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Abstract

This paper develops a model of optimal government debt maturity in which the gov-
ernment cannot issue state-contingent bonds and cannot commit to fiscal policy. If the
government can perfectly commit, it fully insulates the economy against government spend-
ing shocks by purchasing short-term assets and issuing long-term debt. These positions are
quantitatively very large relative to GDP and do not need to be actively managed by the
government. Our main result is that these conclusions are not robust to the introduction of
lack of commitment. Under lack of commitment, large and tilted debt positions are very ex-
pensive to finance ex-ante since they exacerbate the problem of lack of commitment ex-post.
In contrast, a flat maturity structure minimizes the cost of lack of commitment, though it
also limits insurance and increases the volatility of fiscal policy distortions. We show that the
optimal time-consistent maturity structure is nearly flat because reducing average borrow-
ing costs is quantitatively more important for welfare than reducing fiscal policy volatility.
Thus, under lack of commitment, the government actively manages its debt positions and
can approximate optimal policy by confining its debt instruments to consols. JEL Codes:
E62, H21, H63.

I. Introduction

How should government debt maturity be structured? Two seminal papers by Angeletos (2002)

and Buera and Nicolini (2004) argue that the maturity of government debt can be optimally

structured so as to completely hedge the economy against fiscal shocks. This research concludes

that optimal debt maturity is tilted long, with the government purchasing short-term assets and
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selling long-term debt. These debt positions allow the market value of outstanding government

liabilities to decline when spending needs and short-term interest rates increase. Moreover,

quantitative exercises imply that optimal government debt positions, both short and long, are

large (in absolute value) relative to GDP. Finally, these positions are constant and do not need

to be actively managed since the combination of constant positions and fluctuating bond prices

delivers full insurance.

In this paper, we show that these conclusions are sensitive to the assumption that the

government can fully commit to fiscal policy. In practice, a government chooses taxes, spending,

and debt sequentially, taking into account its outstanding debt portfolio, as well as the behavior

of future governments. Thus, a government can always pursue a fiscal policy which reduces

(increases) the market value of its outstanding (newly-issued) liabilities ex-post, even though it

would not have preferred such a policy ex-ante. Moreover, the government’s future behavior is

anticipated by households lending to the government, which affects its ex-ante borrowing costs.

We show that once the lack of commitment by the government is taken into account, it becomes

costly for the government to use the maturity structure of debt to completely hedge the economy

against shocks; there is a tradeoff between the cost of funding and the benefit of hedging.1 Our

main result is that, under lack of commitment, the optimal maturity structure of government

debt is quantitatively nearly flat, so that the government owes the same amount to households

at all future dates. Moreover, debt is actively managed by the government.

We present these findings in the dynamic fiscal policy model of Lucas and Stokey (1983).

This is an economy with public spending shocks and no capital in which the government chooses

linear taxes on labor and issues public debt to finance government spending. Our model features

two important frictions. First, as in Angeletos (2002) and Buera and Nicolini (2004), we assume

that state-contingent bonds are unavailable, and that the government can only issue real non-

contingent bonds of all maturities. Second, and in contrast to Angeletos (2002) and Buera and

Nicolini (2004), we assume that the government lacks commitment to policy.

The combination of these two frictions leads to an inefficiency. The work of Angeletos

1Our framework is consistent with an environment in which the legislature sequentially chooses a primary
deficit and the debt management office sequentially minimizes the cost of financing subject to future risks, which
is what is done in practice (see the IMF report [2001]).
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(2002) and Buera and Nicolini (2004) shows that, even in the absence of contingent bonds, an

optimally structured portfolio of non-contingent bonds can perfectly insulate the government

from all shocks to the economy. Moreover, the work of Lucas and Stokey (1983) shows that, even

if the government cannot commit to a path of fiscal policy, an optimally structured portfolio

of contingent bonds can perfectly induce a government without commitment to pursue the ex-

ante optimally chosen policy ex-post.2 Even though each friction by itself does not lead to an

inefficiency, the combination of the two frictions leads to a non-trivial tradeoff between market

completeness and commitment in the government’s choice of maturity.

To get an intuition for this tradeoff, consider the optimal policy under commitment. This

policy uses debt to smooth fiscal policy distortions in the presence of shocks. If fully contingent

claims were available, there would be many maturity structures which would support the optimal

policy. However, if the government only has access to non-contingent claims, then there is a

unique maturity structure which replicates full insurance. As has been shown in Angeletos

(2002) and Buera and Nicolini (2004), such a maturity structure is tilted in a manner which

guarantees that the market value of outstanding government liabilities declines when the net

present value of future government spending rises. If this occurs when short-term interest rates

rise—as is the case in quantitative examples with Markovian fiscal shocks—then the optimal

maturity structure requires that the government purchases short-term assets and sells long-

term debt. Because interest rate movements are quantitatively small, the tilted debt positions

required for hedging are large.

Under lack of commitment, such large and tilted positions are very costly to finance ex-

ante if the government cannot commit to policy ex-post. The larger and more tilted the debt

position, the greater a future government’s benefit from pursuing policies ex-post which change

bond prices to relax the government’s budget constraint. To relax its budget constraint, the

government can either reduce the market value of its outstanding long-term liabilities by choosing

policies which increase short-term interest rates, or it can increase the market value of its newly

issued short-term liabilities by choosing policies which reduce short-term interest rates. If the

government’s debt liabilities are mostly long-term, then the government will follow the former

2This result requires the government to lack commitment to taxes or to spending but not to both. See Rogers
(1989) for more discussion.
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strategy ex-post. If its liabilities are mostly short-term, then the government will pursue the

latter strategy ex-post. Households purchasing government bonds ex-ante internalize the fact

that the government will pursue such policies ex-post, and they therefore require higher interest

rates to lend to the government the more tilted is the government’s debt maturity.

For this reason, the flatter the debt maturity—meaning the smaller the difference between

short-term and long-term debt—the lower the cost of funding for the government. Such a flat

maturity maximizes the government’s commitment to future fiscal policies by minimizing the

benefit of any future deviations. However, a flatter debt maturity comes at the cost of lower

insurance for the government; the flatter the debt maturity, the smaller the fluctuation in the

market value of outstanding government liabilities, and the more exposed is the government to

fiscal shocks.

To assess optimal policy in light of this tradeoff, we analyze the Markov Perfect Competitive

Equilibrium of our model in which the government dynamically chooses its policies at every date

as a function of payoff relevant variables: the fiscal shock and its outstanding debt position at

various maturities. Because a complete analysis of such an equilibrium in an infinite horizon

economy with an infinite choice of debt maturities is infeasible, we present our main result in

three exercises.

In our first exercise, we show that optimal debt maturity is exactly flat in a three-period

example as the volatility of future shocks goes to zero or as the persistence of future shocks

goes to one. In both of these cases, a government under commitment financing a deficit in the

initial date chooses a negative short-term debt position and a positive long-term debt position

which are large in magnitude. However, a government under lack of commitment chooses an

exactly flat debt maturity with a positive short-term and long-term debt position which equal

each other.

In our second exercise, we show that the insights of the three-period example hold approx-

imately in a quantitative finite horizon economy under fiscal shocks with empirically plausible

volatility and persistence. We consider a finite horizon economy since this allows the govern-

ment’s debt maturity choices to also be finite. We find that, despite having the ability to choose

from a flexible set of debt maturity structures, the optimal debt maturity is nearly flat, and
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the main component of the government’s debt can be represented by a consol with a fixed

non-decaying payment at all future dates.

In our final exercise, we consider an infinite horizon economy, and we show that optimal policy

under lack of commitment can be quantitatively approximated with active consol management,

so that the optimal debt maturity is again nearly flat. An infinite horizon analysis allows

us to more suitably capture quantitative features of optimal policy and to characterize policy

dynamics, but it also comes at a cost of not being able to consider the entire range of feasible

debt maturity policies by the government. We consider a setting in which the government has

access to two debt instruments: a non-decaying consol and a decaying perpetuity. Under full

commitment, the government holds a highly tilted debt maturity, where each position is large

in absolute value and constant. In contrast, under lack of commitment, the government holds a

negligible and approximately constant position in the decaying perpetuity, and it holds a positive

position in the consol which it actively manages in response to fiscal shocks. We additionally

show that our conclusion that optimal debt maturity is approximately flat is robust to the choice

of volatility and persistence of fiscal shocks, to the choice of household preferences, and to the

introduction of productivity and discount factor shocks.

Our results show that structuring government debt maturity to resolve the problem of lack

of commitment is more important than structuring it to resolve the problem of lack of insurance.

It is clear that a flat debt maturity comes at a cost of less hedging. However, substantial hedging

requires massive and tilted debt positions. When the government lacks commitment, financing

these large positions can be very expensive in terms of average fiscal policy distortions. Moreover,

under empirically plausible levels of volatility of public spending, the cost of lack of insurance

under a flat maturity structure is small. Therefore, the optimal policy pushes in the direction

of reducing average fiscal policy distortions versus reducing the volatility of distortions, and the

result is a nearly flat maturity structure.3

Our analysis implies that government debt management in practice is much closer to the

theoretically optimal policy under lack of commitment versus that under full commitment. In

the U.S., for example, government bond payments across the maturity spectrum are all positive,

3The conclusion that the welfare benefit of smoothing economic shocks is small relative to that of raising
economic levels is more generally tied to the insight in Lucas (1987).
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small relative to GDP, actively managed, and with significant co-movement across maturities.

All these features are consistent with optimal policy under lack of commitment. Nevertheless,

while the optimal policy under lack of commitment prescribes the issuance of consols, the highest

bond maturity for the U.S. government is 30 years. Determining whether a maturity extension

would move the U.S. government closer to an optimal policy is a complicated question. The

answer depends in part on how to measure the maturity structure of the government’s overall

liabilities, which can additionally include partial commitments to future transfers such as Social

Security and Medicare. Such an analysis goes beyond the scope of this paper and is an interesting

avenue for future research.

I.A. Related Literature

This paper is connected to several literatures. As discussed, we build on the work of Angeletos

(2002) and Buera and Nicolini (2004) by introducing lack of commitment.4 Our model is most

applicable to economies in which the risks of default and surprise in inflation are not salient, but

the government is still not committed to a path of deficits and debt maturity issuance. Arellano

et al. (2013) study a similar setting to ours but with nominal frictions and lack of commitment

to monetary policy.5 In contrast to Aguiar and Amador (2014), Arellano and Ramanarayanan

(2012), and Fernandez and Martin (2015)—who consider small-open economy models with the

possibility of default—we focus on lack of commitment to taxation and debt issuance, which

affects the path of risk-free interest rates. This difference implies that, in contrast to their

work, short-term debt does not dominate long-term debt in minimizing the government’s lack

of commitment problem. In our setting, even if the government were to only issue short-term

debt, the government ex-post would deviate from the ex-ante optimal policy by pursuing policies

4Additional work explores government debt maturity maintaining the assumption of full commitment, in
environments with less debt instruments than states (Shin [2007]), in models with habits, productivity shocks
and capital (Faraglia et al. [2010]), in the presence of nominal rigidities (Lustig et al. [2008]), or in a preferred
habitat model (Guibaud et al. [2013]).

5In addition, Alvarez et al. (2004) and Persson et al. (2006) consider problems of lack of commitment in an
environment with real and nominal bonds of varying maturity where the possibility of surprise inflation arises.
Alvarez et al. (2004) find that to minimize incentives for surprise inflation, the government should only issue real
bonds. Barro (2003) comes to a similar conclusion.
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which reduce short-term interest rates below the ex-ante optimal level.6,7

More broadly, our paper is also tied to the literature on optimal fiscal policy which explores

the role of incomplete markets. A number of papers have studied optimal policy under full com-

mitment when the government issues one-period non-contingent bonds, such as Barro (1979)

and Aiyagari et al. (2002).8 Bhandari et al. (2015) generalize the results of this work by char-

acterizing optimal fiscal policy under commitment whenever the government has access to any

limited set of debt securities. As in this work, we find that optimal taxes respond persistently to

economic shocks, though in contrast to this work, this persistence is due to the lack of commit-

ment by the government as opposed to the incompleteness of financial markets due to limited

debt instruments.

Other work has studied optimal policy in settings with lack of commitment, but with full

insurance (e.g., Krusell et al. [2006] and Debortoli and Nunes [2013]). We depart from this work

by introducing long-term debt, which in a setting with full insurance can imply that the lack of

commitment friction no longer introduces any inefficiencies.

Our paper proceeds as follows. In Section II, we describe the model and define the equilib-

rium. In Section III, we show that the optimal debt maturity is exactly flat in a three-period

example. In Section IV, we show that the optimal debt maturity is nearly flat in a finite horizon

economy with unlimited debt instruments and in an infinite horizon economy with limited debt

instruments. Section V concludes. The Appendix and the Online Appendix provide all of the

proofs and additional results not included in the text.

6In a small open economy with default, the risk-free rate is exogenous and the government’s ex-post incentives
are always to issue more debt, increasing short-term interest rates (which include the default premium) above the
ex-ante optimal level. For this reason, short-term debt issuance ex-ante can align the incentives of the government
ex-ante with those of the government ex-post.

7Niepelt (2014), Chari and Kehoe (1993a,b), and Sleet and Yeltekin (2006) also consider the lack of commitment
under full insurance, though they focus on settings which allow for default.

8See also Farhi (2010).
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II. Model

II.A. Environment

We consider an economy identical to that of Lucas and Stokey (1983) with two modifications.

First, we rule out state-contingent bonds. Second, we assume that the government cannot

commit to fiscal policy. There are discrete time periods t = {1, ...,∞} and a stochastic state

st ∈ S which follows a first-order Markov process. s0 is given. Let st = {s0, ..., st} ∈ St represent

a history, and let π
(
st+k|st

)
represent the probability of st+k conditional on st for t+ k ≥ t.

The resource constraint of the economy is

(1) ct + gt = nt,

where ct is consumption, nt is labor, and gt is government spending.

There is a continuum of mass 1 of identical households that derive the following utility:

(2) E
∞∑
t=0

βt [u (ct, nt) + θt (st) v (gt)] , β ∈ (0, 1) .

u (·) is strictly increasing in consumption and strictly decreasing in labor, globally concave, and

continuously differentiable. v (·) is strictly increasing, concave, and continuously differentiable.

Under this representation, θt (st) is high (low) when public spending is more (less) valuable.

In contrast to the model of Lucas and Stokey (1983), we have allowed gt in this framework

to be chosen by the government, as opposed to being exogenously determined. We allow for

this possibility to also consider that the government may not be able to commit to the ex-ante

optimal level of public spending. In our analysis, we also consider the Lucas and Stokey (1983)

environment in which there is no discretion over government spending, and we show that all of

our results hold.

Household wages equal the marginal product of labor (which is 1 unit of consumption),

and are taxed at a linear tax rate τt. bt+kt R 0 represents government debt purchased by a

representative household at t, which is a promise to repay 1 unit of consumption at t + k > t,
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and qt+kt is its price at t. At every t, the household’s allocation
{
ct, nt,

{
bt+kt

}∞
k=1

}
must satisfy

the household’s dynamic budget constraint

(3) ct +
∞∑
k=1

qt+kt

(
bt+kt − bt+kt−1

)
= (1− τt)nt + btt−1.

Bt+k
t R 0 represents debt issued by the government at t with a promise to repay 1 unit of

consumption at t+ k > t. At every t, government policies
{
τt, gt,

{
Bt+k
t

}∞
k=1

}
must satisfy the

government’s dynamic budget constraint

(4) gt +Bt
t−1 = τtnt +

∞∑
k=1

qt+kt

(
Bt+k
t −Bt+k

t−1

)
.9

The economy is closed which means that the bonds issued by the government equal the

bonds purchased by households:

(5) bt+kt = Bt+k
t ∀t, k.

Initial debt
{
Bk−1
−1

}∞
k=1

is exogenous.10 We assume that there exist debt limits to prevent

Ponzi schemes:

(6) Bt+k
t ∈

[
B,B

]
.

We let B be sufficiently low and B be sufficiently high so that (6) does not bind in our theoretical

and quantitative exercises.

A key friction in this environment is the absence of state-contingent debt, since the value

of outstanding debt Bt+k
t is independent of the realization of the state st+k. If state-contingent

9We follow the same exposition as in Angeletos (2002) in which the government restructures its debt in every
period by buying back all outstanding debt and then issuing fresh debt at all maturities. This is without loss of
generality. For example, if the government at t− k issues debt due at date t of size Bt

t−k which it then holds to
maturity, then all future governments at date t − k + l for l = 1, ..., k − 1 will choose Bt

t−k+l = Bt
t−k, implying

that Bt
t−k = Bt

t−1.
10Our model implicitly allows the government to buy back the long-term bonds from the private sector. While

ruling out bond buybacks is interesting, 85 percent of countries conduct some form of bond buyback and 32
percent of countries conduct them on a regular basis (see the OECD report by Blommestein et al. [2012]). Note
furthermore, that even if bond buyback is not allowed in our environment, a government can replicate the buyback
of a long-term bond by purchasing an asset with a payout on the same date (see Angeletos [2002]). See Faraglia
et al. (2014) for a discussion of optimal policy under commitment in the absence of buybacks.
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bonds were available, then at any date t, the government would own a portfolio of bonds{{
Bt+k
t−1 |st+k

}
st+k∈St+k

}∞
k=0

, where the value of each bond payout at date t + k would depend

on the realization of a history of shocks st+k ∈ St+k. In our discussion, we will refer back to

this complete market case.

The government is benevolent and shares the same preferences as the households in (2). We

assume that the government cannot commit to policy and therefore chooses taxes, spending,

and debt sequentially.

II.B. Definition of Equilibrium

We consider a Markov Perfect Competitive Equilibrium (MPCE) in which the government must

optimally choose its preferred policy—which consists of taxes, spending, and debt—at every

date as a function of current payoff-relevant variables: the current shock and current debt

outstanding. The government takes into account that its choice affects future debt and thus

affects the policies of future governments. Households rationally anticipate these future policies,

and their expectations are in turn reflected in current bond prices. Thus, in choosing policy

today, a government anticipates that it may affect current bond prices by impacting expectations

about future policy. We provide a formal definition of the equilibrium in the Appendix.

While we assume for generality that the government can freely choose taxes, spending, and

debt in every period, we also consider cases throughout the draft in which the government does

not have discretion in either setting spending or in setting taxes. These special cases highlight

how the right choice of government debt maturity can induce future governments to choose the

commitment policy.

II.C. Primal Approach

Any MPCE must be a competitive equilibrium. We follow Lucas and Stokey (1983) by taking

the primal approach to the characterization of competitive equilibria since this allows us to

abstract away from bond prices and taxes. Let

(7)
{{
ct
(
st
)
, nt
(
st
)
, gt
(
st
)}

st∈St

}∞
t=0
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represent a stochastic sequence, where the resource constraint (1) implies

(8) ct
(
st
)

+ gt
(
st
)

= nt
(
st
)

.

We can establish necessary and sufficient conditions for (7) to constitute a competitive equilib-

rium. The household’s optimization problem implies the following intratemporal and intertem-

poral conditions, respectively:

(9) 1− τt
(
st
)

= −
un,t

(
st
)

uc,t (st)
and qt+kt

(
st
)

=

∑
st+k∈St+k

βkπ
(
st+k|st

)
uc,t+k

(
st+k

)
uc,t (st)

.

Substitution of these conditions into the household’s dynamic budget constraint implies the

following condition:

uc,t
(
st
)
ct
(
st
)

+ un,t
(
st
)
nt
(
st
)

+
∞∑
k=1

∑
st+k∈St+k

βkπ
(
st+k|st

)
uc,t+k

(
st+k

)
Bt+k
t

(
st
)

=(10)

∞∑
k=0

∑
st+k∈St+k

βkπ
(
st+k|st

)
uc,t+k

(
st+k

)
Bt+k
t−1
(
st−1

)
.

Forward substitution into the above equation and taking into account the absence of Ponzi

schemes implies the following implementability condition:

∞∑
k=0

∑
st+k∈St+k

βkπ
(
st+k|st

) [
uc,t+k

(
st+k

)
ct+k

(
st+k

)
+ un,t+k

(
st+k

)
nt+k

(
st+k

)]
=(11)

∞∑
k=0

∑
st+k∈St+k

βkπ
(
st+k|st

)
uc,t+k

(
st+k

)
Bt+k
t−1
(
st−1

)
.

By this reasoning, if a stochastic sequence in (7) is generated by a competitive equilibrium, then

it necessarily satisfies (8) and (11). We prove in the Online Appendix A that the converse is

also true, which leads to the below proposition that is useful for the rest of our analysis.

Proposition 1. (competitive equilibrium) A stochastic sequence (7) is a competitive

equilibrium if and only if it satisfies (8) ∀st and ∃
{{{

Bt+k
t−1
(
st−1

)}∞
k=0

}
st−1∈St−1

}∞
t=0

which satisfy (11) ∀st.
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A useful corollary to this proposition concerns the relevant implementability condition in the

presence of state-contingent bonds, Bt+k
t |st+k, which provide payment at t + k conditional on

the realization of a history st+k.

Corollary 1. In the presence of state-contingent debt, a stochastic sequence (7) is a

competitive equilibrium if and only if it satisfies (8) ∀st and (11) for st = s0 given

initial liabilities.

If state-contingent debt is available, then the satisfaction of (11) at s0 guarantees the satis-

faction of (11) for all other histories st, since state-contingent payments can be freely chosen so

as to satisfy (11) at all future histories st.

In the Appendix, we show how the primal approach can be used to represent the MPCE

recursively.

III. Three-Period Example

We turn to a simple three-period example to provide intuition for our quantitative results.

This example allows us to explicitly characterize government policy both with and without

commitment, making it possible to highlight how dramatically different optimal debt maturity

is under the two scenarios.

Let t = 0, 1, 2 and define θL and θH with θH = 1 + δ and θL = 1− δ for δ ∈ [0, 1). Suppose

that θ0 > θH , θ1 = θH with probability 1/2 and θ1 = θL with probability 1/2. In addition,

let θ2 = αθH + (1− α) θL if θ1 = θH and θ2 = αθL + (1− α) θH if θ1 = θL for α ∈ [0.5, 1).

Therefore, all of uncertainty is realized at date 1, with δ capturing the volatility of the shock

and α capturing the persistence of the shock between dates 1 and 2.

Suppose that taxes and labor are exogenously fixed to some τ and n, respectively, so that

the government collects a constant revenue in all dates. Assume that the government’s welfare

can be represented by

(12) E
∑

t=0,1,2

βt [(1− ψ) log ct + ψθtgt]

for ψ ∈ [0, 1]. We consider the limiting case in which ψ → 1 and we let β = 1 for simplicity.
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There is zero initial debt and all debt is repaid in the final period. Thus, the implementability

conditions at date 0 and date 1 are given, respectively, by

c0 − n (1− τ)

c0
+ E

(
c1 − n (1− τ)

c1
+
c2 − n (1− τ)

c2

)
≥ 0,(13)

c1 − n (1− τ)

c1
+
c2 − n (1− τ)

c2
≥ B1

0

c1
+
B2

0

c2
.(14)

In this environment, the government does not have any discretion over tax policy, and any ex-

post deviation by the government is driven by a desire to increase spending since the marginal

benefit of additional spending always exceeds the marginal benefit of consumption.

III.A. Full Commitment

This section shows analytically that a government with commitment chooses highly tilted and

large debt positions to fully insulate the economy from shocks. Angeletos (2002) proves that any

allocation under state-contingent debt can be approximately implemented with non-contingent

debt. This implies that there is no inefficiency stemming from the absence of contingent debt.

Our example explicitly characterizes these allocations to provide a theoretical comparison with

those under lack of commitment.

Let us consider an economy under complete markets. From Corollary 1, the only relevant

constraints on the planner are the resource constraints and the date 0 implementability constraint

(13), which holds with equality. The maximization of social welfare under these constraints leads

to the following optimality condition

(15) ct =
1

θ
1/2
t

n (1− τ)

3
E

 ∑
k=0,1,2

θ
1/2
k

 ∀t.
Equation (15) implies that in the presence of full insurance, spending is independent of history

and depends only on the state θt, which takes on two possible realizations at t = 1, 2.

This allocation can be sustained even if state-contingent bonds are not available. From

Proposition 1, it suffices to show that the additional constraint (14) is also satisfied. This is

possible by choosing appropriate values of B1
0 and B2

0 which simultaneously satisfy (14) (which
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holds with equality) and (15). It can also be shown that

B1
0 < 0 and B2

0 > 0.

Intuitively, the net present value of the government’s primary surpluses at t = 1 is lower if

the high shock is realized under the solution in (15). To achieve this full insurance solution with

non-contingent debt, the government must choose the maturity structure so that the market

value of the government’s outstanding bond portfolio at t = 1 is lower if the high shock is

realized. This market value at t = 1 is given by

(16) B1
0 +

c1
c2
B2

0 .

Since the shock is mean-reverting, it follows from (9) that the one-period bond price at t = 1,

c1/c2 is lower if the shock is high. As such, choosing B1
0 < 0 < B2

0 provides insurance to the

government. How large are the debt positions required to achieve full insurance? The below

proposition shows that the magnitude of these positions can be very high.

Proposition 2. (full commitment) The following characterizes the unique solution under

full commitment:

1. (deterministic limit) As δ → 0,

B1
0 = −n (1− τ)

θ
1/2
0 + 2

3
(2α− 1) + (1− α)

1− α
< 0 and(17)

B2
0 = n (1− τ)

θ
1/2
0 + 2

3
− (1− α)

1− α
> 0.(18)

2. (full persistence limit) As α→ 1,

B1
0 → −∞ and B2

0 →∞.

The first part of Proposition 2 characterizes the optimal value of the short-term debt B1
0

and the long-term debt B2
0 as the variance of the shock δ goes to zero. There are a few points

14



to note regarding this result. First, it should be highlighted that this is a limiting result. At

δ = 0, the optimal values of B1
0 and B2

0 are indeterminate. This is because there is no hedging

motive, and any combination of B1
0 and B2

0 which satisfies

(19) B1
0 +B2

0 = 2n (1− τ)
θ
1/2
0 − 1

3

is optimal, since the market value of total debt—which is what matters in a deterministic

economy—is constant across these combinations. Therefore, the first part of the proposition

characterizes the solution for δ arbitrarily small, in which case the hedging motive still exists,

leading to a unique maturity structure. Second, in the limit, the debt positions do not go to zero,

and the government maintains a positive short-term asset position and a negative long-term debt

position. This happens since, even though the need for hedging goes to zero as volatility goes

to zero, the volatility in short-term interest rates goes to zero as well. The size of a hedging

position depends in part on the variation in the short-term interest rate at date 1 captured by

the variation in c1/c2 in the complete market equilibrium. The smaller this variation, the larger

is the required position to generate a given variation in the market value of debt to generate

insurance. This fact implies that the positions required for hedging do not need to go to zero

as volatility goes to zero. As a final point, note that the debt positions can be large in absolute

value. For example, since θ0 > 1 and α ≥ 0.5, B1
0 < −n (1− τ) and B2

0 > n (1− τ), so that the

absolute value of each debt position strictly exceeds the disposable income of households.

The second part of the proposition states that as the persistence of the shock between dates

1 and 2 goes to 1, the magnitude of the debt positions chosen by the government explodes

to infinity, so that the government holds an infinite short-term asset position and an infinite

long-term debt position. As we discussed, the size of a hedging position depends in part on

the variation in the short-term interest rate at date 1 captured by the variation in c1/c2 in the

complete market equilibrium. As the persistence of the shock goes to 1, the variation in the

short-term interest rate at date 1 goes to zero, and since the need for hedging does not go to

zero, this leads to the optimality of infinite debt positions. Under these debt positions, the

government can fully insulate the economy from shocks since (15) continues to hold.

The two parts of Proposition 2 are fairly general and do not depend on the details of our

15



particular example. These results are a consequence of the fact that fluctuations in short-term

interest rates should go to zero as the volatility of shocks goes to 0 or the persistence of shocks

goes to 1. To the extent that completing the market using maturities is possible, the reduced

volatility in short-term interest rates is a force which increases the magnitude of optimal debt

positions required for hedging. In addition, note that our theoretical result is consistent with the

quantitative results of Angeletos (2002) and Buera and Nicolini (2004). These authors present

a number of examples in which volatility is not equal to 0 and persistence is not equal to 1, yet

the variation in short-term interest rates is very small, and optimal debt positions are very large

in magnitude relative to GDP.

III.B. Lack of Commitment

We now show that optimal policy changes dramatically once we introduce lack of commitment.

We solve for the equilibrium under lack of commitment by using backward induction. At date 2,

the government has no discretion in its choice of fiscal policy, and it chooses c2 = n (1− τ)+B2
1 .

Now consider government policy at date 1. The government maximizes its continuation wel-

fare given B1
0 and B2

0 , the resource constraint, and the implementability condition (14). Note

that if n (1− τ) + Bt
0 ≤ 0 for t = 1, 2, then no allocation can satisfy (14) with equality. There-

fore, such a policy is infeasible at date 0 and is never chosen. The lemma below characterizes

government policy for all other values of
{
B1

0 , B
2
0

}
.

Lemma 1. If n (1− τ) +Bt
0 > 0 for t = 1, 2, the date 1 government under lack of commit-

ment chooses:

(20) ct =
1

2

(
n (1− τ) +Bt

0

θt

)1/2
∑
k=1,2

θ
1/2
k

(
n (1− τ) +Bk

0

)1/2 for t = 1, 2.

If n (1− τ) +Bt
0 ≤ 0 for either t = 1 or t = 2, the date 1 government can maximize

welfare by choosing ct arbitrarily close to 0 for t = 1, 2.

Given this policy function at dates 1 and 2, the government at date 0 chooses a value of c0

and
{
B1

0 , B
2
0

}
given the resource constraint and given (13) so as to maximize social welfare.11

11It is straightforward to see that the government never chooses n (1− τ) + Bt
0 ≤ 0 for either t = 1 or t = 2.

In that case, ct is arbitrarily close to 0 for t = 1, 2, which implies that (13) is violated since a positive value of
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We proceed by deriving the analog of Proposition 2 but removing the commitment assumption.

We conclude by discussing optimal debt maturity away from those limiting cases.

1. Deterministic Limit. If we substitute (20) into the social welfare function (12) and date 0

implementability condition (13), we can write the government’s problem at date 0 as:

max
c0,B1

0 ,B
2
0

−θ0c0 −
1

2
E

∑
t=1,2

θ
1/2
t

(
n (1− τ) +Bt

0

)1/22

(21)

s.t. c0 =
n (1− τ)

3− 2n (1− τ)E

∑t=1,2 θ
1/2
t

(
n (1− τ) +Bt

0

)−1/2∑
t=1,2 θ

1/2
t (n (1− τ) +Bt

0)
1/2

 .(22)

Optimality of a Flat Maturity Structure Proposition 3 below states that as the volatility

of the shock δ goes to zero, the unique optimal solution under lack of commitment admits a

flat maturity structure with B1
0 = B2

0 . It implies that for arbitrarily low levels of volatility, the

government will choose a nearly flat maturity structure, which is in stark contrast to the case of

full commitment described in Proposition 2. In that case, debt positions take on opposing signs

and are bounded away from zero for arbitrarily low values of volatility.

Proposition 3. (lack of commitment, deterministic limit) The unique solution under lack

of commitment as δ → 0 satisfies

(23) B1
0 = B2

0 = n (1− τ)
θ
1/2
0 − 1

3
=

1

2
B > 0.

When δ goes to 0, the cost of lack of commitment also goes to zero. The reason is that, as

in Lucas and Stokey (1983), the government utilizes the maturity structure of debt in order to

achieve the same allocation as under full commitment characterized in (15). More specifically,

while the program under commitment admits a unique solution for δ > 0, when δ = 0, any

combination of B1
0 and B2

0 satisfying

B1
0 +B2

0 = B

c0 cannot satisfy that equation. Therefore, date 0 policy always satisfies n (1− τ) +Bt
0 > 0 for t = 1, 2 and (20)

applies.
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is optimal. Whereas the government with commitment can choose any such maturity, the

government under lack of commitment must by necessity choose a flat maturity in order to

achieve the same welfare.

Why is a flat maturity structure optimal as volatility goes to zero? To see this, let δ = 0,

and consider the incentives of the date 1 government. This government—which cares only about

raising spending—would like to reduce the market value of what it owes to the private sector

which from the intertemporal condition can be represented by

(24) B1
0 +

c1
c2
B2

0 .

Moreover, the government would also like to increase the market value of newly issued debt

which can be represented by

(25)
c1
c2
B2

1 .

If debt maturity were tilted toward the long end, then the date 1 government would deviate

from a smooth policy so as to reduce the value of what it owes. For example, suppose that

B1
0 = 0 and B2

0 = B. Under commitment, it would be possible to achieve the optimum under

this debt arrangement. However, under lack of commitment, (20) implies that the government

deviates from the smooth ex-ante optimal policy by choosing c1 < c2. This deviation, which is

achieved by issuing higher levels of debt B2
1 relative to commitment, serves to reduce the value

of what the government owes in (24), therefore freeing up resources to be utilized for additional

spending at date 1.

Analogously, if debt maturity were tilted toward the short end, then the government would

deviate from a smooth policy so as to increase the value of what it issues. For example, suppose

that B1
0 = B and B2

0 = 0. As in the previous case, this debt arrangement would implement the

optimum under commitment. However, rather than choosing the ex-ante optimal smooth policy,

the date 1 government lacking commitment chooses policy according to (20) with c1 > c2. This

deviation, which is achieved by issuing lower levels of debt B2
1 relative to commitment, serves

to increase the value of what the government issues in (25), therefore freeing up resources to be
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utilized for additional spending at t = 2.

It is only when B1
0 = B2

0 = B/2 that there are no gains from deviation. In this case, it

follows from (20) that B2
1 = B2

0 , and therefore any deviation’s marginal effect on the market

value of outstanding debt is perfectly outweighed by its effect on the market value of newly

issued debt. For this reason, a flat debt maturity structure induces commitment.

Tradeoff between Commitment and Insurance What this example illustrates is that,

whatever the value of δ, the government always faces a tradeoff between using the maturity

structure to fix its problem of lack of commitment and using the maturity structure to insulate

the economy from shocks. Under lack of commitment, the date 1 short-term interest rate

captured by c2/c1 is rising in B2
0 and declining in B1

0 and this follows from (20). The intuition

for this observation is related to our discussion in the previous section.12

A flat maturity structure minimizes the cost of lack of commitment. Equation (15) implies

that the solution under full commitment requires c1/c2 = (θ2/θ1)
1/2. From (20), this can only

be true under lack of commitment if B1
0 = B2

0 since in that case,

(26) c1/c2 = (θ2/θ1)
1/2 [(n (1− τ) +B1

0

)
/
(
n (1− τ) +B2

0

)]1/2
.

Therefore, the short-term interest rate at date 1 under lack of commitment can only coincide

with that under full commitment if the chosen debt maturity is flat under lack of commitment.13

In contrast, a tilted maturity structure minimizes the cost of incomplete markets. To see

this, let cHt and cLt correspond to the values of c at date t conditional on θ1 = θH and θ1 = θL,

respectively, under full commitment. From (15), under full commitment it is the case that

cH1 /c
L
1 =

(
θL/θH

)1/2
and cH2 /c

L
2 =

[(
αθL + (1− α) θH

)
/
(
αθH + (1− α) θL

)]1/2
. From (20),

this cannot be true under lack of commitment if B1
0 = B2

0 . The variance in consumption at date

1 under lack of commitment could only coincide with that under full commitment if the chosen

debt maturity under lack of commitment is tilted.

12One natural implication of this observation is that the slope of the yield curve at date 0 is increasing in the
maturity of debt issued at date 0. Formally, starting from a given policy, if we perturb B1

0 and B2
0 so as to keep

the primary deficit fixed at date 0, one can show that q10/q
2
0 is strictly increasing in B2

0 . This result is in line with
the empirical results of Guibaud et al. (2013) and Greenwood and Vayanos (2014).

13This observation more generally reflects the fact that, conditional on B1
0 = B2

0 , the government under full
commitment and the government under lack of commitment always choose the same policy at date 1.
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Thus, the government at date 0 faces a tradeoff. On the one hand, it can choose a flat

maturity structure to match the short-term interest rate between dates 1 and 2 which it would

prefer ex-ante under full commitment. On the other hand, it can choose a tilted maturity

structure to try to mimic the variance in consumption at dates 1 and 2 which it would prefer ex-

ante under full commitment. This is the key tradeoff between insurance and commitment that

the government considers at date 0. We formally analyzed this trade-off through a second-order

approximation to welfare in a neighborhood of the deterministic case (δ = 0). We found that,

up to this approximation, for any value of the variance δ > 0 the cost of lack of commitment is

of higher order importance than the cost of lack of insurance. Thus, the debt maturity should

be structured to fix the problem of lack of commitment, and should therefore be flat.14

2. Full Persistence Limit. In the previous section, we considered an economy in which the

volatility of the shock is arbitrarily low, and we showed that optimal policy is a flat debt maturity

which minimizes the cost of lack of commitment. In this section, we allow the volatility of the

shock to take on any value, and we consider optimal policy as the persistence of the shock α

goes to 1.

Proposition 4. (lack of commitment, full persistence limit) The unique solution under

lack of commitment as α→ 1 satisfies

(27) B1
0 = B2

0 = n (1− τ)
θ
1/2
0 − 1

3
=

1

2
B > 0.

This proposition states that as the persistence of the shock α goes to 1, the unique optimal

solution under lack of commitment admits a flat maturity structure with B1
0 = B2

0 . This means

that for arbitrarily high values of persistence, the government will choose a nearly flat maturity

structure, which is in stark contrast to the case of full commitment described in Proposition

2. In that case, debt positions are tilted and arbitrarily large in magnitude since B1
0 diverges

to minus infinity and B2
0 diverges to plus infinity as α approaches 1. Given (15) which holds

under full commitment and (20) which holds under lack of commitment, this proposition implies

that under lack of commitment, the government no longer insulates the economy from shocks,

14Details regarding this exercise are in Online Appendix B.
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since the level of public spending at dates 1 and 2 is no longer responsive to the realization

of uncertainty at date 1. Therefore, as α goes to 1, the cost of lack of commitment remains

positive.

The reasoning behind this proposition is as follows. As persistence in the shock between

dates 1 and 2 goes to 1, the government at date 0 would prefer to smooth consumption as much

as possible between dates 1 and 2. From (20), the only way to do this given the incentives of

the government at date 1 is to choose a flat debt maturity with B1
0 = B2

0 . Clearly, choosing

B1
0 = B2

0 reduces hedging, since from (20) it implies that consumption, and therefore public

spending, is unresponsive to the shock. If the government were to attempt some hedging as under

commitment with B1
0 < 0 and B2

0 > 0, it would need to choose debt positions of arbitrarily large

magnitude, since the variation in the short-term interest rate at date 1 across states diminishes

as persistence goes to 1. From Lemma 1, if B1
0 ≤ −n (1− τ), this leads the date 1 government

to choose c1 and c2 arbitrarily close to 0, but this is infeasible from the perspective of period 0

since there does not exist a level of c0 high enough to satisfy (13) in that case.

Since any hedging has an infinite cost in the limit, the date 0 government chooses to forgo

hedging altogether, and instead chooses a flat debt maturity which induces the date 1 gov-

ernment to implement a smooth consumption path. While under commitment such a smooth

consumption path could be implemented with a number of maturity structures, under lack of

commitment it can only be implemented with a flat debt position. In doing so, the government

minimizes the welfare cost due to lack of commitment.15

3. Discussion. The two limiting cases described provide examples in which the optimal debt

maturity under lack of commitment is flat. In the case where the volatility of the shock goes

to zero, the benefit of hedging goes to zero, and for this reason, the government chooses a flat

maturity structure to minimize the cost of lack of commitment. A similar reasoning applies in

the case where the persistence of the shock goes to one, since the cost of any hedging becomes

arbitrarily large. The optimal maturity under lack of commitment is thus in stark contrast to

15One can easily show using numerical methods that the results in Propositions 3 and 4 do not depend on
the particular preference structure. In general, in a three-period economy with exogenous tax rates or exogenous
spending, a smooth policy between dates 1 and 2 can only be guaranteed with a flat maturity structure. Moreover,
as persistence goes to 1, any hedging has an infinite cost in the limit. Our example allows us to show the optimality
of a flat maturity theoretically since we are able to solve for the date 1 policy in closed form using Lemma 1.
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the case of full commitment. In that case, the government continues to hedge in the limit by

choosing large and tilted debt positions.

Our examples more broadly show that any attempt to hedge by the government will be

costly in terms of commitment. A tilted maturity creates a greater scope for deviation ex-post,

and this is costly from an ex-ante perspective. Formally, a tilted maturity induces the date 1

government to deviate to a policy which reduces the right hand side of (14); doing so causes

the left hand side of (13) to also become lower. Therefore, by relaxing the implementability

condition at date 1, the date 1 government is tightening the implementability condition at date

0, which can directly reduce the ex-ante welfare at date 0. In the following section we explore

the quantitative implications of this insight once we move away from the limiting cases in our

three-period example.

IV. Quantitative Exercise

We first consider a finite horizon economy. The advantage of a finite horizon over an infinite

horizon is that it is computationally feasible to allow the government to choose any arbitrary

debt maturity structure. We then move to consider an infinite horizon economy with limited

debt instruments which allows us to more suitably capture the quantitative features of optimal

policy and to characterize policy dynamics. We show in these exercises that the optimal debt

maturity is nearly flat. We conclude by discussing the policy implications of our analysis.

We use the same parameterization as in Chari et al. (1994). More specifically, we set the per

period payoff of households to

(28)
c1−σct − 1

1− σc
+ η

(1− nt)1−σl − 1

1− σl
+ θt

g
1−σg
t − 1

1− σg
,

with σc = σl = σg = 1. η = 3.33 since this value implies that hours worked n = 0.23 under

full commitment. Each period is a year, and hence β = 0.9644 such that the riskless rate is 4

percent. We consider an economy with two shocks θL and θH following a symmetric first order

Markov process. The levels and persistence of the shocks imply that, under full commitment,

the average spending to output ratio is 0.18, the standard deviation of spending equals 7 percent
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of average spending, and the autocorrelation of spending is 0.89. All these values match the

statistics and steady state values in Chari et al. (1994). We set θ0 = θH .

IV.A. Finite Horizon Analysis

We begin our quantitative analysis in a finite horizon economy with t = 0, ..., T , where the

set of available maturities is unrestricted. In order to compare our results with those of the

three-period example of Section III in which a flat debt maturity (i.e., B1
0 = B2

0) is optimal, we

allow the government at every date t to issue a consol BL
t R 0 which represents a promise by the

government to pay a constant amount BL
t at each date t+ k for k = {1, ..., T − t}. In addition,

the government can issue a set of zero-coupon bonds {Bt+k
t }T−t−1k=1 . We can exclude T -period

zero-coupon bonds BT
t because these securities are redundant given the presence of the consol

BL
t .

It follows that the dynamic budget constraint of the government (4) for t < T − 1 can be

rewritten as:

(29) gt +Bt
t−1 +BL

t−1 = τtnt +
T−t−1∑
k=1

qt+kt

(
Bt+k
t −Bt+k

t−1

)
+ qLt

(
BL
t −BL

t−1
)

,

where qLt corresponds to the price of the consol. This budget constraint takes into account that,

at date t, the government: i) makes a flow payoff to households equal to Bt
t−1 +BL

t−1 according

to their holdings of one-period bonds and consols, ii) exchanges old zero-coupon bonds Bt+k
t−1 for

new zero-coupon bonds Bt+k
t at price qt+kt , and iii) exchanges old consols BL

t−1 for new consols

BL
t at price qLt . In this environment, a flat debt maturity—which we found to be optimal in the

theoretical example of Section III—corresponds to one in which Bt+k
t = 0 ∀k.16

We choose initial conditions such that, under full commitment, the value of debt equals 2.1

percent of the net present value of output, out of which 28 percent has a maturity of less than

one year, and the rest is equally distributed across the remaining maturities.17 Our main results

16At t = T − 1, the dynamic budget constraint is gt + Bt
t−1 + BL

t−1 = τtnt + qLt
(
BL

t −BL
t−1

)
, since there are

no zero-coupon bonds that can be issued.
17These values are consistent with our parameterization of the infinite-horizon economy which matches the U.S.

data from 1988 to 2007 described in the next section. Given a discount factor β = 0.9644, a debt equal to 2.1
percent of the net present value of output corresponds to a debt to GDP ratio of roughly 60 percent in an infinite
horizon economy.
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are unaffected by our choice of initial conditions, as we show below. All debt must be repaid

in the terminal date. As in the theoretical example of Section III, we let θT be deterministic

from the point of view of the government at T − 1, and equal to its expected value conditional

on the realization of θT−1. This modification implies that full hedging is possible under full

commitment, so that any inefficiencies in our setting arise purely from the lack of commitment.

All of our results continue to hold if θT is instead stochastically determined.

Table I summarizes the main results. Panel A describes our results in a three-period economy,

and Panel B describes our results in a four-period economy. In all cases, we display bond

positions as a fraction of GDP, and with some abuse of notation in the text the bond positions

B represent B normalized by GDP. Panel A describes the benchmark simulation under full

commitment. In this case, B1
0 = −10057 and BL

0 = 5120 (percent of GDP). These large

magnitudes are consistent with the analysis of Angeletos (2002) and Buera and Nicolini (2004).

In the case of lack of commitment, B1
0 = 0.07 and BL

0 = 2.32, so that optimal debt maturity is

nearly flat. This characterization is consistent with that of our theoretical three-period model

in Section III in which the optimal debt maturity is exactly flat.

In Panel B, we find similar results if the horizon is extended to a four-period economy. In

this circumstance, the optimal maturity structure at date 0 under commitment is indeterminate

since there are more maturities than shocks. If confined to a one-period bond and a consol, the

government chooses a one-period bond equal to -7317 percent of GDP and a consol equal to 2529

percent of GDP. In contrast, under lack of commitment, B1
0 = −0.04, B2

0 = 0.00, and BL
0 = 2.41,

so that the optimal maturity structure is nearly flat. Moreover, the optimal government debt

maturity is even more flat at date 1, since B2
1 = 0.00 and BL

1 = 2.44.

In the second, third, and fourth columns of Table I, we consider the robustness of our results

as we increase the volatility and decrease the persistence of shocks, since this moves us further

away from the limiting cases considered in Section III. We find that the optimal debt maturity

under lack of commitment remains nearly flat if the standard deviation of shocks is 2 and 4

times larger than in the benchmark simulation. We find the same result if shocks have zero

persistence and are i.i.d.

In the last two columns of Table I, we explore whether our results depend on the initial tilt of
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the maturity structure. We consider an extreme case where the majority of the debt consists of

one-period bonds, so that these constitute 72 percent instead of 28 percent of liabilities, and the

total amount of debt is unchanged. We find that under lack of commitment, the optimal debt

maturity at date 0 remains nearly flat both in the three-period and four-period models, though

it is less flat than in the benchmark case since the one-period bond B1
0 is larger in absolute

value. This is in part because the initial debt position is itself highly tilted and there is a large

flattening out which occurs during the initial period. In the four-period model, the optimal debt

maturity becomes even more flat with time (date 1 policies involve a nearly flat maturity with

B2
1 = 0.05 and BL

1 = 2.59). In the last column, we consider the consequences of having initial

debt be exactly flat, and we find that the optimal maturity structure under lack of commitment

is nearly flat in all cases.

In the bottom of Panel B, we consider the consequences of restricting the set of maturities

to a one-year bond and a consol. We find that our main results continue to hold in this case and

that the optimal debt maturity is nearly flat even under these restricted set of debt instruments.

[TABLE I ABOUT HERE]

Our quantitative result from the finite horizon environment are in line with our theoretical

results. The optimality of a flat debt maturity emerges because of the combination of two

forces. First, substantial hedging requires massive and tilted debt positions, as has been shown

in Angeletos (2002) and Buera and Nicolini (2004). Due to their size, financing these positions

can be very expensive in terms of average tax distortions because of the lack of commitment

by the government. Second, under empirically plausible levels of volatility of public spending,

the cost of lack of insurance under a flat maturity structure is small. Therefore, the optimal

policy pushes in the direction of reducing average tax and spending distortions versus reducing

the volatility of these distortions, and the result is a nearly flat maturity structure.

IV.B. Infinite Horizon Analysis

The previous section suggested that quantitatively, a government lacking commitment should

principally issue consols in a finite horizon economy. We now consider the robustness of this
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result in an infinite horizon. In an infinite horizon economy, the set of tradeable bonds is infinite,

and to facilitate computation, we reduce the set of tradeable bonds in a manner analogous to the

work of Woodford (2001) and Arellano et al. (2013). Namely, we consider an economy with two

types of bonds: a decaying perpetuity and a non-decaying consol. We allow for a non-decaying

consol since our analysis of the previous sections suggests that the optimal debt maturity is

nearly flat. We then consider whether or not the government makes use of the non-decaying

perpetuity in its financing strategy.

Let BS
t−1 R 0 denote the value of the coupon associated with the decaying perpetuity issued

by the government at t − 1. Moreover, let BL
t−1 R 0 denote the value of the coupon associated

with the non-decaying consol issued by the government at t − 1. It follows that the dynamic

budget constraint of the government becomes:

(30) gt +BS
t−1 +BL

t−1 = τtnt + qSt
(
BS
t − γBS

t−1
)

+ qLt
(
BL
t −BL

t−1
)

.

The only difference relative to (29) relates to the decaying perpetuity. Besides the consol, the

government exchanges non-decayed perpetuities γBS
t−1 for new perpetuities BS

t at price qSt ,

where γ ∈ [0, 1).

We focus on an MPCE in which the value and policy functions are differentiable. We cannot

prove that this MPCE is unique, but we have verified that our computational algorithm converges

to the same policy when starting from a large grid of many different initial guesses.18 In our

benchmark simulation we let γ = 0, so that BS represents a one-year bond. We choose initial

debt positions to match the U.S. statistics for the period 1988-2007, with an average market

value of total debt of 60 percent of GDP, out of which 28 percent has maturity of less than one

year.19

1. Benchmark Simulation. Figure I displays the path of the one-year bond and the consol

relative to GDP. The left panel shows the path of these quantities under full commitment. From

t ≥ 1 onward, the value of BS is -2789 percent of GDP and the value of BL is 102 percent

18Further details regarding our computational method are available in the Online Appendix C.
19This calculation ignores off-balance sheet liabilities, such as unfunded mandatory spending obligations which

are significantly more long-term. Taking this additional debt into account and changing initial conditions would
not change our main conclusion that the optimal debt maturity under lack of commitment is nearly flat.
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of GDP. The price of the consol is significantly higher than that of the one-year bond, which

explains why the position is significantly lower; in fact, the market value of the consol is 2858

percent of GDP. These large and highly tilted quantities are consistent with previous results

under commitment. These debt positions are not actively managed and are constant over time.

[FIGURE I ABOUT HERE]

The right panel considers the economy under lack of commitment, and in this scenario debt

is actively managed from t ≥ 1 onward. Since it is actively managed, we plot the average value

of debt for each time period taken from 1000 simulations. Between t = 1 and t = 100, the

average value of BS is -0.01 percent of GDP and the average value of BL is 2.22 percent of

GDP.20 Therefore, the maturity structure of debt is approximately flat. Also, the total amount

of debt maturing in one period (i.e. the value one-period bond plus the coupon payment of the

consol) is positive and equals 2.21 percent of GDP. At the same horizon, a government with

commitment would instead hold assets with a value of about 26 times the GDP.

Figure II considers an equilibrium sequence of shocks and shows that BS is approximately

zero and constant in response to shocks, whereas BL is actively managed. More specifically,

the level of the consol rises (declines) during high (low) spending shocks. This pattern occurs

because the government runs larger deficits (surpluses) when spending is high (low). Therefore,

in contrast to the case of full commitment, the government actively manages its debt which

primarily consists of consols.

[FIGURE II ABOUT HERE]

Figure III presents the path of policy under this sequence of shocks. Whereas taxes are nearly

constant under full commitment—which is consistent with the complete market results of Chari

et al. (1994)—they are volatile and respond persistently to shocks under lack of commitment.

More specifically, during periods of high (low) expenditure, taxes jump up (down) and continue

to increase (decrease) the longer the fiscal shock persists. Periods of high (low) expenditure

are periods with lower (higher) primary surpluses in the case of full commitment and lack of

20We calculate the average starting from t = 1 rather than t = 0 since the simulation suggests that debt quickly
jumps towards its long-run average between t = 0 and t = 1.
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commitment, but in contrast to the case of full commitment, under lack of commitment the

surplus responds persistently to shocks. This persistence is reflected in the total market value

of debt, which contrasts with the transitory response of the market value of debt in the case of

full commitment.21

[FIGURE III ABOUT HERE]

We can calculate the welfare cost of lack of commitment in this setting. In particular,

we compare welfare under full commitment to that under lack of commitment and report the

welfare difference in consumption equivalent terms. We find that this welfare cost is 0.0038

percent. As a comparison, the welfare cost of imposing a balanced budget on a government

with full commitment is 0.04 percent, more than ten times larger.22 These numbers mean that

the welfare cost of lack of commitment is very low—as long as the maturity is chosen optimally

which implies a nearly flat maturity.

In addition, we can compute the welfare cost of imposing a completely flat maturity. To

do this, we compare welfare under lack of commitment when the government can freely choose

BS to that when BS is constrained to zero in all periods (so that debt issuance is exactly flat).

We find that the difference in welfare is less than 0.00001 percent. This negligible welfare cost

implies that optimal policy under lack of commitment can be approximated by constraining

debt issuance to consols.

2. Robustness: Alternative Debt Maturities. One limitation of our infinite horizon analysis is

that we have restricted the horizon of the short-term debt instrument. We now show that the

optimal maturity structure is flat even if alternative horizons are considered. Figure IV displays

the average values of BS and BL under commitment and under lack of commitment for different

values of γ (the decay rate of the perpetuity BS).23 Under full commitment, the optimal value

21Shin (2007) considers a model under full commitment and shows that if there are N possible states of the shock
but at any moment only N1 < N can be reached, then N1 bonds of different maturities can provide full insurance.
Such a model would require active management of debt positions. Our model under lack of commitment also
captures the active management of debt. This result, however, is not achieved by limiting the maturities available;
instead it follows from the tradeoff between hedging and the cost of borrowing.

22This corresponds to the cost of forcing a government to set BS
t = BS

−1 and BL
t = BL

−1 ∀t.
23For this exercise, the initial conditions are calculated for each γ so as to keep fixed the market value of initial

debt.
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of BL is positive and nearly unchanged by different values of γ, whereas the optimal value of

BS is negative, large, and decreasing in magnitude as γ rises. The reason is that the higher is

γ, the lower is the decay rate of BS and the higher its price, implying that a smaller position is

required for hedging. In contrast, under lack of commitment, the average value of the perpetuity

BS is zero regardless of the value of γ, and the value of the consol BL is large and unaffected

by γ. As such, the optimal debt maturity remains flat, even when considering alternative debt

maturities.

[FIGURE IV ABOUT HERE]

3. Robustness: Variance and Persistence of Fiscal Shocks. The quantitative results are con-

sistent with the theoretical results from the three-period model which considered the limiting

cases as volatility declined to zero and persistence increased to one. A natural question concerns

the degree to which our results depend on the parameterization of public spending shocks. To

explore this question, we return to the benchmark environment with γ = 0 and choose different

values of volatility and persistence for the public spending shock.

[FIGURE V ABOUT HERE]

Figure V displays the average values ofBS andBL under different assumptions for the shocks’

process. In the case of full commitment, debt positions are large and tilted independently of the

volatility and persistence of the shocks. Moreover, consistent with our three-period example,

debt positions become arbitrarily large as the autocorrelation of the shock goes to 1. In contrast,

the optimal maturity structure under lack of commitment is nearly flat for all volatilities and

persistence levels of public spending. We additionally find that the debt positions decrease

in size as volatility increases, and this occurs because the volatility of the marginal utility of

consumption increases, which facilitates hedging through the consol with a smaller position. As

such, our result is robust to changes in the stochastic characteristics of fiscal shocks.

4. Robustness: Additional Shocks. We have thus far considered an economy in which the shocks

to the economy are fiscal. In Table II, we show that our main result—that the optimal debt

maturity is flat—is robust to the introduction of productivity and discount factor shocks. We

29



consider each shock in isolation in the first two columns. We then increase the number of

realization of shocks in the third column (so that the number of shock realizations exceeds the

number of debt instruments), and in the last two columns we consider combinations of different

shocks.

Panel A reports the debt position in our benchmark model with fiscal shocks θt and replicates

our results described in the previous sections. Panel B introduces a productivity shock in an

environment in which θt is constant and equal to its average value. More specifically, we replace

nt in the resource constraint (1) with Atnt, where At captures the productivity of labor and

therefore equals the wage. Let At =
{
AL, AH

}
follow a symmetric first-order Markov process

with unconditional mean equal to 1. We choose AL, AH , and the persistence of the process so

that, as in Chari et al. (1994), the standard deviation of At equals 0.04 and the autocorrelation

equals 0.81. The first column of Panel B shows that, consistently with the results in Buera and

Nicolini (2004), under commitment the average debt positions are tilted, though the magnitudes

of debt are smaller than those under fiscal shocks. In the second column, it is clear that optimal

debt positions under lack of commitment are nearly flat.

[TABLE II ABOUT HERE]

Panel C of Table II introduces a discount factor shock in an economy in which θt and At are

constant and equal to the average value. We replace the utility function in (28) with

ζt

[
c1−σct − 1

1− σc
+ η

(1− nt)1−σl − 1

1− σl
+ θt

g
1−σg
t − 1

1− σg

]

for some ζt =
{
ζL, ζH

}
which follows a first-order Markov process. ζt represents a discount

factor shock which can impact the variance of short term interest rates without affecting the

time series properties of other variables in the model. As discussed in Angeletos (2002) and Buera

and Nicolini (2004), the large size of the debt positions required for hedging under commitment is

driven in part by the fact that fluctuations in short-term interest rates are small in the benchmark

economic environment. The introduction of the discount factor shock allows us to increase the

volatility of interest rates and determine whether the optimality of a flat debt maturity in our

setting depends on the presence of low interest rate volatility.
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To that end, we choose the stochastic properties of ζt so that under commitment, the mean

of the one-year interest rate is 4 percent, its standard deviation is 0.73 percent of the mean,

and its persistence is 0.78, which matches the properties of the real one-year interest rate in the

United States from 1988 to 2007.24 The first column of Panel C shows that, in this situation,

the maturity structure is exactly flat under commitment, and this is because optimal policy is

smooth from date 1 onward. As such, a flat debt maturity allows the market value of the consol

to fluctuate one-to-one with the present value of future surpluses. Analogous logic implies that

optimal debt maturity is flat under lack of commitment, where a flat maturity also mitigates

the commitment problem.

In the third column of Table II, we increase the number of shocks so that these exceed

the number of debt instruments. In each panel, we extend the environment by allowing the

shocks to take on 20 realizations that approximate a Gaussian AR(1) process. This exercise is

performed while preserving the mean, standard deviation, and persistence of the shocks. We

find that our results are unchanged, and that the optimal debt maturity remains flat under lack

of commitment.

The last two columns of Table II consider our results in environments with two types of

shocks, where we take all combinations of the shocks previously analyzed. This allows us to

analyze situations where the government may have greater incentives for hedging, even under

lack of commitment. For instance, the combination of discount factor shocks with either fiscal

or productivity shocks means that the fluctuations in the government’s financing needs come

hand in hand with larger fluctuations in short-term interest rates. These larger interest rate

fluctuations imply that hedging does not require very large debt positions and is therefore less

expensive. In fact, in all the situations considered, we find that the maturity is slightly more

tilted, but it remains nearly flat.

In Panel B, we consider an environment with fiscal and productivity shocks, where we set

Corr(θt, At) = −0.33 so that our simulation matches the correlation between TFP and primary

deficits in the U.S from 1988 to 2007.25 We find that the optimal debt maturity continues to

24The real interest rate is calculated as the difference between the nominal one-year rate and realized inflation
(GDP deflator).

25The series of the TFP shock and the primary deficit are taken from the World Penn Table and the U.S. Office
of Management and Budget, respectively.
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be approximately flat, though it is a little more tilted in comparison to the case in which the

impact of each shock is assessed separately.

In Panel C, we consider an environment with fiscal shocks and discount factor shocks. We

set Corr(θt, ζt) = −0.51 so that our simulation matches the correlation between real interest

rates and primary deficits in the U.S. from 1988 to 2007. In this case, the maturity structure is

slightly more tilted than in the case which excludes the discount factor shock (the one-year bond

is 0.068 percent of GDP), but the optimal debt maturity remains essentially flat.26 In the final

column of Panel C, we consider an environment with productivity and discount factor shocks,

and we set Corr(At, ζt) = −0.43, so that our simulation matches the correlation between total

factor productivity and real interest rates. We find that the maturity is slightly more tilted than

in the case which excludes the discount factor shock, but it remains approximately flat.

5. Robustness: Commitment to Spending. We have so far considered an economy in which the

government lacks commitment to taxes, spending, and debt issuance. Instead, in the economy

of Lucas and Stokey (1983), public spending is exogenous and can therefore not be chosen by

the government. Table III shows that our results hold, even if the government is able to commit

to the level of spending, as is the case in their model. Under commitment the optimal maturity

structure is tilted, and the optimal tilt is extremely sensitive to the particular type of shocks

affecting the economy. Instead, with lack of commitment the maturity remains nearly flat under

all types of shocks considered.

[TABLE III ABOUT HERE]

6. Robustness: Alternate Preferences. We now consider the robustness of our results to other

preference specifications. The top panel in Figure VI considers the consequences of altering the

coefficient of relative risk aversion σc. In the case of full commitment, lower values of σc generate

larger and more tilted debt positions. A lower value of σc reduces the volatility in the marginal

utility of consumption and therefore makes it more difficult to achieve significant hedging with

26The optimal debt maturity is tilted to the short end in this case since there is a negative correlation between
interest rates and the government’s financing needs. We have also explored the extent to which one can put an
upper bound on the degree of tilt in the government’s debt maturity. For example, in the case when interest rates
and fiscal shocks are perfectly positively correlated, the value of the one-year bond is -0.23 and the consol is 2.14
percent of GDP, so that even in this extreme case, the bulk of public debt is in the consol.
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smaller positions. In the case of lack of commitment, a similar force emerges since both the

tilt and size of debt positions rise. Note however that, quantitatively, the maturity structure

remains nearly flat as σc declines. The reason is that even though more tilted positions are

useful for hedging, more tilted positions also exacerbate the problem of lack of commitment, so

that the best way to deal with this problem is to still choose a nearly flat maturity structure.

[FIGURE VI ABOUT HERE]

The exercise in the bottom panel considers the equilibrium under different values of σl, which

relates to the curvature of the utility function with respect to leisure. We find that for all values

of σl below 2, the optimal debt maturity under lack of commitment is essentially flat. The

effect of higher value of σl is two-fold. On the one hand, higher values of σl imply that it is

socially costly to have volatility in labor supply, and consequently, oscillations in consumption

play a greater role in absorbing public spending shocks. This force increases the volatility in the

marginal utility of consumption and implies that smaller debt positions are required to generate

hedging. On the other hand, higher values of σl also imply that it is more beneficial to engage

in hedging as a way of smoothing out labor market distortions. This force implies larger debt

positions since the value of hedging increases. In the case of full commitment, we find that,

quantitatively, the first force dominates since debt positions become less tilted as σl increases.

In the case of lack of commitment, we find that the second force dominates since the consol

position become larger as σl increases, which facilitates hedging. It continues to be the case

throughout, however, that the debt maturity is nearly flat under lack of commitment.

IV.C. Implications for Fiscal Policy and Debt Management

As in the work of Barro (1979), Aiyagari et al. (2002), and Bhandari et al. (2015), our analysis

finds that optimal taxes are volatile and respond persistently to economic shocks. In contrast to

this related work, this feature of optimal policy in our model is due to the lack of commitment

by the government as opposed to the incompleteness of financial markets resulting from limited

debt instruments. Moreover, this feature of optimal fiscal policy—which does not hold under

commitment and sufficiently rich bond instruments as in Angeletos (2002) and Buera and Nicolini

(2004)—is consistent with the dynamics of U.S. tax rates, as discussed in Barro (1979).
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While the purpose of our analysis is normative, a natural question concerns the degree to

which government debt maturity in practice is consistent with the optimal government debt

maturity in theory. In this regard, we can also show that government debt maturity in practice

is much closer to the optimal government debt maturity under lack of commitment versus under

full commitment.

To make this comparison, we can extend our framework as well as that of Angeletos (2002)

and Buera and Nicolini (2004) to allow for a constant growth rate in labor productivity, a

constant inflation rate, and nominal—as opposed to real—government bonds. Such an extension

incorporates important features of the U.S. economy and it implies that nominal GDP grows

at a constant long-run rate. The extension does not change the substance of our results or

those of Angeletos (2002) and Buera and Nicolini (2004), and it facilitates a comparison to U.S.

government debt maturity.

Under this extension, the government under full commitment holds a negative short-term

nominal debt position and a positive long-term nominal debt position. Both positions are large

relative to GDP, and both positions grow deterministically (in opposite directions) at the long-

run rate of nominal GDP, without responding to shocks. In contrast, the government under

lack of commitment actively manages a positive nominal consol position in response to shocks,

and future consol payments are structured to grow at the long-run rate of nominal GDP. This

characterization is the analog of a flat debt position in our theoretical framework once long-run

nominal GDP growth is taken into account.27

Figure VII displays the maturity structure of marketable U.S. federal nominal treasury bonds

in 2007.28 We display the sum of all nominal payments—coupons and principal—due at various

horizons from the perspective of 2007 (i.e., “1” represents payments due in 2008, “2” represents

payments due in 2009, etc.).29 With some abuse of notation, we can refer to the sum of all of these

nominal payments at horizon k as Bt+k
t . In a given year t in which we observe the government’s

bond portfolio, we can construct a measure of the growth of these payments by calculating the

27For this extension, we let preferences satisfy (28), we set σc = σl = σg = 1, which is consistent with a balanced
growth path.

28A similar pattern emerges in more recent years. We chose 2007 for our display since it pre-dates the maturity
management performed by the Federal Reserve during periods of quantitative easing.

29We exclude TIPS since we focus on nominal payments. We obtain similar patterns if we include TIPS and
adjust for expected inflation.
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average difference between logBt+k+1
t and logBt+k

t across all k > 1. This statistic relates to the

decay rate in our analysis of the perpetuity in our simulations. In 2007, this average difference

implies that payments decline at an average rate of 11 percent a year.

[FIGURE VII ABOUT HERE]

Clearly, the U.S. debt maturity is very different from the optimal maturity structure under

full commitment, since in the data all debt positions are positive, and they are all quantitatively

small relative to GDP.

Figure VIII displays the difference between logBt+k
t and logBt+k−1

t−1 across different horizons

k for t spanning 1985 to 2013. This statistic measures the change in the k-maturity bond issuance

over time. The figure shows significant co-movement across the maturity spectrum as overall

debt rises and falls. This pattern is in contrast to optimal policy under commitment in which

debt positions grow at a constant rate, with government assets and government debt becoming

larger and offsetting each other.

[FIGURE VIII ABOUT HERE]

In sum, Figures VII and VIII show that debt payments are positive across the maturity

spectrum, payments are small relative to GDP, and importantly, payments change almost pro-

portionately across the maturity spectrum in response to shocks. These features are all in line

with the characterization of optimal debt management under lack of commitment.

Nonetheless, there are important differences. In particular, while the theoretically optimal

maturity structure under lack of commitment involves the issuance of perpetuities, the maximum

horizon of the U.S. government’s official marketable liabilities is 30 years. Moreover, whereas

optimal policy under lack of commitment requires future bond payments to grow at the rate

of nominal GDP—which has averaged around 5 percent since 1985—debt payments in practice

decline at a rate of 11 percent. Moreover, this pattern is general: across all years between 1985

and 2013, debt payments decline in the horizon, and the rate of decline is relatively stable, a

pattern consistent with the co-movement across maturities displayed in Figure VIII.30

30Payments continue to decline, but the pace of decline is reduced if we exclude bonds due in one-year—which
often serve a liquidity purpose which is unmodeled in our setting—and if we also exclude bonds held by the
Federal Reserve. Details available upon request.
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Do these observations imply that U.S. government policy could be improved by increasing the

maturity of U.S government debt? Based on our model—which excludes government transfers

and in which the government cannot commit to taxes and spending but only to repaying public

debt—the answer to this question is yes.

However, in practice, the U.S. government does partially commit to mandatory government

transfer programs such as Social Security and Medicare.31 While our model is not equipped to

address the issue of partial commitment, full commitment to such transfers in our model can be

introduced in the form of an exogenous, non-tradeable, and potentially stochastic debt portfolio

at date 0 representing this stream of future mandatory obligations.

An implication of such an extension is that if these mandatory obligations grow faster than

nominal GDP—which has been the case historically—then the government should choose the

optimal maturity structure of marketable debt to offset this growth. Such an offsetting, which

frontloads marketable debt payments, ensures that the path of payments from the government

to the private sector—both marketable debt payments and mandatory old-age payments—grow

at the same rate as nominal GDP. Taken from this light, optimal marketable debt payments

from the government should decline in the horizon, and the answer as to whether lengthening

U.S. government debt maturity would be an improvement is ambiguous. In sum, given the

complexity in modeling the issue of partial commitment and in modeling the time path of

expected mandatory spending obligations, we leave a full analysis of this question to future

research.32

V. Conclusion

The current literature on optimal government debt maturity concludes that the government

should fully insulate itself from economic shocks. This full insulation is accomplished by choosing

31In principle, one can also consider other mandatory transfers from the U.S. government, such as unemployment
compensation and child tax credits.

32In a preliminary analysis of this question, we modeled mandatory old-age payments as deterministic and
analyzed historical Social Security and Medicare payments as well as projections from the U.S government. We
found that future nominal marketable debt payments plus mandatory old-age payments from the perspective of a
given year grow at a rate of 3 to 4 percent with the horizon, which not too far from average nominal GDP growth
of 5 percent. These findings suggest that U.S. government debt maturity is close to optimal. Details available
upon request.
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a maturity heavily tilted towards the long end, with a constant short-term asset position and

long-term debt position, both positions extremely large relative to GDP. In this paper, we show

that these conclusions strongly rely on the assumption of full commitment by the government.

Once lack of commitment is taken into account, then full insulation from economic shocks

becomes impossible; the government faces a tradeoff between the benefit of hedging and the

cost of funding. We show through a series of exercises that the optimal debt maturity structure

under lack of commitment is nearly flat, with the government actively managing its debt in

response to economic shocks. Thus, optimal policy can be approximately achieved by confining

government debt instruments to consols.

Our analysis thus provides an argument for the use of consols in debt management based

on the limited commitment of the government to the future path of fiscal policy. The use of

consols has been pursued historically, most notably by the British government in the Industrial

Revolution, when consols were the largest component of the British government’s debt (see

Mokyr [2011]). Moreover, the reintroduction of consols has received some support in the press

and in policymaking circles (e.g. Cochrane [2015], Leitner and Shapiro [Nov. 14, 2013] and

Yglesias [Jan. 29, 2013]).

Our analysis leaves several interesting avenues for future research. First, our framework

follows Angeletos (2002) and Buera and Nicolini (2004) and therefore ignores nominal bonds and

the risk of surprise inflation. Taking this issue into account is important since it incorporates

a monetary authority’s ability to change the value of outstanding debt in response to shocks,

and it also brings forward the issues of dual commitment to monetary and fiscal policy. We

believe that our work is a first step in studying this more complicated problem. Second, our

framework does not incorporate investment and financing frictions which can be affected by

the supply of public debt. It has been suggested that short-term government debt is useful in

alleviating financial frictions (see e.g. Greenwood et al. [2015]), and an open question regards

how important this friction is quantitatively relative to the lack of commitment. Finally, our

analysis ignores heterogeneity and the redistributive motive for fiscal policy (see e.g. Werning

[2007] and Bhandari et al. [2013]). An interesting question for future research involves how

incentives for redistribution can affect the maturity structure of public debt.
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I. Appendix

Equilibrium Definition and Recursive Representation

Definition of MPCE: Let Bt ≡
{
Bt+k
t

}∞
k=1

and qt ≡
{
qt+kt

}∞
k=1

. In every period t, the

government enters the period and chooses a policy {τt, gt,Bt} given {st,Bt−1}. Households

then choose an allocation
{
ct, nt,

{
bt+kt

}∞
k=1

}
. An MPCE consists of: a government strategy

ρ (st,Bt−1) which is a function of (st,Bt−1); a household allocation strategy ω ((st,Bt−1) , ρt,qt)

which is a function of (st,Bt−1), the government policy ρt = ρ (st,Bt−1), and bond prices qt;

and a set of bond pricing functions
{
ϕk (st,Bt−1, ρt)

}∞
k=1

with qt+kt = ϕk (st,Bt−1, ρt) ∀k ≥ 1

which depend on (st,Bt−1) and the government policy ρt = ρ (st,Bt−1). In an MPCE, these

objects must satisfy the following conditions ∀t:

1. The government strategy ρ (·) maximizes (2) given ω (·), ϕk (·) ∀k ≥ 1, and the government

budget constraint (4),

2. The household allocation strategy ω (·) maximizes (2) given ρ (·), ϕk (·) ∀k ≥ 1, and the

household budget constraint (3), and

3. The set of bond pricing functions ϕk (·) ∀k ≥ 1 satisfy (5) given ρ (·) and ω (·).

Recursive Representation of MPCE: We can use the primal approach to represent an

MPCE recursively. Recall that ρ (st,Bt−1) is a policy which depends on (st,Bt−1), and that

ω ((st,Bt−1) , ρt,qt) is a household allocation strategy which depends on (st,Bt−1), government

policy ρt = ρ (st,Bt−1), and bond prices qt, where these bond prices depend on (st,Bt−1) and

government policy. As such, an MPCE in equilibrium is characterized by a stochastic sequence

in (7) and a debt sequence

{{{
Bt+k
t

(
st
)}∞

k=1

}
st∈St

}∞
t=0

, where each element depends only on

st through (st,Bt−1), the payoff relevant variables. Given this observation, in an MPCE, one

can define a function hk (·)

(31) hk (st,Bt) = βkE [uc,t+k|st,Bt]
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for k ≥ 1, which equals the discounted expected marginal utility of consumption at t+ k given

(st,Bt) at t. This function is useful since, in choosing Bt at date t, the government must take

into account how it affects future expectations of policy which in turn affect current bond prices

through expected future marginal utility of consumption.

Note furthermore that choosing {τt, gt,Bt} at date t is equivalent to choosing {ct, nt, gt,Bt}

from the perspective of the government, and this follows from the primal approach delineated

in Section II.C. Thus, we can write the government’s problem recursively as

V (st,Bt−1) = max
ct,nt,gt,Bt

u (ct, nt) + θt (st) v (gt) + β
∑

st+1∈S
π (st+1|st)V (st+1,Bt)(32)

s.t. ct + gt = nt,(33)

uc,t
(
ct −Bt

t−1
)

+ un,tnt +
∞∑
k=1

hk (st,Bt)
(
Bt+k
t −Bt+k

t−1

)
= 0,(34)

where (34) is a recursive representation of (10). Let f (st,Bt−1) correspond to the solution to

(32)− (34) given V (·) and hk (·). It therefore follows that the function f (·) necessarily implies

a function hk (·) which satisfies (31). An MPCE is therefore composed of functions V (·), f (·),

and hk (·) which are consistent with one another and satisfy (31)− (34).
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TABLE I
Debt Positions in Finite-Horizon Economies

Benchmark Std. Dev. Std. Dev. i.i.d. Initial Debt Initial Debt
(x2) (x4) Tilted Short Flat

Panel A: Three-period model

Commitment
One-year Bond -10057.38 -9879.06 -9500.32 -597.68 -9941.93 -10039.59
Consol 5120.42 5030.48 4839.23 304.32 5063.44 5111.64

Lack of Commitment
One-year Bond 0.07 0.06 0.02 -0.10 -0.41 -0.02
Consol 2.32 2.37 2.47 2.68 2.78 2.40

Panel B: Four-period model

Commitment
One-year Bond -7317.73 -7189.12 -6914.89 -447.65 -7230.17 -7320.67
Consol 2529.06 2485.42 2392.17 154.97 2500.39 2530.03

Lack of Commitment (All Maturities)
Date 0 Policies

One-year Bond -0.04 -0.08 -0.10 -0.16 -0.45 -0.02
Two-year Bond 0.00 0.00 0.00 0.00 -0.01 0.00
Consol 2.41 2.47 2.55 2.65 2.73 2.40

Date 1 Policies
One-year Bond 0.00 -0.03 -0.10 -0.06 0.05 0.00
Consol 2.44 2.54 2.73 2.63 2.59 2.43

Lack of Commitment (One-year and Consol)
Date 0 Policies

One-year Bond -0.04 -0.08 -0.09 -0.16 -0.45 -0.02
Consol 2.41 2.47 2.55 2.64 2.72 2.40

Date 1 Policies
One-year Bond -0.02 -0.04 -0.10 -0.07 0.06 -0.02
Consol 2.45 2.55 2.73 2.63 2.59 2.45

Notes. The table reports the debt positions (% of GDP) in three-period (Panel A) and four-period (Panel B)

economies with and without commitment.
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TABLE II
Debt Positions with Alternate Shocks

Commitment Lack of Commitment
Benchmark Benchmark 20 Shocks w/Fiscal Shock w/Prod. Shock

Panel A: Fiscal Shocks
One-year bond -2789.46 -0.005 -0.005 – –
Consol 101.76 2.22 2.23 – –

Panel B: Productivity Shocks
One-year bond -13.49 -0.007 -0.007 -0.028 –
Consol 2.71 2.21 2.24 2.15 –

Panel C: Discount Factor Shocks
One-year bond 0.00 0.000 0.000 0.062 -0.014
Consol 2.26 2.26 2.36 2.24 2.15

Notes. The table reports the average debt position (% of GDP) over 1000 simulations of 200 periods. The

shock processes follow discrete Markov-chains with 2 states (columns 1 and 2), 20 states (column 3), and 4 states

(last 2 columns).
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TABLE III
Debt Positions with Commitment to Spending (Lucas and Stokey (1983) model)

Commitment Lack of Commitment
Benchmark Benchmark 20 Shocks

Panel A: Fiscal Shocks
One-year bond -2789.32 -0.006 -0.008
Consol 101.76 2.22 2.21

Panel B: Productivity Shocks
One-year bond -90.06 -0.062 -0.060
Consol 5.54 2.24 2.31

Panel C: Discount Factor Shocks
One-year bond 0 0 0
Consol 2.27 2.27 2.37

Notes. The table reports the average debt position (% of GDP) over 1000 sim-

ulations of 200 periods, for a model with exogenous public expenditure. The shock

processes follow discrete Markov-chain with 2 states (columns 1 and 2) or 20 states

(column 3). In the model with fiscal shocks (Panel A), public expenditure takes the

same values as in the model with endogenous spending of Table II under commit-

ment. With different shocks (Panels B and C), public expenditure is fixed at the

average of the values taken in the corresponding endogenous spending models under

commitment.
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Figure I
Debt Positions with and without Commitment

The figure shows the optimal debt positions over time with commitment (left panel)

and without commitment (right panel). For the case with lack of commitment we report

averages across 1000 simulations.
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Figure II
Active Debt Management

The figure shows the evolution of debt positions for a particular sequence of shocks. The

shaded areas indicate periods in which the fiscal shock is low.
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Figure III
Fiscal Policy without Commitment

The figure shows the evolution of public expenditure, tax rates, total debt, and primary

surpluses for a particular sequence of shocks.
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Figure IV
Debt Positions with Different Debt Maturities

The figure shows the optimal debt positions with commitment (left column) and without

commitment (right column) under alternative values for the decay rate of the perpetuity.

For the case with lack of commitment we report averages across 1000 simulations of 200

periods.
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Figure V
Debt Positions under Alternative Variances and Persistences of Fiscal Shocks

The figure shows the optimal debt positions with commitment (left column) and without

commitment (right column) under alternative values for the standard deviation (first row),

and persistence (second row) of public expenditure. For the case with lack of commitment

we report averages across 1000 simulations of 200 periods.
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Figure VI
Debt Positions under Alternative Preferences

The figure shows the optimal debt positions with commitment (left column) and without

commitment (right column) under alternative values for the risk aversion (first row) and

curvature of leisure (second row). For the case with lack of commitment we report averages

across 1000 simulations of 200 periods.
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Figure VII
Maturity Structure of U.S. Government Liabilities in 2007

The figure displays the maturity structure of U.S. federal marketable debt (principal

and coupons payments), excluding TIPS, calculated using CRSP data.
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Figure VIII
Co-movements across Maturities (1980-2013)

The figure displays the (log) change in the sum of the liabilities with maturity between

0 and 10 years (solid line), between 10 and 20 years (line with circles), and above 20 years

(dashed line).
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