Economics Working Paper 154
Unfolding a Symmetric Matrix

John C. Gower™

and
Michael Greenacre!

January 1996

Keywords: Dimensionality reduction, distances, graphics, multidimensional
scaling, symmetric matrices, unfolding.

Journal of Economic Literature classification: C19, C88.

* Department of Statistics, Open University, Milton Keynes, U.K.
t Department of Economics, Universitat Pompeu Fabra, Balmes 132, 08008
Barcelona, Spain.

UNIVERSITAT POMPEU FABRA

A A



Abstract

Graphical displays which show inter-sample distances are important for
the interpretation and presentation of multivariate data. Except when the dis-
plays are iwo-dimensional, however, they are often difficult to visualize as a
whole. A device, based on multidimensional unfolding, is described for present-
ing some intrinsically high-dimensional displays in fewer, usually two, dimen-
sions. This goal is achieved by representing each sample by a pair of points,
say R; and r;, so that a theoretical distance between the i-th and j-th sam-
ples is represented twice, once by the distance between R; and r; and once
by the distance between R; and r;. Self-distances between R; and r; need
not be zero. The mathematical conditions for unfolding to exhibit symmetry
are established. Algorithms for finding approximate fits, not constrained to be
symmetric, are discussed and some examples are given.



1. Introduction

Many multivariate techniques are concerned with displaying data as points in a
Euclidean space. Ideally, approximations to the data in two or three dimensions
are sought, but such approximations may be poor. We shall be concerned mainly
with p-dimensional representations of n samples and show, in a certain quite simple
sense, how some sets of n points in n—1 dimensions can be exactly represented in
p dimensions, where p is a small integer, ideally two or three. In practice, we are
also concerned with using these representations for approximations in a specified
number of dimensions p. Conventional representations are a special case of our
general class of representations and so our approximations must be at least as

good as, and will usually be better than the former.

The basic idea can be illustrated by considering a regular simplex of n vertices
with common intervertex distance d, which is known to occupy n — 1 dimensions.
For conventional Euclidean representations each self-distance, that is the distance
between a point and itself, is zero. But if we are prepared to relax this condition
we may consider a representation in which each vertex ¢ is displayed as 2 points,
(R;,7;),1=1...n. Suppose that all the points labeled R; are coincident at a point
R and that all the points labeled r; are coincident at a point r, where R and r are
distance d apart. Then the distance between a point R; and a point r; is equal
to d for all ¢, 7 including ¢ = j. Thus by representing each vertex by two points
and sacrificing the representation of the zero self-distances, we have represented

the (n — 1)-dimensional simplex exactly using only one dimension.

In the following we explore representations of this type for irregular simplices.
Thus a set of samples will be represented in a Euclidean space where each original
sample has two positions, possibly coincident, and the representation of zero self-
distances is forfeited. Throughout we use uppercase letters to denote the points
in one set and corresponding lowercase letters in the other set. Notice that the
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representation need not be unique, for the regular simplex could also be represented
in one dimension by a central point‘ R, as before representing all the points of one
set, and two points 7, 7, at a distance d either side of R, to which the points of
the other set are allocated arbitrarily. It will be shown that this arbitrariness can

be conveniently resolved to give a unique representation.

By doubling the number of points per sample we do not wish to replace the
curse of dimensionality by the “curse of profusion”. Our results show that this
danger 1s avmded because the two sets of points usually have some simple geomet-

ri¢ relatlonshlp Furthermore the fundamental Euchdean property of closeness
survwes in our representatlons TlhlS result can be s ,seen by considering two iden-
tical samples represented by point-pairs (4,a) and (B,b) for which the distances
Ab and aB must both be zero, so that A coincides with b and @ with B. Any third
sample (C, c) must be equidistant from the first two, so that aC =bC = Ac = Bc
and if C is identical to the first two samples, then a, b, ¢, A, B, C must all coincide.

If in the above “identical” is replaced by “similar”, then “coincident” is replaced

by “close”, showing that groups will appear as groups in our representations.
.“ ' . , . ‘ ] . ‘
The methodology that we use is a variant of that of multidimensional unfolding

(Coombs 1964; see Muller 1988 for an introd_uction‘and origin of the'name). Mul-
tidimensional unfolding is concerned with fitting the following model, including

the residual term:
P
=E(z,k—y1k)2+e,] 1=1TL, ]=1m (1)

where d;; is the (3, ]) th element of a given n x m matrix D, whose elements are
considered as approximate squared distances in p-dimensional Euclidean space,

-and ei; is the res‘i'dual term. Thus R;, with coordinates z;) ...Z;,

and r;, with
coorﬂdinetes Yi1 - Yjpr may be considered as points representing the i-th row and
j-th column of D. This model, and variants of it, ilave been studied extensively
by psychometrieians, especially as a method for analyzing preference data (e.g.,
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see Carroll 1980), but it has general interest as a technique for data analysis.
If we define the following notation:
D= {d?-j}, the n x m matrix of squared distances;
s X = {z;}, the n x p matrix of coordinates of the rows;
o Y = {y;;}, them xp matrix of coordinates of the columns;

s 1 = {1}, a column-vector of ones, whose length will be apparent from the

context;
o U = 117, the n x m matrix of ones;

E = diag(XXT), F = diag(YY");

(=]

R = {e;;}, then xm matrix of residuals;

then (1) may be written in matrix notation as:

D = EU + UF - 2XY' +R. (2)

Henceforth the special case of a square symmetric matrix D 1s considered,
that is where n = m and D = DT. Now the rows and columns may represent
different modes of the same row and column classifications. We call the unfolding
of the non-diagonal values of this matrix symmetric unfolding. One of the main
theoretical issues of interest is whether solutions of a symmetric unfolding are
themselves geometrically symmetric, that is whether the best unfolding fit to a
symmetric matrix D 1s necessarily itself symmetric. In Section 2 we consider
admissible configurations of n pairs of points in multidimensional space which
exactly yield symmetric matrices of squared distances. However, in our examples
we have allowed the possibility that solutions be geometrically asymmetric, i.e., the
fitted distance between points R; and r; is not constrained to be equal to the fitted
distance between R; and ;, although in our experience solutions are generally close
to symmetric. The existence of asymmetric solutions, which is counter-intuitive,
is demonstrated in an example and discussed in the Appen ix. In Section 3,
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algorithms for unfolding a symmetric matrix are discussed. Section 4 presents

some applications of the method and Section 5 gives a concluding discussion.
2. Symmetric Configurations

2.1 Introduction.

This section considers what forms of symmetric representation are admissible.
Thus we are considering squared distances generated by the row and column coor-
dinates X, Y, which give the non-diagonal values of the symmetric n X n matrix
D. Writing A for the unknown and irrelevant diagonal values, with the previous

notation, symmetry requires that

D+ A=FEU+UF-2XY" = UE + FU - 2YX". (3)

Double-centering D + A by pre- and post-multiplying (3) by (I - N), where N =
-};U, and multiplying the result by —% gives the matrix of “quasi-scalar products”

(Schénemann 1970) :
B=-3I-N)D+A)I-N)= (I - N)XYT(][ ~N). (4)

B is symmetric, and if it is positive semi-definite, it has real decompositions of the
form B = ZZ7 where Z is n $<p and p = rank(B). The solutions Z = (I-N)X =
(I - N)Y, which are equivalent up to an arbitrary orthogonal transformation of
7., would suffice for classical scaling where X = Y. But they are too restrictive in
the context of unfolding, where indeterminacy is expressed by an arbitrary non-
singular p X p matrix K, say, and n X ¢ matrices L and M where LMT =0, to
give:

B =[ZK LJ[Z(K")™' M|
where [ZK L] is an augmented matrix of order n X (p + g@)-

The positive semi-definite condition is automatically satisfied if D is Euclidean.
The effect of A, ‘which has non-negative elements, is to extend the class of matrices
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for which B is positive semi-definite. Without loss of generality it may be assumed
that one set of coordinates is centered at the origin so that NX = 0, giving the

following general decomposition of B:
X =[ZK L] and (I-N)Y = [Z(KT)™' M].

Because 17Z = 0, it follows that 1TL=1"™M =0.

This solution may be separated into its p- and g-dimensional components to

give:
X,=2K, Y,=2K)7+1y; (5)
X, =L, Yq:m+1y;
where ¥, ¥, are the means of [Y, Y=Y in the two spaces, and where it will
be shown in Section 2.3 that ¢ < 2. For the p-dimensional part of the solution we

have:

Y, = X,(K'K)™ +1¥,
showing that Y, and X are necessarily related by the affine transformation
T
Y,=X,S+1y, (6)

where S is non-singular and symmetric.

Apart from the conditions LMT =0,1"L = 0and 1"M = 0, the g-dimensional
part of the solution is, so far, very general. In practice L and M may be chosen
to have disjoint columns of zeros, i.e., the i-th column of M is 0 if the i-th column

of L is not equal to 0 and vice versa.

Equation (6) is a necessary but not sufficient condition for admissible solutions.
The above derivation of (6) has appealed only to the symmetry of B and by
imposing the stronger condition of the symmetry of D in (3) the solution may be

refined. This gives the vanishing skew-symmetric part of D+ A (3) as:

0.

N
-3
~—r

(E-F)U-UE-F)- 2AXYT - YXT)
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Substituting for Y, given by (6) gives:
(E-F)U =PU ~ (7, 7,)U - 2X,Sy,1"

where P = diag{X,(I - SQ)X;} and XYT - YXT = Xp}?i,]lT - 15';X;, so that

(7) may be written as:

(PU - UP) - 2X,(1+S)y,1" + 21y, (I + S)X, =0 (8)
Similarly, substituting for X, and Y, into (3) gives:

(QU — UQ) — oL + M)yan + 21y, (L+ M)" =0. (9)

where Q = diag(LLT — MMT). The full condition for the symfnetry of D is
that the sum of the left sides of (8) and (9) is zero, but we first examine the two

conditions separately.

2.2 The p-dimensional solution.

Post-multiplying (8) by 1 gives:
17 -
{P-1ia"P1I}1 -2X,(I+8S)y,=0

showing that for any X, which satisfies this equation, the points lie on the conic

with quadratic form:
x"(I-8%)x —2x"(I+S)y, — (1"P1) =0. (10)

Recalling that 1P1 is a function of X, shows that different X, which satisfy
(8) for some S and ¥, give conics with the same centres and orientation of axes,
but of different sizes. The points y in the rows of Y, lie on conics whose axes’
lengths are related to those of the points x in the rows of X, by the transformation
y= Sx + ¥p- |

The implication of (10) is that, given any S and ¥, then for X, whose rows x
satisfy (10), a cqrresponding Y, exists that preserves symmetry. Such X, Y, pairs
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will generate certain symmetric distance matrices D. Although it is interesting to
note the existence of distance matrices with such solutions, it is more fruitful to
search for general solutions which will be valid for any X,. Such general solutions
of (8) exist when:

(i) (I1+S)y,=0 and (i) S°=1L (11)

Here (ii) ensures that P is zero and shows that S must be orthogonal. The condi-

tions (i) and (ii) ensure that each term of (8) vanishes independently of X,.
Note that (6) and (11) define the mutual inverse transformations:
y=5x+Y,
and x=Sy+Y,
Since S is a symmetric orthogonal matrix and S? =1, it has spectral form:

T p
_ § : T § : T
S = u,-ui - u,u;
1=1

i=r+1
where u; (i = 1,2,...,p) are an orthogonal basis of unit vectors. Noting that

I=Y"_ uu/,it follows that S may be written as:
S=1-2 ) wuf (12)

showing that S is a generalized form of the Householder transform S = I —2uu’.
This transform represents a reflection in a plane, with normal u, through the origin,
and is of special interest in two-dimensional solutions where Y, is the reflection of
X, in some line. The form (12) represents simultaneous reflections through planes

with normals u, 1, U, 49,.--, Uy and hence a reflection through their intersection.

There exist scalars p;, not all zero, such that y, = S P, #iu;, so the condition

(i) becomes:

r P
(I+S)7, =2 (wu]) D uu;
1=1 1=1

r
=2 Z By = o,
1=1
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showing that ¥, must be chosen to satisfy:

p
Vo= D Ml (13)

i=r+1
The conditions (12) and (13) give the more detailed form of the admissible affine
transformation for a general solution of the p-dimensional part of unfolding the

symmetric matrix .

The special case 7 = p — 1, ¥, = O gives the simple Householder transform;
the case r = p, ¥, = 0 gives S = I. The case r = 0 gives S = —I with arbitrary
translation term ¥,, which represents a reflection through a point —%Srp expressed
algebraically by y — %Sfp = —(x— %y,,). Similarly, the Householder transform with
¥p = pu is a reflection in a plane through —%uu and orthogonal to u, expressed
algebraically by (y — %pu) = S(x — %uu).

It is instructive to exhibit the fitted symmetric matrix implied by the conditions

(1) and (ii). Some algebraic manipulation gives:
A+D=al" +1a' —2X SX] - (14)

where a = E1 - 2X,y, + %y;ypl. Substitutiﬁg (12) for S gives, after further
manipulation:

o oTyT
Xp¥p¥p Xp

P
A+D=DX+VVT+4XP Z u,—u,-TX;—él ——
Yp¥p

1=7+1

(15)

where Dy = EU+ UE - 2XPX; is the matrix of squared distances among the X-

set and v = 2X,y,/ \/ y;yp— \/ 5'; ¥,1. When S is a simple Householder transform,
(15) becomes:
A+D=Dy+vv' (16)

_ so that the elements of the vector v are the self-distances for the n points. Thus
A + D deviates from a matrix of squared distances only by a rank one matrix;
the special case v = Al relates to the well-known additive constant problem of
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multidimensional scaling. Note, however, that Dy is not itself a matrix that
optimally approximates D and that v has a special form. One could find D%,
say, by minimizing the criterion known as “SSTRESS”, that is the sum of squared
residuals of (1) (Takane, Young, and de Leeuw 1977, Browne 1987), and then
find the D* + vvT that gave the best fit to D conditional on the given D*. This
gives \? = 17(D - D*)1/(n(n - 1)) but this solution does not have a convenient

geometrical representation and could give a poorer fit than (16).

2.3 The ¢-dimensional solution.

Turning now to the g-dimensional solution given by (9), it is convenient to return

to the basic form (3) that (D + A),, the g-dimensional component of D + A, is:
(D + A), = diag(LLT)U + U diag( MMT) — 2Ly, 17 + 213, M" + yi9,117
which may be written
(D+4),=al" +1b' + Viy,11"

where a = diag(LLT)1 — 2Ly, and b = diag(MMT)1 + 2My,. Thus (D+A4),1s
symmetric if and only if b = a+ A1, for arbitrary ), i.e., diag(LLT — MMT)1 =
2(L + M)y, — Al. Then

T T ST T
(D+A),=al +1a + (A + 3,911

= (a+p)1T +1{a+pl)’ (17)
where 20 = A + quyq, showing that the squared distance d?'j, for i # j, is given by

Equation (17) gives the fitted values for the g-space, which may be compared with
- (14), (15), and (16) which give the fitted values for the p-space. Geometrically
(17) shows that only certain two-dimensional configurations can be represented
and that therefore ¢ < 2. When a = p1, for any scalar p, then (17) has unit rank
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and ¢ = 1 with d;; constant (cf. the regular simplex described in paragraph 2 of
Section 1). The rank 2 solutions may be represented in several ways expressed by
the following general form for the rows of X, and Y : z, = [(a; + p + a)/? 0]
and y,; = [0 (a;+p— a)/2). The square roots allow arbitrary signs for z,; and y,;
which give different configurations all generating the same distances, so nothing is
lost by excluding negative roots. Generally the relationship between X, and Y,
is not affine, but it is affine when

(i) a = pl1, and hence ¢ = 1, and « is chosen to be u + p which gives Y, =

X, = V2p+ul, a simple reflection in a point, and
(ii) a is chosen to be zero so that Y, = XS, where S = I - 2uu’ with u' =

[1/v2 —1/V/2], representing a reflection in the 45° line.

So far no restriction has been put on the position of the origin of X, and Y,
and indeed there is no need to impose any such restriction. However, just as for
the p-dimensional solution, the origin may be chosen to be at the mean of X,
without affecting distances. Translating to this new origin, X, and Y, become X

and Y; where:
X; =(I- N)Xq apd Yq” =(I- N)Yq.
Thus Y = XS becomes

V: = XIS + NX,(S - T)

=X;S+1y;" (18)

where y, = lTY;/n, the mean of Y;. With this parameterization, L = Xg
aqd M = XS, thus complying with the condition 1'L = 1TM = 0 as well as
with LMT = 0. Thus, among the many ways of presenting the g-dimensional
solution is included the symmetric orthogonal affine transform (18) just as for the
p-dimensional case, but of less generality because here ¢ = 2 and S is a fixed
Householder transform. The different solutions all give the same distances and
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are therefore equivalent; to resolve the arbitrariness, a single solution is needed
and the affine solution is the obvious one to choose because of its similar form to
the p-dimensional affine solution and because it gives the simplest representation.
Because S does not depend on X, the affine solution is always a general, rather

than particular, solution.

2.4 The combined solution.

The full set of solutions requires that the sum of the left sides of (8) and (9) vanish.
Both equations are quadratic in the (p+ ¢q)—dimensional vectors of X, Y, so that
these will be particular conic solutions of rather more general form than was given
by the p-dimensional solutions above. General solutions, however, are merely the
combination of the separate general solutions already described in Sections 2.2 and

2.3 for the separate p-dimensional and ¢-dimensional cases, either one of which may

be null.

Insert Figure 1 about here

2.5 Examples of representations.

Some examples of symmetric configurations are given in Figure 1. Figure la is
a simple reflection in a line through the origin, expressed by Y = X(I— 2uu’).
In Figure 1b, Y = AX, and this is a particular solution because it depends on
the z-values lying on a circle; it is a simple case of the concentric conics discussed
4in Section 2.2.> Figure lc is a non-affine representation given by (i) ap = 1-
dimensional solution Y, = X, and, in the notation of Section 2.3, (ii) a ¢ = 1-
dimensional solution with z,; =0 and y,; = A, where ) is the distance of the two
outer parallel lines from the central line. As explained in Section 2.3, nothing is
gained over the more simple affine solution z,; = Oand y, = A, ie, Y =X+ 1y’
where y7 = [0 )], which needs only two parallel lines. Furthermore the alternative
affine representation with ¢ = 2 described in Section 2.3 yields z,; = [A/ V2 0]
and y,; = [0 Al V2]; together with the one-dimensional part, a total of three
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dimensions is required. Figure 1d is again a non-affine transformation in which
the two lines intersect at right angles. Here p = 0 and ¢ = 2 and z,; = [a; 0};
Ygi = [0 +a;]. The affine equivalent is Y, = XS, where z; = [g; 0); yo; = [0 a;].
Finally in Figure le, the two sets of points are not seen to be related in any clear
way. This figure was constructed by trial and error and presumably represents one

of the particular solutions given by (8) and (9).

3. Algorithms

The ways in which X, Y pairs having the symmetry property arise were discussed
in Section 2. Just as Y = X leads to classical Young-Householder-Torgerson
scaling, so could other forms of solution such as ¥ = —-X + Im' or Y =
X(I-2uu")+1m" with m = pu, generate their own class of algorithms. Indeed,
(6), (10), (11), (14) and (16) give the forms of matrix to fit to D. We have not
followed this line of development because we are now concerned with approxima-
tion, and for given D and p there seems to be no a prior: method for deciding
which form of solution gives the best fit or indeed whether the best fit is necessar-
ily given by a symmetric mz;trix (see Appendix). If one insisted on a symmetric
solution then algorithms would have to be developed which handle the constraints
implied by the solutions of Section 2. Most of these constraints are non-linear
and are likely to lead to optimization problems whose solution requires further
research. The exception is (6) when the symmetry of S implies a set of simple
linear constraints (s;; = s;;) which could probably be handled algorithmically.
Unfortunately (6) is only a necessary condition for symmetric solutions so these
constraints do not necessarily lead to symmetric solutions. Accordingly, we have
applied existing multidimensional unfolding algorithms to operate on square ma-
. trices, with appropriate modifications to exclude the fitting of the self-distances.
The fitted values are not constrained to be symmetric but, in our limited expe-
rience, solutions generally turn out to be symmetric or incorporate a substantial
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degree of symmetry.

One way to do multidimensional unfolding is to use standard nonmetric scaling
techniques. The matrix D may be regarded as the n x m corner of an (n +m) X
(n +m) symmetric matrix with the two symmetric matrices of order n X n and
m X m missing. Since nonmetric scaling readily copes with missing data, a solution
is found giving the coordinates of n+m points, n representing the rows and m the
columns of D. Similarly the diagonal values of D can be treated as missing so that
the nonmetric scaling may permit non-zero self-distances. In the case considered
here, every element of the distance matrix 1s tied with its symmetric counterpart
and the treatment of ties In the nonmetric algorithm becomes an important issue.
If a configuration with symmetric distances is to be encouraged, the so-called
«secondary” treatment of ties would be preferable (Kruskal 1964); that is, the
algorithm would result in a matrix of distances fitted to a set of “disparities”
which are themselves symmetric and montonically related to the original distances.
However, an example given in the Appendix shows that non-symmetric fits may
sometimes be preferable, in which case the primary treatment of ties would be

applicable.

Metric least-squares criteria for fitting model (1) for a rectangular matrix D
have been studied by Schonemann (1970), Gold (1973), Greenacre (1978), Heiser
(1981) and Greenacre and Browne (1986). In the following, we discuss a variant
of the unfolding problem where D is a conventional matrix of squared distances
and hence approximation of the diagonal terms is not required. Any of the ex-
isting unfolding algorithms can be adapted to solve this specific problem and the
choice is not crucial for obtaining the kinds of representation that we seek. For the
purposes of this study we have chosen to [minimize the sum of squared residuals
of (1), or SSTRESS. We call the scaling method associated with this optimiza-
tion criterion “least-squares squared scaling” (LSSS). There are, admittedly, some
problems with this particular criterion, mainly the fact that the fitting of large
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distances dominates the fitting of small distances, so that local structure may be
poorly represented in the display. On the other hand, there are algebraic and

computational advantages in using this form.

The criterion to be minimized is thus trace (RR"), which leads to the normal

equations:
RY = diag(RUN)X  and R'X =diag(RTU)Y. (19)

This pair of equations may be used as the basis for an efficient least-squares algo-
rithm which alternates between two equations. This algorithm was first described
by Greenacre (1978) and is further discussed by Greenacre and Browne (1986). A
further algebraic advantage is the ANOVA-like decomposition, obtained from (2)
and (19):

trace (DDT) = trace (RR") + trace[(D — R)(D — R)] (20)

(Gower 1984). The fitted sum-of-squares, trace [((D —R)(D - R)"], may be further
broken down into row and column components in the usual way, as for two-way

tables.

There are two ways in which a metric unfolding algorithm may be adapted to
ignore the diagonal of the symmetric distance matrix. First, weights w;; may be
assigned to each term of the objective function and a weighted fit optimized. In
the present case the objective function would thus be:

n n
S wiel;.
i=1 j=1
Our specific problem would then be solved by setting w;; = 0 for allz =1,... ,n,
and w;; = 1 for all 7 # j. In general, the introduction of differential weighting of
the terms in the objective function would also allow compensation for the exces-
sive emphasis on large distances; for example, if we set the off-diagonal weights to

w; = di—j‘i. The inclusion of weights, however, leads to an increase in computation

)
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per iteration and it is then doubtful whether the alternating least-squares algo-
rithm still holds a substantial advantage over more familiar gradient techniques of

optimization.

In the simpler case of a zero-one weighting scheme, the algorithm for gen-
eral unfolding based on SSTRESS (Greenacre 1978, Greenacre and Browne 1986)
can be adapted as follows for the particular problem where the diagonal terms are
excluded. At a particular stage of the iterative process, we replace the existing val-
ues of the diagonal squared distances d?z- by the squared self-distances according to
the solution at that stage. The contribution of the diagonal terms in the objective
function is thus maintained at zero throughout the iterative process, and when the
algorithm converges, the fitted self-distances themselves converge. This method
can be thought of as unfolding the complete matrix of squared distances, including
fitted diagonal values, as if these were known initially. While the weighted solution
would be preferable, the present strategy entailed only a minor modification of our
present algorithm and was thus much easier to implement. In the original testing
of this adapted algorithm, it became clear that to replace the self-distances after
each iteration sometimes led to numerical instability of the algorithm, because
of instability in convergence of some of the fitted self-distances. This has led us
to perform the iterations in a nested fashion, fixing the self-distances for a num-
ber of iterations until a convergent unfolding solution is obtained, and only then
replacing the self-distances for a subsequent set of iterations. This strategy has
definitely led to stabilization of the self-distances and to consequent convergence

of the algorithm in most cases.

Because of the danger of local minima in unfolding solutions, it is advisable to
try a number of different starting points. Our present algorithm uses a starting
configuration based on the matrix B given by (4). But before this initial solu-
tion can be computed, we have to select starting values for the self-distances A
themselves. We have tried two ways of initializing these distances and we suggest
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that both be tried and the ultimate solutions of the algorithm compared. The
frst method is to set these distances equal to zero, implying that the algorithm
commences at the classical scaling solution. The second method initializes the di-
agonal squared distances d% as the average of the non-diagonal squared distances
(i df])/(n —1). Thus, the first method can be imagined as the row and column
points initially close together and drifting apart to optimize the objective, and the
second method as the row and column points initially fairly far apart and drifting

either toward one other or even further apart to reach an optimum.

Insert Figures 2 and § about here

4. Examples

4.1 Galaxy data.

Nathanson (1971) gives the squared Mahalanobis distances between ten types
of galaxies, which he uses in a discriminant analysis of the galaxies. Figure 2
shows the metric scaling of these distances in two dimensions, using the metric
scaling algorithm of Browne (1987) which also minimizes residual sum-of-squares
(RSS) and gives a minimum value of 45.78 (SSTRESS=0.041). Figure 3 shows the
symmetric unfolding of the same data, using the algorithm described in Section
3. In this case the value of RSS is 9.71, with a corresponding SSTRESS of 0.009.
Since the decomposition is based on fourth powers of original and fitted distances,
these SSTRESS values are highly optimistic summaries of the errors incurred in the
respective displays. Another way of summarizing the quality of fit is to examine
the residuals in the respective analyses. In fact, the metric scaling results in a set of
residuals whose absolute values have mean 0.58 and standard deviation 0.41, while
" the absolute residuals in the symmetric unfolding have mean 0.25 and standard
deviation 0.21. This improvement can be judged against the fact that the original
squared distances themselves have mean 3.15 and standard deviation 1.54.
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The fitted distances given by Figure 3 are very nearly symmetric, although the
representation is not one of the general types discussed in Section 2. However, a
strong element of reflection is observable, albeit not reflections in a line or plane.
In particular, galaxies H, I, and J have a different, curvilinear, axis of symmetry
from the other galaxies. These three galaxies were also picked out in a three-
dimensional nonmetric unfolding of these data (Gower and Digby 1981). It seems
that the gain in accuracy of the two-dimensional metric unfolding compared with
the two-dimensional scaling has been obtained by accommodating higher dimen-

sional differences between H, I, J and the remaining galaxies.

Insert Figures 4 and 5 about here

4.2 Cultural distances between ethnic groups.

If the resultant display yields asymmetric fitted distances, one of the pair of dis-
tances will be fitted better than its counterpart. In this case we retain only half
of the fitted values and call this a “reduced fit”. Some theoretical examples where
a reduced solution is better than the full symmetric unfolding solution are given

in an Appendix.

We consider a case arising in the symmetric unfolding of a set of distances
originally in a study by Funk et al. (1974), relating to cultural distances between
13 ethnic groups. These data are also discussed and analyzed in a description of

a metric scaling program by Heiser and de Leeuw (1977).

In a two-dimensional LSSS of these data, reproduced in Figure 4, there are
quite clearly three groups of points, indicated by the symbols A, B and C, which
lie roughly at the vertices of a triangle. In a one-dimensional scaling, not given
here, the three groups are still separated but the smallest group (group B) is
forced to lie between the other two and is thus displayed with large errors. In a
one-dimensional symmetric unfolding the display turns out be highly asymmetric
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(Figure 5). One set of points {the rows, say) is bunched up ut the origin, although
the separation of the three groups is still apparent. The displayed distances with
the most asymmetry are those between the points in cluster B and the other
points. It appears that the displayed distances from the row points of cluster
B to the other column points are fairly accurate, while the transposed distances
are fairly inaccurate. This result can be seen clearly in Table 1, which shows
percentage contributions to the RSS of the solution — about 87% of the RSS is
contained in the columns labelled 3 and 8, i.e., the members of group B. Hence
the column points 3 and 8 are useful only in their representation of the distance

between 3 and 8, otherwise they should not be interpreted.

Insert Table 1 about here

This example demonstrates the existence of reduced fits as well as the abil-
ity of symmetric unfolding to represent higher-dimensional structures in a low-

dimensional space.

5. Discussion

In a scaling of an n X n symmetric matrix in p dimensions, the number of free
parameters is np — %—p(p + 1). Since we have not constrained the symmetric un-
folding solution to be symmetric, its number of free parameters is theoretically
2np — %p(p + 1), although the constraint of symmetry would considerably reduce
this number. Referring to (6), (11), (12) and (13), we can deduce that the number
of free parameters under this constraint would be np — %—p(p + 1) plus the number
of free parameters in S and ¥, which define the affine transformation between the
two sets of coordinates. This number depends on r, where p —r is the number of
orthonormal vectors in the generalized Householder transform (12), and is equal
to p(p—r) — 2(p—7)(p —r +1) in the case of S, and (p — r) in the case of ¥,
the sum of which simplifies as p(p+1) - %r(r +1). Thus, the number of free
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parameters under the symmetry constraint would be at most np — %r(r +1). For
example, Ina p = 9_dimensional solution which is constrained to be a reflection in
a line (cf. Figure la), i.e. the simple Householder transform withr =1landy, =0,
the number of free parameters would be np— %r(r +1)—1 = np—2, just one more
than the scaling solution. The analysis of Section 2 has shown that most useful
unfolding solutions giving symmetry are subsumed in the class of symmetric affine
transformations, but it is not clear how such a constraint could be imposed in the
unfolding algorithm. Indeed it is not clear that any such constraint is necessary,
as many of the unconstrained solutions so far constructed have turned out to be

symmetric.

Since symmetric unfolding offers more free parameters for representing a space
of given intrinsic dimensionality but includes conventional scaling representations
as special cases, 1t must lead to an approximation which fits the distance matrix
at least as well as does conventional scaling, in a prescribed number of dimensions.
Thus, symmetric unfolding extends the class of data that can be represented in
a low-dimensional space, especially in two dimensions which are the most con-
venient for viewing distances. Apart from ignoring self-distances in the display,
the interpretation of a symmetric unfolding is usually only slightly more difficult
than the intuitively simple interpretation of a conventional multidimensional scal-
ing display. For those already familiar with conventional unfolding, there is little
to learn. The interpretation of the displayed self-distances themselves also needs
further investigation, as these seem to be related to the dimensionality of different
groups of points. For example, when symmetric unfolding in two dimensions leads
to a display where two sets of points are the same, an intrinsic two-dimensional
set of distances is indicated. Other types of symmetry would indicate higher in-
trinsic dimensionality. It is important to point out that the presence of patterns
in the pairs of points in symmetric unfolding solutions effectively compensates for
the expense of increasing the number of parameters in the model. If the two sets
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of points were randomly related, the price paid for the extra parameters might
be considered too high. However, the Euclidean concept of closeness survives in
our representations and we have shown that often, but not necessarily always,
the two sets of points may show some simple geometric relationship. When this
happens, the extra complexity is much reduced, making the price affordable and

interpretation easier.

Based on some initial results given in the Appendix, the occurrence of asym-
metric solutions does not necessarily appear to be a disadvantage. The reduced
fits described there can be very satisfactory, but the complexity of interpretion is
admittedly increased. The few reduced fits which we have examined have been
obtained from an inspection of full fits; a possibility for further work is to examine

the possibility of obtaining reduced fits by direct methods.
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Appendix

We give a simple example intended to elucidate the existence of optimal asym-
metric approximations when unfolding a symmetric matrix. With asymmetric
solutions, one of the pair of approximations to each d;; must be better than the
other, thus leading to reduced symmetric unfolding solutions. We use the term
«reduced fit” when a distance matrix is fitted by symmetric unfolding, followed
by a selection of half the fitted values: for each fitted pair (d;;,d;;) the one is dis-
carded which has the bigger residual. Thus, only one of each pair of fitted values 1s
used for interpretation — one might say that the unfolding diagram is interpreted
as a restricted directed graph (i.e., restricted to the better of each pair). Thus we
could refer more specifically to a “conditional reduced fit”, the conditioning being
with respect to a subset of the complete fit. A true reduced fit would attempt to fit
the directed graph ab initio, which we have not done. In the following examples,
however, it will be seen that many, often all, of the selected residuals are zero, so
these conditional reduced fits cannot be improved and therefore must also be true
reduced fits. Clearly, reduced fits must be better than full asymmetric solutions.
In the following, the residuals from the fitted distances retained in a reduced fit

are denoted by an asterisk, as are the associated fitted sums-of-squares.

Consider a simplex A, B, C, D which is regular (side unity) except that C and
D coincide. Thus we have two equilateral triangles ABC and ABD where C and
D are different labels for the same point; alternatively the point pair C, D Iﬁay be

regarded as a single point with weight two. The distance matrix is

0111

1 011
D=

1100

1100

The four points occupy a two-dimensional Euclidean space, but we shall investigate
various forms of one-dimensional approximation. The best classical fit minimizing
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SSTRESS (S, say) is a line of length 2v with A and B at either end, and with
C,D coincident at the centre. Here v = % and S} = 3?‘5—, corresponding to a

reduced fit of 57 = 15*5— when only the upper (lower) triangular fit is considered.

Now consider symmetric unfolding solutions. First take the classical solutions
just described augmented by a second set of points a, b, ¢, d all coinciding with C,

and hence also with D. The fitted matrix of squared distances is asymmetric with

values: e 4
A(vvvv\
Blv v v v
cloooo
D\OOOO}

with v = 1 and residual sum-of-squares S, = 4, where diagonal contributions have
been ignored. This solution is clearly worse than the classical solution so cannot

be the best unfolding solution. However the off-diagonal residuals are:

a b ¢ d
al- o o 0*\
Blo - o 0
cli1 1 - 0
p\1 1 0 -/

and if fitted values are taken only for asterisked residuals, an exact one-dimensional

reduced fit is found (i.e., now S5 = 0).

The best symmetric fit seems to be that described in the second paragraph of
Section 1, where a regular simplex 1s represented by two points, distance v apart,
with A, B,C, D coinciding at one point and a,b,c,d at the other. Because the
matrix D is not quite a regular simplex the best fit is not when v = 1 but turns
out to be when v? = . This situation gives a full fit with 53 = 1%— which is better
even than the reduced classical solution of S = 1%. However the best symmetric
unfolding solution we have found, and which we believe to be globally optimal, is
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not symmetric. This solution is given by consecutive points A,C, D, B on a line
with inter-distances v, 2u,v and where a,b,c,d coincide at the center, i.e., distance
u + v from A and B and distance u from C and D. The values of © and v which
minimize SSTRESS are u +v = 1, u’? = % giving a full fit with S, = 1%. In this

case the fitted squared distances and residuals are:

a b ¢ d a b c d
A(l 1 1 1\ A( - 0* 0t 0 \
Bl1 1 1 1 B| O — ot 0
Clu? w? u® o2 Cli-u? 1-u? - —u*
p\uz w w2 w2 plicw 1wt -2 -

By taking the reduced fit associated with the asterisked values, we obtain 55 = %
but this result is not so good as S3. Thus Sj is the best reduced, S3 the best
symmetric fit, and S, the best (unconstrained) full fit found by one-dimensional
symmetric unfolding, and all are substantial improvements on the classical solu-

tion.
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FIGURE LEGENDS

Figure 1: Some two-dimensional solutions of symmetric unfolding. (a) Two sets
of points, symmetric with respect to a straight line. (b) Two sets of points on
concentric circles. (c¢) Two sets of points on three equidistant parallel lines,
with one set exclusively on the central line. (d) Two sets of points on two
perpendicular straight lines. (e) Two sets of points in no apparent pattern of

symmetry.

Figure 2: Two-dimensional metric scaling of the galaxy data of Nathanson (1971),

using least-squares squared scaling (LSSS).
Figure 3: Two-dimensional symmetric unfolding by LSSS of the galaxy data.

Figure 4: Two-dimensional LSSS scaling of the ethnic group data of Funk et
al. (1978).

Figure 5: One-dimensional symmetric unfolding by LSSS of the ethnic group
data.

TABLE LEGENDS

Table 1: Percentage contributions to sum of squared residuals (RSS) by each
element of the distance matrix, showing row and column totals. A dot (.)
represents a contribution of less that 0.1%. The contributions of the diagonal

elements are zero by construction of the algorithm.
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