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Abstract

A Margrabe or exchange option is an option to exchange one asset for another. In
a general stochastic volatility framework, by taking the second asset as a numeraire,
we derive pricing as well as approximate pricing formulae for Margrabe options. The
correlated Stein & Stein and the 3=2 model are studied as particular examples. More-
over, we derive the general mean-variance optimal hedging strategy and show that it is
a delta-hedge only in case of zero correlation between asset prices and volatility.

Key words. Stochastic volatility; Margrabe options; change of numeraire; mean-
variance hedging; Malliavin calculus

AMS subject classi�cation. 60G44, 60H07, 91G20

1 Introduction

Consider two risky assets, S1 and S2. A Margrabe option, see Margrabe [18], gives the buyer
the right, but not the obligation, to exchange the second asset for the �rst at maturity T .
Its payo¤ thus is

max
�
S1T � S2T ; 0

�
=
�
S1T � S2T

�
+
:

The main pricing method for Margrabe options is to switch to a new measure by taking
S2 as a numeraire. This allows a reduction of the problem to pricing a European call on
asset S1, expressed relative to numeraire S2, with strike equal to one. In particular, the
pricing formula does not depend on the risk-free interest rate, given that it is the same for
both assets. For reviews of the classical proof and interesting discussions, see Carmona &
Durrleman [9] as well as Poulsen [21]. One major application is in FX markets where the
two assets represent currencies, see Davies [11].
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As discussed in Wüthrich, Bühlmann & Furrer (2010) [24], an insurance company can
achieve solvency by investing into Margrabe options enabling them to exchange their asset
portfolio for a valuation portfolio (VaPo). The latter consists of �nancial instruments which
replicate the insurance liabilities. The swapping will be done each time the value of the VaPo
exceeds that one of the available assets. This allows for a dynamic hedge by continuously
observing the �nancial market.

Our main contribution is to extend Margrabe�s option pricing formula to stochastic
volatility models. Option pricing in this context has been studied in Antonelli & Scar-
latti [6] by using power series in the correlation parameter as well as in Alòs [1], Alòs &
Ewald [3] by Malliavin Calculus, and in Alòs [2] by classical Itô calculus, amongst others.
Regarding exchange options in particular, Antonelli, Ramponi & Scarlatti [7] extend the
method of their earlier paper by �rst deriving a pricing PDE and then providing a power
series expansion in all three possible correlation coe¢ cients. Carmona and Su ([10]) present
a linear approximation that allows that authors to study the corresponding implied and
local correlations. Alòs and Léon [4] focus on random strike basket options and derive a
linear approximation formula for the implied volatility, based in the study of the short-time
implied volatility skew.

We study Margrabe options in a general stochastic volatility framework by taking, as
in the classical case, the second asset as a numeraire for a measure change. In other
words, we switch to the so-called dual market measure, and derive a general option pricing
formula. Hereby we encounter typical problems when working with stochastic volatility
models: stochastic exponentials which are candidates for density processes to be used for a
measure change need not be true martingales; under a Girsanov transform, the �ltration of
the new Brownian motion can be strictly smaller than the �ltration of the original Brownian
motion; some integrability issues turn out to be rather delicate; and, last but not least, the
resulting �nancial markets are in general incomplete. Therefore, typically there does not
exist a replicating strategy, and we discuss mean-variance hedging under the martingale
measure for Margrabe options. It results that the optimal hedging strategy is a delta-
hedge only in the (unrealistic) case that the asset prices are uncorrelated to the volatility,
in the correlated case one has to incorporate a correction term. For the corresponding
mean-variance price, we provide a general decomposition formula in terms of the quadratic
variation of the expected future modi�ed volatility and its covariation with the log-return
of the asset expressed in the new numeraire. Based on this general decomposition formula,
we develop an approximation result and provide the corresponding error bounds in terms
of higher Greeks. For an Ornstein-Uhlenbeck stochastic volatility model we can get the
approximation in closed form, while for the 3=2 model we obtain its short time limit.

The paper is organised as follows: In the next section, we state the Margrabe option
pricing problem and introduce the dual change of measure. In the third section, we derive
a general Margrabe option pricing formula for stochastic volatility models, and provide
our approximations. Mean-variance hedging of Margrabe options is then studied in the
fourth section. The necessary explicit computations for the 3=2-model are performed in an
appendix.
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2 Statement of the problem and notations

Let (
;F ;F; P ) be a �ltered probability space where the �ltration satis�es the usual condi-
tions with F0 being trivial up to P -null sets, and �x a �nite but arbitrary time horizon T > 0.
All stochastic processes are RCLL and de�ned on 
 � [0; T ]. We assume that (
;F ;F; P )
supports at least three independent Brownian motions B, W and Z. A process X resp. a
stochastic integral process

R
# dX is distinguished in the notation from the random variables

Xt and
R t
0 #s dXs we get by evaluating them at time t. (In-)equalities between stochastic

processes are in the sense of indistinguishability, whereas between random variables they
are to be understood in the a.s. sense (if the dependency on the measure can be dropped).
Let EPt denote the Ft-conditional P -expectation. A martingale measure, sometimes called
risk-neutral measure, for a (possibly vector-valued) process X is a probability measure Q
such that X is a local Q-martingale. A continuous martingaleM is called square-integrable
if its bracket process hMi is integrable, i.e. E [hMiT ] <1. We denote by L2(M) the space
of all M -integrable processes # such that

R
# dM is a square-integrable martingale.

The �nancial market consists of two tradable assets S1 and S2. In particular, in the
exchange option context considered agents do not trade in the bank account. It will hence-
forth be assumed that P is a martingale measure for the pair

�
S1; S2

�
. We consider two

correlated stochastic volatility models for the asset prices S1; S2 and we will assume that the
corresponding volatility processes �X ; �Y > 0 depend on the Brownian motion Z. More-
over, �Y is negatively correlated (or uncorrelated) with S2. More precisely, we will assume
that the risk-neutral dynamics under P for the pair

�
S1; S2

�
are given as

dS2t = �Yt S
2
t

�
�23 dZt +

q
1� �223dWt

�
; t 2 [0; T ];

dS1t = �Xt S
1
t

�
�12

�
�23 dZt +

q
1� �223dWt

�
+
q
1� �212dBt

�
; t 2 [0; T ]; (1)

where �12 2 (�1; 1); �23 2 (�1; 0], and both
�
�Xt
�2
;
�
�Yt
�2

are FZ� adapted processes
(with �X ; �Y being their respective positive roots).

As in the classical case, if the same risk-free interest rate is assumed for both assets,
we may w.l.o.g. assume it to be zero for the purpose of pricing Margrabe options. See in
particular [8] for the case of stochastic interest rates which may depend on the assets.

Example 1 We will illustrate the general results with an example, namely the 3=2-model
(see [16] for a survey) where the volatility y is given as strong solution to

dyt = �yt (� � yt) dt+ �y3=2t dZt;

for some positive real constants �; � and �:
It is well-known (and follows by Itô�s formula) that the Heston and the 3=2-model are

reciprocal in the sense that the inverse 1=y of the 3=2 volatility follows a Heston dynamics,
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albeit with di¤erent coe¢ cients. More precisely,

d

�
1

yt

�
= k0

�
�0 � 1

yt

�
dt+ � 0

�
1
p
yt

�
dZt;

with k0 = ��; �0 = �+�2

�� and � 0 = ��: Notice that 2k0�0
(�0)2

= 2�+�
2

�2
> 2; which implies that the

Heston process 1=y is positive.

Our goal is to evaluate a Margrabe option with payo¤�
S1T � S2T

�
+
:

As valuation concept we consider conditional expectation under the chosen risk-neutral
measure,

Vt = Et

"
S2T

�
S1T
S2T

� 1
�
+

#
=: Et

�
S2T (YT � 1)+

�
where we denote by Y = S1=S2 the asset price S1 expressed in the new numeraire S2.
Notice that the situation is symmetric, since it is easy to see that there exists two Brownian
motions fW , eB such that

dS2t = �Yt S
2
t dfWt; dS

1
t = �Xt S

1
t d eBt:

So we could have equally well expressed S2 in terms of S1. However, we have chosen the
notation such that calculations are facilitated by choosing S2 as numeraire.

Remark on valuation in incomplete markets. The dynamics in (1) induce an
incomplete market, and are formulated under one particular martingale measure chosen
by the agent. As there is, by the second fundamental theorem of asset pricing, no unique
martingale measure, it can be selected by several considerations, depending on the agent�s
risk preference. Possible choices are the minimal martingale measure, the minimal entropy
martingale measure, or a risk-neutral measure obtained by some calibration procedure.
There are also alternative valuation concepts like utility indi¤erence pricing which do not
result in taking the expectation with respect to some martingale measure (which, however,
will not be considered in this paper). So there will not be a unique price valid for all agents,
as in the complete market setting studied by [18], but rather some valuation concept used
by an individual agent. For this agent, we do however take this risk-neutral measure P as
�xed for the remainder of the paper.

We have that S2 can be written as a Doléans-Dade stochastic exponential,

S2 = S20 E
�Z

�Y
�
�23dZ +

q
1� �223dW

��
(2)

= S20 exp

�Z
�Y
�
�23dZ +

q
1� �223dW

�
� 1
2

Z �
�Y
�2
ds

�
:
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Assumption (A.1) S2 is a martingale (and not a strict local martingale).

Under (A.1), we have that by the abstract Bayes�formula,

Et
�
S2T (YT � 1)+

�
= S2t bEt �(YT � 1)+� (3)

where bEt denotes the conditional expectation under the probability measure bP which has
Radon-Nikodym density process with respect to P as

d bP
dP

�����
Ft

=
S2t
S20
:

The measure change from P to bP comprises a dual market transform with respect to asset
S2.

Example 2 One well-known criterion for a stochastic exponential as in (2) to be a mar-
tingale is that there is an " > 0 such that

E

�
exp

�
"

Z T

0

�
�Yt
�2
dt

��
<1;

this follows e.g. from [17], Section 6.2, Example 3 (note that there is an expectation sign
missing). This criterion is ful�lled for both the Heston as well as the 3=2-model which in
turn follows from [12], p. 18 and Theorem 4.1, respectively. Here it is important to note
that by our assumption �23 � 0; in case of a positive �23 there is a counterexample in [23].
�

Now we compute

dYt =
dS1t
S2t

� S1t�
S2t
�2dS2t + S1t�

S2t
�3d 
S2; S2�t � 1�

S2t
�2d 
S1; S2�t

= Yt �
X
t

�
�12

�
�23dZt +

q
1� �223dWt

�
+
q
1� �212dBt

�
� Yt �Yt

�
�23dZt +

q
1� �223dWt

�
+ Yt

�
�Yt
�2
dt� Yt�12�Xt �Yt dt

The processes bZ = Z � �23
R
�Y dt and cW = W�

p
1� �223

R
�Y dt are Brownian motions

under the probability measure bP . By a straightforward computation,
dYt = Yt

��
�Xt �12 � �Yt

��
�23d bZt +q1� �223dcWt

�
+ �Xt

q
1� �212dBt

�
; (4)
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so in particular Y is a local bP -martingale. Moreover, if we de�ne U := L(Y ) (the stochastic
logarithm of Y , so E (U) = Y ), by Itô�s formula we get

dUt =
�
�Xt �12 � �Yt

��
�23d bZt +q1� �223dcWt

�
+ �Xt

q
1� �212dBt:

Note that we have F bZ � FZ , but in general FZ need not be included into F bZ .
Assumption (A.2) It holds that F bZ = FZ .
Example 3 (A.2) is ful�lled e.g. in the 3=2-model (with respect to P ) because, as we shall
see later,

�
�Y
�2
is again a 3=2-model under bP , albeit with di¤erent constants (see Appendix

1), hence as strong solution to an SDE driven by bZ is in particular F bZ-adapted. It follows
that Z = bZ + �23 R �Y dt is then also F bZ-adapted, hence F bZ = FZ . An analogous argument
also gives that (A.2) is ful�lled in the Heston model as well.

Remark on the classical Margrabe formula. Notice that by straightforward compu-
tations based on Itô�s formula, for every deterministic process a(t)

CBS (T; lnYT ; a(T )) = CBS (t; lnYt; a(t))

+

Z T

t
LBS

��
�Xs
�2
+
�
�Ys
�2 � 2�12�Xs �Ys �CBS (s; lnYS ; a(s)) ds

+

Z T

t

�
@CBS
@�

�
(s; lnYs; a(s)) da(s)

+ local martingale terms,

where CBS (T; ln y; �) denotes the Black-Scholes price for a European call option with strike
one maturing at T , on an asset with log-price ln y and volatility �, and LBS (�) denotes the
Black-Scholes operator with volatility �: Obviously, if �Xt and �Yt are constants, �23 = 0
and the resulting Feynman-Kac equation is the Black-Scholes equation with variance given
by
�
�X
�2
+
�
�Y
�2 � 2�12�X�Y ; from which we deduce the classical Margrabe formula by

choosing
a2(s) =

�
�Xs
�2
+
�
�Ys
�2 � 2�12�Xs �Ys ;

see [18]. If they are deterministic, the exchange option price is given by the Black-Scholes
price with variance

1

T

Z T

0

��
�Xs
�2
+
�
�Ys
�2 � 2�12�Xs �Ys � ds;

then it is easy to check that it su¢ ces to take

a2(s) =
1

T � s

Z T

s

��
�Xs
�2
+
�
�Ys
�2 � 2�12�Xs �Ys � ds: �

6



3 An extension of the Margrabe formula to the stochastic
volatility case

3.1 A decomposition formula for the option price

We denote by bEs the conditional expectation with respect to F bZ
s , and let the modi�ed

squared volatility be given as

a2(r) :=
�
�Xr
�2
+
�
�Yr
�2 � 2�12�Xr �Yr :

Let us also consider the averaged modi�ed squared volatility

ba2(s) := 1

T � s
bEs �Z T

s
a2(r) dr

�
=

1

T � s
bEs �Z T

0
a2(r) dr �

Z s

0
a2(r) dr

�
=

1

T � s

�
Ms �

Z s

0
a2(r) dr

�
;

where cMs := bEs �Z T

0
a2(r) dr

�
: (5)

Then it follows via Itô�s formula by straightforward computations that

CBS (T; lnYT ;ba(T )) = CBS (t; lnYt;ba(t))
+

Z T

t

@

@x

�
@2CBS
@x2

� @CBS
@x

�
(s; lnYs;ba(s)) dDU;cME

s

+

Z T

t

�
@2

@x2
� @

@x

��
@2CBS
@x2

� @CBS
@x

�
(s; lnYs;ba(s)) dDcM;cME

s

+ local martingale terms. (6)

Here x refers to the second argument of CBS . The local martingale terms are

1. Z T

t

@CBS
@x

(s; lnYs;ba(s)) ���Xt �12 � �Yt ���23d bZt +q1� �223dcWt

�
+ �Xt

q
1� �212dBt

�
;

(7)

2. Z T

t

�
@2CBS
@x2

� @CBS
@x

�
(s; lnYs;ba(s)) dMs: (8)
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Assumption (A.3) We will henceforth assume that M and U are square-integrable bP -
martingales.

Remark 4 (A.3) is satis�ed for most of the classical stochastic volatility models. An ex-
plicit proof in the context of the 3/2 model is given in the Appendix.

For the sake of simplicity we will assume the next assumption. One could replace it
by model-dependent integrability assumptions which in the interest of readability we omit
here since they would render the proofs quite tedious.

Assumption (A.4) There exists a strictly positive constant " such that min
�
�X ; �Y

�
> ".

We will make use of Lemma 4 in [7]:

Lemma 5 Assume that (A.4) holds. Then, for all n � 2 and 0 � t � s � T there exists a
positive constant C such that

bE �����@nCBS@xn
(s; lnYs;ba(s))�������� a(u); u 2 [t; s]� � C(T � s)1�n=2:

Theorem 6 Consider our basic model (1). In the case that (A.1) � (A.3) hold, we have
the following decomposition formula for the option price:

Vt = S2t

�
CBS (t; lnYt;ba(t)) + bEt �1

2

Z T

t

@

@x

�
@2CBS
@x2

� @CBS
@x

�
(s; lnYs;ba(s)) dDU;cME

s

(9)

+
1

8

Z T

t

�
@2

@x2
� @

@x

��
@2CBS
@x2

� @CBS
@x

�
(s; lnYs;ba(s)) dDcM;cME

s

��
:

Proof. By Lemma 5, the expectation of the integrals in (9) are �nite. Since (A.3) holds,
the bP -expectations of the local martingale terms are zero, and the formula follows directly
from (6).

Assumption (A.5) The a2(r) associated martingale is square-integrable, so that by the
martingale representation formula there exists a process � (r; u) such that

a2(r) = bE �a2(r)�+ Z r

0
� (r; u) d bZu;

where
j� (r; u)j � �� (r; u) ;

where � 2 (0; 1) and � is a square integrable (wrt. bP ) process whose moments are uniformly
bounded by one in r and u. Noticing that

dcMs = �

�Z T

s
� (r; s) dr

�
dcZs;
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we moreover have that

bEt �Z T

0
d
D
U;cME

s

�
=

Z t

0

�Z T

s

Z T

r
� (t; r; s) dtdr

�
d bZs

and bEt �Z T

0
d
DcM;cME

s

�
=

Z t

0

�Z T

s

Z T

r

Z T

u
	(t; u; r; s) dtdudr

�
d bZs;

where
j� (t; r; s)j � �23�� (t; r; s)

and
j	(t; u; r; s)j � �2 (t; u; r; s) ;

for some square integrable (with respect to bP ) processes � and  whose moments are
uniformly bounded by one in t; r; s and u:

Now we are in a position to prove the main result of this section.

Theorem 7 Assume (A.1) - (A.5). Then an approximation result can be given as

S�1t Vt = CBS (t; lnYt;ba(t))
+
1

2
H (t; lnYt;bat) bEt �Z T

t
d
D
U;cME

s

�
+
1

8
K (t; lnYt;bat) bEt �Z T

t
d
DcM;cME

s

�
+O

�
�23� + �

2
�2
;

where H := @
@x

�
@2CBS
@x2

� @CBS
@x

�
;K :=

�
@2

@x2
� @

@x

��
@2CBS
@x2

� @CBS
@x

�
.

Proof. We follow the notation Qt := bEt hR Tt d
D
U;cME

s

i
; Rt := bEt hR Tt d

DcM;cME
s

i
: Then

by applying Itô�s formula to the process

CBS (t; lnYt;ba(t)) + 1
2
H (t; lnYt;ba(t))Qt + 1

8
K (t; lnYt;ba(t))Rt;

and taking into account that QT = RT = 0, it follows that
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CBS (T; lnYT ;ba(T ))
= CBS (t; lnYt;ba(t)) + 1

2
H (t; lnYt;ba(t))Qt + 1

8
K (t; lnYt;ba(t))Rt

+
1

2

Z T

t
@xH (s; lnYs;ba(s)) d hU;Qis

+
1

2

Z T

t

�
@2x � @x

�
H (s; lnYs;ba(s)) dDcM;Q

E
s

+
1

2

Z T

t

�
@3x � @2x

�
H (s; lnYs;ba(s))QsdDU;cME

s

+
1

8

Z T

t

�
@2x � @x

�2
H (s; lnYs;ba(s))QsdDcM;cME

s

+
1

2

Z T

t
@xK (s; lnYs;ba(s)) d hU;Ris

+
1

2

Z T

t

�
@2x � @x

�
K (s; lnYs;ba(s)) dDcM;R

E
s

+
1

2

Z T

t

�
@3x � @2x

�
K (s; lnYs;ba(s))RsdDU;cME

s

+
1

8

Z T

t

�
@2x � @x

�2
K (s; lnYs;ba(s))RsdDcM;cME

s

+ local martingale terms:

We can show, similarly as in Section A.3 that the local martingale terms are in fact true
martingale terms starting at zero. Then, taking conditional expectations we get that
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Vt = CBS (t; lnYt;ba(t)) + 1
2
H (t; lnYt;ba(t))Qt + 1

8
K (t; lnYt;ba(t))Rt

+ Et

�
1

2

Z T

t
@xH (s; lnYs;ba(s)) d hU;Qis

+
1

2

Z T

t

�
@2x � @x

�
H (s; lnYs;ba(s)) dDcM;Q

E
s

+
1

2

Z T

t

�
@3x � @2x

�
H (s; lnYs;ba(s))QsdDU;cME

s

+
1

8

Z T

t

�
@2x � @x

�2
H (s; lnYs;ba(s))QsdDcM;cME

s

+
1

2

Z T

t
@xK (s; lnYs;ba(s)) d hU;Ris

+
1

2

Z T

t

�
@2x � @x

�
K (s; lnYs;ba(s)) dDcM;R

E
s

+
1

2

Z T

t

�
@3x � @2x

�
K (s; lnYs;ba(s))RsdDU;cME

s

+
1

8

Z T

t

�
@2x � @x

�2
K (s; lnYs;ba(s))RsdDcM;cME

s

�
:

Now, by Lemma 5 and assumption (A.5), it follows that

Vt � CBS (t; lnYs;ba(t))� 1
2
H (t; lnYs;ba(t))Qt � 1

8
K (t; lnYs;ba(t))Rt

is less or equal than
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CEt

�
1

2

Z T

t

h
(T � s)�1 + (T � s)�

1
2

i
d hU;Qis

+
1

2

Z T

t

h
(T � s)�

3
2 + (T � s)�1 + (T � s)�

1
2

i
d
DcM;Q

E
s

+
1

2

Z T

t

h
(T � s)�2 + (T � s)�

3
2 + (T � s)�1

i
Qsd

D
U;cME

s

+
1

8

Z T

t

h
(T � s)�

5
2 + (T � s)�2 + (T � s)�

3
2 + (T � s)�1

i
Qsd

DcM;cME
s

+
1

2

Z T

t

h
(T � s)�

3
2 + (T � s)�1 + (T � s)�

1
2

i
d hU;Ris

+
1

2

Z T

t

h
(T � s)�3 + (T � s)�

5
2 + (T � s)�2 + (T � s)�

3
2 + (T � s)�1

i
d
DcM;R

E
s

+
1

2

Z T

t

h
(T � s)�

7
2 + (T � s)�3 + (T � s)�

5
2 + (T � s)�2 + (T � s)�

3
2

i
Rsd

D
U;cME

s

+
1

8

Z T

t

h
(T � s)�4 + (T � s)�

7
2 + (T � s)�3 + (T � s)�

5
2 + (T � s)�2

i
Rsd

DcM;cME
s

�
= T1 + :::+ T8;

where C is a positive constant. Assumption 5 allows us then to estimate

T1 � C�223�
2; T2 � C�23�

3; T3 � C�223�
2; T4 � C�23�

3

T5 � C�23�
3; T6 � C�4; T7 � C�23�

3; T8 � C�4

and the proof is complete.

De�nition 8 The implied volatility I(T; t) for exchange options is the process such that

S2tCBS (t; lnYt; I(T; t)) = Vt:

Remark 9 De�ne

bI(T; t) :=pba2 (t) + 1
2

 
1� dpba2 (t) (T � t)

!
�23pba2 (t) (T � t) bEt

�Z T

t
(�xs �12 � �ys ) d

D
Z;cME

s

�

+
1

8

 
� dpba2 (t) (T � t) + d2ba2 (t) (T � t) � 1ba2 (t) (T � t)

!
1pba2 (t) (T � t) bEt

�Z T

t
d
DcM;cME

s

�
;

where

d :=
lnYtpba2 (t) (T � t) +

pba2 (t) (T � t)
2

:

Then it is easy to see by means of a Taylor expansion as in [5] that

bI(T; t)� I(T; t) = o
�
�23� + �

2
�2
:

12



3.2 An explicit expression for the approximation formula

Let us denote by D1;2
Ẑ
the domain of the derivative operator DẐ in the Malliavin calculus

sense. D1;2
Ẑ
is a dense subset of L2

P̂
(
) and DẐ is a closed and unbounded operator from

L2
P̂
(
) into L2

P̂
([0; T ]�
) (see for example [19] for a detailed introduction to these notions).

The martingale representation theorem states that for a square-integrable martingale M
adapted to the Brownian �ltration F bZ there exists � 2 L2( bZ) such that

Mt =M0 +

Z t

0
�u d bZu:

The integrand � is called a martingale kernel. It can be represented by the Clark-Ocone
formula, in case M 2 D1;2bZ , as a conditional expectation of the Malliavin derivative with
respect to the Brownian �ltration,

�t = Et

h
D
bZ
u (MT )

i
:

Recall that
a2(r) :=

�
�Xr
�2
+
�
�Yr
�2 � 2�12�Xr �Yr :

Given that the to a2(r) associated martingale is square-integrable, by the martingale
representation formula there exists a process � (r; u) 2 L2( bZ) such that

a2(r) = bE �a2(r)�+ Z r

0
� (r; u) d bZu:

Then we may apply stochastic Fubini to get

cMs =M0 +

Z s

0

�Z T

u
� (r; u) dr

�
d bZu; (10)

bEt �Z T

t
d
D
U;cME

s

�
= �23 bEt �Z T

t

�
�Xs �12 � �Ys

��Z T

s
� (r; u) dr

��
;

and bEt �Z T

t
d
DcM;cME

s

�
= bEt "Z T

t

�Z T

s
� (r; u) dr

�2
ds

#
:

Now the problem reduces to compute �or approximate �cM0 and � (r; u).

Example 10 Let us assume that both �X and �Y are Ornstein-Uhlenbeck processes under
the martingale measure P . More precisely, we will assume that

d�Xt = �X
�
mX � �Xt

�
dt+ �XdZt

and
d�Yt = �Y

�
mY � �Yt

�
dt+ �Y dZt

13



for some positive constants �X ;mX ; �X ; �Y ;mY and �Y . Then it follows that

d�Yt = �
�
m� �Yt

�
dt+ �Y d bZt

where � := �Y � �23�Y and m := mY

�Y ��23�Y : Then, some straigthforward computations give
us the following martingale representations

�Xt = bE ��Xt �+ Z t

0
f(t; s)d bZs

and

�Yt =
bE ��Yt �+ Z t

0
g(t; s)d bZs;

where bE ��Yt � = m+
�
�Y0 �m

�
exp(��(t� s));

bE ��Xt � = E
�
�Xt
�
+ �23�

Y

Z t

0
exp(��X(t� s)) bE ��Ys � ds

and
g(t; s) = �Y exp(��(t� s));

f(t; s) = �X�Y
Z t

s
exp(��X(t� r)) exp(��(r � s))dr + �X exp(��X(t� s)):

Then, it is easy to check that (10) holds with

�(t; s) = 2 bEs �Z T

s

��
�Xt �12 � �Yt

�
(�12f(t; s)� g(t; s)) + �Xt

q
1� �212f(t; s)

�
dt

�
:

Example 11 Let us assume that both �X and �Y are 3=2 models under the martingale
measure P . More precisely, we will assume that

d
�
�Xt
�2
= �X

�
�Xt
�2 �

mX �
�
�Xt
�2�

dt+ �X
��
�Xt
�2� 32

dZt

and

d
�
�Yt
�2
= �Y

�
�Yt
�2 �

mY �
�
�Yt
�2�

dt+ �Y
��
�Yt
�2� 32

dZt:

Then, it is not direct to obtain an explicit expression for �(t; s), but from the results in the
Appendix it is easy to see that

lim
t!T

� bEt �Z T

t
d
D
U;cME

s

�
� 1
2
�23
�
�Xt �12 � �Yt

�
� (t; t) (T � t)2

�
= 0

and

lim
t!T

� bEt �Z T

t
d hM;Mis

�
� 1
3
�2 (t; t) (T � t)3

�
= 0;

14



where

� (t; t) := �y
��
�Yt
�2� 32

+ �x
��
�Xt
�2� 32 � �12 ��x (�xt )2 �yt + �y (�yt )2 �xt � :

Then, the following short-time approximation formula is easily deduced:

S2t fCBS (t; lnYt; a(t))

+
1

2
H (t; lnYt; a(t)) �23

�
�Xt �12 � �Yt

�
� (t; t) (T � t)2

� 1

8
K (t; lnYt; a(t)) � (t; t)

2 (T � t)3
�
:

Moreover, we can check that

lim
T!t

bI(T; t) =pa2 (t) + �23 (�
x
t �12 � �

y
t )

4
�p

a2 (t)
�3 � (t; t) lnYt +

�2 (t; t)

24
�p

a2 (t)
�5 (lnYt)2 ;

which gives us the short-time limit of the implied volatility approximation, as a quadratic
function of lnYt:

.

4 Mean-variance hedging of Margrabe options

The stochastic volatility model considered induces an incomplete market, so not every claim
is replicable by trading with the underlying asset. Here we choose as hedging instrument
the process Y , that is the asset price S1 expressed in the new numeraire S2. In particular,
one of the main applications of Margrabe options is in FX markets, so in that case we would
hedge with asset S1 in terms of the new currency as given by S2. In this section, we aim to
minimize the remaining risk using a quadratic criterion, formulated under the martingale
measure bP . A quadratic criterion can be considered under the statistical measure as well,
but the then resulting theory has conceptual drawbacks. A more comprehensive discussion
of mean-variance hedging can be found e.g. in [22].

For the purpose of mean-variance hedging, the following strategy set is appropriate:

De�nition 12 A strategy # is called admissible if # 2 L2 (Y ), i.e.
R
# dY is a square-

integrable bP -martingale.
Note that although Y might be a strict local martingale, the gains process

R
# dY is a square-

integrable martingale for every admissible strategy #. Given a claim H 2 L2(FT ; bP ), de�ne
a square-integrable martingale V via

Vt := bE [Hj Ft] ; 0 � t � T: (11)
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For an initial capital c and a self-�nancing strategy #, the associated value process is c +R
# dY . Our goal is to minimize

bE "�H � c�
Z T

0
#t dYt

�2#
(12)

over all constants c and all # 2 L2(Y ). For the following result see [22] and the references
therein.

Theorem 13 Optimal mean-variance hedging strategy. Consider the Kunita-Watanabe
decomposition of V ,

V = bE [H] + Z #H dY + L; (13)

with #H 2 L2(Y ) and a square-integrable martingale L with L0 = 0, strongly orthogonal to
Y . The optimal initial capital c� and optimal strategy #� minimizing the quadratic functional
(12) are c� = bE [H], #� = #H . The optimal strategy is unique in the sense that for two
optimal strategies #�;  � the resulting stochastic integral processes are indistinguishable, or
equivalently,

R
(#� �  �)2 d [Y ] = 0.

One can interpret c� +
R
#H dY as the part of the risk which is attainable, so can be

perfectly replicated by means of the hedging strategy #H , whereas, L is the part of the risk
that is totally unhedgeable. Thus LT is the risk-component of the claim H that cannot
be accessed by trading in the underlying. To quantify this inaccessible risk, we are often
interested in calculating the variance of the remaining hedging error,

RT
�
#H
�
:= bE �L2T � :

Since by strong orthogonality (13) implies that hV; Y i =
R
#H d hY; Y i, we can determine

the optimal mean-variance hedging strategy #H by calculating the formal derivative

#H = d hV; Y i =d hY; Y i :

To sum up, the mean-variance hedging approach is a method yielding both a fair price c�

and an optimal hedging strategy #�. In particular, the fair price is the expectation of the
claim under the chosen martingale measure which seems to be a very suitable extension of
the pricing rule for complete markets.
For the remainder of this section, we assume that (A.1) and (A.2) are in place. We have
in our case, see (3), that H = (YT � 1)+ which we assume to be in L2( bP ). By the put-call
parity, this is equivalent to saying that YT 2 L2( bP ) which e.g. is satis�ed in the 3=2-model.
Hence

Vt = bEt �(YT � 1)+� :
Here, see (4),

dY=Y = �1=2 dR;
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where � := !2 + �2 + �2 with

!t =
�
�Xt �12 � �Yt

�
�23;

�t =
�
�Xt �12 � �Yt

�q
1� �223;

�t = �Xt

q
1� �212:

The Brownian motion R is given as

R =
�
! bZ + �cW + �B

�
=
p
(!2 + �2 + �2):

Hence the two Brownian motions bZ and R have quadratic covariation

d
D bZ;RE = !=

p
(!2 + �2 + �2) dt =: !0 dt:

There exists a Brownian motion R? in F which is uncorrelated to R (the choice is not
unique) which we �x.
Moreover, we denote the various martingale kernels as follows, up to �nite variation (FV)
terms (which play no role here since they will drop out when forming brackets):

d
�
�X
�2
= mX d bZ; d ��Y �2 = mY d bZ; d�X�Y = mXY d bZ: (all plus FV terms)

It results that

d� = d
n�
�X
�2 � 2�12�X�Y + ��Y �2o

=: � d bZ + FV terms;

with
� = mX � 2�12mXY +mY :

While Y is a Markov process conditional on bZ, it is not a Markov process per se, but the
pair

�
Y; bZ� is. Hence, and since we are in a Brownian framework, there exists a smooth

function v(t; y; z) such that

Vt = v
�
t; Yt; bZt� :

As V is a martingale, there are no FV terms in its canonical decomposition. It results by
Itô�s formula that

dV =
@v

@y
dY +

@v

@z
�d bZ

=

�
@v

@y
�1=2Y +

@v

@z
�!0
�
dR+

@v

@z
�
p
1� !0 dR?;
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so the Kunita-Watanabe decomposition is given as

dV =

�
@v

@y
+
@v

@z
!0���1=2Y �1

�
dY +

@v

@z
�
p
1� !0 dR?:

Therefore, the optimal mean-variance hedging strategy is

#� =
d hV; Y i
d hY; Y i =

@v

@y
+
@v

@z

!0�

�1=2Y
:

In particular, #� is a Delta-hedge if and only if ! = 0 which is the case if and only if �23 = 0.
To show that #� is admissible, we will have to show that

bE "Z T

0

�
@v

@y
+
@v

@z

!0�

�1=2Y

�2
dt

#
<1:

Notice �rst that the Delta @v=@y and the Vega @v=@z are bounded. On the other hand, if
1=Y has �nite moments of all orders, it su¢ ces to check that, for some p > 1,

bE "Z T

0

�
!0�

�1=2

�2p
dt

#
<1:

Remark 14 In the 3=2-model, the moments of 1=� are bounded by the moments of a CIR
process which are �nite because of the results in [12]. Then, in this case we only need to
check that bE �Z T

0
(!�)2q dt

�
<1;

for some q > 1. This is satis�ed if � > 3
2�
2. In fact, notice that bE (!�)2q is bounded by

the moments of order 4q of the inverse of a CIR, which is �nite if 4q < 2k0�0

�2
� 1: Then,

taking q > 1 in such a way that 4q 2
�
4; 2k

0�0

�2
� 1
�
(here 2k0�0

�2
� 1 = 2�+�2

�2
� 1 > 4 because

� > 3
2�
2), the admissibility is proved.

To �nd the minimal risk, we proceed as follows: Recall that

dV =

�
@v

@y
�1=2Y +

@v

@z
�!0
�
dR+

@v

@z
�
p
1� !0 dR?:

The Kunita-Watanabe decomposition can be written as

V = bE �(YT � 1)+�+ Z #� dY +

Z
 dR?;

for some  2 L2
� bZ�. We can calculate  as formal derivative
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 =
d


V;R?

�
dt

=
@v

@z
�
p
1� !0;

which is in L2
� bZ� for the 3=2-model, see Section 4.

The variance of the hedging error is then given by

RT (#�) = bE �Z T

0
 2 dt

�
=

Z T

0

bE "�@v
@z
�
p
1� !0

�2#
dt:
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A Computations for the 3=2 model

In this section we will assume that both
�
�Xt
�2
and

�
�Yt
�2
follow a 3/2 model. More

precisely, we will assume that

d
�
�Xt
�2
= kx

�
�Xt
�2 �

�x �
�
�Xt
�2�

dt+ �x
��
�Xt
�2� 32

dZt (14)

and

d
�
�Yt
�2
= ky

�
�Yt
�2 �

�y �
�
�Yt
�2�

dt+ �y
��
�Yt
�2� 32

dZt: (15)
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A.1 Malliavin di¤erentiability of the 3=2 model volatility

Consider a 3=2 model �2 given by a equation of the form

d�2t = k�2t
�
� � �2t

�
dt+ �

�
�2t
� 3
2 dWt; t 2 [0; T ] ; (16)

where W is a standard Brownian motion and k; � and � are non-negative constants. It is
well-known (and follows by Itô�s formula) that the process z := 1= (�)2 is a CIR process
given by

dzt = k0
�
�0 � zt

�
dt+ � 0

p
ztdWt; t 2 [0; T ] ; (17)

where k0 = k�; � 0 = �� and �0 = k+�2

k� .

Notice that, if k > 0, then 2k0�0

�2
=

2(k+�2)
�2

� 2 and the dimension of the underlying
Bessel process for z is greater or equal than 2: Then Corollary 4.2 in [3] gives us that, for
all t 2 [0; T ] ; zt 2 D1;2W and hence

DW
r zt = � 0

p
zt exp

�Z t

r

�
�k

0

2
�
�
k0�0

2
� �2

8

�
1

zu

�
du

�
; t 2 [0; T ] : (18)

Now we are in a position to prove the following Lemma.

Lemma 15 Assume the model (16). Then, for all t 2 [0; T ] ; �2t 2 D
1;2
W and

DW
r �

2
t = �

�
�2t
� 3
2 exp

�Z t

r

�
�k�
2
�
�
k

2
+
3�2

8

�
�2u

�
du

�
; t 2 [0; T ] : (19)

Proof. This proof is based on similar approximation arguments as presented in Section 2
in [3]. Let " > 0 and �" (x) be a continuously di¤erentiable function satisfying �" (x) = 1
if x � 2" and �" (x) = 0 if x < ", while �" (x) � 1 for all x 2 R. Notice that in this
case �0" (x) = 0 if x < " or x � 2". Furthermore we de�ne the function �"(x) = �"(x)

1
x

with �"(0) = 0. The function �"(x) is bounded and continuously di¤erentiable satisfying
�0" (x) = �

0
" (x)

1
x � �" (x)

1
x2
. In particular �0" (x) = � 1

x2
if x � 2" and �0" (x) = 0 if x < ".

It is easy to see that, for all t 2 [0; T ] ; �"(zt)! (�t)
2 in L2 (P ) : On the other hand,��DW

r �"(zt)
�� = ���0"(zt)DW

r zt
��

=

�����0"(zt)� 0pzt exp�Z t

r

�
�k

0

2
�
�
k0�0

2
� �2

8

�
1

zu

�
du

����� :
Notice that, as 2k

0�0

�2
� 2; k0�02 � �2

8 �
�2

2 �
�2

8 > 0 and then��DW
r �"(zt)

�� � C

(zt)
3
2

;

for some positive constant C. Then, as E [1=zt] < 1;8t � 0; Lemma 1.2.3 in [19] gives us
that

�
�Yt
�2 2 D1;2W and that

DW
r (�t)

2 = �
�
�2t
� 3
2 exp

�Z t

r

�
�k�
2
�
�
k

2
+
3�2

8

�
�2u

�
du

�
:
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A.2 Martingale representation for
�
�Yt
�2 , ��Xt �2 and �Xt �Yt :

In this section we will apply the Clark-Ocone formula (see for example [19]) to �nd a mar-
tingale representation for

�
�Yt
�2
,
�
�Xt
�2
and �Xt �

Y
t : Our �rst step will be the computation

of the corresponding Malliavin derivatives.
Notice that under the change of numeraire the process

�
�Yt
�2
is again a 3=2 model. In

fact,

d
�
�Yt
�2
= ky

�
�Yt
�2 �

�y �
�
�Yt
�2�

dt+ �y
��
�Yt
�2� 32

d bZt + �y�23 ���Yt �2�2 dt
= (ky � �y�23)

�
�Yt
�2� ky�y

ky � �y�23
�
�
�Yt
�2�

dt+ �y
��
�Yt
�2� 32

d bZt:
Then, Lemma 6 implies that, for all t 2 [0; T ] ;

�
�Yt
�2 2 D1;2bZ and that

D
bZ
r

�
�Yt
�2
= �y

��
�Yt
�2� 32

exp

�Z t

r

�
�k�
2
�
�
ky � �y�23

2
+
3�2

8

��
�Yu
�2�

du

�
;

which satis�es ���D bZ
r

�
�Yt
�2��� � �y

��
�Yt
�2� 32

;

provided ky � �y�23 � 0.
On the other hand, even when

�
�X
�2
is not a 3/2 model under the new measure, Lemma

6.3.1 in [19], jointly with (19) gives us the following martingale representation

�
�Xt
�2
= Ê

�
�Xt
�2
+

Z t

0
Ês

�
DZ
s

�
�Xt
�2 � �23 ��Xt �2 Z t

s
DZ
s �

Y
r dẐr

�
dẐs:

In a similar way, for the product �X�Y , the kernel of the martingale representation is

bEs �DZ
s

�
�Xt �

Y
t

�
� �Xt �Yt

Z t

s
DZ
s

�
�Yu
�
d bZu� :

Corollary 16 The above results prove that we get for the martingale kernel

� (s; t)

= Ês

�
D
bZ
r

�
�Yt
�2
+DZ

s

�
�Xt
�2 � 2�12DZ

s

�
�Xt �

Y
t

�
+ 2�12

�
�23
�
�Xt
�2
+ �Xt �

Y
t

�Z t

s
DZ
s �

Y
r d bZr� :

A.3 On the martingale condition

To show that the stochastic integrals with respect to M and U are square-integrable mar-
tingales, and not strict local ones, we will use the criterion that a local martingale L whose
square bracket [L] is integrable is a square-integrable martingale.
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As for the �rst term in (7), note �rst that the Delta @CBS=@x is bounded, so what remains
is to show that bE �Z T

0

��
�Xt
�2
+
�
�Yt
�2 � 2�12�Xt �Yt � dt� <1: (20)

Regarding the second term (8), in concrete examples one has to show that

bE "Z T

0

��
@2CBS
@x2

� @CBS
@x

�
(t; lnYt;ba(t))�2 d hM;Mit

#
<1: (21)

We will now carry out the required steps for the 3=2 model. As
�
�Y
�2
is again a 3/2

model under bP , it follows by Theorem 4.1 of [12] that bE hR T0 ��Yt �2 dti is �nite. With a
measure change and Hölder�s and Jensen�s inequality we get

bE �Z T

0

�
�Xt
�2
dt

�
= E

�
S2T
S20

Z T

0

�
�Xt
�2
dt

�
�

vuutE

"�
S2T
S20

�2#s
TE

�Z T

0

�
�Xt
�4
dt

�
<1

which holds again by the results in [12]. By the elementary inequality

x2 + y2 � 2�xy � 4
�
x2 + y2

�
for � 2 [�1;+1] ; (22)

it follows that (20) is ful�lled.
Regarding (21), notice �rst that we can bound the squared di¤erence of the Gamma and
Delta for the Black-Scholes price in the log-stock price x as�����@2CBS@x2

� @CBS
@x

�
(t; x; �)

����2 � C��2 (T � t)�1 ;

hence

bE "Z T

0

����@2CBS@x2
� @CBS

@x

����2 d hM;Mit

#
� C bE �Z T

0

�
�Ys
��2

(T � t)�1 d hM;Mit
�
:

Further, we can evaluate hM;Mi by the martingale representation (10) of M as

d hM;Mit =
�Z T

t
�(r; t) dr

�2
dt;

Notice that the moments of �(r; t) are bounded by the moments of S2T =S
2
t and the moments

of
�
�Xt
�2
;
�
�Yt
�2
up to order 2p, for some p > 1; which are �nite by the results in [12]

since
�
�X
�2
is given as a 3=2 model under the measure P , and we can proceed by similar

arguments as in the
�
�Y
�2
-case. We conclude that (21) is ful�lled. Summing up, in the 3=2

model, Assumption (A.3) is valid.
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