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Abstract

This paper fills a gap in the existing literature on least squares learning in
linear rational expectations models by studying a setup in which agents learn by
fitting ARMA models to a subset of the state variables. This is a natural spec-
ification in models with private information because in the presence of hidden
state variables, agents have an incentive to condition forecasts on the infinite
past record of observables. We study a particular setting in which it suffices
for agents to fit a first order ARMA process, which preserves the tractability
of a finite dimensional parameterization, while permitting conditioning on the
infinite past record. We describe how previous results (Marcet and Sargent
[1989a, 1989b]) can be adapted to handle the convergence of estimators of an
ARMA process in our self-referential environment. We also study “rates” of
convergence analytically and via computer simulation.
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for his comments.
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Introduction

This paper studies the convergence to a limited information rational expectations equi-
librium of a self referential system in which agents are learning by recursively updating their
estimates of an autoregressive, moving average model for endogenous variables. In the ex-
isting literature on least squares learning, e.g. Bray [1982], Bray [1983], Bray and Savin
[1986], Fourgeaud, Gouriéroux, and Pradel [1986], and Marcet and Sargent [1989a, 1989b],
agents are assumed to learn by recursively fitting finite order pure autoregressions. In mod-
els with private information and/or hidden state variables, the restriction to a finite order
autoregressive scheme is limiting because the stochastic structure of the rational expecta-
tions equilibrium gives agents an incentive to condition on the infinite past of the variables
that they observe (see Marcet and Sargent [1989b] and Sargent [1991] for elaborations of
this point). It is natural to seek what in earlier work (Sargent [1991]) we called a full order
equilibrium, namely, an equilibrium in which agents’ forecasting rules achieve the minimum
possible one step ahead forecasting error variance given the infinite record of past obser-
vations. In Sargent [1991], we described how in the context of Townsend’s [1983] models!,
such an equilibrium can be supported with finite order parameterizations by specifying that
agents forecast by using ARMA (autoregressive, moving average) schemes. Sargent [1991]
studied how to formulate and compute such an equilibrium, but did not analyze convergence
to it via least squares.

To study least squares learning in a simple version of such a setting, this paper analyzes
a modification of the hyperinflation model studied by Fourgeaud, Gouriéroux, and Pradel
[1986]. We alter their model in just one significant way: we assume that agents do not
observe the money supply, and that the only information on which they can base forecasts of
future prices is current and past prices.? For this setup, there may exist a limited information
rational expectations equilitbrium in which the price level is a first order ARMA process. We
study whether we can expect convergence to this equilibrium by a system in which agents

forecast by each period fitting a first order ARMA process to prices, updating their estimates

1 See also the model of Singleton [1987].
2 For hyperinflation models, this seems a useful assumption. At least during some of the hyperinflations,
it 1s difficult to believe that agents had access to an information set including the history of money supplies.
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of the ARMA parameters recursively. We study the convergence of the resulting system
under two distinct recursive algorithms for estimating ARMA processes: (i) pseudo-linear
regression, and (ii) the recursive prediction error method.?

We study convergence by adapting arguments described by Marcet and Sargent [1989a],
which in turn are based on arguments of Ljung [1977] and Ljung and Soderstrom [1983].*
The ordinary differential equations governing pseudo linear regression and the recursive
prediction error method are shown to differ, but to share a common rest point (the limited
information rational expectations equilibrium).

The eigenvalues of the associated o.d.e.’s at the fixed point shed some light on the
speeds of convergence of our two algorithms.® In particular, we use recent theoretical results
of Benveniste, Métivier and Priouret (1990) to get some results on rates of convergence
and how they depend on those eigenvalues. We use a method for estimating the rate of
convergence via simulation for situations in which we are without analytical results.

Systems in which agents form perceptions in the form of ARMA processes arise naturally
in a variety of contexts. In addition to the models with private information and hidden state
variables described by Marcet and Sargent [1989b] and Sargent [1991],¢ they arise in linear
models with sunspots and multiple equilibria. Evans and Honkapohja [1990] describe a
setup in which there are multiple equilibria differing among one another in the number of
parameters in their ARMA representations. Evans and Honkapohja study the stability of
these alternative equilibria in the face of some version of least squares learning. For technical
reasons, Evans and Honkapohja have yet to complete their analysis of stability for the case in
which the equilibria are of ARMA, as opposed to just AR, form. The results in the present

paper will be useful in contexts like theirs.

3 When applied in a “standard” (by which we mean non-self-referential) setting, the recursive prediction
error method is known to be statistically consistent and asymptotically efficient. Pseudo linear regression
may or may not be consistent, depending on the parameter values of the ARMA process, but is generally
not asymptotically efficient. See Ljung and Soderstrom (1983, chapters 3 and 4) for descriptions of the
conditions under which pseudo linear regressions fail to converge as sample size grow without bound.

4 Also see Kuan [1989]. Kuan and White {1991] is a useful treatment of issues related to ones studied in
this paper.

5 The arguments of this paper will extent to higher order systems (i.e., systems with more state variables.)

¢ The models of Townsend [1983] and of Lucas [1975] are examples.
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1. The Model

We adapt the inflation model of Fourgeaud, Gouriéroux, and Pradel [1986] as follows.”
Let y; be the log of the price level and z; be the log of the money supply at ¢. The variables

(yt, z¢) are determined by

(1.1) Yt = AE* (yeg1 | yr, we) + o0 + vy

(1.2) Ty = pri—1 + us + dug—q

where ), p, and d are all less than unity in absolute value, and (u¢, v¢) 1s a pair of mutually
orthogonal white noises with variances o and o2, respectively. Equation (1.1) is a version of
a demand function for money, while equation (1.2) is the assumed stochastic process for the
money supply, which is an exogenous, first order ARMA process. In (1.1), E*(yi+1 | yt, wi)

is agents’ forecast of y;41 at time ¢. Let this be given by

E*(yt-H , yt,wt) = Et(yt+1)
(1.3)

= ayy + cwy

where | a |< 1,] ¢ |< 1. The parameters @, c and the variate w; are determined by agents’

perceptions of a 1 — 1 ARMA model,
(1.4) Yt+1 = ayt + weg1 + cwy

where wy is believed to be the innovation in y; relative to the information set y* = (y, y¢—1,...).
Agents assume the time invariant model (1.4) for y; and estimate it via a procedure to be
described below. The force of (1.3) - (1.4) is that agents do not observe x, v, or us in (1.1)
and (1.2), but do observe the record y* = (ys,y¢-1,...). From the perspective of agents,
there are “hidden state variables”.

We shall now describe how to formulate and compute an appropriate notion of a ratio-
nal expectations equilibrium for this model. We do so by describing the mapping from a

perceived to an actual law of motion for prices, the same sort of mapping that was utilized

7 At its rational expectations equilibrium, the model of Fourgeaud, Gouriéroux, and Pradel is a version
of Sargent and Wallace’s [1973] adaptation of Cagan’s [1956] model.
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extensively by Marcet and Sargent [1989a] and Sargent [1991]. The method is first to define
the state of the system and to find its law of motion. Then we deduce the univariate law of
motion for the log price level by “conditioning down”, i.e., finding the projection of prices
on past prices and the innovation in prices implied by the law of motion for the state of the
system. This procedure generates a mapping from a perceived ARMA process for prices to
an actual one. A limited information rational expectations equilibrium is a fixed point of
this mapping. We now fill in some technical details involved in constructing this mapping.

Define the state of the system, z¢, and the system noise, ¢4, as

Yt

w u
Zt = ¢ y, €t = t

It Ut

Ut

Notice that both w; and u; are included in the state, where w; is the innovation in the
perceived law of motion. When the perceived law of motion for y; is given by (1.3) - (1.4),

then the actual law of motion for z; can be computed to be

(15) zZt = T(ﬂ)zt—l + V(ﬁ)ei

where 8 = [a ],

—Aéca —\éc? pé dé
_ | —Abca—a —Xoct —c pb db
(1.6) T(8)= | T o n
0 0 0 0
6 6
)
10

where 6§ = (1 — da — Ac)~ L.
Representation (1.5) - (1.6) gives the mapping from the parameters of the perceived law
of motion in (1.3) for y to the actual law of motion for the entire state vector z;. When (1.5)

is the actual law of motion for z;, for fixed 3 we can compute the covariance matrix of z;

associated with the stationary distribution of z;. In particular, let

n=e[a)[a]
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Let M,(B) be the covariance matrix Ez;z; associated with the stationary distribution implied

by (1.5) for fixed 5. Then M,(f) satisfies the discrete Lyapunov equation

(1.7) M. (8) = T(B)M-(B)T(B) + V(B)QV(B)

The Lyapunov equation (1.7) can be solved for M,(3) using any of several algorithms.®

Consider the subset of z,

Denote the second moment matrix of z,4 by M, (3). Evidently, M, () consists of the 2 x 2
submatrix in the upper left corner of M,(8). The covariance matrix M,,,(8) = Ezz,, is
the (4 x 2) submatrix consisting of the two left most columns of M,(3).

Notice that z,¢ is linked to z; by
Zat = €42t

whereea:[1 00 0]

01 00

We are interested in computing the projection of z4:41 on z4; when the law of motion

for z¢ is (1.5). Direct calculations establish that

(1.8) Ezat11 | 2at = S(B)2a
where
(1.9) S(8) = eaT(B) M2, (B)M,(8) " .

The first row of S(B) gives the coefficients in the projection of y;4+1 on y; and wy, while
the second row gives the coeflicients in the projection of w41 on y; and wy. Thus, when
the perceived projection of y;y; on y; and w; is determined by parameters 3, the actual
projection of yi4+1 on y; and wy is determined by the parameters 51(3), where S1(f3) is the
first row of S(B).

8 For example, by a “doubling algorithm” described by Hansen and Sargent [1990].
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2. Existence and Uniqueness of Stationary Equilibria

In this section® we describe the relationship between the fixed points of S; and limited
rational expectations equilibria. We state conditions for existence and uniqueness of a sta-
tionary limited information rational expectations equilibrium. We will show that stationary
equilibria do not exist for some parameter values.

Previous papers analyzing convergence of least squares learning mechanisms using the
o.d.e approach have used the facts that fixed points of the mapping S are the only possible
limit points of a least squares learning mechanism and that all fixed points of S correspond
to rational expectations equilibria both to establish that only REE can be the limit points
of the learning mechanism and to find conditions for convergence.!® But in the model of this

paper, it can happen that fixed points of S; are not rational expectations equilibria.

Definition: A stationary limited information rational expectations equilibrium (LIREE) is
a fixed point of the mapping S1, namely, a pair of parameter values that satisfies (as,cy) =
S1(ag,cy) that also satisfies the following two conditions:
(a.) the processes (y, w;) generated by these parameters are measurable with respect to
(zt, v, To—1,Vi-1,...)-

(b.) wy is measurable with respect to (y¢, yi—1,.-.).

What is different from previous papers is the measurability requirements. These condi-
tions are used because, as we will see in Proposition 1, there exist fixed points of 57 with
a non-invertible w;. The definition of 5] does not impose the natural requirement in ra-
tional expectations models that the prediction implied by the parameters (a,c¢) should be
measurable with respect to past information and past exogenous variables.

Let us see in more detail the evolution of y; and w; at the fixed point. First of all, from

equation (1.5) we have

1 [1+dL

= A
T—a LTZ5L Ut + Acwy + v

(2.1) Yt

® This section is focussed on some technicalities which can probably be skipped on a first reading of
the paper. In the computations described in subsequent sections of the paper, we always assume that the
existence conditions described in this section are satisfied.

10 Gee, for example, Marcet and Sargent (19895).




and

(2.2) (1= pL)ye=1/(1 = Xa) [(1 +dL)ue + (1 = pL)rews + (1 — pL)vt] .

Notice that if we can find a white noise with finite variance wy, and a parameter ¢ that satisfy
(2.3) (14 2L)we =1/(1 — Ap) [(1 +dL)us + (1 — pL)Aew; + (1 — pL)vt] ,

then combining (2.2) and (2.3) we know that y; has an ARMA(1,1) representation with white

noise wy. The following Lemma finds the value of S; at such parameters:

Lemma 1: Let ¢ be such that w; satisfying (2.3) is a white noise with constant variance.

Then (a,c) = (p,¢) is a fixed point of Sj.

Proof: From equation (1.8), it is enough to check that the processes for y; and w; generated
by the parameters (p, €) satisfy E[yi41 | yt, wi) = pys + cws. Now, if wy satisfies (2.3), we can

write

E[yt+1 | yt,wt] = pyt + cwy + E[wt+1 | yt,wt] )
and it is enough to check that E[wi+1 | yt, w¢] = 0. Since by the assumptions of the lemma
wy is a white noise, we have
cov(wit1, yr) = cov(wit1, pyi—1 + cwi—1 + wy) =

peov(wis1,y1—1) = p'cov(wis, Y1—i) ;

letting z go to infinity we have that cov(wy1,y¢) = 0. |1

Now it is clear that all we have to do to find fixed points of S; is to find values ¢ that

satisfy (2.3); the following proposition tells us what those are.

Proposition 1: There exist two fixed points of the mapping 51, given by

_ _ (=) = (£ -1V
af=p, cr= 1+)‘[5_(52_1)1/2]

(1= Mo)[6 + (8% ~ 1)'/?]
1+ A[6 + (82— 1)'/2)

af=p, Ef::

(1+d%)a24+(14p%)0?
2dog—poi)

where § =




Proof: Equation (2.3) implies
(2.5) M=Ap+ec)+cllw = |(1 +dL)us + (1 = pL)vy

This is the equation generating the w;’s in terms of the fundamentals. We want to find
values of ¢ that are consistent with w; in (2.5) being a white noise. Taking the variance and

the first autocovariance of both sides of (2.5) and using cov(w¢, wi—1) = 0, we have

(2.6) o (L= Ap+e) +*| = (1 +d*)of + (1 + p*)o}
and
(2.7) cl(1 = Mc+ p))e=do? — po? .

If do? — po? = 0 we see from equation (2.7) that the two solutions are given by (1 —A(c+p)) =

0 and ¢ = 0. Otherwise, using (2.7), we can eliminate o2, from (2.6) and get

C

(2.8) [mr -2 [T:T(Cpi_c)}

+1=0,

where 6 has been defined in the statement of the theorem. This is a polynomial in [mcp—m],

with solutions given by

C

(2.9) TP

] =5+ [62—1]1/% .

The formulas in the statement of the proposition follow immediately from (2.9).

To check that we have real solutions it is enough to check that | § |> 1. For convenience,
let a be the right hand side of (2.6), and 3 be the right hand side of (2.7), so that 6 = 55;
then, we have to check that o > 2| g |. If > 0, then

(2.10a) a=2|F=(1-d)?ei+(1+p)?%2>0
and if § < 0, then
(2.10b) a—=2|81=1+d)E+(1-plei>0,

so the solutions are real. |
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Proposition 1 gives the values of c that are consistent with (2.3). Now we have to find the
value of w; consistent with each cy; this is easily done by performing forward or backward
—C

recursion on (2.3) depending on whether [m] is larger or smaller than one in absolute

value. So, using (2.5), we can set

(2.11) w; = i [1_:/\_—(;_:)] [(1 +dL)usi + (1 — pL)v,_,]/[l ~Ap+ )]
1=0

if [ﬁ;ja] is less than one in absolute value and

(2.12) wy = Z [_1_—_):’;_;:?)] =~ [(1 + dL)ug4i + (1 — pL)vt-H] ;
1=1

otherwise.

This gives us the value of c; and the corresponding innovation of y;. To prove that
wy given by (2.11) or (2.12) is a white noise, simply observe that these satisfy (2.6) by
construction, which holds if and only if cov(w;, wi—1) = 0; that covariances with longer lags
are zero follows immediately from (2.5).

Now the issue is which of these fixed points is a REE. First of all, it is clear that if
wy has to be written in terms of current and past y’s then we will need that |c¢| < 1; but
this may not be enough; the equation that gives us the evolution of the w’s in terms of the
fundamentals is (2.5). Clearly, if [C\fm] is larger than one in absolute value w; will not
be measurable with respect to past exogenous variables. These requirements are formalized

in the following.
Proposition 2: Each fixed point of Proposition 1 is a LIREE if and only if | ¢ |< 1 and
| =50 1< 1
Proof: We can write wy in terms of past y's by setting w; = Y oog ¢'(1 ~ pL)ys—i, but this

sum is convergent if and only if | ¢ |< 1. Similarly, if [ﬁlch)] is larger than one in absolute

value equation (2.12) tells us that w; will depend on future values of the exogenous variables.

Finally, we come to the characterization of the limited information rational expectations

equilibria in terms of these fixed points of S;. The next proposition says that (p,cy) (i.e.,
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the first fixed point in Proposition 1 is the only candidate for being a LIREE, because the
fixed point we have labelled (p, ¢¢) does not satisfy the conditions of proposition 2. Also, this
proposition says that if (p,cs) does not satisfy the conditions of proposition 2, then there is

no equilibrium.

Proposition 3:
a) A LIREE exists if and only if ¢f satisfies the conditions of Proposition 2.
b) When a LIREE exists, the processes ys, wy generated by (a,c) = (p, cs) are the unique

rational expectations equilibrium with limited information.

Proof: We first prove part a). The statement that if s satisfies the conditions of proposition
2 then a LIREE exists follows immediately from Proposition 2.

Now we observe that

Ef 2 1/2

where the last inequality has been proved in Proposition 1. Therefore, ¢f can not be a
LIREE, and the only fixed point that can satisfy all the conditions for a LIREE is c;. If
cs does not satisfy the inequalities in Proposition 2, then no stationary equilibrium exists.
A stationary equlibrium would have to satisfy equations (2.3) and (2.5), and only (p,cy)
and (p,cy) satisfy these equations, but we have just ruled out ¢; as an equilibrium. This
argument also proves part b, because if c; satisfies the inequalities of Proposition 2 the

argument in the previous paragraph proves that there exists no other equilibrium. |

It is possible to find parameter values for which no stationary equilibrium exists. This is not
surprising in view of the work of Futia [1981], who studied a version of our model in which

2:

o, = 0. For some parameter values Futia found that no stationary equilibrium exists. For

our ARMA process for z¢, and if o2 = 0, the value for ¢ at equilibrium is

d(1 — Ap)

(2.14) 1+ Ad

For some values of the parameters this can be larger than one; (for example, if d = .5,A =

—.9,p = .8), and it is easy to show that for o2 small the value of c; gets arbitrarily close to

12




that given by (2.14).
Nevertheless, particular conditions on the parameters of the model can be imposed to
guarantee that there exists a unique stationary equilibrium. Some of these conditions are

the following:

Proposition 4:

Each of the following set of conditions is sufficient for existence of a unique stationary

LIREE:

a) A>0
b) d=0
c) ol arbitrarily large

d) ol arbitrarlily small

and the expression in (2.14) is less than one in absolute value
Proof: The proofs involve simple algebra and most of the details will be omitted.

a) We first need to show that § — (62 — 1)!/2 is less than one in absolute value. This follows
from the fact that this is a decreasing function of é, the fact that | § |> 1 (which has been
shown in the proof of proposition 1) and the fact that if § > 0 then §—(62—1)1/2 > 0 and that
if § < 0 then 6—(62—1)'/2 < 0. Now, if §—(62=1)"/2 > 0and p > 0| ¢5 |<| §—(82=1)/2 ||
1-Xp|< landif §=(62=1)"2 > 0and p < 0] ¢s |= (14 | Ap [)/(1/(6—(82=1)/2)+4) < 1,
where the last inequality follows from the fact that 1 < 1/(6 — (62 — 1)1/2) and | Ap |< A.

Similar arguments work for the case § — (62 —1)/2 < 0.

¢) As o2 goes to infinite 6 goes to —(1 4+ p?)/p, (6 — (62 — 1)1/2 goes to —p and ¢y goes to
—p, which is less than one in absolute value. |

This characterizes in some detail the stationary equilibria, the fixed points of S7 and
their relationship. There could be more fixed points of S, but they could not be LIREE
because they do not satisfy the requirements in proposition 2. Also, for all we know there
might be REE involving more error terms. Finally, we note that when one exists, the LIREE

equilibria studied in this section is of full order, in the sense used by Sargent (1991).
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3. Learning

We now turn to a learning version of the model. We continue to define T'(3) and V()

as in (1.6). The law of motion of z; is now given by
(3.1) ze = T(Bt-1)ze—1 + V(Bi-1)es

where 3¢ = [at, ¢t]. The parameters (ay,c) are estimators of (a,c) in (4). Agents behave as
though they live in a time invariant system, though (3.1) belies that belief. The parameters
are estimated via one of the recursive algorithms described by Ljung and Séderstrom [1983].
We consider two possible estimators: (i) pseudo-linear regression, and (:i) the recursive

prediction error method.

Pseudo Linear Regression

Under pseudo linear regression, the system evolves according to

(3.2a) Yt = ar-1yt-1 + -1
—_ | Yt-1

(32b) ‘(/)i - [ﬁ)t—]]

(3.2¢) Wi = Yt — Y

(3.2d) =1/t

(3.2¢) Ry = Ri1 + wi[ntyy — Ri1]

aty _ | a1 -1 »

(3.2f) [CJ = [CM} + 3 Ry bty

(3.2h) yt = e12t, Pr-1 = (a4-1 c—1)

(3.20) ze = T(Bt-1)zt-1 + V(Bi-1)e

14




Recursive Prediction Error Method

The system is identical to that under the pseudo linear regression, except that the second

equation in the system, (3.2b), is altered to

Wi—1

(3.20) Yt = —ci1¢1-1 + [yt_l }

For estimating the parameters of an ezogenous ARMA 1-1 process, the recursive predic-
tion error method has an interpretation as a recursive optimal instrumental variable estima-
tor. Both pseudo linear regression and the recursive prediction error method are devices for
recursively estimating parameters via stochastic approximation on the orthogonality condi-
tion Ewypy = 0. Pseudo linear regression chooses ¥y to impose that wy be orthogonal only

to [5}1—11 ] , while the recursive prediction error method forms the instrument ¢, as the geo-

metric distributed lag of [it_l } given by (3.20'). It can be shown that v given by (3.2b')

t—1
is an optimal form of instrument for an ARMA 1-1 model.!!

The Associated Ordinary Differential Equations

Application of the apparatus of Marcet and Sargent [1989a, 1989b] can be used to find
systems of ordinary differential equations whose limiting behavior governs the limiting be-
havior of the systems of stochastic difference equations (3.2). For each algorithm, there is
a ‘large’ o.d.e. that governs the global convergence of a version of the algorithm which has
been altered by the addition of a ‘projection facility’ that instructs the algorithm to ignore
observations that threaten to drive 3, R; outside of a prescribed set. There is also a ‘small’
o.d.e. whose behavior governs the limiting behavior of §; in the locality of a fixed point.
We provide a formal statement of convergence theorems in the appendix. These theorems
are simple adaptations of propositions in Marcet and Sargent [1989a, 1989b] to the current
environment. In the remainder of the text of this paper, we shall describe these associated

o.d.e.’s.

11 Gee Stoica, Soderstrom, and Friedlander [1985] for a discussion of a recursive optimal instrumental
variable estimator. See Hansen and Sargent [1982] for a treatment of nonrecursive optimal instrumental
variables estimators for a class of linear rational expectations models.
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Pseudo linear regression
For pseudo linear regression, the ordinary differential equation system is
d
Eﬁl = R Evpyiy
(3.3)
d

ERz M:m(ﬁ) - R

where M,,(8) = Ezq2L,;. For ¥4 = 24¢—1, as under pseudo linear regression, the first equation

of (3.3) can be rewritten as

%g' = R Ezgo1(e1T(B)ze—1 + 1V (B)er — B22,)
= R_lEzat—l(ZiqT(ﬁ)lel — zg4-15)
= R_lea(ﬁ)[Mza(ﬁ)—lea,Z(ﬂ)T(ﬁ)lell - 8]

(3.4) 28 = B Mo (B)S(8); — )
where
(3.5) S(8) = eaT(B) My oo (B) M. (8)~" .

In (3.4), up selects the first row of S(3).

In summary, under pseudo linear regression, we have the o.d.e.

&y B ()S (B -

d
ER =M, (8)-R.

(3.6)

Recursive Prediction Error Method

Under the recursive prediction error method, the o.d.e. is
d !
—B' = R By
dtﬁ (I

d / )
- = Eppi() - R .
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The first equation can be represented as

d
(_ﬁﬂl = R™VEY(yt — Bzar—1)
= R_lEd)t(elT(ﬂ)zt_l + e1V(B)er — Bzar—1)
= RT'Epy(z;_,T(B) '€} — z0y_1 )
= R-I[Ed)tzé_lT(ﬂ)lell — Eyzey_1 8]
= R Epuzgy[(Evpizg_1) " (Evpizi_y)T(B)'e; — B]
or
d ! -1 1 [ !
(—ﬁﬁ = R™ Etizqy_1[P(B)u] — B']

where

(3.7) P(8) = T(B)M. (B M., 4(8)"" .

In summary, under the recursive prediction error method, the o.d.e. is'?

d ! - ) !
=8 = R\ My.,(B)P(8)s; - B

d
G R=My(B)-R.

(3.8)

The o.d.e.’s (3.6) and (3.8) play the roles of the ‘large o.d.e.’s’ in the analysis of Marcet
and Sargent [1989a, 1989b]. If we can find a set in the space in which (8, Ry) lives such

12 To solve the large o.d.e. for the recursive prediction error method requires a formula for Ev1; evaluated
at a fixed B. Here is such a formula. Form the stacked state space system

2 | _|TB) 0 2 V(B)
) [m] ‘[ ca —cf] M +[ 0 ]*
(1) Xty = H(B) Xt + G(B)et+1
where X; = [;}t ] In (*), T(B) is (4 x 4), e4 is (2 x 4),and — ¢] is (2 x 2). The discrete Lyapunov equation
for (1) is
1) Mx(8) = H(B)Mx (B)H(B)' + G(B)QG(B),

where Q = Feie;. We solve (f) and pick off the (2 x 2) matrix on the lower right of this equation to get
Evuify.

17




that the large o.d.e. has a unique fixed point and is globally stable within that set, then we
can find a modified version of our recursive algorithms (3.2) that converges strongly to that
fixed point. The modification of the algorithm involves imposing a ‘projection facility’ that
instructs the algorithm to ignore observations that threaten to drive the parameters outside
the set just described. The appendix contains formal statements of the convergence results

that can be attained for our systems.

The operators P and S share a fixed point

The operators P and S associated with the recursive prediction error method and pseudo
linear regression, respectively, share a fixed point. We formulate this fact in terms of the

following proposition.
Proposition 5: Suppose that 3y satisfies B = S1(By). Then By = Py(5y).

Proof: We have noted that 8y = Si(8y) implies that ws(f8y) is an innovation for y; relative
to y'~1. This implies that Ev;_1(ff)w; = 0 which implies that 85 = P1(By).

Interpretation of S;(8) and P,(8)

Consider the regressions
21 =V2q + 11, Ezaary =0
2t = ¢zt + 71, Bty =0.
The normal equation for these two regressions are
Y= My (B)M:o(8)™
¥ = M.y ()M, 0(8)7

Here v is the “ordinary least squares” estimator of the regression equation, while ¢ is an
Y y q g q )

(3.9)

“Instrumental variables” estimator.

Notice that we can represent S1(8) and P(f) as follows:
51(8) = wiT(B)y

(3.10)
Pi(B) = wT(B)¢ .
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Formulas for Moment Matrices
To compute P;(f), we need formulas for M, 4(8) = Ezi—1¢; and M,, ,(8) = Eza—14}.
To obtain these, we first use (5) to compute

(3.11) Ezitjzy = T(8) M()e -

Next, we have from the definition of ¢ in the pseudo linear regression (henceforth denoted

RPEM) (equation 3.24') that

o0

Ez_1dy = Z(_C)jEzt—IZ;t—j—l :
(3.12) :0
=Y (—cT(B)) M.(B)e,
=0
(3.13) Ezi_10y = (I 4+ cT(8))"'M,(B)e, .
We also have
(3.14) Ezg19; = ea(I + cT(B)) M, (B)el, .

Formulas for S;(8) and P;(f)

Using the above formulas for the moment matrices, we have the following formulas for

P1(B) and 51(8):

Pi(B) = erT(B)[(I + cT(B)) ™' M.(B)e,]
x lea(] + cT(8)) "' M:(B)el] !,

(3.12)

(3.13) 51(8) = exT(B)[M=(B)eglleaM:(B)e] ™" -
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Local Analysis of the o.d.e.’s

Recursive Prediction Error Method

Consider the “large” o.d.e. for the RPEM:

d
5B = B My (B)[P()'<, — B
d R=My(B)—R
dt - 'l) ) *
In the vicinity of a fixed point B¢ of P1(f8y), this system has dynamics that are governed by
a version of proposition 3 of Marcet and Sargent [1989a)]. In particular, we have to study

the matrix

OJcol . __ ' ' !
Mp = _B?E—IE_’[R "My...(8)(P(B) — B8] la=g; -

Computing the indicated derviative and evaluating at § = 3y gives

| dcol p ' '
| ap = R = 7 Moo (8) (P1(B5) = B7)

dcol P (B)
dcolg 1} ‘

+ R My, (81 |
By

‘ or

| p = R () [ 20T

Jcolf’ ‘ﬂ=ﬂj

_ 1} ’
\ because Pi(8f) = By.

To check the local stability of the RPEM, we have to compute .#p and check whether

its eigenvalues are all strictly negative in real part.

Pseudo Linear Regression

; Consider the “large” o.d.e. (3.6) for pseudo linear regression:

S8 = R M, (B)(S(B)'u; - B

d
™ —— Mz s R .
R = M.,(6)
The dynamics of the algorithm in the vicinity of §; are governed by
dcol . _; . .
= R Mz S e = .
‘//{S (9c01ﬂ’[ a(ﬂ)( l(ﬂ) ﬂ)] |,3 ,Bj
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We can compute

dcolS1(B)
S = [ 8 lﬂ’ - I] ?
o B=B;
because at § = fy, R™'M,, = I. To determine the local stability of the system under
pseudo linear regression, we can compute .#y and check whether its eigenvalues are all

strictly negative in real part.
Simulations

In this section, we describe solutions of the large o.d.e. (3.8) for the RPEM for two sets
of parameter values. We also report a simulation of the system operating under the RPEM
For our first parameter set, we choose A = .75,p = .8,d = —.95,02 = 02 = 1,04, = 0. For

these parameter values, the equilibrium values are a = .8, ¢ = —.9559, and for the recursive
4.5530 6.9665

6.9665 19.0026]'
calculated that the eigenvalues of .#p at the fixed point are (—.3924,—.1035) and that the

prediction error method R = M, = | For these parameter values, we
eigenvalues of #s are (—.4002+.4517z). For starting values of (a(0) = .1,¢(0) = 0, R(1,1) =
20, R(2,2) = 30, R(1,2) = 20), we solved the large o.d.e. (3.8) for the RPEM by using a
Runge-Kutta algorithm.!3 Figures 1 and 2 plot the solution. Evidently, (3, R) is converging

to equilibrium values.

02 - T k] T v v - ~ —
o} Bt
20 R(22) 2
02 - L At R
041
06} J
08
c
o100l 02 03 04 05 06 07 08 09 o 10 20 % a0 50 0 70
Figure 1. Parameter d = —.95. Plot of a versus ¢ determined Figure 2. Parameter ¢ = —.95. Plot of a,c, and My as de-
by big o.d.e. for recursive prediction error method. a is on the termined by big o.d.e. for recursive prediction error method.
horizontal axis. Time is on the horizontal axis.

13 We used the MATLAB program ode45.m.
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005} 3t R(LD 1
20 4
o1t ‘
0.15} 4 W
R(2) ]
o2l ] REY)
5 :
a
-025¢+ ok
c
33 02 03 04 0.5 0.6 07 038 09 5 10 20 30 40 50 60 70
Figure 3. Parameter d = 0. Plot of a versus c determined by Figure 4. Parameter d = 0. Plot of a, ¢, and My, as determined
big o.d.e. for recursive prediction error method. a is on the by big o.d.e. for recursive prediction error method. Time is on
horizontal axis. ) the horizontal axis.
Figures 3, 4, and 5 describe the solutions of (3.8) for a second parameter set which is equal
to the first except that now we set d = 0. Here the equilibrium values are ¢ = .8, ¢ = —.1808,

22.9489 9.6586
9.6586  8.5408

the eigenvalues of .#s are (—1.1017 £ .2084¢), while those for .#p are (—1.0922 £ .48352).

and for the RPEM, R = M, = | ]. For these parameters, we calculated that
Figures 3, 4, and 5 give the solutions of (3.8) for the same initial conditions used above. The
convergence to equilbrium is more rapid now, which is consistent with the smaller eigenvalues

of .#p for the second set of parameter values.

08}

06}
04} 1

02

P — |

04 " s " — .

Figure 5. Parameter d = 0. Plot of ¢ and ¢ determined by
big o.d.e. for recursive prediction error method. Time is on
the horizontal axis.

Figures 6 and 7 report the results of simulating the recursive prediction error method for
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the above parameter settings using a pseudo random number generator to produce Gaussian

5 4
4 5]. We

set the initial value of ¢ in the simulation at ¢ = 100, and simulated the system out to

¢'s. For this simulation, we set initial conditions of a(0) = .1,¢(0) = 0, R = |
¢t = 5000."* The simulated paths for a and ¢ (and also those for R, which aren’t shown)
seem to be converging to their equilibrium values. Notice how qualitatively figures 6 and 7

resemble figures 3 and 4, respectively.

08}

0.6

0.1 ) 04}

0.15} i 02

02

oF
025
o2 - [ —
0.3
0.35 " " " 1 . " 04 . " N
0.1 02 03 04 0.5 06 0.7 08 09 0 500 1000 1500 2000 2500 30Q0 3500 4000 4500 5000

Figure 6. d = 0. Plot of a versus ¢ for a simulation of the Figure 7. d = 0. Plot of a and ¢ for a simulation of the system
system with the recursive prediction error method. a is on the with the recursive prediction error method. Time is on the
horizontal axis. horizontal axis.

We have computed solutions of the differential equation for many other parameter values
and initial conditions. For all the values that we have checked, the eigenvalues of the .#’s
were always negative in real part, and the solutions of the big o.d.e. always converged to
the equilibrium for alternative starting values that satisfied ¢ < 1,¢ < 1. We also computed
solutions for the system governed by pseudo linear regression, with qualitatively similar
results. As with the above two settings of parameter values, the real parts of the eigenvalues
of the relevant .#’s indicated slightly slower rates of convergence for pseudo linear regression.

The propositions stated in the appendix and in Marcet and Sargent [1989a, 1989b)
provide more details about the senses in which the limiting properties of our learning systems
can be discovered by studying their associated o.d.e.’s. These propositions support the

following conclusions abcut the model of this paper:

14 We did not employ a projection facility in this simulation.
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(i.) A version of Margaret Bray’s [1982] result holds, stating that the only possible limit
point of one of our learning algorithms is a limited information rational expectations
equilibrium.

(ii.) Global convergence of the algorithms to a rational expectations equilibrium depends on
the behavior of the “big” o.d.e. at the boundary of the set D; defining the ‘projection
facility’. Almost sure convergence depends on the trajectories of the o.d.e. pointing
toward the interior of the set D;. Even for models as simple as ours, the big o.d.e. has
a five dimensional state vector, causing us to resort to numerical methods to check the

behavior of the trajectories.

(iii.) Local stability is governed by the eigenvalues associated with a smaller o.d.e.

4. Speed of Convergence

In this section we describe some results on the rate of convergence that we attain by
applying a new theorem by Benveniste, Métivier and Priouret. We also describe a numerical
procedure for estimating the rate of convergence by simulations. We first apply this procedure
to the model of section 1 maintaining the hidden information assumption. Then we consider

a full information case.
Analytic Results

During the last decade our understanding of what determines convergence of least squares
learning schemes in a self-referential dynamic economic model has increased considerably.
Our knowledge about the speed of convergence, however, is very limited.!s

A relatively new result in Benveniste, Métivier and Priouret (1990) (Theorem 3, page
110) seems to be the most powerful result up to date. Consider an on-line algorithm that

obeys

15 Ljung and Soderstrom [1983] point out that asymptotic distribution results for off-line estimators are
only available if they they mimick Gauss-Newton algorithms. In the case of maximum likelihood, the
asymptotic distribution for the off-line algorithm coincides with the usual distribution of maximum likelihood
estimators. For pseudo-linear regressions of exogenous ARMA models, where the direction of the estimator
is not updated in the steepest direction to maximize the likelihood function, even though they are consistent,
“No explicit expression for the aymptotic covariance matrix for the estimates . .. is known in general” (page
142).
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Bi = Bi—1+ (1/)Q(Bi-1, 21) .

Let h(B8) = E[Q(B,2)], where z; in this expectation represents the process that obeys
equation (1.5) for 8 given, and let 8 be such that h(3) = 0. The theorem of Benveniste et.
al. concludes that if the derivative of h(f3) has all eigenvalues less than —1/2 in real part,

then

t5(8: — Bf) = N(0,P) ,

where the matrix P satisfies

[1/2 + hg(By)1P + PU/2 + hg(Bp) + EQ(By, 2)Q(B, z1) =0

Thus, if the above conditions are met, we have root-t convergence as in the classical
statistics case, although the formula for the variance of the estimators § is modified, due
to the presence of the terms depending on hg. Notice that in the classcial case hg is equal
to the identity and P is the classical variance-covariance matrix. Also, we see that for
higher eigenvalues of hg(8y), convergence is slower in the sense that the asymptotic variance-
covariance matrix of the limiting distribution is higher.

Applying these results to least squares learning, we know that hg(8y) = as—},(ﬂﬂl—) — I (see
Marcet and Sargent [1989b], Proposition 1, statement iv)), so that the condition to apply
the theorem by Benveniste et. al. translates into all eigenvalues of 0.5,(85)/98 being less
than 1/2 in real part, which delivers root-t convergence.!®

When this condition on the eigenvalues of the derivative of Sy is not met we know of
no analytic results on asymptotic distributions that we can apply here. The reason the
Benveniste et. al. theorem does not apply is that the importance of initial conditions fails

to die out at an exponential rate as is needed for root-t convergence. Intuitively, root-t

convergence obtains if the autocovariance of a process is summable, which means that the

16 Notice that the results for the Gauss-Newton algorithm in Ljung and Soderstrom (1983) that we mention
in the previous footnote are a special case of this theorem, since the derivative of h in Gauss-Newton
algorithms is zero at the true parameters.
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effect of initial conditions evaporates at an exponential rate, and this only happens if hg
is low. All of this suggests that if hg(By) is too large, (8y — B¢) may go to zero at a rate
slower than root-t, unlike the usual case with classical estimation in stationary time series
processes.!” In other words, if the derivative of Sy is too large, we expect ts(ﬁt — Bf) to go

to zero only for 6 < § < 1/2.

Rates of Convergence by Simulation

In this section we describe a numerical procedure for exploring the rate of convergence
by simulation. The Monte-Carlo calculations of the rate of convergence are based on the

assumption that there is a § for which
(4.3) (60— By) > F

for some non-degenerate, well-defined distribution F' with mean zero. Then ts(ﬂt —pBf)— 0
for 6 < &, and we will call § the rate of convergence of {5;}.

Letting 0% denote the variance under the distribution F, (4.3) implies that E[t}(3; —
Br)l — o

as t — oo. Therefore,

V)

E[t(8: — B¢)I*

1
E[(kt)*(Bu — Br)]?

which, in turn, implies that

E(B: — 5f)2 26

—_— - o k as t — 0o .

E(Bu — Bf)?
This justifies using

E(B: — B¢)? 1(1/2)

(4.4) 6 = (1/log k) log (Be = By)

E (/Btk - ﬂ f )2
for large ¢ as an approximation to the rate of convergence. Given t and k, the expectations

involved can be approximated by Monte-Carlo integration, that is, by simulating a large

17 Some recent results in the learning literature in economics point to similar conclusions. Vives [1990]
obtains slower than root-t convergence rates in a model with Bayesian learning, and Mohr [1990] gives a
lower bound for the speed of convergence in a simple model, and this bound can be lower than 1/2. Theorem
2.2 in Mohr [1990] is not explicitly presented as a lower bound, but application of the Benveniste et. al.
theorem that we have used described confirms that Mohr only provides upper bounds, since his lower bound
is given by A in our full information model, but the derivative of A(-) is Ap. Our simulation results in the
next section indicate that those upper bounds are tight when A is close to 1.
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number N of independent realizations of length ¢ and tk, and calculating the mean square

error across realizations.

Rates of Convergence with Hidden and Full Information

We now analyze numerically the rate of convergence in the model of the previous sec-
tions with and without hidden information. We start analyzing the version of the model
with hidden information and agents using ARMA learning schemes, as in section 1. It will
turn out that, with this informational structure, this model is not sufficient to study the
most interesting issue, because root-t convergence always seems to hold because the relevant
eigenvalues are always less than -1/2 for this model. This prompts us to look at a version of
the model with full information, where agents see the shocks u; and v;.

In all the simulations we calculated the rates of convergence with 1000 independent
realizations. We used three different seeds of the random number generator, anc the rates of
convergence were within about .03 of each other. For both versions of the model the initial
conditions for the parameters were set equal to the limiting point, so that 8y = fy; for the
matrix Ky we used the second moment matrix at the fixed point times one hundred, so this is
the true proportions of the elements of this matrix with as much weight as if we had had 100
observations at this point; therefore Rp = M,(B¢)-100. We have also performed simulations
with initial conditions away from the fixed point of S; the results on the rate of convergence
are not affected by the choice of initial conditions, although they slow down convergence
considerably, particularly in the cases with a large derivative of S, as in the model with full
information. For the case of hidden information we used a projection facility that ignored
observations that led the beliefs about a; to be larger than (ay +1)/2.

Table 1 reports the rates of convergence for the model of section 1 with hidden infor-
mation and the least squares learning scheme (pseudo-linear regression). These rates are
calculated with the Monte-Carlo method described above. Each table uses parameter values
p=.90, =0y =.1,d =0, but A varies in small increments. We report the eigenvalues in
real part of the derivative of S for each value of A; they are all negative, so that the theorem

of Benveniste et. al. applies.!” Our calculations show that the numerical rate of convergence

18 In tables 1 and 2, sometimes one number is recorded in the column labelled eigenvalues, and sometimes




is very close to 1/2 when the length of the observations goes from 2000 to 10000, but the
rate can be much smaller below 2000; in fact, the rate is smaller the larger is A. So the
assertion of the theorem of root-t convergence seems to be nearly true in samples of about
10000. It is remarkable, though, that in samples of smaller size the rate of convergence can
be very low; in particular, for the highest X there is almost no improvement in mean square
error when going from a length of 500 to 2000 observations.

Table 2 takes the same model and the same informational structure as the previous table,
but it uses the learning scheme based on the recursive prediction error method. We see that
the eigenvalues are even more negative than in the previous table, so that the Benveniste et.
al. theorem applies, and we have root-t convergence.

Since the eigenvalues of the derivative of S and P are always negative in Tables 1 and
2, the rates of convergence there can be used to illustrate the short sample properties of
the model, and to see if the asymptotic distribution is a good approximation or not. We
calculated the eigenvalues of S and P for many different parameter settings of the model
and we always found the eigenvalues of the derivatives had negative real parts. This means
that if we use the model of section 1, with hidden information and ARMA learning schemes,
we can not explore our conjecture of the previous subsection hat the larger the derivative
at By, the slower is the rate of convergence when the theorem by Benveniste et. al. does
not apply. For this purpose we modify the model slightly and assume that agents observe
all shocks dated t or earlier (including u’s and v’s), so that they form expectations using
the only relevant information, namely z, and their expectations about the future are given
by Et(yt_H) = fiz¢, where f; is the OLS estimate of a regression coefficient of y;41 on
z¢.1Y version of this model has Then this becomes a minor complication in the Example
d in Section 4 of Marcet and Sargent [1989a), and it is easy to check that the mapping S

(identical to the mapping 7' in this example) and the fixed point 35 are given by

S(B)=p(1+AB), Br=p/(1-2Ap),

two numbers are recorded. When only one number is recorded, it means that the relevant eigenvalues occur
as a complex conjugate pair and that we are reporting the pair’s common real part.
19 We analyzed learning within a version of this model in Marcet and Sargent [1992].
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so that ia(gf—) = pA.

Table 3 reports calculations for the same parameter values as Tables 1 and 2. We can see
how the rate of convergence is very slow for high values of A and, therefore, for higher values
of the derivative of S. These simulation results confirm our conjecture stated in the last
section that the rate of convergence can be slower than 1/2 in least squares learning models
when the Benveniste et. al. theorem does not apply, and that the higher the derivative of
S the lower the rate of convergence. It also confirms that the upper bounds in Mohr [1990]
can be reached for p close to 1.

Notice that, in table 3, the Benveniste et. al. theorem applies for A < .595, but the rates
of convergence are much smaller than 1/2 even for sample sizes of 10000. This shows that
the larger the derivative of S the longer it takes for the asymptotic distribution to take over;

in other words, for A = .1 the rate is nearly 1/2, but for larger A’s we need a much longer

sample size.

S(p)

Q )

B, S(B,) P, B

Graph 4.1 A Flat S(8) mapping

The intuition for the slower speed of convergence when the derivative of S is close to one

is straightforward. The least squares learning algorithm adjusts each parameter towards the
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S(p)
[

Graph 4.2 A Steep S(8) mapping

truth when new information is received (see Marcet and Sargent [1989a]); more precisely,
the new belief 5;41 will be an average of the previous beliefs 3; and the truth S(8;) plus an
error; now, as graph 4.1 shows, if the derivative of S is low S(f) is very close to (5 itself
while if the derivative is close to one (as in graph 4.2), S(f) is close to ; instead of being
close to 3¢, so the average can stay far from the fixed point for a long time.

Comparing the results in Table 1 with those in Table 3 is of independent interest because
they show that, in this model, the rate of convergence is slower with full information than
with private information. More precisely; for high values of A and p we have root-t conver-
gence with private information but we have very slow convergence with full information. In
this sense, the model with hidden information is more stable than with full information. In
the model with full information, even for very large samples, the beliefs have not converged.
This means that agents pay a lot of attention to new information that is being received, and
that the economy may be moving towards the limit for still quite a while in the full infor-
mation case, while with hidden information the economy takes fewer periods to converge to

1ts limit.
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TABLE 1

Hidden Information and ARMA learning with pseudo-linear regression

p—.9 Oy =0y = .1 d=20

eigenvalues
) ) of Sg in
A £ =2500to 2000 ¢=2000to 10000 real part

1 476 475 -.0581 , —.342
145 473 474 —.082 , —.337
.19 471 473 —.158 , —.249
235 467 473 -.195
28 464 473 —.190
325 461 473 —.185
37 457 473 —.182
415 454 472 —.176
46 450 472 -.177
005 446 471 —.177
.99 443 471 —.185
095 438 471 —.192
.64 435 470 —.204
.685 430 470 —.227
73 426 470 —.253
75 421 470 —.291
.82 417 470 —.348
.865 410 470 —.440
91 403 470 —.5967
955 003 442 -314, -1.24
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TABLE 2

Hidden Information and ARMA learning with recursive prediction error

eigenvalues
) ) of Pg in
A t=1500to 2000 ¢=2000 to 10000 real part

1 .389 .486 —.241 , —.342
145 .389 487 —.27

.19 .388 .489 —.269

235 387 490 —.25

.28 .386 491 —.259

325 385 .492 -.252

37 384 .493 —.246

415 383 495 —.241

.46 381 497 —.235

505 .380 .499 —.237

.93 379 .500 —.242

.64 377 504 —.261

.685 376 .506 —.280

.73 375 .508 —.305

775 373 510 —.343

.82 371 513 —.399

865 .368 D15 —.486

91 .365 516 —.405 , —.818
955 .368 481 —.287 , —1.37
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A

1
145
19
.235
.28
325
37
415
.46
905
99
995
.64
.685
13
75
.82
.865
91
955

Full Information

t = 500 to 2000

363
394
345
334
323
310
297
.282
.268
291
234
.216
197
176
.156
134
112
.089
.065
.040

TABLE 3

)

d=0

eigenvalues

of 5g in

t = 2000 to 10000 real part

33

493
488
482
476
468
459
449
435
421
404
.386
367
343
319
292
.264
234
.202
169
136

.09
13
A7
21
.25
.29
.33
37
41
45
49
.94
.98
.62
.66
.70
14
18
.82
.86



5. Conclusions

This paper has described two main extensions to our earlier work on convergence of least
squares learning schemes to rational expectations equilibria. First, we showed by example
how economic models in which agents are estimating ARMA models can be analyzed using
the ordinary differential equations approach. Second, we have obtained some results on the
rate of convergence.

Using analytic results from Benveniste et. al. and some numerical results from Monte-
Carlo simulations, we have argued that the speed of convergence to the limiting rational
expectations equilibrium is slowed down by higher eigenvalues of the derivative of S at the
fixed point. This affects even the rate of convergence; in particular, if the eigenvalues of the
derivative of S at the fixed point are larger than 1/2, the speed of convergence is lower than
5, so that we don’t obtain the usual asymptotic distribution in classical econometrics with
stationary stochastic processes. Convergence to rational expectations can thus be quite slow,
depending mainly on the derivative of the mapping from perceived to actual expectations S.

In the model of this paper, this leads to the surprising conclusion that it takes a longer
time to converge to the rational expectations equilibrium when agents have full information
than when agents have hidden information. This happens because the mapping S from
believed to actual expectations is much more informative about the fixed point with hidden
information.

Also, this low speed of convergence opens up the possibility of having the wrong asymp-
totic distribution for test-statistics when the null hypothesis is rational expectations but the
observations are generated by least squares learning. More precisely, any parameter estimate
that is a function of 8; may converge to its limiting value at a rate slower than t°, so that the
confidence intervals from classical econometrics will not be correct; in fact, their size will be
arbitrarily smaller than the size of the correct intervals as the number of observations goes
to infinity. Then assuming rational expectations will lead us to reject the null hypothesis
too often, even if the structure of the model economy (leaving aside expectations) is correct.

A similar point is made in Bossaerts (1992).
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Appendix

In this appendix, we state convergence propositions for the recursive prediction error
method and for pseudo linear regression.

We define the following sets:

Ds = {8 | the operators T(8) and V(f) are well defined, and the eigenvalues of T'(f3)

are less than unity in modulus }.

D 4s = the domain of attraction of a fixed point 35 of the o.d.e. (3.6).

D 4p = the domain of attraction of a fixed point 8 of the o.d.e. (3.8).

For the purpose of defining a “projection facility” in terms of which a convergence the-

orem can be stated, we introduce the following additional notation.
Ry = Ry + mi{ve; — Ri-a)
(Al) _
B = Bi—1 + mR; Mbyivy,
where recall that ; = [a; ¢;]. Define two sets Dy and D, that satisfy Dy C Dy C Rz"?(a).

The set D; will play the role of a set within which we force the algorithms to stay. In

particular, we consider the following modified version of our algorithms:

(42) (B, Ry) = {BuRt if (i, Ry) € D,

some value in Dy otherwise.
The two propositions stated below pertain to versions of the algorithms (3.2) described in
the text that have been modified according to (A2).
We are free to choose D to be a set that is contained within but that is arbitrarily close
to D;. As a practical matter, then, the modified algorithm is defined by the choice of the
set Dy.

We make the following assumptions:

Assumption 1: The operator S has a unique fixed point 8y = S(By) that satisfies 8 € D;.

Assumption 2: For f € D, T is twice differentiable and V has one derivative.

Assumption 3a: The covariance matrix M,,(fy) is nonsingular.

or

Assumption 3b: The covariance matrix My (fy) is nonsingular.

Assumption 4: The process ¢, is serially independent; E | &; |P< oo for all p > 1.
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Assumption 5: There exists a subset {2y of the sample space with P(§y) = 1, two random
variables C(w) and Cz(w), and a subsequence {t;(w)} for which

| Zuy(w) |< C1(w)

| By (w) |< Cao(w)
for allw € g and h =1,2,....
Assumption 6: Assume that D; is closed, that D; is open and bounded, and that 8 € D,
for all (8, R) € D;. Assume that the trajectories of the o.d.e. (3.6) or (3.8) with initial
conditions (3(0), R(0)) € Dy never leave a closed subset of D;.

We now state

- Proposition Al: Assume that (f;, Ry, z1) are determined via (3.2) as modified by (3.2}')
and (A2). Suppose that assumption (1), (2),(3b), and (4) are satisfied.

(i.) Assume also that assumptions (5) and (6) are satisfied and that Dy C Dgp. Then
P[Bi — Bfl = 1.
(ii.) Let B # B, and assume that My(8y) is positive definite. Then P[8; — ﬂ] = 0.

(iii.) If .#p has one or more eigenvalues with strictly positive real part then P[8; — 5] = 0.
For pseudo linear regression, we have

Proposition A.2: Assume that 3, R, 2 are determined via (3.2) as modified by (A2).
Suppose that assumptions (1), (2), (3a), and (4) are satisfied.

(i.) Assume also that assumptions 5 and 6 are satisfied and that D1 C Dug. Then
P8y — By] = 1.
(ii.) Let B # Bs and assume that M, (By) is positive definite. Then P[8; — Bl =0.

(iii.) If #s has one or more eigenvalues with positive real part, then P{8; — S¢] = 0.

These two propositions can be proved simply by retracing the steps of propositions 1, 2,

and 3 of Marcet and Sargent [1989a].
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