Universitat Department

upf Pompeu Fabra of Economics and Business
Barcelona

Economic Working Paper Series
Working Paper No. 1458

On the second derivative of the at-the-
money implied volatility in stochastic
volatility models

Elisa Alos
Jorge A. Ledn

Updated version: July 2016
(November 2014)




1

It

On the second derivative of the at-the-money
implied volatility in stochastic volatility models

Elisa Alos*

Dpt. d’Economia i Empresa and
Barcelona Graduate School of Economics
Universitat Pompeu Fabra
c¢/Ramon Trias Fargas, 25-27
08005 Barcelona, Spain

Jorge A. Leént
Control Automatico
CINVESTAV-IPN
Apartado Postal 14-740
07000 México, D.F., Mexico

Abstract

In this paper we compute analytically the at-the-money second deriva-
tive of the implied volatility curve as a function of the strike price, for
correlated stochastic volatility models. We obtain an expression for the
short-time limit of this second derivative in terms of the first and second
Malliavin derivatives of the volatility process and the correlation param-
eter.
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Introduction

is well-known that stochastic volatility models capture some important fea-

tures of the implied volatility. For example, its variation with respect to the
strike price, described graphically as a smile or skew. Although these properties
of the implied volatility surface are well-known in the literature, there are only
some few papers devoted to their analytical proof. Among them, we remark the
paper by Renault and Touzi (1996), where the authors have figured out that,
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in the uncorrelated case, the implied volatility is, as a function of the strike, a
locally convex function with a stationary point at the forward stock price. More
recently, Alos, Leén and Vives (2007) have figured out, in the correlated case,
an explicit expression for the short-time limit of the at-the-money skew slope in
terms of the Malliavin derivative operator of the volatility process. This result,
together with this article, establishes that the Malliavin calculus is a powerful
tool to analyze the properties of the implied volatility.

This paper deals with the analytical study of the second derivative of the im-
plied volatility curve as a function of the strike price. Our method uses implicit
differentiation and Malliavin calculus techniques, and gives explicit expressions
for this second derivative, for both correlated and uncorrelated stochastic volatil-
ity models (see (3) and Theorem 13 below). The representation (3) (i.e., the
expression for the second derivative in the uncorrelated case) is the main tool
in our analysis and allows us to analyze the at-the-money short-time behaviour
of the mentioned second derivative in terms of the Malliavin derivative of the
volatility process. The obtained formulas recover, in particular, the convexity
results by Renault and Touzi (1996). Moreover, in Theorem 13 we consider the
correlated case and we prove that this short-time limit can be written in terms
of the Malliavin derivatives of the volatility process and the correlation param-
eter, as it was proved for the skew (see Alos, Leén and Vives (2007)). This
analysis allows us to establish a condition for the at-the-money local convexity
of the implied volatility, in terms of the correlation parameter and the Malliavin
derivatives of the volatility process.

The paper is organized as follows. In Section 2 we introduce the framework
and the notation that we utilize in this paper. Section 3 is devoted to the study
of the uncorrelated case. We prove that in this case the implied volatility has a
stationary point at the forward stock price. Moreover, we obtain an expression
for the second derivative of the implied volatility that allows us to prove its local
convexity, as well as to compute its short-time at-the-money limit. In Section
4 we extend our results to the correlated case, and we prove an expression for
the short-time limit of the at-the-money second derivative. Finally, a particular
example of our results is given in Section 5, namely the case of classical diffusion
volatilities.

2 Statement of the problem and notation

In this paper we consider the following model for the log-price of a stock under
a risk-neutral probability measure P:

1 t t
Xt:x+ft—§/ af,ds—k/ O (des—F\/l—deBs), tel0,7T]. (1)
0 0

Here, x is the current log-price, 7 is the instantaneous interest rate, W and B are
standard Brownian motions defined on a complete probability space (£2,G, P),
and ¢ is a square-integrable and right-continuous stochastic process adapted to



the filtration generated by W. In the following we denote by F" and F? the
filtrations generated by W and B. Moreover we define F := FW v FB.

It is well-known that there is no arbitrage opportunity if we price an Euro-
pean call with strike price K by the formula

V= e TR~ K), )

where E; is the F;—conditional expectation with respect to P (i.e., E(Z) =
E(Z|F)). In the sequel, we make use of the following notation:

o vl = ﬁ /, tT o2du. That is, v represents the future average volatility.
o M, = E, (fOT agdu) L te0,T].

e BS(t,x,k,o) denotes the price of an European call option under the classi-
cal Black-Scholes model with constant volatility o, current log stock price
x, time to maturity T — ¢, strike price K = exp(k) and interest rate 7.
Remember that in this case

BS(t,x,k,0) = e N(dy) — e "T=ON(d_),

where NV denotes the cumulative probability function of the standard nor-
mal law and

dy =

with kf .= a +7(T — t).

3 The uncorrelated case

In this section we first study the uncorrelated case p = 0.

Let us define the implied volatility I = I(t, X¢, k) as the adapted stochastic
process such that V; = BS (¢, Xy, k,I). Notice that, as ¢ is independent to
the filtration generated by B, option prices are given by the so-called Hull and
White formula (see for example Hull and White (1987))

‘/t = Et (BS(t,Xt, k,’Ut)) 5 t S [O,T] (2)

Sometimes we use the convention I = I(¢, k) in order to simplify the notation.
We will need the following result, that can be deduced directly from the proof
of Proposition 5.1 in Alos, Leén and Vives (2007) and (2).

Proposition 1 (The implied volatility skew) Consider the model (1) with p = 0.
Then, for allt € [0,T], %(t,kf) =0.



Remark 2 The above result proves that, fized t € [0,T], the implied volatility
I(t, k) has, in the uncorrelated case, a stationary point at k = kf. Notice that this
result is independent of the stochastic volatility model and agrees with Theorem
4.2 in Renault and Touzi (1996), where is established that the implied volatility,
as a function of the strike, is continuous differentiable, decreasing for in-the-
money options and increasing for out-of-the-money options (see also Proposition
5 in Renault (1997)).

3.1 The at-the-money implied volatility smile

Now our purpose in this section is to study the at-the-money second derivative
g%(t, ky) in the uncorrelated case (i.e., p = 0). We prove that this is positive.
Consequently, for every fixed ¢ € [0,T], the implied volatility I(¢, X:, k) is a
locally convex function of k. Moreover, we prove that limp_.; %(t, ky) is well-
defined and finite, which is figured out explicitly (see Theorem 5 below).

We assume that the reader is familiar with the elementary results of the
Malliavin calculus, as given for instance in Nualart (2006). In the remaining
of this paper ID)Il/{/2 denotes the domain of the Malliavin derivative operator D"
with respect to the Brownian motion W. It is well-known that D%,[’,Q is a dense
subset of L?(Q2) and that D" is a closed and unbounded operator from D%,{,Q
to L2([0,T] x Q). We also consider the iterated derivatives D™W | for n > 1,
whose domains will be denoted by Dfy*. We will use the notation Liy* =
L2([0,T); D).

For our purpose, we introduce the following hypotheses:

(H1) o2 belongs to LLy;?, and there exists an adapted process Y = {Y;,,r € [0,T]} €
L*(Q x [0,T]) such that |E, (D}Yo2)| <Y, forallt <r <u<T.

(H2) For every t € [0,T], there exists an F,¥ —measurable random variable
Djf % such that

B (swcuer | (DY = D)) i
11

Tt T—t =0

(H3) There exist two deterministic, integrable and right continuous functions
01,02 :[0,T] — (0,00) such that

o1(t) <oy < o9(t), tel0,T].

Remark 3 Notice that under (H1), the Clark-Ocone formula gives us that (see,
for instance, Nualart (2006)),

t T
Mt:M0+/ </ ES(DgVaf)dr> dW,, telo,T],
0 s

with My = E ( I agds) .



Before stating the main result of this section, we establish the following
auxiliary result, whose proof is in Section 7.

Lemma 4 Letr € [t,T] and A, = E, (BS(t, X¢, k¥, v:)), then

oxp (B ALILATE DY (g (020

and, for k=23

» exp (kyf(sT—t))
(BS™'(t, X1, k; A,)) T < E, -
Uy

Theorem 5 Assume that p = 0 in model (1), and that Hypotheses (H1) and
(H3) are satisfied. Then, for all t € [0,T],

027 L By [ft v (E (BS(t,Xt,k:,vt)))Ugdu]
oz k) = 5 9BS (1 X, ki, 1(t, k7)) ’ ®)
where
U (a) = 8;55 (t, X, k;, BS™Y (t, X, k7, a))
and

U, = E, (D, (BS (t,X¢,k},v))), u€[t,T].
Moreover, if Hypothesis (H2) also holds,

021 (D 02)?
i S R = 505

Proof. From the definition of the implied volatility I, we have

0? 0°BS 9’°BS oI
— t, X, ki D)+ 2——— (6, Xy, ks
gzt = gz WXk D) 25050 (6 X k) B
0°BS ol 0BS 0%I
+82 (t, Xz, k; D(Bk) + - 9% (t, Xy, k; I)6k2
By Proposition 1, last equality becomes
0BS . N . 0? 82BS . .
80’ (t Xt,kt7 (t kt)) k2 (t k ) 8k2‘/15‘k ky 8k2 (t Xt7kta (t kt))
Thus (2) gives
0BS . L 02T
(970' (thtaktul(tvkt )) 6k2 (t k )
92BS . 9?’BS . .
= FE iz (t, X, ki ve) — oz (t, Xs, ki I1(t, k7)) - (4)



But the last term on the right-hand side of (4) can be written as

8BS . .
(3']{32 (t Xt7kt7 (t kt ))
0’BS
= akz (t XtvktaBS ( ))
0’BS
= 8k2 (t Xt,k:,BS (Et (BS (t,Xt,k:,Ut)))),

where, in this case, we denote BS™(t, X, kF,-) by BS™1(:) in order to simplify
the notation. Consequently, using (4), we can establish

dBS . LT
W(LXtakt:I(t kt)) k2 (t k )

82BS .
= E ( 8k2 (t Xf,kt,’l}t)>

2
_E, <a IBS\ x,k, BS™ (B, (BSWX“I“I’“))))

Ok?
0’BS
= E |: 8k2 (t Xt,k;;,BS (BS(t,Xt,k:,'Ut)))
5235
T 0 Xu B (B (BS (. X0k o) )

Now the proof is decomposed into several steps.
Step 1. Let us first prove (3). The Clark-Ocone formula (see Nualart (2006)),
together with Hypotheses (H1) and (H3), leads to

T
BS (t, Xt, k‘:, Ut) = Et (BS (t7Xt, k:,’l}t)) +/ UTdWT,
t

where
U. = E. (DY (BS(t Xk} v)))

dBS . DY My
= E,. <( 90 (t Xt,kt,vt)) M) , > t. (6)



Hence, using equality (5), we get

OBS . o 02T
W(t7Xt7kt’I(t7kt)>w(t7kt)

[92BS
k2
92BS
k2

T
= Et <t,Xt,k:,BS_1 (Et (BS (t,Xt,k:,Ut)) +/ UTdW7>>
t

(t, Xy, k¥, BS™ (B, (BS (t, X, k;ﬁvt))))}

[T u
- E / o’ <Et(BS(t,Xt,k;‘,vt))+/ UrdWT) U,dW,
t t

1 T u
+§/ o (Et (BS (t,Xt,kZ‘,vt))—i—/ UTdWT) U2du
t t

T
= E; / V' (B, (BS (t, Xy, k;yvp))) UpdW,,
t

1 T
s / W (B, (BS (1, X0, k) Udu
t

1
- -E
2t

)

T
/ U (B, (BS (t, X,k ,v,))) Udu

t

where, in the last equality, we use the fact that

P 1
Y=g (BS=1(a))* (T — 1)’

Lemma 4 and Hypothesis (H3). This proves (3).
Step 2. Here we show that

2\ \ 2
E, |:j;5T T (A,) (Uf - (Er <3UBS(t,Xt, k;ﬂ%)%)) ) dr]
exp(X,) (T — 1)1/ ’

where A, is defined in Lemma 4, converges to 0 as T — t.



By Schwarz inequality, we can write, for r > t,

2
, . (T =r)Dta}
U? <Er (&,BS(t,Xt,kmUt) 2(T — tyv,

1 T

E?" <80BS(t, Xt, k’:, Ut)

1 T
X Er <6UBS(t7Xtak:7Ut) )'U / (D}“/VUZ - D?O’f)d@b)‘
t Jr

2T —t
vi(T—t)
Ce?Xt exp (_T) r
Er I DW 2 D+ 2 d
- (T—t) vy . ( rau+ tUt)u
xp (_ﬁ(g-ﬂ) g w2 2
x|E, | —————% (DY o2 — Dfo?)du
UVt r
v2(T—1) 2\ \ /2
CeXt P (7f> Tow o + 2
< =) E. 02 E, : (DY o + D o} )du
. 9 1/2
x| E, / (DY o2 — Djaf)du]
v2(T—t) 1/2
(T — r)2e2Xe exp (—7‘ 1 ) ( W /
< E, sup E, (DY o2+ D/ o?)?
=0 S, o Fo)

1/2
X ( sup E, ((DXVJZ — D?af)2)> .

r<u<T



Hence, Lemma 4 gives

—r)Df o2 2
5 W WA, <U3 ~ (B (0, BS(t X, kf ) G20t ) ) ) dr]
exp(Xy) (T — t)1/2

3vZ(T—t) v2(T—t)
B T Y O il A Y o
Saoat|) Pl )) R T )P
1/2 1/2
x ( sup E, (D)ol + Dfaf)2)> ( sup E, (D) o2 — D;raf)z)) dr]
r<u<T r<u<sT
3vZ(T—t)

C T v2(T —t) exp ( 8 )
< — | E E, b A S A E|l————7~
< 7al\n) (eXp< 8 ))

2 1/2
exp (7”?(§*t)>
xE, | ———* dr

2
Vg

r<u<lT

- 1/4
x (Et/ sup |E, ((DXVUZ+D?0?))\4CZT>
t

. 1/4
>«@/swuuw%ﬂmwmmﬁ
t

r<u<lT
— 0, asT —t,
due to Hypotheses (H2) and (H3). Thus the claim of this part of the proof is

true.
. 4 2.2
Step 3. Finally we prove that limp_, &L (¢, k;) = (131‘22'5)
t

From Step 2, we obtain
2

071 "
Jim, o (k)

E, { [ (A, (ET

P, LT -0
2

E, {(D*a?)Q ST (B (0,50, X,k 0) G20 dr}

2v¢

/N

2
0o BS(t, X k7, 00) Gt ) ) dr}

DN | =

DN =
N
4

1 L (T —t)5/2eXe

3



Note that the right continuity of o and (H3) imply

2
(D*o2)? [T w"(A,) (E (a(,BS(t,Xt,k;,ut)<T"'>)) dr

1 2v¢
2 \/%(T — 1)5/2eX:
D+ 2\2
— (1270;) asT —t, w.p.l,
O

and

2
(D*0?)? [T W (A) (By (95 BS(t X0k o) G2 ) ) dr

1 2v¢
2 L= e
302 (T—t) S (T—t)
(DR [T V(T 1) exp (=5=) ) e (-2
< —__tr E . lexp| ———] | E, 3 E, 3 dr.
2 (T—-1t) J, 8 v} v;

Therefore, the result follows from the dominated convergence theorem and the
fact that

3v2(T—t)
L V(T ) exp (22G1)
(e () e [

(T —t

8 v;
2
exp (_vf({ft)) )
xb, | ———s—~ dr—>Et<10>, as T — t,
Ui O

which follows from (H3). Now the proof is finished. m

Remark 6 Notice that the arguments in the proof of the above theorem can
be adapted to the study of volatility models that do not satisfy (H1), (H2) and
(H3), as we can see in the following example, where (H2) and the last part of
(H1) are not satisfied.

Example 7 Fractional noises with H < 1/2 were introduced in Alos, Ledn and
Vives (2007) to describe the empirical skew slope of the implied volatililty. This
idea has been further developed in Gatheral, Jaisson and Rosembaum (2014),
and Bayer, Friz and Gatheral (2016), where the authors have proved these mod-
els to be very efficient in the description of real market data. Following the ideas
in these papers, we consider a function f in Cg such that is lower bounded by a
positive constant and the volatility process o? = f(Y;). Here

dY; = vdW}l — a(Y; — m)dt.

with

t
wH ::/ (t — s)T=12qw,,
0

10



and v, and m positive constants. It is easy to see that o € ]L%/{,Q and that
Hypothesis (H3) holds. Moreoer, a standard computation gives us that

t
DY, = v(t- T)H_l/Q — oa// e_a(t_s)(s — r)H_l/st

T

=: h(t,r)

and then
Drot2 = f/(Yo)h(t,r).

Notice that, as H < 1/2, the above Malliavin derivative satisfies neither the last
part of (H1), nor (H2). However, we can make use of a similar procedure to
study its short-time behaviour. In fact, Clark-Ocone formula gives us that

T
BS (t, Xt7 k’:, Ut) = Et (BS (t7Xt, k‘:,’l)t)) +/ UrdWr,
t

where U, is defined as in (6). Then, the arguments of the proof of Theorem 5
give us that (3) holds. On the other hand,

<fTTh<s,r>ds>f'<n>2>)2

2 *

1 T
E, <3UBS(t7Xt7kt*>Ut)2(Tt)vt/ h(s,r)(f' (V) + f/(Yt))d5>‘

X

£, ((%BS(LXt,k;‘,vt)M/ / h(s,r)(f'(yu)+f’(n))ds>‘

02X T 2
< C(/ h(s,mds) sup  |E(f'(Ya) — 1'(%0)]

(T —1) t<r<u<T
Hence, Lemma 4 gives that

2
) T h(s,r)ds)f (Yz
R O

(T —t)t—24 exp(X,) (T — t)1/2

< (T_tc)znggngEr(f’(Yu)—f’(Yi))/t (/ h(S,T)d8> dr

< o _sw_ 10 - rm))

t<r<u<T
— 0, asT —t.

Then, the same arguments as in the proof of Theorem 5 give us that

o -2 ey - O

TS5t ok? (47 = 1207

11



Remark 8 The above result gives us an explicit expression for the at-the-money
second derivative that allows us to study its main properties. In particular, (3)
implies that
0*I
952 (t, k7)
1

BaS (tv Lt, kf7 1 (ta k:))
BS~! E.(BS(t, X4, Z,vt 2 T—s
T V27‘ eXp(( (Bu( ( 3 )))) ( )

—X,
KB ze /t (BS—1(E, (BS (t, Xy, kf,v))))® (T — )3/

>U2du

u

Thus % (t,kf) > 0 w.p.1. This, jointly with Proposition 1, proves that, fized
t € [0,T], the implied volatility 1(t,k) is, in the uncorrelated case, a locally
convex function of the strike with a minimum at k = kj. This agrees with the
previous results by Renault and Touzi (1996) and by Renault (1997).

4 The correlated case

This section is devoted to extend the above results to the correlated case. We
will need the following hypotheses:

(H1’) 02 belongs to }L%,{,‘l, and there exists a positive and adapted process Y
= {Y;,r € [0, T]} such that, for all » > ¢t E.(Y,.) < C, for some positive constant
C, and such that, forallt < <r<u<T

|Eo (D 0:)%)| + | Bo (D" DY 0)%)| < Yo

(H2’) For every t € [0,T], there exists a F}¥ —measurable random variable
D o? and a positive constant € > 0 such that, if T —t < ¢
B, ( sup |, (DY o? - D;”af)|4) <oT—1y,

t<r<u<T

for some positive constants C' and §. Moreover, there exists a F}¥ —measurable
. 2
random variable (D;")” o7 such that

- 2
1 I, E: (SupsgrgugT ’ET (DZVDZVU?L - (D) U?) D ds
i T

=0.

(H3’) Condition (H3) holds and there exists a positive constant a such that
o1(t) > a, for all t > 0.

(H4) For every fixed t > 0, sup, gt 1) Et ((O’SO'T — 03)2) —0asT —t.

Henceforth we use the notation

G(t,x,k,0):= (6@ - 835) BS (t,x,k,0)

12



and -
Iy := as/ (DZVUf) dr.

In order to prove our results on the implied volatility smile, we will make use of
the following results on correlated stochastic volatility models proved in Alos,
Leén and Vives (2007). Although Lemma 10 is well-known, we state it for the
convenience of the reader.

Lemma 9 (Lemma 4.1 in Alos, Leén and Vives (2007)) Let 0 <t < s < T,
p € (—1,1) and Gy := F, V F¥ . Then for every n > 0, there exists C = C(n, p)
such that

—3(n+1)

T
E(0"G (s, X5, kF,vs)| G| < CeXt o2ds
x t S
t

Lemma 10 (Lemma 6.1 in Alos, Ledn and Vives (2007)) Assume the model
(1) is satisfied. Then, I(t, k)T —t tends to zero a.s., as T — t.

Theorem 11 (Theorem 4.2 in Alos, Ledn and Vives (2007)) Consider the
model (1) and assume that o € L%,[’,?. Then we have that, for 0 <t < T,

T
Vi = E (BS (t, X, k,vp)) + gEt (/ ef(st)axG(s,Xs,k,vs)Fsds> . (7N

t

Theorem 12 (Adaptation of Theorem 6.3 in Alos, Ledn and Vives (2007))
Assume the model (1) is satisfied and that Hypotheses (H1’), (H2), (H3) and
(H4) hold. Then

.0l . .p 1 T D} oy
ilplglt %(t’kt) = %13 th’mﬂf </t Fsd3> = pTat’ (8)

Dto2
where Doy = =%

201 °
Proof. Let us denote Vi(Xy, k) the option price with log-stock price X; and
log-strike k. Notice that, as

BS(t,x,k,0) = " BS(t,x — k,0,0)
we get
Vi(Xy, k) = BS(t, Xy, k, I(t, Xy, k) = e*BS(t, X; — k, 0, I(t, X;, k)). (9)
On the other hand,
Vi(Xi, k) = Ey(e™ —eh)y

Et(eXT—XteXt _ 6k)+
ekEt(eXT*XteXt*k - 1)
= VU(Xy = k,0), (10)

13



and then, (9) and (10) imply that
e*BS(t, X; — k,0,I(t, X;, k)) = e"Vi(X; — k,0)
That is
BS(t,X; — k,0,1(t, X, k) = BS(t, Xy — k,0,I(t, X; — k,0)),

which implies that
I(t, X, k) = 1(t, X¢ — k,0).
In particular, this proves that

I (t, Xy, k) = =0, 1(t, Xy — k,0).

Now the result follows directly from Theorem 6.3 in Alos, Ledén and Vives

(2007)). =
Now we are in a position to prove the main result of this Section.

Theorem 13 Assume that the model (1), and Hypotheses (H1’), (H2), (H3’)
and (H4) are satisfied. Then,

. * 1 7 5\ (Die})? | P’ +12 .2
%lftakg(t,kt)—<12—240>Jt5+60§(Dt)Ut~

Proof. From the definition of the implied volatility I, we have

82
Pl
0?BS L
= ok2 <t7Xt>ktaI<t7kt)>
0°BS OI(t, k)
2——— (t. X kX T ¥\ A0 M
+ kdo <t7 t7kt’ (takt)) ok
0’BS . oo (OI( )\
O (t Xk 1l k) ()
0BS . . 821(t,k;")
+W (t7Xtakt7I(t7kt)) W (11)
Now, Equality (7) gives us that
82
o2t
0 . p Ty 0%G .
= wEt(BS(t,Xt, kt7/Ut)) + §Et <‘/t e ( t) 6k28$ (S, )(‘57 kt , US)Fst
0? p T oy PG .
= @ (‘/t(o)) + §Et (\/t e ( t) 8k28$ (S,XS, kt,vs)rsds
82 * 0 * 14 T —F(s— aSG %
= o5 (BSWXu ki, I 7) + S By /t e T (o Xk w)ds )

14



where V;(0) denotes the option price in the case p = 0 and I°(¢, k}) the corre-
sponding implied volatiltiy.
On the other hand, we can write
BT (BS(t, Xy, ki, I°(t, kf)))
9’BS .
= Xy, ki 10t k7))
9’BS
2———(t, Xy, kIOt kf
+ 8]4}6 ( ty Vo ( ))

92BS . o (010
o (8 Xu bt 000 k) (G kD)
0oBS 0%1°

* 0 *
+W(t7tht7l (ta kt)) k2

or1°

ak(tk)

+

(t, kp).

Then, from Proposition 1, %—I,:(t, k¥) =0 and we get

82
ok?

= B8 Xk (k)
0BS 0%1°

+t—— Ao (t Xtakjvlo(t k*)) k2

(BS(t, X4,k 10(t, k7))

(t, k),

which gives us that

32
o2
9?BS
= S (t, X¢, k5 I0(t, E)))
dBS 210

+— o (t, Xe, kIO, E))) = o)

T
+8Et </ e T(s—t) G (s,XS,k‘Z,US)FSdS> .
t

(¢, k7)

2 0k20x

15



This, jointly with (11), allows us to write

82

oz ()
o210 (t . )E)BS (t Xt,kf,fo(t k*))
ok?

BBS (t Xtvkzkv-[(tvkt))
6 BS

2B, Ko K520 (81(t,kr)>2
BBS (t, Xo k7, I (8 k7)) \ Ok

i%k%:f (t, Xo, k3 1 (k7)) DI(t, k)

05 (t, X, ey I(t, k*)) Ok

PEt <ft e—T(s—t) 0 akgax (s, Xs, ki vs)Ds ds)

2 9BS (1, Xy, ki, I(t, k7))
j;TBf(t,Xt,k:,f“(t,kr» S0 (1, X k5 1(1,K7))

w(t X ki, (t, k7))
o (LXK IWRD) | (g
OB (1. Xk It k) et

9210
= k2

(tk)

OBS k* 0 k*
Note that, by Lemma 10, it is easy to check that dBS((tt);’ II ((:’k*‘)))) — 1 as
t7 El v
T — t. Now the proof is decomposed into several steps.
Step 1. Let us see that Ty — 0 as T — t. We can write

9BS (¢, Xy, ki, I(t, k7)) ok

(T =0Ik) (It k)
- 4 ( ok )

7 R (6 Xk T K) (az(t,k;;)>2

From Lemma 10 we know that (T'—t)I(¢,k;) — 0 as T' — t. Therefore Theorem
11 implies that T — 0 as T — t.
Step 2. We claim Ty = 7%. Indeed, this follows directly from the fact
that )
Giop (b X K I(EK7)) 1

9BS (1 Xy, ki, I(t, k) 2

Step 3. To deal with T3, we apply the anticipating It6’s formula (see for
example Nualart (2006)) to the process

; el r
—7(s—t) *
e 8k28x(s’XS7kt’Us)/s I,.dr

16



and taking conditional expectations it follows that

T 3
P —7(s— 8 G *
§Et (/t e (s—t) 20m (s, X, kt , vs)Fst)
PG . T
= 7E <8k26 (t Xt, kt,Ut)/t Fsd8>
2 T 3 2 3 T
14 —7(s—t) 0 0 0°G * /
—F — = —= | =——(s, X} ' r T
M (/t c <8x3 92 ) arzag (S Xk v) (| Drdr)Lsds

Pp ([ e-rtmn _0'C L pw
Ly (st X,k pYr .
+ 5 Eit /t e 2022 (s, s,kt,vs)(/ﬁ 2 Trdr)osds

Then, applying the anticipating It0’s formula again,we get

LF, (ft e~ T(s—1) a G — (5, X5, kf,v)Ts ds)
%(t,xt,k;, (t, kF))

! E PG\ x, ke )/TI‘ds
= = v s
OBS (+, Xy, hy, A(t, k7)) |27\ 0k20x 00T,
2 3 2 3 T T
& @ 0 3G . / /
+—FE ((6353 8352) 6k2ax(t,Xt,kt,vt) t ( i [,.dr)Tds
T T
< 12557 (t, Xt, ki, vt) / (/ Dzvl_‘,-dT)O'st)
t S
T 3 2\2 93 T /T
(e 0 0 03G .
(/ o7 t) 8903 _3x2) g (52 X ki 0,) (/ (/ ng@)l“rdr> Fsds>

Ty =

T 3 2 4 T T
(s 0 0 0°G .
/ e 7 ( t) axs _ 81'2) W(S7Xs,kt7vs) </ DZV(/ F@d@)FTdT> 0’st>
t s T
T o ven (O® O\ &G \ o
/t o7 t) 8x3 _ W) e (. Xk ) / (/ DYTyd6)o,dr | Tyds
—7(s—t) a G * T w g w
+ 5Et e 9520 53 (5 Xss ki 5 vs) DY (| D"Tedf)o.dr | osds
t £ s T

= Ty +T5+T5+Tf+T5 +T5 +Tj.

Notice that, from Lemma 8 and Hypotheses (H1’) and (H3’), T4 + T +T% + T4

17



tends to zero as T — t. On the other hand, (8) implies that

By (G281, X ki ) [ Tds)

im 7 = 2
T 210 25 (1, X,k I(t, k)
T
P 1
= lm-————_F r
1 10T 0 </ Sds>
Lo OI(t k)
= g dm =5 (3

In a similar way we can see that

2 3 2 3 % T T
B (- ) st Xe k) T T ds)
1m =
Tt OBS (4, X, ki, I(t,k}))

2 15 T T
= 1m 2B —74/ (/ T,dr)Tsds
e W IV A A

2 1 T
Y
T—t 8 v (T —t) t

15p% L 52
" 3207 (Dfa?)”. (14)

Finally, we can write

02 3 T T
lim Tg’ = — lim F, 73/ (/ ngl“rdr)asds .
T—t 2 T—t o (T —1)° Ji s

T T
DY¥r, = DV, (/ DXVagcw) + o, (/ DgVDXVagcw)
DV 2

T T
25 r (/ DXVagde> + o, </ D?D,%ﬁd&),
Or T r

and taking into account (H2’), it follows that

) p? 3 T T T
lim 73 = = lim E; r73/ / DY o2 / DY o2d6 | dr | ds
T—t 4 Tt o? (T —1t)" Ju s r
p2 3 T T T
+= lim E, 73/ / / DY DWs2do | dr | ds
4 T—t O'f (T—t) t s r
2

2
P 1 22 P 1 2 _2
= 8(%5(1)?%) )+4<03(Dt+) 015)'

Since




This, jointly with (13) and (14) implies that

_ 11 1 OI(t,ky)
_ 2 + +y2 2 L ) oy
%}I_I)ltTg—p ( 3907 (Df o ) +4 (D;") t> 21 L

e Step 4. Let us study the term Ty. We can write, from Theorem 10,

92BS . o 0’BS . .
akz (t Xtvkhlo(t k )) 8k2 (t Xtaktv (t kt))
0?BS
= 8k2 (t Xt, k‘:, BS™ (Et (BS (t,Xt, k:, Ut))))
BQBS
8k (t Xt, k:, BS™ (Et (BS (t,Xt, k‘f,vt))

T
. oG
+ gEt (/t eT(St)ax(s,Xs,k;‘,vs)Fsds>>>

= U (E, (BS(t, X, ki vp)))

T
-0 <Et (BS (t, Xt, ki, ve) + BEt (/ e_F(S_t)w(s,Xs,kZ,vs)Fsd8>>>
2 ¢ Ox
= U (u(T,t) | LE /T —W—ﬂa—G( X, ki vs)Dsd
- M 9 2 t \ € 3x S, Ag, t7vs saS )

where ¥ is defined in Theorem 5 and p (7, t) is a positive value between
Et (BS (t, Xt7 kzk, Ut)) and

T
E; (BS (t,Xt,k‘:,Ut) + gEt (/ e~ T(s—t) ZG(S Xs,k:,’vs)l—‘ ds)) .
t
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As in the proof of Step 3, it follows that

(1 (T, 1)) By (f e~ T=09C (5 Xk v,)T, ds)
2 6BS (t Xt7k7>tk7 (t kf))

/ T
_ _B — \\g (p’ (Ta t)) Et %(t,Xt,k:,'Ut)/ FSdS
28 S (8, Xo, ki, (k7)) Oz t
P ('93 B 8 oG . /T /T
2 T T
1 pE, (?)G(t Xo, kE ) / ( / D?Frdr)crsds>
t
2 T 3 T T
r oty (00 P\ 06 . / /
+4Et /t € (3363 or2 ) or — (8, X, kY, vs) : (T Lpdd)T,dr | Tsds

(IS}

T, = -

—~

2 T 3 2 2 T T
P —F(s—t) 0 0 0°G / / w
—F —_— - X D'T I
+ 5 Bt /t e (81'3 927 ) 9a2 (s, Xs, ki, vs) i ( D gd0)o,.dr | T'yds

p? T e (O 9P\ G T w [r
+5Et /t e (8x3_8x2) 82(8 X, ki, vs) /S D, (/T Tpd6T,.)dr | osds

T - 83G T T
+ p*E, /e—“s—ﬂw(s,xs,k;,vs) /DXV(/ DWTpdbo,)dr | oyds
t s T

= Ti+T;+T)+TH+T) +T9 + Ty

It is easy to see that, from Lemma 9, Ty +T7 +T¢ +Tf — 0as T — t.
Now,

U/ (1 (T, ¢ G T
im 7} = —2lim (1 (T:1)) E | &2, Xt,k:;;,vt)/ T.ds
Tt 2Tt % (t, Xo, kf, I(t, kF)) or "

-X, T
= Plim ¢ 5 (%, Xt,k;‘,vt)/ T,ds
21 BS I (u(T,0)2(T —1)F '\ 0w t

)

= P im ! ' 5
= 1AM B YW (T, t))20(T >2Et</t Psd>'

Notice that BS™!(u (T, t)) is an intermediate value between 1°(t, k}) and
I(t, k). Then, Theorem 3.1 in Durrleman (2007) gives us that BS™(u (T,t)) —
o as T — t, and this implies that

1 I
hmT4 —fhmat

Tt 27T ak (t7kt)
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On the other hand,

2 !
nTE = O g V@)
T—t 4 T—t wre (tvxtak;;7l(t7kz<))
o 9%\ oG ) Tt
XEt ((61‘3 - (9332> %(ta Xtaktvvt)‘/t (/; Frd'f')].—‘sds
)02 ) 6*Xt
= — lim 3 3
4 T=t BS= (u(T,t))" (T — t)3

? 97 oG . T T
x By ((8:53 - axz> b Xt,kta'l)t)/t (/S T,dr)Tds
2 T T
_ 3
- do] %Hf}t (T —t)4 %@t (/t (/S Frdr)rsd5>

2
2 T
_opt 3 .
= s T o (/ MS)

3p? 2

Finally,

P’ 1
—— lim
2 5% BS—1(u (T, 0))2(T — 1)

1 T T
E| — DY T,.dr)osd
i (e [ P ama)

P’ 1 T
= Tt T /t(/ DT, dr)ods

1
= -3 lim T5.

T =

T—t

Thus the proof is complete.
]

Remark 14 The hypotheses of the above theorem can be substituted by other
adequate integrability conditions. That is, as in Example 7, we can change
Hypotheses (H1) and (H2) by suitable conditions to deal with fractional noises.

Remark 15 The above results prove that both the short-time at-the-money skew

and smile depend directly on the short-time behaviour of the Malliavin deriva-
tives of the wvolatility process.
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Remark 16 Notice that the short-time limit implied volatility is a locally convex
function around ki if and only if

1 79 (Dt+‘7t2)2 P +12 2
— L)% P op > 0.
<12 24" ) o3 D)o 20

If (Dj)saf - 2—74(’3{7{;3)2 > 0 this is satisfied independently of the correlation
parameter p. If (D ) % _ = (Dig?)z < 0 this condition holds if
+
pg 1247 (D )
240 (D+ ) - 7(D+) Ufgf
5 Examples

5.1 Diffusion stochastic volatilities

In this subsection we assume that o = f(Y'), for some positive function f, and
where Y is the solution of a stochastic differential equation:

dY, =a(r,Y,)dr +b(r,Y,)dW,, r € [0,T] (15)
for some real functions a,b € CZ. Then we can prove the following result

Proposition 17 Let us consider the model (1) with o = f(Y), where f € C? is
such that f(z) > ¢, for some positive constant ¢, and Y is the solution of (15).
Then

%1 N
Hm, g (k)
- %(f’(Yt)b(t,Yt))Q
t 3 (b%,n) (‘2 (F(%) +o0f "<Yt>> tol ) SZWWO

Proof. Note that (H3’) and (H4) are true in this case. Then, classical arguments
(see for example Nualart (2006)) give us that ¥ € L%,[’,z and that, for all s <r

DYy, = / (u, Yo, ) DV Y du + b(s, Ys) + gb (u,Y,)DYY,dW, (16)
and forall T < s<r
DY DWVy,
2
=/ gQ(uY)(DWY)(DWY du—i—/ o (u, V) DY DY Y, du
a w 82 w w
+o- (YD Yo+ [ o 2(u Y.) (D¥Y,) (DYY,) dW,
/ (u,Y,) DY DYy, daw,, (17)
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Taking now into account that
DY o2 =20, (Y,)DVY,
and
DY DW 52
= 2(f'(v, ‘ ))2 (DX"Yu) (DY) + 200 f" (Yu) (DY V) (DY) + 200 f'(Yu) DY DIVY,
= ( (f'(vu)? + auf”(Yu)) (D)Y,) (DYY,) + 20, f'(Yu) DY DVY,,
together with (16) and (17), it can be deduced that (H1’) and (H2’) are satisfied

with
D} o? =20, (Y3)b(t,Y?),

and

(Df)? o} =2 {((f’(Yt))2 + o (Y))b* (L, Yr) + atf’(n)%(t, Y)b(t,Yy)] .

Then, Theorem 13 yields

_ 1 7 5 (D?UtQ)Z PZ +\2 2
= (12_24p)a§ + 47 (o) o)
'

_ <1 _ 7p2) (20 ' (Y1)b(2, ii))

5
Oy

+ s (00 4 ou GO0, 5) o () 0, i)b( Y0 )

= 33 (/Y

b (P (<5 00 00 ) o (B S b Y) ).

and now the proof is complete. m

Remark 18 Notice that the obtained expression for imp_, g—;g(t, kf) does not
depend on the function a.

Remark 19 The short-time implied volatility is convez either when
2 5 2 " / ob
B( V) (=5 (/O0) + 0uf (V) ) o (Vi) 5 (6 Yob(t, ¥i) > 0,

or when

R0 (=3 (00 + 00" (0)) + ) () G0, Vb ¥o) < 0
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and

(' (Yb(t, Y1))® .
B(1,Y:) (3 (7(Y0)° = 008" (V) — 00 (¥ 228, Y)b(t. Vi)

p* <

Example 20 Let us suppose that oy = ¢ + Yy, with a positive constant ¢ and
where Yy = \/Zy, for a CIR process Z of the form

dZt = —H(Zt — 0) + vy thWS.

Here k, v and 6 are positive constants such that 27"29 > 0. Then, we have (see

for example Alos and Fwald (2008)) that Y satisfies (15) with
kK vE\ 1 &
Y)=|——-— )= - =2Y,
a(t,Yy) ( 5 T3 ) y, 2t
and b(t,Y;) = 5. Even when a is not bounded, a limit argument (see Alos and
Ewald (2008)) gives us that that D} 0 = vo, and (D} )?0? = Y Then

2
. 0%, v? 55
}L%;a“v’“ﬁuag(lp 2)’

that gives us that this short-time limit volatility is locally convex around ki when
2
p? <2/5.

5.2 Fractional noises with H > 1/2

Here we analyze the model (18) below driven by a fractional noise.

Example 21 Assume that the squared volatility o2 can be written as o? =

f(Y), where f € CZ and Y is a process of the form
Y, =m+ (Y —m)e 0 4 ey 204/ exp (—a (r —s)) dWH, (18)
t

for some positive constants m, c and o and where WH := fos (s—u)"=2dW,,, for
some H > 1/2. This class of models have been introduced in Comte and Renault
(1998) to capture the long-time behaviour of the implied volatility. Notice that
(see for example Alos, Mazet and Nualart (2000)) ! exp (—a (r — s)) AW can
be written as

(H _ ;) /0 (/ 10y () exp (—a (1 — ) (u — s)H—Sdu) aw,,

from where it follows easily that hipotheses (H1’), (H2’) (H3’) and (H{) hold,
with 6 = 4H — 2 and Do, = (D} )?0; = 0. Then, independently on the
correlation parameter, limy_,p %(t, k¥) = 0. This means that the introduction
of fractional noises with H > 1/2 does not give a contribution to the short-time
smile.
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6 Conclusions

By means of Malliavin calculus we have studied the second derivative of the
implied volatility as a function of the strike price, both in the uncorrelated and
in the correlated cases. Moreover, we explicitly compute its at-the-money short-
time limit in terms of the first and second Malliavin derivatives of the volatility
process and the correlation parameter. As a particular example, we study this
limit for classical diffusion volatility models as well as for fractional volatilities.
This methodology allows us to derive a condition for the at-the-money local
convexity of the implied volatility, in terms of the correlation parameter and
the Malliavin derivatives of the volatility process.

7 Proof of Lemma 4

This section is devoted to the proof of Lemma 4. We first observe that BS (¢, X4, k7, -)
and exp(-) are two convex function on R*. Therefore, Jensen inequality implies

—1 * 2 _
exp <BS (t7Xtakt;Ar) (T t))

8
= enp (DI BB Kook, v T2 0))
- 8

< exp <Er <BSl(t’ Xt,k?aBS(éa X, kfv)2(T — t)>>
<

(o (10:1).

Similarly, using that = +— 2% k = 2,3, is a convex function on R* and the
Taylor expansion for BS™(t, X, kF,-), we have

(BS™\(t, X, kf, )

—k
< (T L (BS(t, X¢, kF,ve)) e Xt)

IN

—k
FBS(t X kF e —Xf> ,

which implies the result due to the mean value theorem.
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