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1 Introduction

One of the most popular extensions of the classical Black-Scholes model is to
allow the volatility to be a stochastic process (see for example Hull and White
(1987), Scott (1987), Stein and Stein (1991), Heston (1993), and Ball and Roma
(1994), among others). Classical stochastic volatility di¤usion models, where the
volatility also follows a di¤usion process, are able to reproduce some important
features of the implied volatility as its variation with respect to the strike price,
described graphically as a smile or skew (see Renault and Touzi (1996)). Nev-
ertheless, they do not easily explain its dependence on time to maturity (term
structure).
For example, stochastic volatility e¤ects appear to be still signi�cant for very

long maturities(see Bollerslev and Mikkelsen (1996)). In practice, the decrease
of the smile amplitude when time to maturity increases turns out to be much
slower than it goes according to the standard stochastic volatility models.
Long-memory features for the volatility process have been introduced in

Comte and Renault (1998) and in Coutin, Comte and Renault (2012) by the
introduction of fractional noises in the description of the stochastic volatility
process. This technique allows us to endow the volatility process with high per-
sistence in the long run in order to capture the steepness of long term volatility
smiles without overincreasing the short run persistence. An extension of these
models have been studied recently in Corlay, Levobits and Lévy-Vehel (2014),
where the volatility process is driven by a fractional Brownian motion (fBm)
where the Hurst parameter is allowed to vary in time. In this paper the au-
thors developed numerical techniques, based on funtional quantization-based
cubature methods, to get accurate approximate option prices.
Even when the introduction of fractional noises is a powerful technique to

explain the term-structure of the implied volatility, fractional stochastic volatil-
ities are not Markovian process nor semimartingales. In consequence, their
mathematical structure is more complex. This becomes an important handicap
in the construction of simple and easy-to-apply techniques for option pricing
and hedging, as closed-forms approximations of option prices, and, up to our
knowledge, only numerical methods have been presented in this framework.
Our main goal in this paper is to present a simple method to construct op-

tion pricing approximation formulas for a fractional stochastic volatility model.
The presented model, based, as in Coutin, Comte and Renault (2012), on the
fractional integration techniques, allows us to preserve the short-time behaviour
of the Heston model, at the same time it explains the slow �attening of the
implied volatility when time to maturity increases. Our approximation formula
is obtained by the same procedure presented in Alòs (2012), where by using
classical Itô�s calculus we decompose option prices as the sum of the classical
Black-Scholes formula with volatility parameter equal to the root-mean-square
future average volatility plus a term due to correlation and a term due to the
volatility of the volatility. This methodology does not need the volatility process
to be a di¤usion nor to be Markovian so it appears as a natural tool to study
models with fractional volatilities, that gives us simple and easy-to-apply op-
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tion pricing approximation formulas. Moreover, the obtained approximations
for option prices allow us to deduce an approximation for the implied volatility.
This approximation gives us a tool to study the short-time and the long-time
implied volatility behaviour and to see that the proposed model explains the
slow decrease of the implied volatility slope.
The paper is organized as follows: Section 2 is devoted to the introduction of

an extension of the Heston model by means of fractional calculus. In Section 3
we develop adequate option pricing approximation formulas and we study their
accuracy . In Section 4 we study the behaviour of the corresponding implied
volatility and we compare it with the classical stochastic volatility case.

2 Fractional volatility models

The aim of this section is to de�ne a fractional volatility model that will allow
us to reproduce e¢ ciently the short-time and the long-time behaviour of the
implied volatility. To this aim, we will introduce the main concepts of fractional
integration.

2.1 Fractional derivatives and integrals

We recall the basic facts on fractional derivatives and integrals that we will need
along the paper. We will use the notation of Samko et al. (1993), which gives a
complete survey of fractional integrals and derivatives. Let f 2 L1 ([0; T ]) and
� > 0: The left-sided fractional Riemann-Liouville integral of f of order � on
[0; T ] is given at almost all t by

I�0+f(t) =
1

� (�)

Z t

0

(t� r)��1f(r)dr:

The inverse operation of the fractional integration is the fractional di¤erentation.
Consider p � 1 and let I�0+(Lp) be the image of Lp ([0; T ]) by the operator I�0+:
If f 2 I�0+(Lp) and � 2 (0; 1), the function � such that f = I�0+� is unique in
Lp ([0; T ]) and it agrees with the left-sided Riemann-Liouville derivative of f or
order � de�ned by

D�
0+f(t) =

1

� (1� �)
d

dt

Z t

0

f(r)

(t� r)� dr:

This derivative has the Weyl representation

D�
0+f(t) =

1

� (1� �)

�
f(t)

t�
+ �

Z t

0

f(t)� f(r)
(t� r)�+1 dr

�
;

where the convergence of the integrals at the singularity t = r holds almost
surely if p = 1 and in the Lp�sense for p > 1:
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2.2 The model and notations

We will consider a stochastic model for stock prices in a time interval [0; T ] under
a risk neutral probability P � :

dSt = rStdt+ �tSt

�
�dW �

t +
p
1� �2dB�t

�
; t 2 [0; T ]; (1)

where r is the instantaneous interest rate (supposed to be constant), W �
t and

B�t are independent standard Brownian motions de�ned on a probability space
(
;F ; P ), � 2 [�1; 1]. In the following we will denote by FW�

;FB�
the �ltrations

generated respectively by W � and B�. Moreover we de�ne F := FW� _ FB�
:

We assume that the volatility process is given by the sum of a fractional
integral and a fractional derivative of a of a di¤usion process ~�2s adapted to the
�ltration generated by W:The fractional integral term will allow us to explain
the observed long-time behaviour of the implied volatility, as in Comte, Coutin
and Renault (1998), while the fractional derivative part will explain the short-
time behaviour of the implied volatility. More precisely, consider a CIR process
of the form

~�2t = � +
�
~�20 � �

�
e��t + �

Z t

0

exp (��(t� u))
q
~�2udWu (2)

where ~�20; �; � and � are positive constants satisfying the condition
2��
�2 � 1,

which implies that ~�2s > 0 a.s.We will denote Yt = � +
�
~�20 � �

�
e��t and Zt =R t

0
exp (��(t� u))

q
~�2udWu: Then we will assume the volatility process is given

by
�2t = Yt + c1�Zt + c2�I

�
0+Z(t); (3)

for some � 2 (0; 1=2) and for some positive constants c1; c2:

Remark 1 If c2 = 0 and c1 = 1; the above process coindices with ~�2t : Notice
also that E

�
�2t
�
= E

�
~�2t
�
= � +

�
~�20 � �

�
e��t:

Proposition 2 Take � 2 (0; 1=2) and T � 0: Assume that 2��
�2 � 1 and�

1� c1 � c2 T�

��(�)

�
� 0 . Then

�2t � ~�20e��t + �
�
1� e��t

��
1� c1 � c2

T�

�� (�)

�
a.s.

Proof. We can write

�2t = Yt + c1�Zt

+c2�
1

� (�)

Z t

0

(t� r)��1Z(r)dr;

We know, from the positivity property of the Heston volatility process, that,
a.s., �Zr > �

�
� +

�
~�20 � �

�
e��r

�
= �Yt for all initial condition ~�20:Then, letting
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~�20 ! 0 we have that �Zr � �� (1� e��r) a.s. This allows us to write

�2t � Yt � c1�
�
1� e��r

�
�c2

�

� (�)

Z t

0

(t� r)��1
�
1� e��r

�
dr

� Yt � c1�
�
1� e��r

�
�c2

� (1� e��t)
� (�)

Z t

0

(t� r)��1dr

= Yt � c1�
�
1� e��t

�
� c2

� (1� e��t) t�
�� (�)

= � +
�
~�20 � �

�
e��t � c1�

�
1� e��t

�
�c2

� (1� e��t) t�
�� (�)

= ~�20e
��t + �

�
1� e��t

��
1� c1 � c2

t�

�� (�)

�
� ~�20e

��t + �
�
1� e��t

��
1� c1 � c2

T�

�� (�)

�
which is a positive quantity because�

1� c1 � c2
T�

�� (�)

�
� 0

Remark 3 If c2 = 0 �2t is a CIR process with vol-vol equal to c1� and the

condition
�
1� c1 � c2 T�

��(�)

�
� 0 reduces to 1 � c1. If � = 0 �2t is a CIR

process with vol-vol equal to (c1 + c2) � and this condition reduces to 1 � c1+c2:

Remark 4 Notice that the above result implies that

�2t � min
�
~�20; �

�
1� c1 � c2

T�

�� (�)

��
:

Then, if
�
1� c1 � c2 T�

��(�)

�
> 0, the volatility process � is uniformly lower

bounded by a positive constant.

It is well-known that the price of an European call option at time t is given
by

Vt = e
�r(T�t)E� (XT �K) ; (4)

where K is the strike price and E� denotes the expectation with respect to P �.
In the sequel we will make use of the following notation
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� BS(t; x; �) will denote the price of a European call option under the classi-
cal Black-Scholes model with constant volatility �, current log stock price
x, time to maturity T � t; strike price K and interest rate r: Remember
that in this case

BS(t; x; �) = exN(d+)�Ke�r(T�t)N(d�);

where N denotes the cumulative probability function of the standard nor-
mal law and

d� :=
x� x�t
�
p
T � t

� �
2

p
T � t;

with x�t := lnK � r(T � t):

� LBS
�
�2
�
stands for the Black-Scholes di¤erential operator, in the log

variable, with volatility � :

LBS
�
�2
�
= @t +

1

2
�2@2xx + (r �

1

2
�2)@x � r�

It is well known that LBS
�
�2
�
BS(�; �; �) = 0:

� v2t = 1
T�t

R T
t
E�
�
�2s
��Ft� ds: That is, v2t denotes the square time future

average volatility.

� Mt =
R T
0
E�
�
�2s
��Ft� ds: Notice that v2t = 1

T�t

�
Mt �

R t
0
�2sds

�
.

2.3 Martingale representation of the future expected volatil-
ity

In our study we will need a explicit expression for dMt by means of Clark-Ocone
formula. For this, we assume that the reader is familiar with the elementary
results of the Malliavin calculus, as given for instance in Nualart (1995). The
set D1;2W will denote the domain of the Malliavin derivative operator DW : It is
well-known that D1;2W is a dense subset of L2(
) and that DW is a closed and
unbounded operator from L2(
) to L2([0; T ]� 
):
The next result is proved in Alòs and Ewald (2008):

Proposition 5 Assume the condition 2�� > �2: Then , for all 0 < s < t < T
the random variable ~�2t 2 D

1;2
W and

Ds~�
2
t = �

q
~�2tf(t; s);

where f(t; s) := exp
�R t

s

�
��
2 �

�
��
2 �

�2

8

�
1
~�2u

�
du
�
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Remark 6 Notice that the condition 2�� > �2 implies that ��2 �
�2

8 is positive.

Then it follows that
��Ds~�2t �� � �q~�2t :

Remark 7 From the above result can easily check that, for all 0 < s < t < T
the random variable �2t 2 D

1;2
W and that

DW
s �

2
t = c1D

W
s ~�

2
t +

c2
� (�)

Z t

s

(t� r)��1Ds~�2rdr (5)

The above result allows us to proof the following martingale representation
for the future expected volatility:

Proposition 8 Assume the condition 2�� > �2 and that
�
1� c1 � c2 T�

��(�)

�
�

0: Then, for every �xed t 2 [0; T ]

dMt = �A(T; t)

q
~�2tdWt;

where A(T; t) :=
R T
t

�
c2

��(�) (T � u)
� + c1

�
exp(��(u� t))du:

Proof. From the Clark-Ocone formula and (5) we deduce that

�2t = E
�
�2t
�
+

Z t

0

E
�
DW
s �

2
t

��Fs� dWs

= E
�
�2t
�
+

Z t

0

[c1� exp(��(t� s))

+

�
c2
� (�)

Z t

s

(t� r)��1 exp(��(r � s))dr
�q

~�2s

�
dWs

= : E
�
�2t
�
+

Z t

0

a(t; s)dWs:

It is easy to see that dMt =
�R T

t
a(r; t)dr

�
dWt:Then some algebra gives us that

dMt = �

 Z T

t

(c1 exp(��(r � t))

+
c2
� (�)

Z r

t

(r � u)��1 exp(��(u� t))dudr
q
~�2t

�
dWt

�
= �

 Z T

t

c1 exp(��(r � t)) +
c2

�� (�)
(T � u)� exp(��(r � t))dr

!

= �

 Z T

t

�
c2

�� (�)
(T � u)� + c1

�
exp(��(u� t))du

!q
~�2tdWt;

and now the proof is complete.
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Corollary 9 There exists a positive constant C
�
�20; �; T

�
such that, for every

t > 0 and p > 1
E (�pt ) � C

�
�20; �; T

�
:

Proof. We can write

E (�pt ) � C
�
�20
� 
1 + E

�Z t

0

ja(t; s)j2
� p

2

ds

!

� C
�
�20; �

� 
1 + E

�Z t

0

(1 + (t� s)�) ~�2sds
� p

2

!

� C
�
�20; �

��
1 +

�Z t

0

(t� s)�E (~�ps) ds
��

;

and now the results follows directly from the fact that the CIR process (2) has
uniformly bounded moments (see for example Alfonsi (2010)).

3 Option pricing approximation

In this section we will develope an approximation method following the same
ideas as in Alòs (2012). We will need the following lemma:

Lemma 10 Let 0 � t � s � T and Gt := Ft _ FW
�

T : Then for every n � 0;
there exists C = C(n; �) such that����E��@nx � @2

@x3
� @

@x2

�
(s;Xs; vs)

����Gt����� � C
 Z T

s

E
�
�2�
��Fs� d�!�

1
2 (n+1)

:

Our price approximation method is based in the following decomposition
result that can be proved following the same arguments as in Alòs (2012). In
the following we take t = 0 for the sake of simplicity:

Proposition 11 Assume the model (1), where the volatility process � = f�s;s 2 [0; T ]g
satis�es the conditions 2�� > �2 and

�
1� c1 � c2 T�

��(�)

�
> 0: Then

V0 = BS (0; X0; v0)

+
1

2
E�

 Z T

0

e�rsH (s;Xs; vs)�sd hM;Xis

!

+
1

8
E�

 Z T

0

e�rsK (s;Xs; vs) d hM;Mis

!
; (6)

where

H (s;Xs; vs) :=

�
@3

@x3
� @2

@x2

�
BS (s;Xs; vs)
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and

K (s;Xs; vs) :=

�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
BS (s;Xs; vs) :

Theorem 12 Fix T > 0. Assume the model (1), where the volatility process

� = f�s;s 2 [0; T ]g satis�es the conditions 2�� > �2 and
�
1� c1 � c2 T�

��(�)

�
>

C for some positive constant C: Then�����V0 �BS (0; X0; v0)� 12H (0; X0; v0)E�
 Z T

t

�sd hM;W �is

!

�1
8
K (0; X0; v0)E

�

 Z T

0

d hM;Mis

!�����
� C (T; �0; �)

�
�2�2 + ��3 + �4

�
(7)

for some positive constant C (T; �0; �) :

Proof. Consider the processes e�rtH (t;Xt; vt)Ut and e�rtK (t;Xt; vt)Rt, where

Ut :=
1

2
E�

 Z T

t

�sd hM;W �is

�����Ft
!

and

Rt :=
1

8
E�

 Z T

t

d hM;Mis

�����Ft
!

It is easy to check that

e�rTH (T;XT ; vT )UT = 0; e
�rTK (T;XT ; vT )RT = 0:

Then, the same arguments as in Alòs (2012) we can write

0 = H (0; X0; v0)U0

� 1
2
E�

 Z T

0

e�rsH (s;Xs; vs)�sd hM;W �is

!

+
1

2
E�

 Z T

0

e�rs
�
@3

@x3
� @2

@x2

�
H (s;Xs; vs)Us�sd hM;W �is

!

+
1

2
E�

 Z T

0

e�rs
�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
H (s;Xs; vs)Usd hM;Mis

!
:
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and

0 = K (0; X0; v0)R0

�1
8
E�

 Z T

0

e�rsK (s;Xs; vs) d hM;Mis

!

+
�

2
E�

 Z T

0

e�rs
�
@3

@x3
� @2

@x2

�
K (s;Xs; vs)Rs�sd hM;W �is

!

+
1

8
E�

 Z T

0

e�rs
�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
K
�
s;Xs; v

�
s

�
Rsd hM;Mis

!
:

This, together with (6), allows us to write

Vt = BS (0; X0; v0) +H (0; X0; v0)U0 +K (0; X0; v0)R0

+
�

2
E�

 Z T

0

e�r(s�t)
�
@3

@x3
� @2

@x2

�
H (s;Xs; vs)Us�sd hM;W �is

!

+
1

8
E�

 Z T

0

e�rs
�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
H (s;Xs; vs)Usd hM;Mis

!

+
�

2
E�

 Z T

0

e�r(s�t)
�
@3

@x3
� @2

@x2

�
K (s;Xs; vs)Rs�sd hM;W �is

!

+
1

8
E�

 Z T

0

e�rs
�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
K (s;Xs; vs)Rsd hM;Mis

!
= BS (t;Xt; vt) +H (t;Xt; vt)Ut +K (t;Xt; vt)Rt + T1 + T2 + T3 + T4:

Notice that

jUsj � ��E�

 Z T

s

p
�2r

q
~�2rA(T; r)dr

�����Fs
!

� ��

Z T

s

E�
�p

�2r

q
~�2r

����Fs�A(T; r)dr
� C��

Z T

s

q
E� (�2rj Fs)E�

�
~�2r
��Fs�A(T; r)dr

� C��

Z T

s

q
E� (�2rj Fs)E�

�
~�2r
��Fs�A(T; r)dr

and

jRsj � �2E�
 Z T

s

~�2tA
2(T; r)dr

�����Fs
!
:
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Then, Lemma 10 and Remark 4 give us that

T1 � C�2�2E

0@0@Z T

0

e�r(s�t)

 Z T

s

E
�
�2�
��Fs� d�!�

5
2 p

�2s

�
 Z T

s

q
E� (�2rj Fs)E�

�
~�2r
��Fs�A(T; r)dr! ds!!

� C�2�2E

 Z T

0

(T � s)� 5
2

p
�2s

 Z T

s

q
E� (�2rj Fs)E�

�
~�2r
��Fs�dr! ds! ;

and then, Corollary 9 gives us that

T1 � C (T; �0; �)

In a similar way

T2 � C�3�

Z T

t

e�r(s�t)

 Z T

s

E
�
�2�
��Fs� d�!�3

�(T � s)
 Z T

s

�
c2

�� (�)
(T � u)� + c1

�
e��(u�s)du

!3
ds

� C�3�;

T3 � C�3�

Z T

t

e�r(s�t)

 Z T

s

E
�
�2�
��Fs� d�!�3

�(T � s)
 Z T

s

�
c2

�� (�)
(T � u)� + c1

�
e��(u�s)du

!3
ds

� C�3�;

and

T4 � C (�; �) �4
Z T

t

e�r(s�t)

 Z T

s

E
�
�2�
��Fs� d�!�

7
2

�(T � s)
 Z T

s

�
c2

�� (�)
(T � u)� + c1

�
e��(u�s)du

!4
ds

� C�4;

and now the proof is complete.
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3.1 An explicit form for the approximation

For an European call option, it is easy to check that

H (0; x; �) :=
ex

�
p
2�T

exp

�
�
d2+
2

��
1� d+

�
p
T

�
and

K (0; x; �) =
ex

�
p
2�T

exp

�
�
d2+
2

���
� d+

�
p
T
+
d2+
�2T

�
� 1

�2T

�
:

Moreover,

E�

 Z T

0

�2sds

!
= � +

�
�20 � �

�
�

�
1� e��T

�
;

E�

 Z T

0

�sd hM;W �is

!

= ��

Z T

0

 Z T

s

�
c2

�� (�)
(T � u)� + c1

�
exp(��(u� s))du

!
E�
�q

�2s~�
2
s

�
ds

= : ��

Z T

0

Z(T; s)E�
�q

�2s~�
2
s

�
ds

and

E�

 Z T

0

d hM;Mis

!
= �2

Z T

0

Z2(T; s)E�
�
~�2s
�
ds

Then we can easily obtain the following explicit approximation formulas by
substituting the above quantities in the approximation expressions proposed in

Theorem 10. Moreover, notice that �s
q
~�2s = �+

�
~�20 � �

�
e��t+O

�
�2
�
; which

allows us to obtain the explicit closed-form approximation formula

BS (0; X0; v0) +
��

2
H (0; X0; v0)

Z T

0

E�
�
~�2s
�
Z(T; s)ds

+
�2

8
K (0; X0; v0)

Z T

0

E�
�
~�2s
�
Z2(T; s)ds

= BS (0; X0; v0) +
��

2
H (0; X0; v0)

Z T

0

�
� +

�
~�20 � �

�
e��s

�
Z(T; s)ds

+
�2

8
K (0; X0; v0)

Z T

0

�
� +

�
~�20 � �

�
e��s

�
Z2(T; s)ds: (8)

Example 13 Let us consider S0 = 90; r = 0:05; � = 0:09, �0 = 0:04; � = 3; � =
0:3; � = �0:5; c1 = 0; c2 = 0:1 and � = 0:2: In the following �gure we can see the
corresponding error of approximation (in %) relative to the option price obtained
by a 1000,000 Monte Carlo simulation, for times to maturity T = 0:5; T = 1
and T = 3: We can see the observed errors are lesser than 0.6%.
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Figure 1: Fig. 1: Approximation error (%) for T = 0:5; T = 1 and T = 3

4 Implied volatility behaviour

In this section we study the �attening of the implied volatility for our model. It is
easy to deduce from (8) by using Taylor expansions as in Fouque, Papanicolaou
and Sircar (2000), the following approximation for the implied volatility

Î : = v0 +
��

2v0T

�
1� d+

v0
p
T

�
E�

 Z T

0

YsZ(T; s)ds

!

+
�2

8vt (T � t)

��
� d+

v0
p
T
+
d2+
v20T

�
� 1

v20T

�
E�

 Z T

0

YsZ
2(T; s)ds

!
Notice that, as

d+ =
x� x�t
v0
p
T
+
v0
p
T

2

the �rst expression is linear in the initial log-stock price x; and the second one
is quadratic in x. Then we deduce that the second term in the right-hand side
of this expression allows us to describe the skew e¤ect, while the last one is
necessary to describe a smile.
It is easy to check that

lim
T!t

@Î

@Xt
(x�t ) =

��c1
2�0

which coincides with the short-time skew slope of a classical Heston model with
volatility of the volatility equal to �c1: On the other hand, as

Z(T; s) =

 Z T

s

�
c2

�� (�)
(T � u)� + c1

�
exp(��(u� s))du

!
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the �attening of the implied volatility skew is slower than in the Heston case,
as we can see in the following example.

Example 14 Let us consider � = �0 = 0:04; � = 3; � = 0:3; � = �0:5 and � =
0:4: In the following �gure we plot the derivative (in absolute value)

��� @Î@Xt
(x�t )

��� as
a function of time to maturity and for di¤erent values of c1 and c2: Notice that
in the case c2 = 0 there is not the fractional integral term in the de�nition of the
volatility process. Then this implied volatility skew tends to a constant as time
to maturity tends to zero, while it decays strongly as time to maturity increases,
as in the classical Heston case. In the case c1 = 0 the implied volatility slope
tends to zero as time to maturity tends to zero, but it �attens slowly as time to
maturity increases. Then it explains the slow �attening of the implied volatility
when time to maturity increases. Finally, taking c1 6= 0 and c2 6= 0 the implied
volatility skew tends to a constant when time to maturity is near zero (as in the
classical Heston case) and at the same time we capture the slow decrease of the
implied volatility slope.

0 1 2 3 4 5 6 7 8
0.000

0.005

0.010

0.015

0.020

0.025

time to maturity

at­the­money slope

Fig. 2:
��� @Î@Xt

(x�t )
��� as a function of time to maturity, for c1 = 0:1; c2 = 0

(solid); c1 = 0; c2 = 0:1 (dash) and c1 = 0:1; c2 = 0:1 (thick)

Conclusion 15 We have presented a method to construct simple option pric-
ing approximation formulas for a fractional volatility model and we have studied
its accuracy. Moreover, we have seen the corresponding approximation of the
implied volatility captures the slow �attening when time to maturity increases.
This ability to explain the implied volatility smile and the simplicity of the option
pricing approximation formulas makes the presented model potentially interest-
ing in �nance.

14



References

[1] Alfonsi, A. High order discretization schemes for the CIR process: ap-
plication to A¢ ne Term Structure and Heston models. Mathematics of
Computation 79, 269, 209-237 (2010)

[2] Alòs, E. An extension of the Hull and White formula with applications
to option pricing approximation. Finance and Stochastics 10 (3), 353-365
(2006)

[3] Alòs, E. and Ewald, C.O. Malliavin Di¤erentiability of the Heston Volatility
and Applications to Option Pricing. Advances in Applied Probability 40 (1),
144-162 (2008)

[4] Alòs, E. León, J. A. and Vives, J. On the short-time behavior for the implied
volatility for jump-di¤usion models with stochastic volatility. Finance and
Stochastics 11 (4), 571-598 (2007)

[5] Antonelli, F. and Scarlatti, S. Pricing options under stochastic volatility:
a power series approach. Finance and Stochastics 13 (2), 269-303 (2009)

[6] Ball, C. A. and Roma, A. Stochastic volatility option pricing. Journal of
Financial and Quantitative Analysis 29, 589-607 (1994)

[7] Benhamou, E., Gobet, E. and Miri, M. Smart expansion and fast calibration
for jump di¤usion. Finance and Stochastics 13 (4), 563-589 (2009)

[8] Benhamou, E., Gobet, E. and Miri, M. Expansion formulas for European
options in a local volatility model. International Journal of Theoretical and
Applied Finance 13 (4), 603-634 (2010a)

[9] Benhamou, E., Gobet, E. and Miri, M. Time dependent Heston model.
SIAM Journal on Financial Mathematics 1, 289-325 (2010b)

[10] Bollerslev, T. and Mikkelsen, H. O.: Modeling and pricing long memory in
stock market volatility. Journal of Econometrics 73, 151-184 (1996)

[11] Bossy, M. Diop, A. An e¢ cient discretization sheme for one dimensional
SDE�s with a di¤usion coe¢ cient function of the form jxj�,� 2 [1=2; 1).
Rapport de recherche, Institut Nationale de Recherche en Informatique et
en Automatique (INRIA), No. 5396 (2004)

[12] Corlay, S. Levobits, J. and Lévy-Vehel, J.: Multifractional Stochastic
volatility models. Mathematical Finance 24 (2), 364-402 (2014)

[13] Comte, F. and Renault, E.: Long memory in continous-time stochastic
volatility models. Mathematical Finance 8 (4), 291�323 (1998)

[14] Comte, F. , Coutin, L. and Renault, E.: A¢ ne fractional stochastic volatil-
ity models. Annals of Finance 8 (2-3), 337-378 (2012)

15



[15] Fouque, J-P., Papanicolau, G. and Sircar, K. R. Derivatives in Finantial
markets with Stochastic Volatility. Cambridge (2000)

[16] Fouque, J-P., Papanicolau, G., Sircar, K. R. and Solna, K. Singular Pertur-
bations in Option Pricing. SIAM Journal of Applied Mathematics 63 (5),
1648-1665 (2003).

[17] Hagan, P. S., Kumar, D., Lesniewski, A. S. and Woodward, D. E. Managing
smile risk. Willmot magazine 15, 84-108 (2002)

[18] Heston, S.L.; A Closed-Form for Options with Stochastic Volatility with
Applications to Bond and Currency Options; Review of Financial Studies,
6 (2), 327-343 (1993)

[19] Hull, J. C. and White, A. The pricing of options on assets with stochastic
volatilities. Journal of Finance 42, 281-300 (1987).

[20] Renault, E. and Touzi, N.: Option hedging and implied volatilties in a
stochastic volatility model. Mathematical Finance 6 (3), 279-302 (1996)

[21] Stein, E. M. and Stein, J. C. Stock price distributions with stochastic
volatility: An analytic approach. The review of Financial Studies 4, 727-
752 (1991):.

[22] Scott, L. O. Option pricing when the variance changes randomly: Theory,
estimation and application. Journal of Financial and Quantitative Analysis
22, 419-438 (1987)

[23] Schöbel, R. and Zhu, J. Stochastic volatility with an Ornstein-Uhlenbeck
process: an extension. European Finance Review 3, 23-46 (1999).

16


