generally suggests that when

the principal has full commitment power, compensation should be back-loaded. Ray (2002)

reaches the same conclusion when the principal does not have full commitment power. Later

work on models of full commitment such as Rogerson (1985) and Sannikov (2008) shows

17Seminal papers in this field include the works of Baron and Besanko (1984), Rogerson (1985), Holmström

and Milgrom (1987), and Spear and Srivastava (1987).
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that the optimal timing of compensation is more complicated as it relates to time-dependent

effectiveness and the cost of providing incentives, in which case either back-loading or front-

loading may be optimal. In the present paper, we add a novel argument to this debate

by pointing out that when compensation opportunities are perishable, the principal has an

unambiguous incentive to front-load compensation.

One interpretation of GTM is that it induces the eventual retirement of the agent, in

line with the recommended policy of previous models (for example, Spear and Wang (2005)

and Sannikov (2008)), albeit for other reasons than those hitherto given. In models with

transfers, the agent retires when it becomes too costly to incentivize him (or he is fired when

he becomes too poor to be punished effectively), whereas in our model the agent ceases to

carry out investment projects when the principal runs out of incentivization devices.

The type of uncertainty in our model is similar to the uncertainty in the “trading favors”

literature (e.g., Möbius 2001 and Hauser and Hopenhayn 2008), which studies equilibria in

games where each player occasionally has an opportunity to grant a favor to his counterpart

at a cost to himself. The setting in this literature differs from ours in three important ways:

(1) Both players lack commitment power and so, unlike our mechanism design model, the

analysis is equilibrium based. (2) Each player privately observes when he can grant a favor

to his counterpart. (3) There is a single type of favor each player can grant and receive.

Möbius (2001) suggests the use of a “chip mechanism” in which a player grants a favor if the

difference between the number of favors granted and received is not too large. Hauser and

Hopenhayn (2008) show that the optimal perfect public equilibrium can be implemented by

a modified chip mechanism in which the cost of receiving a favor depends on the current

chip distribution and the number of chips held by each player reverts to the mean over time.

As in GTM the suggested equilibria in those papers rely on a notion of credit between the

two players, however this notion is different from the one in GTM because of the mechanism

design approach used in this paper. Firstly, in these chip mechanisms either player can be

the player who has a positive credit whereas in GTM the principal is never owed anything

by the agent. Secondly, their notion of credit is related to the difference in the number

of favors granted in the past, whereas our credit is dependent only on the timing of the

investments implemented by the agent. In a more recent paper, Abdulkadirolu and Bagwell

(2013) consider an environment where there is not only asymmetric information about the

availability of actions but also asymmetric information with regard to the realized payoff

generated by each action. They find that in such a setting a credit based mechanism must

sometimes be augmented by infrequent and symmetric punishment to obtain an efficient

equilibrium.
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Our work also contributes to the literature on delegation. Following the seminal work

of Holmström (1977), the literature on delegation has focused on situations in which the

interests of the principal and the agent are partially aligned. Initially, the research fo-

cused on static settings. Melumad and Shibano (1991) and Alonso and Matouschek (2008)

characterize the optimal delegation set and show that sufficient alignment of interests is a

necessary condition for delegation to be of value. In a more complex environment where

the agent simultaneously conducts multiple tasks on behalf of the principal, Frankel (2014)

also requires (sufficient) alignment of preferences to derive the optimality of his “moment

mechanism.” Armstrong and Vickers (2010) consider a static delegation problem where,

like in our model, the agent has private information about the available actions rather than

information about a payoff-relevant state of nature. They show that the principal permits

an action if it provides her with a high enough payoff relative to the agent’s utility from

performing the same action.

In recent years, the literature on delegation has begun to analyze dynamic interactions

where, unlike in our model, preferences regarding single actions are partially aligned. Ex-

amples of such papers include Guo and Hörner (2015), Lipnowski and Ramos (2015), and

Li, Matouschek and Powell (2016). The former two papers assume that the principal never

observes the realized payoffs from previous actions, whereas the latter paper (and ours) as-

sumes that all past actions are observable. Moreover, the first paper (and ours) assumes that

the principal has full commitment power (and thus utilizes a mechanism design approach),

whereas the last two papers assume that her commitment is limited (and thus utilize a

repeated game approach). Several works of a more applied nature have also focused on

this environment. Guo (2016) studies the delegation of experimentation when no transfers

are permitted, and Nocke and Whinston (2010, 2013) analyze the optimal dynamic merger

policy for an anti-trust authority.

7 Concluding Remarks

Poisson Arrival of Investments and Rewards

Even though the agent’s private information is richer than the public information, the prin-

cipal and agent always share the same beliefs about the availability of investments and

rewards in future. The fact that we assume homogenous Poisson processes simplifies the

problem since we can use the current debt as a sufficient representation of a state and specify
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a Markovian solution. Assuming non-homogeneous Poisson processes would not change the

qualitative properties of our main results, however, the set of allowed investments and the

structure of compensation would depend on the calendar time.

From the intuition provided for the optimality of our mechanism, it is easy to see that if

reward availability is governed by a deterministic process GTM would remain the optimal

mechanism. To incentivize the agent to implement an investment the principal must allow

him to enjoy a sufficient number of discounted rewards in expectation. When compensation

is provided via time allowances, this is done by calculating the expected discounted number

of rewards that will be available at each point in time, and setting the time allowance to

the required length. Thus, in a sense, compensation via time allowances eliminates the

stochastic nature of rewards. Clearly, when rewards arrive deterministically GTM would

have another intuitive description - the principal promises a fixed number of reward activities

(of each type) and updates this promise (weakly increases the number of allowed rewards)

upon the implementation of an investment. The uncertain arrival of investments together

with the limitedness and perishability of rewards (and not their stochastic arrival) is what

generates the key qualitative features of GTM (namely, the use of expensive rewards before

cheap rewards are exhausted and the dynamic investment policy).

If the arrival of investments and rewards is not governed by Poisson processes, the results

in our model change for the following reasons. Firstly, the players’ beliefs over future action

availability may no longer be the same since the agent bases his beliefs on a richer repre-

sentation of a history. This might create an interesting dynamic adverse selection problem

where, for example, the agent may conceal available investments if he is more pessimistic

about the arrival of rewards in the near future. Secondly, information about future action

availability is on its own valuable. Thus, the principal may be inclined to incentivize in-

vestments and allow rewards just for its informational value in the future. Lastly, one can

think of an environment where the arrival processes are affected by past implementation. In

such cases, when contemplating on the optimal investment and compensation policies the

principal would need to take into account the future implications of any implementation.

Symmetric Information: Observability of Investments

In our model it is assumed that only the agent observes whether investments and rewards are

available. However, in GTM, implemented rewards do not change the agent’s continuation

utility, and he reveals to the principal the availability of worthwhile investments at no cost

(the agent does not enjoy any information rents). Moreover, past availability of investments

and rewards is not informative about the future. This raises a natural question about the
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effect of asymmetric information in our model. Were we to assume that both players (or

only the principal) observe the availability of rewards, GTM would remain the unique op-

timal mechanism. To see this, note that the agent’s compensation for an investment must

be delivered after its implementation, and that regardless of the observability of available

rewards, compensation via time-allowances maximizes the utilization rate of the principals

limited capacity.

However, the information asymmetry over investment opportunities is detrimental to

the principal as it decreases her ability to use her limited capacity effectively. Consider an

environment identical to ours in all respects but where the availability of investment oppor-

tunities is observed by both players. In this environment the principal must still incentivize

the agent to implement investments. However, unlike in the baseline model she can condi-

tion the set of permissible actions on both the implementation of previous actions and on

the availability of past investments.

To illustrate the difference between symmetric and asymmetric information settings,

consider the case where there is a single type of reward and a single type of investment.

Moreover, assume that the parameters of the model are such that the agent’s expected util-

ity from implementing all future investments and enjoying all future rewards is equal to the

loss from implementing one investment, gλ−lµ
r = l. If the principal applies TM, she will

eventually commit all future rewards and not be able to incentivize further investments.

Now consider the following mechanism: Before the first investment opportunity arrives

(“phase 1”), rewards are not allowed. When the first investment opportunity arrives, the

mechanism moves to “phase 2,” wherein the agent is allowed to enjoy all rewards as long

as he carries out all investment opportunities. If the agent fails to implement an available

investment, future rewards are no longer allowed. By construction (and the stationariness

of the environment), the agent is always indifferent whether to implement an investment

opportunity or not. Under the latter (incentive-compatible) mechanism all investments are

implemented and the agent is not overcompensated. Since more investment projects are

carried out under this mechanism than under TM, it strictly outperforms TM.

The nature of compensation in our environment limits the principal’s capacity to com-

pensate the agent. However, the degree to which the principal can utilize her limited capacity

depends on the informational assumptions. When the principal observes which investments

are available, she can contract over the arrival of future investment opportunities. Such

contracts allow the principal to combine realizations in which investment opportunities are

rare and the capacity constraint is slack with other realizations in which investments are
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abundant and the capacity constraint is binding. Under asymmetric information regarding

the availability of investment opportunities such contracts cannot be enforced, and thus

asymmetric information exacerbates the severity of the limited capacity problem.

It is worthwhile to note that if we use only monetary transfers as the means of compen-

sation in our model the principal can reimburse the agent for the (exact) implementation

cost after observing a completed investment. This compensation scheme is optimal under

symmetric and asymmetric information alike. Therefore, the existence of an “informational

problem” (or lack thereof) may depend on the means by which the agent is compensated.

Appendices

Appendix A: Proofs

Lemma 1

Proof. Recall that the agent’s continuation utility is non-negative. Assume to the contrary

that under an IC mechanism a reward is allowed before an investment project is executed

with strictly positive probability. Let τ be the first point in time when an investment is

carried out in such histories. The IC at τ (and onwards) implies that removing rewards

from the delegation list before time τ does not affect the agent’s future actions, but reduces

the cost of compensation for the principal.

We now show that the agent’s participation utility is zero in an optimal mechanism.

The agent does not get compensated before an investment is carried out. Assume to the

contrary the agent’s participation utility is positive. Then the IC for the first implemented

investment project is not binding for a set of histories with positive measure, because oth-

erwise the agent’s utility would be the same as if he never implemented any investments,

namely zero.

Consider histories in this set. There are two options: either the agent is compensated

with positive probability before the next investment project arrives or he is not.

In the first case, reducing the intensity of reward activities by ε > 0 until the next

investment is undertaken, while adjusting the delegation function to maintain the same

continuation paths, increases the mechanism’s value for the principal without affecting any

ICs. Namely, there are no decisions before the first investment project is implemented, this

change does not affect any future IC constraints, the adjustment of the delegation function
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maintains the IC of the scaled-down rewards, and if ε is small enough the first investment

project is still carried out.

In the second case, the agent undertakes another investment before compensation begins.

This implies that for a set of continuation histories with positive measure, the IC for the next

investment project is not binding. Since there are a finite number of investment projects that

can be incentivized before compensation begins, eventually there is an investment project

for which the IC is not binding and the agent is compensated with positive probability

before implementing another investment project.

Lemma 2

Proof. Assume that there exists a set of agent continuation utilities U in which the mech-

anism spends a strictly positive expected amount of time and that investment project 1 is

not incentivized at the maximal possible intensity. For each u ∈ U construct a deviation of

the following form: require the agent to increase the intensity at which investment 1 is im-

plemented by αu and upon its implementation permit him to enjoy all rewards for εu units

of time. After εu units of time return to the original mechanism at state u. We show that

there exist αu, εu > 0 such that this deviation is IC, satisfies condition (PK), and increases

the value of the mechanism for the principal. We now consider a specific value of u and

assume that an investment opportunity of type 1 is currently available. Moreover, we drop

the subscripts of α and ε.

From (PK) the intensity of an investment project that can be incentivized for a given ε

is the α(ε) that solves

u = −α(ε)l1 +
1− e−rε

r

∑
j∈J

λjgj + e−rεu

α(ε) =
1− e−rε

rl1

∑
j∈J

λjgj − (1− e−rε)u
l1

Thus, the value from following this deviation is

α(ε)B1 − 1− e−rε

r

∑
j∈J

λjCj + e−rεV (u)

We need to show that

V (u) < α(ε)B1 − 1− e−rε

r

∑
j∈J

λjCj + e−rεV (u)
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Rearranging terms we get

V (u) +
uB1

l1
<
B1
∑
j∈J λ

jgj

rl1
−
∑
j∈J λ

jCj

r
(2)

Denote by V̄ (u) the value function in an auxiliary world where the investment project

1 is always available. In this world the principal uses all of her capacity to incentivize

investment 1 and thus

V̄ (u) = (

∑
j∈J λ

jgj

r
− u)

B1

l1
−
∑
j∈J λ

jCj

r
(3)

Clearly, V (u) ≤ V̄ (u) and, moreover, this inequality is strict for u < ū since the event

that no investment projects arrive for T units of time has a positive probability for any T .

Substituting V (u) with its strict upper bound V̄ (u) in the LHS of equation (2) yields

the RHS of (2). This implies that the deviation is profitable.

Proof of Proposition 2

Lemma 3. It is without loss of generality to restrict attention to mechanisms with the

following properties:

1. φrewj (u) = 0 ∀j ∈ J, u ∈ [0, ū].

2. φ(u) = 0 ∀u ∈ [0, ū].

3. σ(u) = 0 ∀u ∈ [0, ū].

4. Drew
j (u) > 0 =⇒ Drew

k (u) = 1 ∀k < j, u ∈ [0, ū].

These conditions state that the dynamics of u is independent of the realized reward activ-

ities, that it does not depend on any lotteries, and that the cheaper means of compensation

are used first.

Proof. Consider an arbitrary IC mechanism and assume that the current state is u0 > 0.

Denote by τ the time until the next investment project arrives. For any pair u0, τ and

t < τ , the above mechanism generates a distribution of the continuation utility at time t

in terms of time 0 utils, e−rtut|u0, and this distribution is independent of τ . The expected

continuation utility (measured in terms of time 0 utils) is weakly decreasing (by assumption,

no investment projects are carried out in this time) and continuous. Continuity follows from

rearranging condition (PK) to get

e−rtE[ut|u0] = u0 − E[

∫ t

0

e−rs
∑
j∈J

Drew
j (us)g

jdNrew
j,s ds] (4)
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Therefore e−rtE[ut|u0] is differentiable almost everywhere (in t); moreover, equation (4)

shows that its derivative is an element of [rE[ut|u0]−
∑
j∈J λ

jgj , rE[ut|u0]].

Therefore, we can replicate the dynamics of E[ut|u0] by finding the unique x ∈ [0, J ] for

which18

∂E[ut|u0]

∂t
= rE[ut]−

bxc∑
j=1

λjgj − (x− bxc)λbxc+1gbxc+1 (5)

Since we are focusing on a Markovian solution we suppress the time index and denote the

solution to equation (5) by x(u).

By construction, the reward component described above induces the minimal expected

cost (for the principal) out of all the compensation schemes that induce the same expected

rate of compensation as that of the chosen mechanism. Since there is no uncertainty about

the value of ut under this scheme, it is clear that replacing the reward component of the

original mechanism with the one constructed above does not harm the principal, who has a

weakly concave value function.

Since the value of the mechanism is not affected by the value of Dt for any set of t’s with

measure zero, we can complete the delegation list arbitrarily for the points where E[ut|u0]

is non-differentiable.

Given the function x(u) we can construct the reward component of the delegation list at

u by allowing reward activities {1, . . . , bx(u)c} at full intensity and reward bx(u)c+ 1 at an

intensity of x(u)−bx(u)c. Formally, given x(u) the j− th reward is allowed at the following

intensity:

Drew
j (x(u)) =


1 if j ≤ bx(u)c

x(u)− bx(u)c if j = bx(u)c+ 1

0 if j > bx(u)c+ 1

Given the result of Lemma 3 and with a slight abuse of notation, we now limit attention

to mechanisms wherein the compensation component can be represented by a function

x(u). The combination of Lemma 1, Corollary 1, and Lemma 3 enables us to write the

HJB equation, corresponding to problem (OBJ), using as the control variables x(u) and

{Dinv
i (u), ϕinvi (u)}i∈I (the desired intensity and compensation distribution for investment

project implementation) {Dinv
i (u), ϕinvi (u)}i∈I . This optimality condition is given by

18We define bxc = max{z ∈ Z : z ≤ x}.
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0=supx(u),{αi(u),ϕinvi (u)}i∈I
{−rV (u) + V ′(u)(ru−W (x(u)))− C(x(u))

+
∑
i∈I

µi(Dinv
i (u)Bi + E[V (u+ ϕinvi (u))]− V (u))}

s.t. x(u) ∈ [0, J ], Dinv
i (u) ∈ [0,min{1, ū− u

li
}]

supp(ϕinvi (u)) ⊂ [−u, ū− u],E[ϕinvi (u)] = Dinv
i (u)li (6)

where W (x) is the instantaneous compensation provided to the agent when the control is x:

W (x) =

bxc∑
j=1

λjgj + (x− bxc)λbxc+1gbxc+1

and C(x) is the instantaneous cost of using this control:

C(x) =

bxc∑
j=1

λjCj + (x− bxc)λbxc+1Cbxc+1

Given this representation, we can now characterize the properties of the optimal compensa-

tion scheme and prove that there is an optimal mechanism that is a multidimensional time

mechanism (henceforth MDTM).

Lemma 4. There exists an optimal x(u), with an image contained in {0, . . . , J}, that is

weakly increasing.

Proof. Since the HJB equation is locally linear in x, there exists an optimal solution that

does not use partial intensities.

To see that there is a non-decreasing optimal solution, assume that k1 is the solution for

u. This implies that

−V ′(u)(W (k1))− C(k1) ≥ −V ′(u)(W (k2))− C(k2) ∀k2 < k1

From the weak concavity of V (u), for any ũ > u we have V ′(ũ) ≤ V ′(u). Therefore

−V ′(ũ)(W (k1))− C(k1) ≥ −V ′(ũ)(W (k2))− C(k2) ∀k2 < k1

This implies that there is an optimal solution for x(ũ) that is at least k1.

Lemma 5. Under an optimal mechanism, u >
∑j
i=1 λ

igi

r implies that x(u) ≥ j + 1.

If the assertion in the lemma is false, we can construct a profitable deviation. We do so

by providing the agent with a small amount of utils via the cheapest reward that will not
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be used under the original mechanism (until additional investment are implemented) in the

near future, and then offsetting this change by revoking his right to enjoy more expensive

rewards afterward. Every investment opportunity that would have been incentivized under

the original mechanism is also incentivized under the new mechanism. The new mechanism

weakly reduces the cost of providing the promised continuation utility and with positive

probability also increases the number of investments that can be incentivized.

Proof. Assume to the contrary that there exists ũ such that W (x(ũ)) < rũ. First, de-

fine the reward to be added and for how many units of time it is to be added. Given

Lemma 4, our assumption implies that there exists an open interval Υ such that for all

u ∈ Υ, x(u) = k < j + 1 and
∑k
i=1 λ

igi < ru.

Consider u0 ∈ Υ.

• There exists ε1 > 0 such that if no investment project is implemented before time

t < ε1 then ut ∈ Υ. That is,

u0 −
1− e−ε1r

r

k∑
i=1

λigi < sup(Υ)

• There exists ε2 > 0 such that if no investment is implemented by time ε2, the contin-

uation utility after ε2 units of time in which reward activities 1 to k + 1 are allowed

at full intensity is in Υ.

inf(Υ) < u0 −
1− e−ε2r

r

k+1∑
i=1

λigi < sup(Υ)

• Since δ ≡ u0− 1
r

∑k
i=1 λ

igi > 0 there exists T such that by time T at least δ
2 discounted

utils are provided (in expectation) to the agent via reward activities {k + 1, . . . , J}.
This implies that there exists ε3 > 0 such that reward k + 1 is available to the agent

in expectation for at least ε3 > 0 discounted units of time.

Let ε ∈ (0,min{ε1, ε2, ε3}). Add reward activity k+ 1 to the delegation list for ε units of

time, unless an investment is implemented beforehand, in which case treat its arrival time

as ε. This change provides ξ(ε) = 1−e−εr
r λk+1gk+1 utils to the agent.

Now, define the rewards that are to be revoked. Construct a process that measures the

discounted expected utils the agent receives from rewards {k+1, . . . , J} after ε units of time
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under the original mechanism:

yt =

∫ t

ε

e−rs
J∑

i=k+1

λigiDrew
i (us)ds

While yt < ω(ε), the compensation under the new mechanism is given by x̃t = min{k, xt},
where ω(ε) is the unique solution to

ξ(ε) = E[min{ω(ε), y∞}]

Once yt ≥ ω(ε), return to the original mechanism. The new mechanism provides the

same expected continuation utility as the original one since the first change provides ξ(ε)

discounted utils to the agent and the second change counterbalances this increase.

The new mechanism weakly reduces the cost of compensation as ξ(ε) discounted utils are

provided via reward activity k+ 1, as opposed to some mixture of (weakly) more expensive

rewards under the original mechanism. Moreover, with positive probability, ut = ū and yt <

ξ(ε), in which case additional investments are implemented under the new mechanism.

By Lemma 3 there exists an optimal mechanism in which the set of allowed rewards

is fully determined by the arrival of past investments. By Lemmas 4 and 5 the principal

front-loads compensation via each reward to which she has committed. Together, this shows

that there exists an optimal mechanism that is a MDTM.

Lemma 6. For all j < J , there exists ũ(j) <
∑j
k=1

λkgk

r for which, under the optimal

mechanism, x(ũ(j)) ≥ j + 1.

The main part of this proof is to show that ur < W (x(u)) for all u ∈ (0, ū). The result

then trivially follows from the monotonicity of W (x(u)) and the fact that x(0) = 0. From

Lemma 5 we know that ur ≤ W (x(u)); thus it is enough to show a profitable deviation if

ur = W (x(u)). Furthermore, as we know the value function can be attained by a MDTM,

we construct a profitable deviation from this implementation. In a MDTM the condition

ur = W (x(u)) implies that the agent is allowed to enjoy rewards {1, . . . , j − 1} indefinitely

and is not allowed to enjoy the more expensive rewards. We show that by providing the

agent with a small time allowance for reward j the principal increases her capacity to incen-

tivize investments via rewards {j, . . . , J} and with an arbitrarily high probability she still

manages to use all rewards of types {1, . . . , j − 1}. This implies, that providing the agent

with a small time allowance for reward j increases the principal’s continuation payoff.

Proof. Consider such a u, denote j = x(u) + 1 and i∗ = argmaxi{Dinv
i (u) : Dinv

i (u) > 0}
(the worst investment incentivized at u), and construct a deviation as follows. Remove
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reward activity 1 from the delegation list between periods T and T + k and add activity j

to the delegation list for the next d units of time (or until a permitted investment project

arrives, in which case consider this arrival time to be d). Incentivize the next investment

project by first returning reward activity 1 to the delegation list between T and T + k and

then reverting to using the original compensation strategy.

For the initial change to satisfy condition (PK), it must be the case that

d =

log

(
1

1− g
1λ1(ekr−1)e−r(T+k)

gjλj

)
r

Moreover, we choose k such that the next investment cannot be incentivized only by reward

activity 1:

min
i:Dinvi (u)>0

liDinv
i (u) > λ1g1 1− e−rk

r

We show that there exists T ∗ such that for all T > T ∗ this deviation is profitable. There-

fore, it is without loss of generality to assume that no investment project arrives before d.

The deviation is costly if no allowed investment arrives until time T , which happens with

probability e
−
∑
i:Dinv

i
(u)>0

µiT
. The increase in the cost of compensation is at most19

1− e−rd

r
λjCj − e−rT 1− e−rk

r
λ1C1 = e−rT

λ1
(
1− e−kr

) (
g1Cj − gjC1

)
gjr

For this deviation to create a profit, it must increase the discounted amount of time in

which reward project j is allowed.20 The value generated from using reward activity j for

the next d units of time is at least

1− e−rd

r
(λjgj

Bi
∗

li∗
− λjCj) = e−rT

g1λ1
(
1− e−kr

)
r

(
Bi
∗

li∗
− Cj

gj
)

Note that the ratio of size of the gain to the size of the loss
g1

(
gj B

i∗

li
∗ −Cj

)
g1Cj−gjC1 is bounded

away from zero, and thus it is enough to show that the ratio of the probability of loss to the

probability of gain converges to zero.

The probability of the gain is the probability that reward activity j will always be al-

lowed after the next investment project arrives, as this implies better usage of the most

19If the first investment project arrives after T + k this bound is exact, but if the first project arrives

between T and T + k the actual cost is slightly less.
20By Lemmas 3 and 4 and the assumption that ur ≤ W (x(u)), rewards 1, . . . , j − 1 are permitted until

the next implemented investment project arrives.
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efficient available reward project. Denote by pj(u) the probability that reward project j is

used in full given an initial promise of u.

Denote by ut(T ) the agent’s continuation utility at time t conditional on the initial choice

of T and no allowed investment project arriving before time t.

We are interested in Eτ [pj(uτ (T ))], where τ is the arrival time of the first allowed in-

vestment project. Since k was chosen so that the first investment could not be incentivized

solely by reward 1, we have that pj(uτ (T )) > 0. Moreover, pj(·) is an increasing function be-

cause the amount of time for which reward activity j is allowed in a MDTM is increasing in u.

The previous expectation is bounded from below by Pr[(uτ (T ) > x)]pj(x) for any x ∈
(u−λ1g1 1−e−rk

r , u). As the second term is a strictly positive constant that does not depend

on T , it is sufficient to derive Pr[(uτ (T ) > x]. This probability is bounded from below by

the probability of this event in histories in which the first investment project to arrive is of

type 1. In this case,

uτ (T ) =


u− λ1g1 1−e−rk

r e−r(T−τ) if d < τ ≤ T

u− λ1g1 1−e−r(T+k−τ)

r if T ≤ τ < T + k

u if τ > T + k

Therefore, clearly

lim
T→∞

Pr[uτ (T ) > x] = 1

This implies that the probability of gain (loss) converges to 1 (0) with T , and thus the

deviation is profitable for a large enough T .

Lemma 7. V (u) is strictly concave.

Proof. Assume that the agent’s continuation utility equals u and let u1 < u2 such that

u1, u2 ∈ [0, ū] and u = u1+u2

2 . One (non-natural) way the principal can deliver a promise

of u is by fictitiously splitting all investments and rewards into two halves and creating two

(perfectly correlated) fictitious worlds, each of which contains half of each reward and half

of each investment opportunity. She can then provide u1

2 utils using GTM in fictitious world

1, and u2

2 utils using GTM in fictitious world 2.

Notice that our environment is insensitive to scaling in the following sense. Refer to the

original environment as the unscaled world; however, if all payoff parameters are multiplied

by a constant, refer to it as a scaled world. For any realization of actions, an action is imple-

mented in the unscaled world if and only if it is implemented in the scaled world. Therefore,
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in the scaled world at every stage of the interaction, the agent’s continuation utility and

the principal’s expected value are simply multiplied by the chosen scale factor. By the

above compensation method, all payoff parameters are scaled down by ( 1
2 ); accordingly, the

dynamics of GTM in fictitious world i, in terms of implemented actions, is identical to the

dynamics of GTM in the unscaled world with an initial state ui. Therefore, in fictitious

world i the principal generates a value of V (ui)
2 and, in total, such a compensation method

generates a total value of V (u1)+V (u2)
2 , which shows directly that the value function is weakly

concave.

We now show that V (u) > V (u1)+V (u2)
2 by offering an improvement on this method

of compensation. Notice that with positive probability, at some point in time the agent’s

continuation utility in world 1 reaches zero. Moreover, when it happens for the first time, the

agent’s continuation utility in world 2 is strictly positive. Now the principal can benefit from

temporarily merging the two fictitious worlds. Specifically, instead of wasting her capacity

in world 1 (where all rewards are forbidden before the next investment opportunity arrives),

she would rather use the most efficient reward activity in world 1 to speed up compensation

in world 2. This increases the speed of compensation and (weakly) decreases the cost of

compensation, and thus the principal is strictly better off.

Lemma 8. There is a unique optimal mechanism.

Proof. The strict concavity of V (u) implies that lotteries are not used to incentivize invest-

ment projects. I.e, in any optimal mechanism

ϕinvi (u) = Dinv
i (u)li ∀u ∈ [0, ū], i ∈ I

Moreover, given the strict concavity of V (u), any optimal mechanism must satisfy the prop-

erties described in Lemmas 3 and 4.

By the separability of the HJB equation (6) in the different controls, and by the strict

concavity of the value function V (u), there is a unique optimal delegation list for all but a

measure zero set of u‘s.

When selecting the optimal intensity for investment project i, the principal is maximizing

max
Dinvi (u)∈[0,min{1, ū−u

li
}]
µi(Dinv

i (u)Bi + V (u+Dinv
i (u)li)− V (u))

which is a strictly concave function in Dinv
i (u), and it thus has a unique maximizer for any u.

35



Similarly, when deciding which reward projects to allow, the principal is maximizing

max
x(u)∈{0,...,J}

V ′(u)(ru− w(x(u)))− C(x(u))

which has a unique solution unless V ′(u) = gj

Cj for some j ∈ J , a condition that can hold for

at most a finite set of u‘s due to strict monotonicity of V ′(u). By condition (PK) x(ū) = J

is the unique optimal solution, and, by Lemma 1, x(0) = 0 is the unique optimal solution.

By Lemma 6, under the optimal mechanism the measure of time for which u = ũ for any

ũ ∈ (0, ū) is zero, and thus there is an essentially unique optimal mechanism.

Proposition 3

By Lemma 6 we know that ûrewj <
∑j−1
k=1

λkgk

r . Since the optimal mechanism satisfies the

conditions specified in Lemma 3 we know that ûrewj is weakly increasing. Thus, all we need

to show is the strict monotonicity. We do so by formalizing the intuition provided in the

text.

Proof. Assume to the contrary that two rewards with Ck
gk

<
Cj
gj

have the same threshold

and consider a promise of u = ûrewk + δ. This implies that rewards j and k together give

the agent ε ≤ δ discounted utils and are used for t2 units of time.

(λkgk + λjgj)
1− e−rt2

r
= ε

If, instead, only reward k is used to provide the ε utils that should have been provided by

reward activities j and k, it would need to be used for t1 units of time such that

(λkgk)
1− e−rt1

r
= ε

This gives

t2 =
log
(

λkgk+λjgj

λjgj+λkgke−rt1

)
r

The expected cost of allowing both rewards for t2 units of time is

(λkCk + λjCj)
1− e−rt2

r

while the expected cost of allowing reward k for t1 units of time is

(λkCk)
1− e−rt1

r

Thus the direct savings in compensation costs by using reward k for t1 units of time instead

of using k and j for t2 units of time is

λkλj
(
Cjgk − Ckgj

)
e−rt1 (ert1 − 1)

r (λkgk + λjgj)
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Taking a Taylor expansion around t1 = 0, we get

λkλj
(
Cjgk − Cigj

)
λkgk + λjgj

t1 +O(t21)

Thus the savings in costs is in the order of t1.

The probability of a loss of value to the principal due to this change (an investment

project arriving before t1 when both rewards activities are not committed) is

(1− e−
∑
i∈I µ

it1)

Taking a Taylor expansion around t1 = 0, we get∑
i∈I

µit1 +O(t21)

The maximal loss from a misallocation of reward activity k in a period of length t1

(which occurs if an investment project of type 1 arrives immediately) is

gkλk(
B1

l1
− Ck

gk
)
1− e−rt1

r

Taking a Taylor expansion around t1 = 0, we get

gkλk(
B1

l1
− Ck

gk
)t1 +O(t21)

The maximal expected loss is thus in the order of t21 while the gain is of order t1. Clearly,

t1 converges to zero with δ, which concludes the proof.

Appendix B: TM as a Markovian Delegation Mechanism

(1) Dinv(u)=min{1, ū− u
l
}

(2) Drew(u)=

1 if u > 0

0 if u = 0

(3) ϕinv(u)=min{l, ū− u}

(4) ϕrew(u)=ϕ(u) = σ(u) = 0

(5) η(u)=

ru− λg if u > 0

0 if u = 0

(6) u0=0

In words, conditions (1) and (2) specify the delegation function D(u): investments are

always incentivized at the maximal possible intensity, and rewards are allowed at full inten-

sity whenever the agent’s continuation utility is positive. Condition (3) states that upon
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implementation of an investment, the agent’s continuation utility increases by exactly the

cost of implementation. The main feature of TM is reflected in (4) and (5): the agent’s

continuation utility does not depend on the actual number of enjoyed rewards but drifts

down continuously and deterministically (as long as no investment is implemented). The

initial condition (6) trivially corresponds to s0 = 0.

Appendix C: Derivation of the Value Function

From the discussion in the paper it is clear that the principal’s value is related to the

discounted amount of time the agent is permitted to enjoy reward activities. Therefore,

once we know the expected discount factor at the first time ut = 0 for every initial value of

u0, we can calculate the expected discounted measure of time in which rewards are allowed,

from which, in turn, we can derive the principal’s expected value.

By the definition of TM an agent whose initial continuation utility is u0 and who carried

out no investment projects for t periods has a time t continuation utility of

u(t, u0) =
ert(ru0 − λg) + λg

r

Denote by τ(u) the first hitting time of ut = 0 given u0 = u.

τ = min
t∈R+∪{∞}

{ut = 0 : u0 = u}

Define the expected discount factor at time τ(u) to be

h(u) = E[e−rτ(u)]

Consider an initial promise of x and a short interval of time ε in which two (or more)

investment projects are unlikely to occur. Then h(x) must satisfy the recursion

h(x) = e−µεe−rεh(u(ε, x))+e−rεµ

∫ ε

0

e−µth(u(ε−t, u(t, x)+min{l, ū− u(t, x)

l
}))dt+e−rεO(ε2)

Rearranging gives

erεh(x) = e−µεh(u(ε, x)) + µ

∫ ε

0

e−µth(u(ε− t, u(u(t, x) + min{l, ū− u(t, x)

l
})))dt+O(ε2)

Since h(x) is monotone decreasing and continuous it is differential a.e. and thus we can

differentiate the last equality with regard to ε:

rerεh(x)=−µe−µεh(u(ε, x)) + e−µεh′(u(ε, x))(eεr(rx− λg)) + µe−µεh(u(ε, x) + min{l, ū− u(t, x)

l
})

+

∫ ε

0

e−µth′(u(ε− t, u(t, x) + min{l, ū− u(t, x)

l
}))(er(ε−t)

(
ert(rx− λg) + r

)
)dt+O(ε2)
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Taking the limit of ε→ 0 and rearranging, we get

0 = −(
µ

r
+ 1)h(x) + h′(x)(x− λg

r
) +

µ

r
h(x+ min{l, ū− u(t, x)

l
}) (7)

Clearly, we have the boundary conditions

h(0) = 1, h(ū) = 0 (8)

Therefore, h(x) is the solution to a differential difference equation with suitable bound-

ary conditions.

Consider the range x ∈ [ū − l, ū]. For this range we know that h(x + min{l, ū−xl }) =

h(ū) = 0, and thus for this interval equation (7) becomes

0 = −(
µ

r
+ 1)h1(x) + h′1(x)(x− ū)

This is an equation that is a simple ODE whose solution is

h1(x) = (ū− x)
µ
r +1α

for some scalar α.

This, in turn, implies that in the interval [ū− 2l, ū− l] equation (7) becomes

0 = −(
µ

r
+ 1)h2(x) + h′2(x)(x− ū) +

µ

r
h1(x+ l)

with the boundary condition h2(ū − l) = h1(ū − l), which is again an ODE in h2(x). This

ODE can also be solved as h1(x+ l) is already known (up to α).

We can continue in an iterative fashion until in the interval [ū − (k + 1)l, ū − kl] the

solution to equation (7) is the solution to the ODE with hk+1 given by

0 = −(
µ

r
+ 1)hk+1(x) + h′k+1(x)(x− ū) +

µ

r
hk(x+ l)

hk+1(ū− kl) = hk(ū− kl)

Since ū is finite and l > 0 there are a finite number of iterations before we reach k ≥ ū
l ,

at which point we can use the boundary condition h(0) = 1 to solve for α in h1.

When u = 0, the expected discount factor at the arrival of the first investment project

is µ
r+µ , after which time there are 1−h(l)

r expected discounted units of time in which reward

activities are allowed before u = 0 is hit again. Thus the discounted amount of time in
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which the agent is expected to be allowed to benefit from rewards when the current promise

is u = 0 , W (0), solves

W (0) =
µ

r + µ

1− h(l)

r
+

µ

r + µ
h(l)W (0)

or

W (0) =
1

r
− 1

µ(1− h(l)) + r

Clearly, for any u > 0 we, have

W (u) =
1− h(u)

r
+ h(u)W (0) =

1

r
+ h(u)(W (0)− 1

r
)

Therefore, the principal’s value function is given by

V (u) =
B

l
(W (u)gλ− u)−W (u)λC

Appendix D: Weak Order on Actions

At the beginning of Section 4 we assumed that Bi
li

is strictly decreasing and Cj

gj is strictly

increasing in order to simplify the exposition of our results. The proof of our main result

makes it clear that if there are two reward activities, j1, j2, with the same rate of transfer,

then the principal treats them identically. We could just as well merge the two rewards and

create one reward activity with the same rate of transfer and with an expected benefit (to

the agent) per unit of time of λj1gj1 + λj2gj2 . Since the implementation of rewards has no

effect on the continuation path of GTM, the perfect correlation created by merging the two

projects does not matter. Conversely, splitting one reward activity into several smaller ones

does not affect the optimal mechanism in this environment.

The same holds for investment projects. If the relative benefit of investment to the

principal is the same for two projects, then the principal incentivizes both until the agent’s

continuation utility reaches the appropriate threshold. However, in contrast to the case of

reward activities, the implementation of investment opportunities does change the contin-

uation path of the mechanism. Two investment projects, therefore, cannot be merged. To

illustrate this, consider the case where J = 1. Furthermore, imagine that the principal can

split the investment project into two independent projects. By doing so she reduces the

expected discounted amount of time for which u = 0, which suggests that she is using her

resources more efficiently and generating a higher value from the mechanism. In the general

case, splitting investment opportunities not only increases the efficiency of resource usage

but also changes the activation thresholds of projects due to the change in the dynamics of

u and the increase in V (u).
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