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Abstract. We propose a novel model of stochastic choice: the single-crossing ran-

dom utility model (SCRUM). This is a random utility model in which the collection

of utility functions satisfies the single-crossing property. We offer a characterization

of SCRUMs based on three easy-to-check properties: Positivity, Monotonicity and

Centrality. The identified collection of utility functions and associated probabilities

is basically unique. We establish a stochastic monotone comparative result for the

case of SCRUMs and study several generalizations of SCRUMs.
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1. Introduction

In a random utility model, there is a collection of utilities and a probability mass

function over them. The probability of choosing an option from the set of available

alternatives is described by the sum of the probability masses associated with the utility

functions that consider that option to be maximal. This is a flexible model that can

be interpreted from the perspective of both an individual and a group of individuals.

In the first case, the different utility functions may stand for different criteria, selves,

or moods of the individual, with their corresponding probabilities describing their

prevalence. Accordingly, individual choice here is understood as stochastic in nature.1

In the second case, the utilities represent individuals that differ in their tastes and,

hence, in their evaluation of the alternatives, and the probability masses describe how
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prevalent these utilities are in the population. Here, the probability distribution over

choices describes the frequency with which the different options are selected in the

population.

Under both interpretations, the multi-self individual and the group of individuals,

the random utility model crucially allows for heterogeneity in preferences. A property

that has proven of great practical relevance in introducing structure into the modeling

of preference heterogeneity is the classical single-crossing condition (see Mirrlees, 1971;

Spence, 1974; Milgrom and Shannon, 1994). The single-crossing condition essentially

assumes that there is an order over the alternatives ≺ and a collection of utility func-

tions that is ordered such that whenever xL ≺ xH , lower utilities in the collection

prefer xL and higher utilities prefer xH . This condition has been critical in a number

of diverse and relevant settings. For example, it permits to consider optimal taxa-

tion and market signaling problems (Mirrlees, 1971; Spence, 1974); to provide sharp

comparative statics results (Milgrom and Shannon, 1994); to solve the problem of pref-

erence aggregation (Gans and Smart, 1996); to characterize equilibria in incomplete

information games (Athey, 2001); to study the value of information (Persico, 2000);

to address a number of issues in political economy (Persson and Tabellini, 2000); and

to gain a deep understanding of the fundamental preference parameters such as risk,

time and altruism (see Jewitt (1987), Benôıt and Ok (2007) and Cox, Friedman and

Sadiraj (2008), respectively).

In this paper, we propose and study a random utility model in which preference

heterogeneity is modeled by way of the single-crossing condition. That is, we impose

that the collection of utility functions involved in the random utility model satisfies the

single-crossing condition. The model, therefore, endows heterogeneity with an intuitive

structure and is sufficiently flexible to apply to a wide variety of settings, as illustrated

in the previous paragraph. We call such a model the single-crossing random utility

model (SCRUM).

In our first result, we characterize SCRUMs by way of three simple properties, i.e.,

Positivity, Monotonicity and Centrality, providing testable foundations to the model.

Positivity imposes that the choice probability of every available alternative is away from

zero. This is a standard property in the stochastic choice literature. Monotonicity is

another classical property; it simply states that the probability of choosing an option

from a set should not increase as more alternatives are considered. Finally, Centrality

is a new property that exploits the structure that the single-crossing condition brings to



3

the model. Consider three ordered alternatives. Centrality imposes that the probability

of choosing either one of the alternatives in the extremes does not depend on the

presence of the other extreme alternative. The intuition is that all of the reasons for

choosing an extreme alternative in the triplet are inherited by the central alternative

when the former is absent. Note that Centrality uses only the triplets and the binary

sets, and hence it is a computationally easy property to check. Theorem 1 shows

that these properties characterize SCRUMs. Furthermore, the proof of Theorem 1 is

constructive; the collection of utilities and their associated weights are obtained from

the stochastic revealed choices. In addition, it shows that the identification is basically

unique; the utilities are unique up to ordinal transformations.

Milgrom and Shannon (1994) first formally introduce the single-crossing condition,

with the purpose of studying how optimal choices vary when using different utility

functions. They establish their famous monotone comparative statics result, whereby

the optimal alternative of a lower utility in the collection of single-crossing utilities

precedes the optimal alternative with higher utility. In Section 4, we revisit the question

of monotone comparative statics, in the stochastic approach of SCRUMs. We construct

a partial order on SCRUMs that describes how close they are to the order of alternatives

≺, and in Theorem 2, we establish how this partial order is linked to the corresponding

stochastic choices. Concretely, we show that SCRUML is closer to ≺ than SCRUMH if

and only if the stochastic choices generated by SCRUML are first-order stochastically

dominated by those of SCRUMH . This is the stochastic analogue of the classical

monotone comparative statics result. In fact, we show that the classical result is

simply a special case of Theorem 2.

Section 5 is devoted to the study of two extensions of SCRUMs. First, in Section

5.1, we investigate the case in which there is not an exogenous, observable order over

the alternatives. It may be the case that the analyst does not have enough information

to assume a particular order over the alternatives, but the decision-maker actually

contemplates one. In this case, the question arises as to whether there exists an order

over the alternatives such that the revealed stochastic choice is a SCRUM with respect

to it. In Theorem 3, we identify the properties that allow us to address this question.

We show that Positivity, Monotonicity, and a slight variation of Centrality characterize

this endogenous version of SCRUMs. Again, the proof is constructive; the unique

endogenous order over the alternatives, up to symmetry, is obtained from the stochastic

choices involving the triplets and the binary sets. Then, Theorem 1 can be used
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to construct the unique collection of utilities and associated probability weights that

rationalize stochastic choice.

In Section 5.2, we extend SCRUMs to contemplate the possibility of dominated

alternatives, that is, situations in which, no matter what, the decision-maker always

finds one option superior to another. Accordingly, one would like to allow for the

possibility of choosing the dominated alternative with zero probability, whenever the

dominating alternative is available. Because this is in contrast with the property of

Positivity, we need to introduce a variation of the property to allow for zero probabilities

in these cases. Theorem 4 shows that Monotonicity, Centrality and a variation of

Positivity characterize SCRUMs that allow for the presence of dominated alternatives.

Finally, Section 6 concludes by commenting on the relationship between SCRUMs

and certain behavioral phenomena that has attracted a good deal of attention.

We close this section by relating our work to the relevant literature. Random utility

models have a long tradition in economics. Block and Marschak (1960) provide an early

and deep theoretical treatment of them but leave the characterization of the model as an

open question. In subsequent contributions, Falmagne (1978), Barberà and Pattanaik

(1986), and McFadden and Richter (1990) are able to solve the challenge posed by Block

and Marschak and offer a full characterization of the model. However, the nature of

the characterizations is algorithmic, and hence the properties are difficult to interpret

and to operationalize. Notably, Gul and Pesendorfer (2006) revisit this question. They

characterize the case in which alternatives are lotteries and the collection of utilities

is formed by expected utility functions, and use properties that exploit the structure

of expected utility. By doing so, they are able to provide intuitive properties that

are analogues of the standard properties in the deterministic study of decision under

risk and are easy to interpret. Recently, Lu and Saito (2016) provide foundations

for the case where alternatives are consumption streams and utilities are discounted

utility functions. In this paper, we contribute to the study of random utility models

by endowing them with a flexible structure that makes them applicable to a number of

diverse settings, and as in Gul and Pesendorfer and Lu and Saito, the special structure

makes the model tractable and testable.

There are a number of recent papers studying variations of the model of Luce (1959),

which is probably the most popular probabilistic choice model. Recently, Fudenberg
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and Strzalecki (2013) characterize a dynamic version of the Luce model. Gul, Naten-

zon, and Pesendorfer (2014) extend the Luce model to the consideration of stochastic-

attribute-based choice. Fudenberg, Iijima and Strzalecki (2015) relax Luce’s IIA axiom,

the key axiom characterizing the model of Luce, to consider nonlinear perturbations

of utility. In Section 3.2, we discuss how Luce-type models are substantially different

from SCRUMs. Manzini and Mariotti (2014) study a decision-maker that first pays

attention to a subset of the available alternatives following a random procedure and

then maximizes a preference relation. Again, in Section 3.2, we argue that this model

and ours are fundamentally different. Finally, Caplin and Dean (2016) characterize

every revealed stochastic choice consistent with the optimal acquisition of costly in-

formation. Their model is very different in nature from all of these stochastic models,

including ours, as theirs uses state-dependent choice data.

2. Single-Crossing Random Utility Models

Let X be a finite set of alternatives. A stochastic choice function is a mapping

p : X × 2X \ ∅ → [0, 1] such that, for every menu A ∈ 2X \ ∅, the following properties

hold: (i) p(x,A) > 0 only if x ∈ A and (ii)
∑

x∈A p(x,A) = 1. We interpret p(x,A) as

the probability of choosing alternative x from menu A ⊆ X.

The key notion in the paper is that of a single-crossing random utility model (SCRUM).

To introduce it, we borrow two ingredients from the literature on the single-crossing

condition. First, we assume that there is a given observable linear order ≺ on X.2

Second, there is a collection of utility functions {Ut}Tt=1 on X satisfying the single-

crossing condition with respect to (X,≺). Namely, for every pair of alternatives

xL ≺ xH and pair of utilities UtL and UtH , with tL < tH , if UtL(xL) < UtL(xH), then

UtH (xL) < UtH (xH). That is, the single-crossing condition states that the ranking of

any pair of alternatives reverses at most once in the ordered collection {Ut}Tt=1. Then,

low utilities prefer the low alternative, while high utilities prefer the high alternative,

and there are no indifferences in utility functions. We begin by studying the case of

undominated alternatives, by assuming that for every x ∈ X, there is t such that

Ut(x) > Ut(y) for every y ∈ X \ {x}.3 Settings fitting these assumptions abound and

2Below, in Section 5.1, we show how we can dispense with this assumption and identify the structure

of alternatives perceived by the decision-maker by employing the revealed choices.
3We relax this assumption in Section 5.2, when we incorporate into the analysis the possibility of

the existence of dominated alternatives.
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cover all the main preference parameters of interest. The following example illustrates

this point.

Example 1. Consider a collection of vectors (x1
1, x

2
1), (x1

2, x
2
2), . . . , (x1

n, x
2
n) that lie in

the same downward-slopping line. That is, there exist δ1 and δ2, with δ1 ≥ δ2 > 0,

such that δ1x1
i + δ2x2

i = 1. To facilitate the exposition, let 0 < x1
1 < x1

2 < · · · < x1
n.

• Risk. X = {g1, . . . , gn}, where gamble gi assigns equiprobable prizes x1
i and x2

i ,

with x1
n ≤ 1

δ1+δ2
.4 Take {Ut}Tt=1 to be a collection of CARA or CRRA expected

utilities, ordered by the risk-aversion coefficient. This model is single-crossing,

with gambles ordered as g1 ≺ g2 ≺ · · · ≺ gn.

• Time. X = {s1, . . . , sn}, where stream si has present payout x1
i and future

payout x2
i . Let u be a strictly increasing monetary utility, and let {Ut}Tt=1

be a collection of exponential discounted utilities using u and ordered by the

delay-aversion coefficient. This model is single-crossing, with streams ordered

as s1 ≺ s2 ≺ · · · ≺ sn.

• Social preferences. X = {a1, . . . , an}, where allocation ai consists of a payout

of x1
i dollars to oneself and x2

i dollars to another person. Consider a family

of Andreoni-Miller altruism-CES utility functions {Ut}Tt=1 with a fixed substi-

tutability coefficient and ordered by the altruism coefficient. This model is

single-crossing, with allocations ordered as an ≺ an−1 ≺ · · · ≺ a1.

• Complementarities. X = {b1, . . . , bn}, where bundle bi is described by the

consumption of good 1, x1
i and good 2, x2

i , with x1
n ≤ 1

δ1+δ2
. Consider a family

of CES utility functions {Ut}Tt=1 with a fixed share coefficient of 1
2

and ordered

by the substitutability coefficient. This model is single-crossing, with bundles

ordered as bn ≺ bn−1 ≺ · · · ≺ b1. �

The last ingredient of a SCRUM is a strictly positive probability mass function µ

over the set of utility functions {Ut}Tt=1. The value µ(t) describes the probability with

which the utility function Ut is realized, or in other words, it represents the weight, or

the prevalence, of Ut in {Ut}Tt=1.

We can now define the stochastic choice function associated with a SCRUM. Consider

a menu A ⊆ X and a utility function Ut, and denote by mt(A) the maximal alternative

in A according to Ut, that is, Ut(mt(A)) > Ut(x) for every x ∈ A \ {mt(A)}. The

4This guarantees that no gamble stochastically dominates another. An analogous argument applies

to the case of complementarities below.
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probability that the SCRUM stochastic choice function associates to the choice of x

from A is simply the sum of the weights of all the utility functions for which x is

maximal in A. Formally, for every menu A and alternative x, the SCRUM stochastic

choice function is p(x,A) =
∑

t:x=mt(A) µ(t).

3. Characterization of Single-Crossing Random Utility Models

3.1. Characterization Result. We now introduce a set of properties on stochastic

choice functions that identify SCRUMs. The first property, Positivity, simply states

that the probability of choosing any option in a menu is strictly larger than zero. This

is a mild property, often imposed in the definition of stochastic choice models. Here we

impose it as a property and show that, in conjunction with the two properties below, it

is not only necessary but sufficient. In Section 5.2, we modify this property to address

the case of dominated alternatives.

Positivity (POS). If x ∈ A, p(x,A) > 0.

The second property, Monotonicity, is a classical condition in the study of stochastic

choice already employed in Block and Marschak (1960). It states that the probability

of selecting an option does not increase when more alternatives are added to the menu.

Monotonicity (MON). If B ⊆ A, then p(x,A) ≤ p(x,B).

The third property, Centrality, uses the structure that the single-crossing condition

brings to random utility models. It states that, in a triplet, the central alternative,

according to the given order ≺, makes the two other extreme alternatives irrelevant to

one another. Intuitively, given the ordered structure of the alternatives, the arguments

for choosing an extreme alternative in the triplet are inherited by the central alternative

when the former is absent.

Centrality (CEN). Let xL ≺ xC ≺ xH . Then, p(xL, {xL, xC , xH}) = p(xL, {xL, xC})
and p(xH , {xL, xC , xH}) = p(xH , {xC , xH}).

It is clear that these three properties are necessarily satisfied by a SCRUM. Theorem

1 shows that these properties are not only necessary but sufficient. Given the simplicity

of the properties, Theorem 1 shows, therefore, that SCRUMs are easily testable.

Theorem 1. A stochastic choice function p satisfies POS, MON and CEN if and only

if p is a SCRUM stochastic choice function.
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Proof of Theorem 1: The necessity of the axioms is straightforward. We prove the

sufficiency of the axioms through a series of steps. To ease the exposition, we denote

the alternatives in X by 1 ≺ 2 ≺ · · · ≺ |X|.
Step 1. We claim that for every triplet of alternatives {i, j, k} such that i ≺ j ≺ k, it

is p(i, {i, j}) ≤ p(i, {i, k}) ≤ p(j, {j, k}). To see the first inequality, notice that by CEN,

it must be p(i, {i, j}) = p(i, {i, j, k}). By MON, it must be p(i, {i, j, k}) ≤ p(i, {i, k}),
which implies p(i, {i, j}) ≤ p(i, {i, k}). For the second inequality, notice that MON

guarantees p(i, {i, k}) = 1− p(k, {i, k}) ≤ 1− p(k, {i, j, k}). By CEN, it must also be

p(k, {i, j, k}) = p(k, {j, k}), which implies p(i, {i, k}) ≤ 1− p(k, {j, k}) = p(j, {j, k}).
Step 2. We construct a collection of utility functions {Ut}Tt=1 over X and assign

a probability mass to each of them. Let Λ = {λ : there exist i, j such that i ≺
j and p(i, {i, j}) = λ}∪{1}. Denote the elements of Λ by λ1 < λ2 < · · · < λ|Λ| = 1. We

construct T = |Λ| utility functions. The utility of alternative i under utility function

Ut is Ut(i) = −i + |{k : k ≺ i, p(k, {k, i}) < λt}| − |{k : i ≺ k, p(i, {i, k}) < λt}|. The

mass of utility Ut is µ(t) = λt − λt−1, where λ0 = 0. Notice that POS guarantees that

λ1 > 0, and hence all masses are strictly positive.

Step 3. We claim that the collection of utility functions {Ut}Tt=1 satisfies the single-

crossing condition with respect to ≺. For every pair of distinct alternatives i ≺ j, we

define t(i, j) as the integer such that λt(i,j) = p(i, {i, j}) and show that Ut(i) > Ut(j)

whenever t ≤ t(i, j) and Ut(i) < Ut(j) whenever t > t(i, j).

Step 3a. Let t ≤ t(i, j). Notice that this is equivalent to p(i, {i, j}) ≥ λt. For any al-

ternative k such that k ≺ i, Step 1 guarantees that p(k, {k, i}) ≤ p(k, {k, j}), and hence

|{k : k ≺ i, p(k, {k, i}) < λt}| ≥ |{k : k ≺ i, p(k, {k, j}) < λt}|. For any alternative k

such that j ≺ k, Step 1 guarantees that p(j, {j, k}) ≥ p(i, {i, k}) ≥ p(i, {i, j}) ≥ λt,

and hence −|{k : j ≺ k, p(i, {i, k}) < λt}| = 0 = −|{k : j ≺ k, p(j, {j, k}) < λt}|.
Finally, for any alternative k such that i ≺ k ≺ j, Step 1 guarantees that p(k, {k, j}) ≥
p(i, {i, j}) ≥ λt. That is, −i − |{k : i ≺ k ≺ j, p(i, {i, k}) < λt}| > −j = −j + |{k :

i ≺ k ≺ j, p(k, {k, j}) < λt}|. These three facts, together with p(i, {i, j}) ≥ λt, lead to

Ut(i) > Ut(j), as desired.

Step 3b. Let t > t(i, j). Notice that this is equivalent to p(i, {i, j}) < λt. For

any alternative k such that k ≺ i, Step 1 guarantees that p(k, {k, i}) ≤ p(k, {k, j}) ≤
p(i, {i, j}) < λt, and hence |{k : k ≺ i, p(k, {k, j}) < λt}| = i − 1 = |{k : k ≺
i, p(k, {k, i}) < λt}|. For any alternative k such that j ≺ k, Step 1 guarantees that

p(i, {i, k}) ≤ p(j, {j, k}), which implies −|{k : j ≺ k, p(j, {j, k}) < λt}| ≥ −|{k :
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j ≺ k, p(i, {i, k}) < λt}|. Finally, for any alternative k such that i ≺ k ≺ j, Step

1 guarantees that p(i, {i, k}) ≤ p(i, {i, j}) < λt, which implies −j + |{k : i ≺ k ≺
j, p(k, {k, j}) < λt}|+1 ≥ −j+1 = −i−|{k : i ≺ k ≺ j, p(i, {i, k}) < λt}| > −i−|{k :

i ≺ k ≺ j, p(i, {i, k}) < λt}| − 1. These three facts, together with p(i, {i, j}) < λt, lead

to Ut(j) > Ut(i), as desired.

Step 4. We claim that for any set A such that |A| ≥ 3, denoting its alternatives

by a1 ≺ a2 ≺ · · · ≺ a|A|, it is p(a1, A) = p(a1, {a1, a2}), p(ai, A) = p(ai, {ai−1, ai, ai+1})
whenever 2 ≤ i ≤ |A| − 1 and p(a|A|, A) = p(a|A|, {a|A|−1, a|A|}). To show this, we use

CEN repeatedly to obtain 1 = p(a1, {a1, a2, a3})+p(a2, {a1, a2, a3})+p(a3, {a1, a2, a3}) =

p(a1, {a1, a2})+p(a2, {a1, a2, a3})+p(a3, {a2, a3}) = p(a1, {a1, a2})+p(a2, {a1, a2, a3})+

(1 − p(a2, {a2, a3})) = p(a1, {a1, a2}) + p(a2, {a1, a2, a3}) + (1 − p(a2, {a2, a3, a4})) =

p(a1, {a1, a2}) + p(a2, {a1, a2, a3}) + p(a3, {a2, a3, a4}) + p(a4, {a2, a3, a4}) = . . .

· · · = p(a1, {a1, a2})+
∑|A|−1

i=2 p(ai, {ai−1, ai, ai+1})+p(a|A|, {a|A|−1, a|A|}). By MON, it

is p(a1, {a1, a2})+
∑|A|−1

i=2 p(ai, {ai−1, ai, ai+1})+p(a|A|, {a|A|−1, a|A|}) ≥
∑|A|

i=1 p(ai, A) =

1. Then, every summand involved in the left-hand side of the inequality must be equal

to its corresponding counterpart in the right-hand side of the inequality, which proves

the claim.

Step 5. Finally, we show that p(x,A) =
∑

t:x=mt(A) µ(t) for every menu A and

alternative x. Note that, by POS, this shows, in turn, that every alternative is maximal

for at least one of the utility functions, concluding the proof. If x 6∈ A, the result is

trivial by the definition of stochastic choice functions and maximal elements. If |A| < 3,

the result is trivial by construction. We then assume x ∈ A, |A| ≥ 3 and use the same

notation as in Step 4.

Step 5a. Let x = a1. By Steps 2, 3 and 4, it is p(a1, A) = p(a1, {a1, a2}) =

λt(a1,a2) =
∑t(a1,a2)

t=1 (λt−λt−1) =
∑t(a1,a2)

t=1 µ(t). We know that for every t ≤ t(a1, a2), it is

Ut(a1) > Ut(a2), and for any aj with j > 2, Step 1 guarantees that t(a1, aj) ≥ t(a1, a2),

and hence it is also Ut(a1) > Ut(aj). Thus, a1 = mt(A). For every t > t(a1, a2), it is

Ut(a1) < Ut(a2), and hence a1 6= mt(A). Thus, a1 = mt(A) if and only if t ≤ t(a1, a2),

which leads to p(a1, A) =
∑t(a1,a2)

t=1 µ(t) =
∑

t:a1=mt(A) µ(t), as desired.

Step 5b. Let x = a|A|. By Steps 2, 3 and 4, it is p(a|A|, A) = p(a|A|, {a|A|−1, a|A|}) =

1 − p(a|A|−1, {a|A|−1, a|A|}) = 1 − λt(a|A|−1,a|A|) = 1 −
∑t(a|A|−1,a|A|)

t=1 (λt − λt−1) = 1 −∑t(a|A|−1,a|A|)

t=1 µ(t) =
∑T

t=t(a|A|−1,a|A|)+1 µ(t). We know that for every t ≤ t(a|A|−1, a|A|),

it is Ut(a|A|−1) > Ut(a|A|), and hence a|A| 6= mt(A). For every t > t(a|A|−1, a|A|),



10

it is Ut(a|A|−1) < Ut(a|A|), and also, for any aj with j < |A| − 1, Step 1 guar-

antees that t(aj, a|A|) ≤ t(a|A|−1, a|A|), and hence it is also Ut(aj) < Ut(a|A|) and

a|A| = mt(A). Thus, a|A| = mt(A) if and only if t > t(a|A|−1, a|A|), which leads to

p(a|A|, A) =
∑T

t=t(a|A|−1,a|A|)+1 µ(t) =
∑

t:a|A|=mt(A) µ(t), as desired.

Step 5c. Let x = ai, with 1 < i < |A|. Step 4 and CEN guarantee that

p(ai, A) = p(ai, {ai−1, ai, ai+1}) = 1−p(ai−1, {ai−1, ai, ai+1})−p(ai+1, {ai−1, ai, ai+1}) =

1−p(ai−1, {ai−1, ai})−p(ai+1, {ai, ai+1}) = p(ai, {ai, ai+1})−p(ai−1, {ai−1, ai}), which is

simply
∑t(ai,ai+1)

t=1 µ(t)−
∑t(ai−1,ai)

t=1 µ(t) =
∑t(ai,ai+1)

t=t(ai−1,ai)+1 µ(t). By Step 1, it is t(aj, ai) ≤
t(ai−1, ai) whenever j ≤ i − 1 and t(ai, aj) ≥ t(ai, ai+1) whenever j ≥ i + 1, and then

ai = mt(A) if and only if t(ai−1, ai) + 1 ≤ t ≤ t(ai, ai+1). This implies p(ai, A) =∑t(ai,ai+1)
t=t(ai−1,ai)+1 µ(t) =

∑
t:ai=mt(A) µ(t), as desired. �

The proof of Theorem 1 explicitly constructs the pair ({Ut}Tt=1, µ) that makes p a

SCRUM stochastic choice function. The construction is intuitive and easy to imple-

ment in practice, as it is exclusively based on the order ≺ and the revealed stochastic

choices in the binary sets. It proceeds as follows. First, construct U1 as a utility rep-

resentation of ≺. That is, x ≺ y if and only if U1(x) > U1(y). Then, identify the

pair of alternatives {x, y} such that x ≺ y and has the lowest binary choice proba-

bility p(x, {x, y}). Construct U2 by reproducing U1 but reversing the utility values

of alternatives x and y: U2(x) = U1(y), U2(y) = U1(x), and U2(a) = U1(a) for any

other alternative a. Once Ut is constructed, identify the pair of alternatives {z, w},
not considered before, such that z ≺ w and has the lowest binary choice probability

p(z, {z, w}). Construct Ut+1 from Ut by reversing the utility values of alternatives z and

w. Proceed in this ordered way until exhausting all binary comparisons.5 Regarding

the associated probability masses, define µ(1) as the lowest binary choice probability

p(x, {x, y}). Given µ(1), . . . , µ(t), define µ(t+ 1) = p(z, {z, w})−
∑t

s=1 µ(s). Proceed

in this way, assigning to the last utility function the mass µ(T ) = 1−
∑T−1

s=1 µ(s). The

proof then shows that this construction satisfies the single-crossing condition, and that

rationalizes the stochastic choice function p in the SCRUM sense.

Another important and notable aspect of the characterization result is that the iden-

tification result is tight. The pair ({Ut}Tt=1, µ) is unique up to a set of basic transforma-

tions. First, note that replacing a utility function Ut with any ordinal transformation

5The proof reverses only consecutive alternatives in the utility functions and analyzes how, in the

more delicate case in which more than one binary comparison must be reversed simultaneously, this

procedure works correctly.
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U ′t , respecting its mass µ(t), is inconsequential. Second, one can create copies of Ut,

place them in between Ut−1 and Ut+1, and distribute the mass µ(t) among the copies

without modifying choice probabilities. Any other transformation would lead to a dif-

ferent stochastic choice function. Hence, the SCRUM ({Ut}Tt=1, µ) rationalizing the

stochastic choice function is generically unique. This is in contrast to unrestricted

random utility models, which are well-known to have multiple representations (see

Fishburn, 1998).

3.2. Relation to Luce’s IIA axiom and Stochastic Transitivity. We now illus-

trate the relationship between SCRUMs and two classical properties in the study of

stochastic choice. Let us start with Luce’s Independence of Irrelevant Alternatives ax-

iom (Luce-IIA). This is the key property characterizing the well-known model of Luce

(1959). It essentially requires that the choice ratio of two alternatives is independent

of the other alternatives that may be available, i.e., p(x,A)
p(y,A)

= p(x,B)
p(y,B)

. Clearly, Luce-IIA

is not necessarily satisfied by SCRUMs, as the property is in direct conflict with CEN.

Notice that when eliminating xH from {xL, xC , xH}, p(xH , {xL, xC , xH}) must be in-

herited by xC according to CEN but distributed proportionally between xL and xC

according to Luce-IIA. Contrary to CEN, Luce-IIA pays no attention whatsoever to

the structure that alternatives have. This, in turn, shows that models extending the

Luce model have a different structure from SCRUMs.

Stochastic transitivity is a cornerstone concept in the understanding of the models

of stochastic choice. The literature distinguishes among three versions of the prop-

erty, namely, weak, moderate and strong stochastic transitivity. To formally define

them, consider three distinct alternatives x, y and z such that p(x, {x, y}) ≥ 1
2

and

p(y, {y, z}) ≥ 1
2
. Stochastic transitivity notions require p(x, {x, z}) ≥ Ψ, where Ψ = 1

2

for the weak notion, Ψ = min{p(x, {x, y}), p(y, {y, z})} for the moderate notion and

Ψ = max{p(x, {x, y}), p(y, {y, z})} for the strong notion.6

It is well known that the standard random utility model does not satisfy even the

weak version of stochastic transitivity (Block and Marschak, 1960). To illustrate,

consider a Condorcet cycle. There are three utility functions U , V and W defined over

three alternatives x, y and z, with: U(x) > U(y) > U(z), V (y) > V (z) > V (x) and

W (z) > W (x) > W (y). Assume µ(U) = µ(V ) = µ(W ) = 1
3
. Then, it is clear that

p(x, {x, y}) = p(y, {y, z}) = 2
3
≥ 1

2
but p(x, {x, z}) = 1

3
, violating the three versions of

6Notice that the strong notion implies the moderate notion and the moderate notion implies the

weak one.
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stochastic transitivity. Interestingly, we now prove that the single-crossing condition

endows random utility models with the moderate version of stochastic transitivity.7

Proposition 1. Every SCRUM stochastic choice function satisfies Moderate Stochastic

Transitivity.

Proof of Proposition 1: Consider three distinct alternatives x, y and z and suppose

that p(x, {x, y}) ≥ 1
2

and p(y, {y, z}) ≥ 1
2
. We first prove that z cannot be central

in the triplet {x, y, z} according to ≺. Otherwise, the use of CEN and POS would

imply that p(x, {x, z}) = p(x, {x, y, z}) = 1 − p(y, {x, y, z}) − p(z, {x, y, z}) = 1 −
p(y, {y, z}) − p(z, {x, y, z}) ≤ 1

2
− p(z, {x, y, z}) < 1

2
, which is absurd. Suppose now

that x is the central alternative in {x, y, z} according to ≺. In this case, CEN implies

p(x, {x, z}) = 1− p(z, {x, z}) = 1− p(z, {x, y, z}). MON implies that p(z, {x, y, z}) ≤
p(z, {y, z}), and hence p(x, {x, z}) ≥ 1− p(z, {y, z}) = p(y, {y, z}), as desired. Finally,

suppose that y is the central alternative. In this case, it can be immediately seen that

MON and CEN imply p(x, {x, z}) ≥ p(x, {x, y, z}) = p(x, {x, y}), as desired. �

It is easy to see that the strong version of stochastic transitivity is not satisfied by

SCRUMs. To illustrate, consider three utility functions {Ut}3
t=1 over three alternatives

x, y and z, with: U1(y) > U1(x) > U1(z), U2(x) > U2(y) > U2(z) and U3(z) >

U3(x) > U3(y). Let µ(1) = 1
5

and µ(2) = µ(3) = 2
5
. This is clearly a SCRUM, but

p(x, {x, y}) = 4
5
, p(y, {y, z}) = 3

5
and p(x, {x, z}) = 3

5
.

4. Stochastic Monotone Comparative Statics for SCRUMs

The single-crossing condition has been instrumental in establishing the so-called

monotone comparative statics results. These are results characterizing the relationship

between preference parameters and optimal choices. In the classical result, {Ut}Tt=1 is

a collection of utilities satisfying the single-crossing condition with respect to (X,≺),

and it establishes that for every pair of utilities UtL and UtH , with tL < tH , the maximal

alternative of UtL either precedes that of UtH in ≺, or they are the same alternative.

This result has proven to be of great practical importance in a variety of applications,

7It can be shown that, under POS, neither MON nor CEN by themselves imply moderate stochastic

transitivity. Moreover, note that this result implies that the model of Manzini and Mariotti (2014)

is not a special case of ours, as theirs does not satisfy even weak stochastic transitivity. To see that

SCRUMs are not a special case of their model, simply notice that their property i-Asymmetry is in

direct conflict with Centrality.
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such as political economy, labor economics, and the economics of education. In this

section, we revisit the question of monotone comparative statics results from a sto-

chastic perspective. The aim is to consider two SCRUMs that are ordered in terms

of their collection of utilities and to establish monotone comparative results in their

distributions of stochastic choices.

We then begin by constructing a partial order on SCRUMs that is based on how

close their collections of utilities are to the order of alternatives ≺. To do so, we

first introduce a partial order over utility functions. Given two utility functions U

and V on X, we say that U is closer to ≺ than V , and write U E V , if i ≺ j and

V (i) > V (j) imply U(i) > U(j). In other words, U agrees with ≺ in the same pairwise

comparisons as V , and maybe more. Note that the relation E is ingrained in the

structure of SCRUMs; the construction of SCRUMs in the proof of Theorem 1 shows

that for every UtL and UtH , with tL < tH , it is the case that UtL E UtH . We now use

the notion of the closeness relation E to partially order SCRUMs. To do so, we need

to introduce some new notation. Note that we can alternatively describe the SCRUM

α = ({Ut}Tt=1, µ) by way of a mapping Fα, from [0, 1] to utilities, given by Fα(ω) = U1

whenever ω ∈ [0, µ(1)] and Fα(ω) = Ut whenever ω ∈ (
∑s=t−1

s=1 µ(s),
∑s=t

s=1 µ(s)]. Now,

given two SCRUMs α = ({Ut}Tt=1, µ) and β = ({Vt}St=1, ρ), we say that Fα is closer to

≺ than Fβ, and write Fα E Fβ, whenever Fα(ω)E Fβ(ω) for every ω ∈ [0, 1]. That is,

the probability with which utilities closer to ≺ are realized in α is larger than in β.

Having established a partial order on SCRUMs, we need to do so on the stochastic

choices of the models. Denote by pα and pβ the stochastic choice functions associated

to the SCRUMs α and β. Without loss of generality, let 1 ≺ 2 ≺ · · · ≺ |X|. We say

that pα is first-order stochastically dominated by pβ if for every menu A and for every

i ∈ {1, 2, . . . , |X|}, it is
∑i

j=1 pα(j, A) ≥
∑i

j=1 pβ(j, A). That is, the probability with

which lower alternatives in ≺ are selected is larger in pα than in pβ.

We are now in a position to establish our stochastic monotone comparative statics

result. Theorem 2 shows that two SCRUMs are ordered in terms of the closeness

relation if and only if their corresponding stochastic choices are ordered in terms of

first-order stochastic dominance.8

Theorem 2. Fα E Fβ if and only if pα is first-order stochastically dominated by pβ.

8In addition, Theorem 2 shows that SCRUMs are free from the non-monotonicity problems discuss

in Apesteguia and Ballester (2016).
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Proof of Theorem 2: We prove first that Fα E Fβ implies that pα is first-order

stochastically dominated by pβ, through a series of steps.

Step 1. We claim that for every menu A, if U E V , then either mU(A) ≺ mV (A) or

mU(A) = mV (A). To see this, suppose by way of contradiction that mV (A) ≺ mU(A).

The definition of a maximal element implies that V (mV (A)) > V (mU(A)). Given that

U EV , it must also be the case that U(mV (A)) > U(mU(A)), which is a contradiction.

Step 2. Denote by tα(i, A) and tβ(i, A) the last integers for which i is maximal in

A according to α and β, respectively. We claim that
∑i

j=1 pα(j, A) =
∑tα(i,A)

t=1 µ(t) and∑i
j=1 pβ(j, A) =

∑tβ(i,A)
t=1 ρ(t). The construction of utilities in a SCRUM shows that

tL < tH implies UtL EUtH . We can then use Step 1 to conclude the proof of this claim.

Step 3. By definition, Fβ(
∑tβ(i,A)

t=1 ρ(t)) = Vtβ(i,A). By assumption, Fα(
∑tβ(i,A)

t=1 ρ(t))E

Fβ(
∑tβ(i,A)

t=1 ρ(t)), and hence, by Step 1, the maximal alternative in A according to

Fα(
∑tβ(i,A)

t=1 ρ(t)) precedes or equals alternative i, which is the maximal alternative in

A according to Fβ(
∑tβ(i,A)

t=1 ρ(t)). Then,
∑tα(i,A)

t=1 µ(t) ≥
∑tβ(i,A)

t=1 ρ(t), and therefore, by

Step 2,
∑i

j=1 pα(j, A) ≥
∑i

j=1 pβ(j, A), as desired.

We now prove that whenever pα is first-order stochastically dominated by pβ, it

must be Fα E Fβ. Suppose by contradiction that this is not the case. Then, there

exists ω such that it is not true that Fα(ω)E Fβ(ω). In other words, there exist i ≺ j

such that Fβ(ω)(i) > Fβ(ω)(j) but Fα(ω)(i) < Fα(ω)(j). Given that pα and pβ are

SCRUM stochastic choice functions, it is immediately clear, from the construction of

F , that pα(i, {i, j}) < ω ≤ pβ(i, {i, j}), proving that pα is not first-order stochastically

dominated by pβ, a contradiction. This concludes the proof. �

The classical deterministic monotone comparative statics result is implied by Steps

1 and 2 in the proof of Theorem 2. Namely, we show there that in a single-crossing

collection of utilities {Ut}Tt=1, every pair of utilities UtL and UtH , with tL < tH , it is

UtL E UtH , and this in turn implies that mU
tL

(A) ≺ mU
tH

(A) or mU
tL

= mU
tH

(A), for

every A. In other words, our stochastic setting has the classical result as a special case.

Another particularly interesting special case of Theorem 2 is when the two SCRUMs

share the same collection of utilities {Ut}Tt=1 and their probability mass functions are

related by first-order stochastic dominance. That is, let αL = ({Ut}Tt=1, µ
L) and αH =

({Ut}Tt=1, µ
H) be two SCRUMs, such that µL is first-order stochastically dominated by
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µH .9 Hence, µL places more probability mass on lower utility functions over the same

single-crossing collection of utilities {Ut}Tt=1, and then, clearly, FαL E FαH . Theorem

2 implies that the stochastic choices pαL are first-order stochastically dominated, with

respect to ≺, by the stochastic choices pαH .

Notably. Theorem 2 does not require that the SCRUMs hold the same collection

of utility functions to establish the result. To illustrate, consider the following simple

example.

Example 2. Consider two SCRUMs with four utility functions over four alterna-

tives, where each utility function has a probability mass of 1/4. The following figure

describes the two SCRUMs, where the columns represent the ordinal rankings, with

upper alternatives denoting alternatives with higher utility values.

α U1 U2 U3 U4

1 2 3 4

2 3 2 3

3 1 1 2

4 4 4 1

β V1 V2 V3 V4

1 2 3 4

2 3 2 3

3 4 4 2

4 1 1 1

Note that 1 ≺ 2 ≺ 3 ≺ 4. We need to show that FαEFβ. Because the two SCRUMs

share the same probability masses, we only need to verify that Ut E Vt, t ∈ {1, 2, 3, 4}.
Because U1 = V1 and U4 = V4, we show it for t ∈ {2, 3}. Because Ut and Vt, t ∈ {2, 3},
coincide in the binary rankings of all the pairs {i, j} such that i ≺ j and Vt(i) > Vt(j),

then it must be that UtEVt. Theorem 2 then implies that pα is first-order stochastically

dominated by pβ. This is obvious for every set A 6= {1, 4}, as pα(i, A) = pβ(i, A) for

all i. For {1, 4}, pα(1, {1, 4}) = 3
4
> 1

4
= pβ(1, {1, 4}). �

5. Extensions

5.1. Endogenous Order of Alternatives. Thus far, we have assumed that the order

≺ over the alternatives is known. This is the standard approach in the single-crossing

literature because, typically, the order emerges naturally from the characteristics of

the alternatives. On occasion, however, the order over the alternatives may not be so

apparent, and one may wonder whether a stochastic choice function corresponds to a

SCRUM for some underlying, unobserved order over the set of alternatives. That is,

it may be the case that although there is not a clear order over the alternatives for

9µL is first-order stochastically dominated by µH whenever for every t̃ ∈ {1, 2, . . . , T}, it is∑t̃
t=1 µ

L(t) ≥
∑t̃

t=1 µ
H(t).
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the analyst, the decision-maker actually contemplates one and behaves à la SCRUM.

We address this question here. Formally, we say that p is a SCRUM∗ stochastic choice

function whenever there is an order ≺ over X such that p is a SCRUM stochastic choice

function for (X,≺).

The challenge is to discover the underlying order of the alternatives from the re-

vealed data p. Let us define alternative x as central∗ in the triplet {x, y, z} whenever

p(y, {x, y, z}) = p(y, {x, y}) and p(z, {x, y, z}) = p(z, {x, z}). We know from Section

3 that, if p is a SCRUM stochastic choice function with respect to a given order over

the alternatives, the central alternative in a triplet according to that order is central∗.

Suppose now that neither y nor z are central∗ in the triplet {x, y, z}. Then, for p to

be a SCRUM∗ stochastic choice function, the following must hold. Obviously, x must

be the central alternative in the triplet for the underlying order and thus, it must be

central∗. More interestingly, any w 6= x must lie either to the left or to the right of x for

the underlying order, which immediately implies that x is central∗ for either {x, y, w}
or {x, z, w}. This is the content of the following axiom.

Centrality∗ (CEN∗). Let x, y, z and w be four distinct alternatives. If neither y

nor z is central∗ in {x, y, z}, then x is central∗ in either {x, y, w} or {x, z, w}.

This basic modification is sufficient, together with POS and MON, to characterize

SCRUM∗ stochastic choice functions.

Theorem 3. A stochastic choice function p satisfies POS, MON and CEN∗ if and only

if it is a SCRUM∗ stochastic choice function.

Proof of Theorem 3: The necessity of the axioms is straightforward. We prove the

sufficiency of the axioms through a series of steps.

Step 1. We prove that, for every triplet, there is one and only one central∗ al-

ternative. We first prove uniqueness. Assume by way of contradiction that there

are at least two alternatives that are central∗ in the triplet {x, y, z}, say x and y.

Then, it is p(y, {x, y, z}) = p(y, {x, y}) and p(x, {x, y, z}) = p(x, {x, y}), respectively.

Hence, p(y, {x, y, z}) + p(x, {x, y, z}) = p(y, {x, y}) + p(x, {x, y}) = 1. This implies

p(z, {x, y, z}) = 0, which contradicts POS. Hence, every triplet has at most one central∗

alternative. We now prove existence. Assume by way of contradiction that none of the

alternatives is central∗ in the triplet {x, y, z}. By CEN∗, x must be central in either

{x, y, w} or {x, z, w}. Indeed, we prove that it must be central∗ in both triplets. To

see this, assume w.l.o.g. that x is central∗ in {x, y, w}, which, by uniqueness, implies
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that neither y nor w is central∗ in {x, y, w}. Then, we know that x must be central∗

in either {x, y, z} or {x, z, w}. Because, by assumption, the former cannot be true,

the latter must be. Then, however, the same symmetric argument can be applied to

alternative y, which must be central∗ in both {x, y, w} and {y, z, w}. This contradicts

uniqueness in {x, y, w}, proving the claim.

Step 2. We prove that every alternative in a quadruple {x, y, z, w} is central∗ in

either zero or two triplets formed by alternatives in the quadruple. We first prove that

an alternative cannot be central∗ in only one of these triplets. Suppose that x is central∗

in one of the triplets, say {x, y, z}. By Step 1, alternatives y and z are not central∗ in

{x, y, z}, and hence CEN∗ implies that x must be central∗ in a triplet containing w.

We now prove that an alternative cannot be central∗ in all the three triplets to which

it belongs. Suppose by contradiction that x is central∗ in all these triplets. Then, Step

1 guarantees that y, z and w are never central∗ in the presence of x. However, Step 1

also guarantees that one of them must be central∗ in {y, z, w}. This alternative would

be central∗ in only one triplet, which we just proved to be absurd.

Step 3. We make the set of alternatives X be a linearly ordered set (X,≺). We do so

inductively by defining linearly ordered sets {(Al,≺l)}|X|l=3 satisfying, for every l ≥ 3: (i)

Al ⊆ X, with |Al| = l, (ii) Al ⊆ Al+1 and (iii) the restriction of ≺l+1 to Al is ≺l. Take

any three distinct alternatives a, b and c and define A3 = {a, b, c}. By Step 1, there

is a unique central∗ alternative in the triplet, say b. Then, define ≺3 by a ≺3 b ≺3 c.

Setting a or c first in the order is without loss of generality. As will be seen, once this

symmetry is broken, the rest of the algorithm respects it. We now describe how to add

any alternative x ∈ X \ Al to the linearly ordered set (Al,≺l) forming a new linearly

ordered set (Al+1,≺l+1) with Al+1 = Al∪{x} and the restriction of ≺l+1 to Al equating

≺l. For the ease of exposition, denote the alternatives of Al by 1 ≺l 2 ≺l · · · ≺l l. If x is

not central∗ in any triplet involving two consecutive alternatives in Al, we place x either

in the first or in the last position of≺l+1, respecting the order over the alternatives in Al.

We do so as follows. If 1 is central∗ in {x, 1, 2}, we define x ≺l+1 1 ≺l+1 2 · · · ≺l+1 l.

Otherwise, we define 1 ≺l+1 2 ≺l+1 · · · ≺l+1 l ≺l+1 x.10 If, on the contrary, x is

central∗ for some triplet involving a pair of consecutive alternatives, let ix be the first

alternative in (Al,≺l) such that x is central∗ in {ix, x, ix + 1}. In this case, define

1 ≺l+1 · · · ≺l+1 ix ≺l+1 x ≺l+1 ix + 1 ≺l+1 · · · ≺l+1 l, the restriction of which to

10In this case, notice that because neither x nor 1 is central∗ in {x, 1, 2}, Step 1 guarantees that 2

is.
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Al coincides with ≺l. Clearly, this algorithm constructs a linear order ≺=≺|X| over

X = A|X|.

Step 4. We claim that the constructed linear order ≺ has the property that for every

triplet of alternatives, the central one according to ≺ is central∗. This would prove that

p satisfies CEN for (X,≺), which by Theorem 1 would conclude the proof. We prove

this claim inductively over the collection of linearly ordered sets {(Al,≺l)}|X|l=3. Notice

that the result is trivial by construction for (A3,≺3). We then prove that the result is

true for l + 1 whenever it is true for l. To see this, notice that the restriction of ≺l+1

to Al coincides with ≺l. Hence, we only need to prove that the property holds true for

every triplet of alternatives in Al+1 containing the alternative x ∈ Al+1 \ Al.
Step 4a. Let x ≺l+1 1. The claim is equivalent to proving that for every triplet

{x, i, j} with 1 ≤ i < j ≤ l, i is central∗. The construction guarantees that this is

true for the triplet {x, 1, 2}. For every 2 < j, as alternative 1 is central∗ in {x, 1, 2},
Step 2 guarantees that alternative 1 is central∗ in either {x, 1, j} or {1, 2, j}. By

the induction hypothesis, the latter cannot be true, proving the result. Whenever

1 < i < j, the induction hypothesis guarantees that alternative i is central∗ in {1, i, j}.
Step 2 guarantees that i must be central∗ in either {x, 1, i} or {x, i, j}. We have already

proven that 1 is the unique central∗ alternative in {x, 1, i}, leading to the result.

Step 4b. Let l ≺l+1 x. The claim requires us to prove that for every triplet {i, j, x}
with 1 ≤ i < j ≤ l, j is central∗. We prove it by induction on the value of t = j − i.
Consider t = 1. We continue the proof by using another inductive argument on the

value of i. We already proved the case in which i = 1 (see footnote 10). Suppose that

the claim is true up to a certain alternative i, which means that alternative i + 1 is

central∗ in {i, i+1, x}. Because we already know that i+1 is central∗ in {i, i+1, i+2},
Step 2 guarantees that i+ 1 cannot be central∗ in {i+ 1, i+ 2, x}. By construction of

the algorithm, x is also not central∗ in the latter triplet, and hence Step 1 guarantees

that i + 2 is. This concludes the inductive argument on i and proves the claim for

t = 1. Suppose now that the claim is true up to a certain t and consider t + 1. We

prove the claim for every i such that i + t + 1 ≤ n. We know that i + t is central∗ in

{i, i + t, x} and also in {i, i + t, i + t + 1}. Hence, Step 2 guarantees that i + t is not

central∗ in {i + t, i + t + 1, x}, and given that x is also not, Step 1 guarantees that

i+ t+ 1 must be. This concludes the inductive argument and the case.

Step 4c. Let ix ≺l+1 x ≺l+1 ix + 1, where ix is the first alternative for which x is

central∗ in {ix, x, ix + 1}. We first prove the claim for triplets of the form {i, j, x} with
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1 ≤ i < j ≤ ix. Let j = ix. Because, by construction, x is central∗ in {j, x, ix + 1},
Step 1 guarantees that j cannot be. Because j is central∗ in {i, j, ix + 1}, Step 2

guarantees that j is also central∗ in {i, j, x}, as desired. Whenever j < ix, notice that

j is central∗ in {i, j, ix}, and we just proved that ix is the unique central∗ alternative in

{j, ix, x}. Hence, Step 2 guarantees that j is central∗ in {i, j, x}. Second, the claim can

be analogously proven for all the triplets of the form {x, i, j}, with ix + 1 ≤ i < j ≤ l,

and hence we omit the proof. Third, consider triplets of the form {i, x, j} with i ≤ ix

and ix + 1 ≤ j. If i = ix, notice that, by construction, x is central∗ in {ix, x, ix + 1}
but as proven above, x is not central∗ in {x, ix + 1, j}. Hence, Step 2 guarantees that

x is central∗ in {i, x, j}, as desired. A symmetric argument shows that x is central∗

in {i, x, j} whenever j = ix + 1. Finally, whenever i < ix and ix+1 < j, we have just

proven that x is central∗ in {ix, x, j} but not in {i, ix, x}, and hence Step 2 guarantees

that x must be central∗ in {i, x, j}, as desired. �

The proof of Theorem 3 explicitly constructs the underlying order ≺ from the re-

vealed choices involving two and three alternatives. It uses an inductive argument by

which, at every step, a new alternative x is incorporated into the order constructed in

the previous step 1 ≺l 2 ≺l · · · ≺l l. If x is central∗ for two consecutive alternatives

in ≺l, then it is incorporated between these alternatives to form ≺l+1. If this is not

the case, whenever alternative 1 is central in {x, 1, 2}, x is incorporated into the first

position of the order; otherwise, x is placed at the end of the order. The rest of the

proof shows that the constructed order has the property that for every ordered set of

three alternatives, the central alternative is central∗. Moreover, we argue in the proof

that the constructed order is unique up to symmetry. Then, we appeal to Theorem

1, which guarantees the existence of a pair ({Ut}Tt=1, µ,≺) that is basically unique and

that rationalizes p in the sense of SCRUMs.

It is immediate that the endogenous version of the model retains the properties of a

SCRUM, which we have discussed throughout the paper. In particular, SCRUM∗ sto-

chastic choice functions satisfy moderate stochastic transitivity, and moreover, once the

underlying order over the alternatives is identified, our result on stochastic monotone

comparative statics also readily applies here.

5.2. Dominated Alternatives. On occasion, there are alternatives in the analysis

such that, under any circumstances, one is always considered superior to the other.

Returning to our Example 1 above, this is the case, e.g., when x and y represent a
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pair of gambles, or streams of payoffs, or allocations, or bundles, and x first-order

stochastically dominates y. In all these cases, every utility in {Ut}Tt=1 regards x as

superior to y. In a random utility model, this implies that, as y is never maximal in

the presence of x, the probability of choosing y in this case would be zero. Note that this

is in conflict with POS, which requires that the probability of choosing any alternative

from any menu is always above zero. In this section, we extend the main model in this

paper, the SCRUM, to allow for the incorporation of dominated alternatives into the

analysis. We do so by extending the POS property to allow for zero choice probabilities

in the presence of dominations.

We model domination by way of a binary relation → over the set of alternatives,

where x → y represents the case when x dominates y, and assume → to be a partial

order. That is, not all alternatives must be related by domination, and we require that

if x → y and y → z, it must also be the case that x → z. Consequently, the given

order over the alternatives ≺ is now also assumed to be partial. Further, we assume

that the union of all the binary comparisons of→ and ≺ exhausts all the possible ones

and denote by ≺′ the linear order resulting from the union of → and ≺. That is, for

every two distinct alternatives x, y ∈ X, it is either x ≺′ y or y ≺′ x, and x ≺′ y means

either that x precedes y, x ≺ y, or x dominates y, x → y. We now modify POS to

allow for the treatment of dominated alternatives.

Positivity’ (POS’). If x ∈ A and there is no y ∈ A such that y → x, p(x,A) > 0.

Otherwise, p(x,A) = 0.

POS’ coincides with POS in the absence of dominated alternatives and requires that

when there is an alternative x that is dominated by some other alternative y in A, the

choice probability of x in A is zero. This is the only change we need to introduce in

the identification of this variation of SCRUM.11 Denote by SCRUM’ the SCRUM-type

model where alternatives are maximal for some utility function if and only if they are

not dominated by any other alternative.

Theorem 4. A stochastic choice function p satisfies POS’, MON and CEN if and only

if it is a SCRUM’ stochastic choice function.

11Notice that CEN is now weaker, as it only applies to triplets of alternatives where domination is

not present.
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Proof of Theorem 4: The necessity of the axioms is straightforward. We prove the

sufficiency of the axioms through a series of steps. To ease the exposition, we denote

the alternatives in X by 1 ≺′ 2 ≺′ · · · ≺′ |X|.
Step 1. We prove that for every triplet such that i ≺ j → k and i ≺ k, it is

p(i, {i, j}) ≤ p(i, {i, k}), and for every triplet such that i → j ≺ k and i ≺ k, it is

p(j, {j, k}) ≤ p(i, {i, k}). To see the first case, notice that MON implies p(i, {i, j}) =

1−p(j, {i, j}) ≤ 1−p(j, {i, j, k}) = p(i, {i, j, k})+p(k, {i, j, k}). POS’ guarantees that

p(k, {i, j, k}) = 0, and hence by MON, it is p(i, {i, j}) ≤ p(i, {i, j, k}) ≤ p(i, {i, k}).
To see the second case, notice that MON implies p(j, {j, k}) = 1 − p(k, {j, k}) ≤
1−p(k, {i, j, k}) = p(i, {i, j, k})+p(j, {i, j, k}). POS’ guarantees that p(j, {i, j, k}) = 0,

and hence by MON, it is p(j, {j, k}) ≤ p(i, {i, j, k}) ≤ p(i, {i, k}).
Step 2. We claim that the collection of utility functions {Ut}Tt=1 constructed in the

proof of Theorem 1 satisfies the single-crossing condition with respect to ≺′. We first

consider pairs of alternatives {i, j} such that i → j and show that for every t, it is

Ut(i) > Ut(j). Then, we consider the case in which i ≺ j and divide the analysis in

t ≤ t(i, j) and t > t(i, j), where t(i, j) is defined as in the proof of Theorem 1.

Step 2a. Let i→ j. Consider any alternative k such that k ≺′ i. If p(k, {k, j}) < λt,

then it must be k ≺ j and it must also be k ≺ i, as otherwise the transitivity of →
would imply k → j, a contradiction. Hence, the first relationship in Step 1 guarantees

that p(k, {k, i}) ≤ p(k, {k, j}) < λt and, consequently, |{k : k ≺′ i, p(k, {k, i}) < λt}| ≥
|{k : k ≺′ i, p(k, {k, j}) < λt}|. Consider now any alternative k such that j ≺′ k. If

p(i, {i, k}) < λt, it must be i ≺ k. It must also be j ≺ k, as otherwise the transitivity of

→ would imply i→ k, a contradiction. The second relationship in Step 1 implies that

p(j, {j, k}) ≤ p(i, {i, k}) < λt and, therefore, −|{k : j ≺′ k, p(i, {i, k}) < λt}| ≥ −|{k :

j ≺′ k, p(j, {j, k}) < λt}|. Finally, consider any alternative k such that i ≺′ k ≺′ j. If

p(i, {i, k}) < λt, it must be i ≺ k. It cannot be k ≺ j, as otherwise the transitivity

of ≺ would imply i ≺ j, a contradiction. Then, it must be k → j or equivalently

p(k, {k, j}) = 1 ≥ λt. Hence, it must be −i − |{k : i ≺′ k ≺′ j, p(i, {i, k}) < λt}| >
−j + |{k : i ≺′ k ≺′ j, p(j, {j, k}) < λt}|. We can use these three inequalities together

with the fact that p(i, {i, j}) = 1 ≥ λt, as in Step 3a of the proof of Theorem 1, to

show that Ut(i) > Ut(j).

Step 2b. Let i ≺ j and t ≤ t(i, j). Consider any alternative k such that k ≺′ i.
If p(k, {k, j}) < λt, then it must be k ≺ j. Notice that k → i would imply, by

the second relationship in Step 1, that p(i, {i, j}) ≤ p(k, {k, j}) < λt, which is a
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contradiction with t ≤ t(i, j). Hence, it must be k ≺ i ≺ j and, as in Step 1 of

the proof Theorem 1, p(k, {k, i}) ≤ p(k, {k, j}) < λt. This implies again |{k : k ≺′

i, p(k, {k, i}) < λt}| ≥ |{k : k ≺′ i, p(k, {k, j}) < λt}|. Consider now any alternative

k such that j ≺′ k. Notice that it must be p(i, {i, k}) ≥ λt. Otherwise, it would be

i ≺ k and both j ≺ k and j → k would imply, by using respectively the argument

in Step 1 of the proof of Theorem 1 and the first relationship in Step 1 in this proof,

p(i, {i, j}) ≤ p(i, {i, k}) < λt, a contradiction. Hence, −|{k : j ≺′ k, p(i, {i, k}) <
λt}| = 0 ≥ −|{k : j ≺′ k, p(j, {j, k}) < λt}|. Finally, consider any alternative k such

that i ≺′ k ≺′ j. If p(i, {i, k}) < λt, it must be i ≺ k. Whenever k ≺ j, we can

use the argument in Step 1 of the proof of Theorem 1 to show that p(k, {k, j}) ≥
p(i, {i, j}) ≥ λt. If k → j, POS’ implies that p(k, {k, j}) = 1 ≥ λt. Therefore, it must

be −i − |{k : i ≺′ k ≺′ j, p(i, {i, k}) < λt}| ≥ −j + |{i ≺′ k ≺′ j, p(k, {k, j}) < λt}|.
The result follows in the same manner as above.

Step 2c. Let i ≺ j and t > t(i, j). Consider any alternative k such that k ≺′ i.
If p(k, {k, i}) < λt, we have k ≺ i, and the transitivity of ≺ guarantees that k ≺ j.

Step 1 in the proof of Theorem 1 guarantees that p(k, {k, j}) ≤ p(i, {i, j}) < λt.

Hence, |{k : k ≺′ i, p(k, {k, j}) < λt}| ≥ |{k : k ≺′ i, p(k, {k, i}) < λt}|. Consider

any alternative k such that j ≺′ k. If p(j, {j, k}) < λt, then it is i ≺ j ≺ k, and

hence, again, p(i, {i, k}) ≤ p(j, {j, k}) < λt. That is, −|{k : j ≺′ k, p(j, {j, k}) <
λt}| ≥ −|{k : j ≺′ k, p(i, {i, k}) < λt}|. Finally, consider any alternative k such that

i ≺′ k ≺′ j. Suppose that p(i, {i, k}) ≥ λt. We claim that i ≺ k is not possible

because then, by using Step 1 in Theorem 1 and the first relationship in Step 1 in

this proof, p(i, {i, k}) ≤ p(i, {i, j}) < λt, a contradiction with t > t(i, j). Hence, it is

i→ k, and the transitivity of → guarantees that we are under the second relationship

in Step 1. Thus, p(k, {k, j}) ≤ p(i, {i, j}) < λt, which implies that −j + |{k : i ≺′ k ≺′

j, p(k, {k, j}) < λt}| + 1 > −i − |{k : i ≺ k ≺ j, p(i, {i, k}) < λt}| − 1, and the result

follows as in the previous steps.

Step 3. Given a set A, let BA be the set of undominated alternatives in A, i.e.,

BA = {x ∈ A : there does not exist y ∈ A such that y → x}. We claim that for

every x ∈ BA, it is p(x,A) = p(x,BA). For any alternative x 6∈ BA, POS’ guarantees

that p(x,A) = 0, and hence 1 =
∑

x∈BA p(x,A). By MON, 1 =
∑

x∈BA p(x,A) ≤∑
x∈BA p(x,BA) = 1, and the claim follows.

Step 4. We conclude the proof by showing that for every A and every x, it is

p(x,A) =
∑

t:x=mt(A) µ(t). This is trivial whenever x 6∈ A and for any alternative
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x ∈ A \ BA, as in both cases p(x,A) = 0 and x is not maximal for any utility, as

desired. Consider then any alternative x ∈ BA. By applying Steps 4 and 5 of the

proof of Theorem 1 over set BA, we know that p(x,BA) =
∑

t:x=mt(BA) µ(t). Clearly,

mt(BA) = mt(A), and the result follows. �

The main part of the proof consists in showing that the constructed utilities in

the proof of Theorem 1 also work here for the case of ≺′, which allows for dominated

alternatives. We do so by studying all the possible binary relations in a triplet. Finally,

SCRUM’, again, also has the desirable properties of SCRUM, regarding stochastic

transitivity and stochastic monotone comparative statics.

6. Final Remarks

In this paper we have proposed and studied a new stochastic choice model that

can be used in a wide variety of settings, namely, those in which the single-crossing

property applies, and we have shown that is easily testable in practice. We close this

paper by commenting on some limitations of the SCRUM and offering suggestions on

how to overcome them.

Our model belongs to the tradition of the classical rational stochastic choice models

of Luce (1959), Block and Marshak (1960), McFadden and Richter (1990), and more

recently, of Gul and Pesendorfer (2006) or Fudenberg, IIjima and Strzalecki (2015).

It is important to stress that there is a growing literature that rigorously introduces

behavioral aspects into stochastic choice (see, e.g., Manzini and Mariotti, 2014; Caplin

and Dean, 2015). Although some of these behavioral phenomena are not compatible

with our rational methodological approach, our model can be used to quantify their

prevalence in the data and, furthermore, could be easily extended to accommodate

them. We illustrate these points with the cases of violations of stochastic dominance

and the attraction and compromise effects.

Consider a violation of stochastic dominance. That is, let x and y be two lotteries

such that x stochastically dominates y, and, in stark contrast with the POS’ property

of Section 5.2, p(y, {x, y}) > 0.12 First, the extent of the violation of the POS’ property

provides a natural quantification of the behavioral inconsistency. Second, and more

interesting, our model can be easily extended to incorporate this inconsistency. Ar-

guably, violations of stochastic dominance can be understood as mistakes on the part

of the decision-maker. Then, in the spirit of the trembling hand approach in game

12The logic below applies trivially to larger sets of alternatives and to settings other than risk.
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theory, we can regard our decision-maker as behaving according to the SCRUM with

a large probability and with a small probability experiencing a tremble where, in this

case, the dominated alternative is chosen.

Let us now consider the compromise and attraction effects. In the standard repre-

sentation of the compromise effect, there are three ordered alternatives x ≺ y ≺ z such

that in the set {x, y, z} the middle alternative y is seen as a compromise between the

two others, and then p(y, {x, y}) < p(y, {x, y, z}), violating MON. In the attraction

effect, x ≺ y → z and x ≺ z. Here, the presence of z is perceived as giving strength

to the alternative that dominates it, y, and hence, again, p(y, {x, y}) < p(y, {x, y, z})
representing a violation of MON. In both cases, the inclusion of a new alternative in

the menu, i.e. z, makes the decision-maker change her views of the choice situation.

Again, MON can be used to quantify the relevance of the effects. More interesting, a

natural way of introducing these considerations in our setting is by contemplating a

menu-dependent SCRUM, where the probability function µ on the collection of utility

functions {U}Tt=1 depends on the menu of alternatives. In particular, one can enter-

tain the possibility that introducing an alternative that is to the right in ≺ causes the

decision-maker to shift her attention to the right of {U}Tt=1, which would rationalize

the two menu effects.

The two extensions of SCRUMs commented on above would smoothly accommodate

the behavioral phenomena of interest, while retaining the spirit of the stochastic choice

model.
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