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Abstract

A method of small-area estimation with a utility function is developed. The
utility characterises a policy planned to be implemented in each area, based
on the area’s estimate of a key quantity. It is shown by simulations that the
commonly applied composite and empirical Bayes estimators are inefficient for
a wide range of asymmetric utility functions. Adaptations for limited budget
to implement the policy are explored. An argument is presented for a closer
integration of estimation and (regional) policy making because no single small-
area estimator is suitable for a wide range of purposes.
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1 Introduction

Recent developments in small-area estimation (SAe) respond to the increasing demand

for information about the divisions (districts or areas) of a country. Together with cen-

suses and administrative registers, large-scale national surveys are important sources of

such information. The key methodological advance in SAe is borrowing strength (Rob-

bins, 1955; Efron and Morris, 1972; Fay and Herriot, 1979; and Ghosh and Rao, 1994),

that is, exploiting the similarity of the areas, possibly after taking into account rele-

vant auxiliary information. The explicitly stated or implied goal of a typical problem in

SAe is to estimate a quantity associated with each area efficiently, with minimum mean

squared error (MSE), and to estimate the MSE of this estimator, preferably without

bias (Hall and Maiti, 2006, and Slud and Maiti, 2006).

When implementing a policy in the areas of a country, estimates of the quantities

associated with the areas are usually treated as if they were the underlying (target)

quantities, sometimes with only cursory attention to their estimated precisions, stan-

dard errors or confidence intervals. Problems arise when the estimates are subjected to

nonlinear or even discontinuous transformations, such as ranking and comparing the es-

timates with a set threshold, because efficiency is not retained by such transformations

(Shen and Louis, 1998; Longford, 2005a).

In this paper, we study the following problem. A national government department

wishes to apply a particular course of action in every district m in which the unemploy-

ment rate θm exceeds the threshold T = 0.20 (20%). Based on a set of recent estimates

θ̂m of the rates θm , m = 1, . . . ,M , it plans to apply the measure in every district in

which θ̂m > T , in effect, regarding the estimate θ̂m as if it were the population rate θm .

We show that the established composite estimator (Longford, 1999), and by implica-

tion the empirical Bayes estimator (Ghosh and Rao, 1994, and Rao, 2003), which aim

to minimise the MSE, are not useful in this context, and explore alternatives in which

different shrinkage (or even adjustment in the opposite direction) is applied.
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A novel element of our approach is the incorporation of the negative utilities

(losses) that quantify the consequences of inappropriate actions. This reflects the

view that the ultimate role of statistics is to contribute to making intelligent decisions

(in the presence of uncertainty), and inferential statements, such as estimates of the

relevant quantities, or the outcomes of hypothesis tests about them (p values), are

at best an intermediate and sometimes an irrelevant goal in this effort. We conclude

that estimation of key quantities and decision making have to be closely integrated for

the latter to be effective. We argue by example that decision making is within the

remit of statistics because it requires nontrivial statistical evaluations. These views

are influenced by DeGroot (1970) and Lindley (1985 and 1992), although we do not

subscribe to the Bayesian paradigm.

The utilities are elicited from the policy maker (the expert, or sponsor of the

analysis) in the form of loss (negative-utility) functions. Suppose applying the intended

measure in a district with rate θm < T , for which the survey-based estimation yielded

θ̂m > T , that is, a false positive, is associated with loss equal to (θ̂m− θm)
2, and failure

to apply it in a ‘deserving’ district (a false negative), with rate θm > T , but for which

θ̂m < T was obtained, is associated with loss equal to R(θ̂m − θm)
2, where R ≥ 1 is a

constant called the penalty ratio. In this setting, estimation with minimum expected

loss is desired. This loss function differs from the squared error loss even for R = 1,

because positive loss is incurred only when θ̂m < T ≤ θm or θ̂m > T ≥ θm . The same

threshold T applies to all districts, but the development we consider is not restricted

to this case, although the threshold(s) have to be known.

We show that the empirical Bayes (EB) and the related composite estimators are

suboptimal solutions for this problem — the expected loss with them is higher than

with some other estimators. We search for alternatives among estimators that have

the form

θ̃m = (1− bm)θ̂
(S)
m + bmFm , (1)
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where θ̂(S)m is a direct (unbiased) estimator of θm , which uses information only from

the focal district m and the variable concerned, and bm and Fm are constants, called

the shrinkage coefficient and the focus of shrinkage, respectively. We assume that the

sampling variances vm = var(θ̂(S)m ) are known. The product bmFm could be replaced by

a single term, but we prefer the expression in (1) because its form, with Fm = θ or θ̂,

where θ = (θ1+ θ2+ · · ·+ θM)/M and θ̂ is its estimator, is related to the EB estimator

for normally distributed outcomes when no covariates (no auxiliary information) are

available.

We regard each district-level quantity θm as fixed, because it is associated with a

labelled and well identified area. Any meaningful replication scheme would be based

on the same (constructed or simulated) national population, with the value of the

outcome variable fixed for every member, and with the same division of the country to

its districts. The sample selection is the sole source of variation; see Longford (2005b,

Chapter 6, and 2007) for related discussion. For the targets θm , we consider their mean

θ and the (district-level) variance

σ2
B =

1

M

M
∑

m=1

(θm − θ)2 . (2)

The covariance and correlation of two sets of district-level quantities are defined sim-

ilarly. The variance or a covariance is estimated by moment matching, adjusting its

naive estimator for its bias. For example,

σ̂2
B =

1

M

M
∑

m=1

(

θ̂(S)m − θ̂m
)2 − v − 1

M

M
∑

m=1

(vm − 2cm) ,

where cm = cov(θ̂(S)m , θ̂) and v = var(θ̂). The expectations in the definitions of cm and

v, and all other expectations in the paper, are taken over the sampling distributions

of θ̂(S)m . We use the term ‘averaging’ exclusively for replacing expressions involving θm

for a specific m by their averages over the districts, while holding other district-level

quantities, such as Fm and vm , fixed. For example, by averaging (Fm− θm)
2 we obtain

(Fm − θ)2 + σ2
B .
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We consider first the setting with no auxiliary variables. That is, the sole in-

formation we have about θm is in the values of the focal variable and the sampling

weights. We impose no restrictions on the sampling design of the survey, except for the

assumption that the direct estimators θ̂(S)m are independent. Stratified sampling with

the districts or their subsets as the strata satisfy this condition. To avoid complexities

that would dilute our focus, we assume that θ̂(S)m are linear statistics in yim and θ̂ is a

linear combination of θ̂
(S)
1 , . . . , θ̂

(S)
M .

The next section gives formal definitions of the key concepts and Section 3 derives

an estimator which, setting aside some approximations and estimation of σ2
B , has

smaller expected loss than the established alternatives. Simulations in Section 4 confirm

the anticipated properties of the new estimator. Section 5 extends the method to

incorporating auxiliary information. Section 6 explores adaptations necessary when

the budget for implementing the policy is limited. The paper is concluded with a

discussion.

2 Policy and utility

Suppose a policy calls for one of two courses of action; action A is appropriate for

district m if θm > T and action B is appropriate otherwise; the threshold T is given.

The loss function for action d = A or B is defined as a non-negative function Ld(θ̂m , θm)

of the estimate used and its target. The appropriate action for district m is associated

with no loss. A pair of loss functions can be expressed as a single function as L =

LA + LB , after defining Ld = 0 when action d is not taken. Function L is associated

with the class of equivalence defined by the functions CL, where C > 0 is an arbitrary

constant.

The loss functions LA and LB are elicited from the policy maker. We do not

expect the elicitation process to conclude with a single pair of functions (or classes of

equivalence) LA and LB . Instead, we work with a set (range) of plausible pairs of loss
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functions, one for action A and the other for B in each pair. We assume that there is

an ideal loss function for each action, and that it is contained in the set of plausible loss

functions, but it cannot be identified. See Longford (2010) for a similar approach to

dealing with uncertainty about the (Bayes) prior and Garthwaite, Kadane and O’Hagan

(2005) for a comprehensive review of statistical issues in elicitation, although their

focus is on elicitation of prior distributions. We want the elicited set to be as small as

possible, but the policy maker should be satisfied that all loss functions outside this

set can be ruled out.

The quadratic kernel loss is a special case of power kernel loss defined as

LA

(

θ̂m , θm
)

=
∣

∣

∣θ̂m − θm
∣

∣

∣

h

LB

(

θ̂m , θm
)

= R
∣

∣

∣θ̂m − θm
∣

∣

∣

h
,

when θm < T < θ̂m and θ̂m < T < θm , respectively, and zero otherwise; R > 0 is the

penalty ratio and h > 0. In practice, only h = 0 (absolute kernel), h = 1 (linear kernel)

and h = 2 are relevant. Loss functions involving | θ̂m−T | are not suitable because the
trivial estimator θ̂m ≡ T would then be optimal. The absolute kernel has some affinity

to hypothesis testing, in that the expected losses are related to probabilities. When

the loss depends on the magnitude of the error, | θ̂m− θm |, absolute kernel has little to
recommend.

Other loss functions can be defined, but power kernels are relatively easy to handle.

Different loss functions may be defined for distinct subsets of districts by using different

penalty ratios or even different kernels. The functions LA and LB do not have to be

in the same class (e.g., both quadratic). Also, a few districts (a region or the capital)

may be singled out for an exceptional treatment, and the constants involved (R and T )

may be district-specific. For instance, Rm may be a (linear) function of the population

size of the district. In any case, the development in the next section is focused on a

single district.
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3 Policy-related estimator

The sampling distribution of the estimator θ̃m given by (1) is normal, N (γm , ν2
m), with

(γm =) E
(

θ̃m | θm
)

= (1− bm) θm + bmFm

(ν2
m =) var

(

θ̃m | θm
)

= (1− bm)
2vm .

We regard θm as fixed (related to a labelled district), unlike in the usual treatment of

(exchangeable) districts in EB analysis (Ghosh and Rao, 1994; and Rao, 2003). We do

not assume that γm = θm .

Denote by φ the density of N (0, 1) and by Φ its distribution function. With the

quadratic kernel, the expected loss with the policy applied to district m according to

estimator θ̃m is

(EA =) E
{

LA

(

θ̃m , θm
)}

=
1

νm

∫ +∞

T
(y − θm)

2φ
(

y − γm
νm

)

dy

(EB =) E
{

LB

(

θ̃m , θm
)}

=
R

νm

∫ T

−∞
(y − θm)

2φ
(

y − γm
νm

)

dy ,

if θm < T and θm > T , respectively. Simple operations yield the identities

EA = ν2
m

{(

1 + z2†
)

Φ(z̃) + (2z† − z̃)φ(z̃)
}

EB = Rν2
m

[(

1 + z2†
)

{1− Φ(z̃)} − (2z† − z̃)φ(z̃)
]

,

where z̃ = (γm − T )/νm and z† = (γm − θm)/νm . We do not aspire to minimise

min(EA , EB) as a function of vm and Fm directly, but seek estimators θ̃m which have

the following two properties:

• equilibrium condition — if district m had θm = T , the choice between actions A

and B would be immaterial in expectation:

E
{

LA

(

θ̃m , T
)}

= E
{

LB

(

θ̃m , T
)}

;

• minimum averaged MSE (aMSE).
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Averaging in the second condition is similar to the step made in EB analysis, where

θm is regarded as random and σ2
B is its district-level variance. Without taking aMSE

the problem of minimising the expected loss is not tractable.

For quadratic kernel loss, the equilibrium condition, when z† = z̃, is equivalent to

(R + 1)
{(

1 + z̃2
)

Φ(z̃) + z̃ φ(z̃)
}

−R
(

1 + z̃2
)

= 0 . (3)

The left-hand side, called the equilibrium function (of z̃), has a single root, denoted

by z∗, for all R. See Appendix A1 for proof. The value of z∗ is found by the Newton

method.

The minimum of aMSE of θ̃m ,

(1− bm)
2 vm + b2m

{

σ2
B + (Fm − θ)2

}

,

is attained for

b∗m =
vm

vm + σ2
B + (Fm − θ)2

; (4)

if we ignore the equilibrium condition, the shrinkage coefficient is always within the

range (0, 1). The composite estimator is obtained by setting Fm = θ̂, minimising

aMSE(θ̃m ; θm) and substituting an estimate for σ2
B in (4). This estimator, referred to

as estimator C, is given by (1) with Fm = θ̂ and

bm =
vm − cm

vm + v − 2cm + σ̂2
B

. (5)

With v and cm omitted, this estimator differs from the EB estimator only by how σ2
B

is estimated. Omission of v and cm introduces a negligible error for all districts except

one or two for which vm is not substantially greater than v. Usually, the subsample for

such a district is a large fraction (20% or more) of the overall sample size.

The equilibrium condition implies that

Fm = T +
| 1− bm |

bm
z∗
√
vm . (6)
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The aMSE with this constraint is equal to

(1− bm)
2
(

1 + z∗2
)

vm + b2mσ
2
B + b2m(T − θ)2 + 2bm |1− bm| (T − θ)z∗

√
vm ,

and the coefficient that minimises this piecewise quadratic function of bm has to satisfy

the identity

bm =
vm
(

1 + z∗2
)

− sign(1− bm) (T − θ) z∗
√
vm

vm + σ2
B +

{

z∗
√
vm − sign(1− bm) (T − θ)

}2 , (7)

where the sign function is defined as sign(x) = 1 for x > 0, sign(x) = −1 for x < 0,

and sign(0) = 0. The aMSE is continuous and diverges to +∞ for bm → ±∞, so it

has an odd number of local extremes. Equation (7) implies that it cannot have more

than two extremes. Hence it has a unique minimum, and it is its only extreme. The

corresponding estimator is denoted by θ̃(P)m and referred to as estimator P.

The solution b∗m may be outside (0, 1), and then it does not have the common

interpretation of a shrinkage coefficient. It exceeds unity when

(θ − T ) z∗
√
vm >

σ2
B + (θ − T )2

3
,

that is, for sufficiently large vm when T < θ. It is negative when

√
vm <

z∗

1 + z∗2
(T − θ) ,

that is, for sufficiently small vm when T > θ. However, b∗m is not a monotone function

of vm . We emphasise that minimum expected loss, with a specified loss function, is

our sole criterion, and in its pursuit we set aside the desirability of an interpretation

of the estimators we use and pay no regard for any other criterion. Truncating b∗m at

zero and unity would lead to an increase of both aMSE and the expected loss of the

estimator.

No shrinkage, b∗m = 0, is applied when θm is known, but also when
√
vm = (T −

θ)z∗/(1 + z∗2). For vm → +∞, b∗m → 1 and Fm → T ; when we have no information

about θm , θ̃m = T is optimal, unlike in EB estimation, where θ̃m = θ̂ in such a case.
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Figure 1: The roots of the equilibrium equations, z∗, as functions of the penalty ratio
R for the absolute (A), linear (L) and quadratic (Q) kernel loss functions, on the linear
and log scales for R.

The focus Fm in (6) is not defined when b∗m = 0. However, the product b∗mFm is then

well defined by its limit, equal to z∗
√
vm .

For the linear kernel loss function, we have the equilibrium condition

(R + 1) {z̃Φ (z̃) + φ (z̃)} = Rz̃ , (8)

and for the absolute kernel,

Φ(z̃) =
R

R + 1
. (9)

Equation (8) is solved by the Newton method; it has a unique solution for each R > 0.

The equilibrium values z∗ as functions of R are drawn in Figure 1 for the three kernels.

Owing to the symmetry of the normal distribution, no generality is lost by assuming

that R ≥ 1, because we could work with the outcomes −y, estimators −θ̃m and −θ̃,

and penalty ratio 1/R. For R > 0 and G = A, L or Q, z > z∗G(R) corresponds to action

A and z < z∗G(R) to action B being preferable.
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Figure 2: The optimal shrinkage coefficients and foci of shrinkage for quadratic kernel
loss and penalty ratios R = 10, 25, 50 and 100, indicated at the right margin; θ = 16%,
T = 20 and σ2

B = 6.25. The coefficient and focus of the EB estimator is drawn by
dashes (EB, θ).

The optimal coefficients b∗m and foci F ∗
m are drawn in Figure 2 as functions of the

variance vm of the direct estimator (1.0 ≤ vm ≤ 2.5) for the quadratic kernel loss and

penalty ratios 10 < R < 100. The mean of the district-level means is θ = 16%, the

district-level variance is σ2
B = 6.25 (%2), and the threshold is set to T = 20%. The

shrinkage coefficient of the EB estimator, vm/(vm+σ2
B), is drawn by dashes in the left-

hand panel. In the right-hand panel, the horizontal dashes indicate its focus, θ = 16%.

The diagram shows that radically different linear combinations of θ̂(S)m and foci Fm are

optimal from those in EB estimation. The focus of shrinkage is smaller than θ and

decreases with the variance vm . However, the shrinkage is negative, away from these

foci.

The equilibrium conditions (3), (8) and (9) involve γm and νm only through z̃.

This is not the property of any easy-to-identify class of loss functions. See Appendix

A2 for an example.
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4 Simulations

We assess the properties of the estimators defined in Section 3 by simulations based

on an imaginary country that comprises M = 60 districts with labour force sizes Nm

in the range 0.30 – 2.30 million, with the national total of 58.90 million. The focal

variable is unemployment, a dichotomy, and the district-level (population) rates of

unemployment θm are in the range 7.9 – 26.3%. These rates are weakly associated with

the population size; more populous districts tend to have higher rates, although the

most populous district (the capital), has an unemployment rate well below average.

The 22 districts for which θm > T = 20% account for 23.23 million members (39.4%)

of the labour force. The population sizes and unemployment rates of the districts are

plotted in Figure 3. The mean of the district-level unemployment rates is θ = 16.8%,

and the national unemployment rate is θ∗ = 17.3%. The variance of the district-level

unemployment rates is σ2
B = 27.05 (%2).

Suppose a national survey is conducted, with a stratified sampling design using the

districts as the strata, and simple random sampling design with a fixed sample size nm

in district m. The overall sample size is n = 17 500. The sample sizes nm , indicated in

Figure 3 by the size of the black disc, are in the range 113 – 567. They are approximately

proportional to N0.9
m . They are sufficiently large for approximate normality of all the

sample rates θ̂(S)m . However, the sampling variances are far too large; composition

(estimator C) yields substantial reduction of MSE for many districts. We show that

the naive classification of districts based on estimator S is associated with expected

loss is much greater than on estimator P (shrinkage toward F̂ ∗
m). The expected loss

with estimator C is even higher than with estimator S. We assume the quadratic kernel

loss with plausible penalty ratio in the range (5, 20).

We replicate the processes of sampling (from a fixed population) and estimation

10 000 times and accumulate the losses separately for each district and the three esti-

mators. The empirical expected losses for each district are displayed in Figure 4. They
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Figure 3: The population sizes and unemployment rates in the districts of a country.
Computer-generated data used for simulation. The area of the black disc is proportional
to the sample size of the district it represents.

are marked by the symbols S, C and P for the three estimators. When the expected

loss is smaller than 2.5, a black disc is displayed instead of the symbol. The population

rates of unemployment in the districts are marked by horizontal dashes. The same

scale happens to be suitable for the rates and the expected losses.

Most of the losses are incurred by false negatives, for districts with θm > T , and

among them the loss for every district is smallest for estimator P. We summarise an

estimator by its weighted total expected loss, with weight equal to the size of the

district’s labour force (in millions). These totals are 439.2, 581.9 and 162.3 for the

respective estimators S, C and P. The false positives contribute to these figures by only

19.6 (4.4%), 8.4 (1.4%) and 45.2 (27.9%), respectively. If we evaluated the losses with

much smaller value of R estimators S and C would remain far inferior. Estimators C

12



0
50

District

A
ve

ra
ge

 lo
ss

 a
nd

 u
ne

m
pl

oy
m

en
t r

at
e 

(%
)

S
SSS S S

S

S
S S

S
S

SS
S

S

S
SS

S

S

S

S

S

S

S

S

C

C C
C

CC

C

C

C

C

C
CC

C

C

C

C

C

C

C

CPP
P

P P P
P PP PPP

P

P P P
PP PP P

P
P PP P

P
P P

θm < T θm > T

Figure 4: The empirical expected losses for the districts and estimators S (direct); C
(composite) and P (policy-related), with penalty ratio R = 10. The districts are in the
ascending order of labour force size, within the two groups divided by the threshold
T = 20%. The districts’ unemployment rates are marked by horizontal ticks.

and S are not sensitive to the penalty ratio and only estimator P has to be simulated

again. The expected losses with C and S have the form V +RU , where V is the expected

loss for the false negatives and U the expected loss for the false positives, pro-rated for

unit penalty (R = 1). The weighted total losses for R = 2.0 have expectations 103.6,

123.1 and 65.4 for respective estimators S, C and P.

For R = 10, estimator P has the smallest expected loss in none of the eight

districts with θm < T that have non-trivial expected losses. However, all these expected

losses are much smaller than for most of the deserving districts. In summary, the

simulations show that the shrinkage applied by the composition to minimise aMSE is

counterproductive, and a substantially smaller expected weighted total loss is obtained

by estimator P. Small MSE and small expected loss with large penalty ratio R are

diametrically different criteria.

We repeated the simulations with R = 5 and R = 20 to confirm that estimator
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Figure 5: The empirical expected losses for the districts and estimators S, C and P,
with penalty ratio R = 5. The districts are in the same order as in Figure 4.

P remains superior to C and S. The results for penalty ratio R = 5 are summarised

in Figure 5. They do not differ from the results for R = 10 substantially when the

expected losses for the deserving districts are doubled. Similar conclusions are arrived

at for R = 20. The expected losses are quite robust with respect to the specification

of the penalty ratio R.

We conclude this section by the table of weighted totals of the (empirical) expected

losses with the quadratic, linear and absolute kernel losses, displayed in Table 1. Es-

timator P has a distinct advantage over estimators S and C for higher penalty ratios.

For R = 1, its advantage is only slight for quadratic and linear kernels, and for the

absolute kernel estimator S is preferable to both estimators P and C. The expected loss

with estimator P increases with R much slower, and estimators C and S are inferior

for R very close to 1.0 even with the absolute kernel loss. Even though absolute kernel

loss and R = 1 are not a realistic combination of settings, the failure to outperform

both estimators C and S suggests that there may be some scope for improvement of
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Table 1: The expected total losses, weighted by the labour force size, in simulations of
estimators S, C and P, with quadratic, linear and absolute kernels and penalty ratios
R = 1, 5, 10 and 20. Based on 10 000 replications.

Quadratic loss Linear loss Absolute loss

R P S C P S C P S C

1 58.3 61.6 65.8 15.1 15.9 18.3 6.0 5.0 6.0

5 123.7 229.4 295.1 32.8 60.6 81.9 8.9 19.3 26.8

10 162.3 439.2 581.9 41.0 116.5 161.3 10.4 37.2 52.8

20 207.4 858.8 1155.4 50.2 228.4 320.3 12.0 73.0 104.7

estimator P.

Note that expected losses, or their totals, cannot be compared across the kernels,

because they regard the relative losses with small and large deviations | θ̂m − θm |
differently.

5 Auxiliary information

We consider auxiliary information in the form of (column) vectors of district-level

estimators or exact quantities ξ̂m for ξm . We put no restrictions on ξm , although

summaries in ξm that are highly correlated with (similar to) θm and elements of ξ̂m

with small sampling variances are more useful. Common examples of elements of ξm

are the direct estimates of the version of θm in the past year(s), values of a quantity

prima facie closely related to θm obtained from an administrative register, and the

values of the same summary as θm but estimated in a different subpopulation; see

Longford (2005b, Chapter 10) for examples.

We assume that the estimators ξ̂m are unbiased for the respective ξm . In practice,

ξ̂m comprise direct estimators or exact quantities; for the latter components, ξ̂m = ξm .

Denote θm = (θm , ξ⊤m)
⊤ and θ̂m = (θ̂m , ξ̂

⊤

m)
⊤, and let u = (1, 0, . . . , 0)⊤ be the indicator

of the first component, so that θm = u⊤θm . We define θ = (θ, ξ⊤)⊤ = (θ1+· · ·+θM)/M
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and θ̂ as an unbiased estimator of θ, linear in each θ̂m . Let Vm = var(θ̂m), V = var(θ̂)

and Cm = cov(θ̂m , θ̂) be the respective multivariate versions of vm , v and cm , and let

ΣB =
1

M

M
∑

m=1

(θm − θ) (θm − θ)⊤

be the district-level variance matrix, the multivariate version of σ2
B defined by (2). The

other variance and covariance matrices refer to sampling (estimation). The covariance

matrix Cm is a linear function of Vm , and does not depend on Vm′ for m′ 6= m.

The multivariate composite estimator (Longford, 1999 and 2005b, Chapter 8) is

defined as

θ̃m = (u− bm)
⊤
θ̂m + b⊤

mθ̂ .

The optimal vector of coefficients bm is

b∗
m = Q−1

m Pm ,

where Q = Vm +V +ΣB −Cm −C⊤
m and P = Vm −Cm . In practice, Qm and Pm

have to be estimated, yielding the vector b̂m = Q̂
−1

m P̂m and estimator θ̃m = θ̃m(b̂m).

Univariate composition corresponds to empty ξm and scalar u = 1. The variances in

V are much smaller than in Vm for all m, unless one district’s sample or population

size is a large fraction of the entire sample in one or several surveys (data sources) on

which θ̂m are based. When there is no such dominant district the matrix Cm can also

be ignored.

The multivariate policy-related composite estimator is defined by shrinkage toward

a (multivariate) focus Fm , with the intent to minimise the expected loss E{L(θ̂m , θm)}:

θ̃∗m = (u− bm)
⊤
θ̂m + b⊤

mFm .

Details of the algorithm, based on a multivariate version of the equilibrium condition

are given in Appendix A3.
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5.1 Example continued

We simulate the setting of Section 4 with one auxiliary variable, the unemployment

status in the previous year. We generate the district-level unemployment rates in the

previous year by a scaled perturbation of the current rates and the districts’ labour force

sizes in the previous year by reducing the current year’s sizes by a random percentage

in the range 1.7 – 3.1%; the country’s labour force increased during the year from 57.4

to 58.9 million. The districts’ sample sizes in the past survey are generated by the

same process as for the current survey (proportional to N0.9
m,past).

The district-level unemployment rates and sample sizes are plotted in Figure 6.

The rectangles are centered at the districts’ current and past unemployment rates and

their sides are proportional to the sample sizes in the respective surveys. The two

surveys, conducted in the current and the previous year, are independent. The four

highlighted districts are discussed below.

The results of the simulation with 2000 replications, using quadratic kernel loss

with penalty ratio R = 10, as in Figure 4, are summarised in Figure 7. The direct

estimator (S) has the same distribution as in the simulation in Section 4, because it

does not use any auxiliary information. Some small differences between the two sets

of results are present, mainly for the deserving districts.

The bivariate composite estimator (C2) is associated with smaller expected losses

than estimator S for most of the deserving districts. The reduction of aMSE, at-

tributable to the auxiliary information, is accompanied by a substantial reduction of

the expected losses for most of these districts. However, they still exceed the expected

losses with the policy-related estimator, both the univariate version applied in Sec-

tion 4, and the bivariate version (P2), which exploits the auxiliary information. The

weighted total of the expected losses is 436.9 (= 20.0+ 416.9) for estimator S, 400.0

(= 6.9+ 393.1) for C2 , and 123.9 (38.1+ 85.8) for P2 ; the figures in parentheses are the

respective contributions from the normal and deserving districts. For estimator C2 ,
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Figure 6: The district-level unemployment rates and sample sizes in the current and
previous year. The sides of the rectangles are proportional to the sample sizes.

the reduction attributable to the auxiliary information is 181.9 (31%). The reduction

for P2 over P, by 38.4 (24%), is more modest.

The reduction of the expected loss with estimator C2 over C is not uniform among

the deserving districts. For the four districts highlighted in Figure 6, auxiliary in-

formation brings about an increase of the expected loss. Their rates in the previous

year are much lower than in the current year, even after taking the national trend

into account, so the auxiliary information is counterproductive (distracting), especially

for the small district, for which substantial shrinkage takes place toward being a false

negative. Some other districts also have rates in the previous year that deviate from
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Figure 7: The empirical expected losses with the direct estimator (S), bivariate compos-
ite estimator C2 (marked by C, using information from the previous year) and bivariate
policy-related estimator P2 (P); quadratic kernel loss and penalty ratio R = 10.

the trend, but this does not cause their expected losses to increase. Auxiliary informa-

tion is counterproductive also for a few normal districts. However, the inflation of the

expected loss is very small in all these cases, for both estimators C2 and P2 .

For linear and absolute kernels, estimator P2 remains far superior to C2 and S.

With linear kernel loss and R = 10, the weighted total loss for C2 is 124.5 (2.0+122.5),

greater than for S, 116.1 (4.8+111.3); for P2 the loss is 40.4 (8.9+31.5). The figure

for S differs from the corresponding entry in Table 1, 116.5, because it is based on a

different set of replications.

For more extensive auxiliary information, with several variables, the composite

estimator makes only small gains, in both the values of empirical MSE and expected

loss, whereas such information is detrimental to the policy-related estimator. However,

the inflation of the weighted total expected loss is only slight, and the expected loss

with the composite estimator remains much higher.
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6 Limited budget

A typical government program operates on a limited budget. In contrast, estimators P

and P2 impose no limit on the extent to which the intervention (action A) is applied.

With a large penalty ratio, it prefers generating false positives, so action A is applied

liberally, to many districts, with no regard for the costs of its implementation.

In the context of the previous sections, suppose a fixed overall amount of funds

B has been allocated for action A. Suppose implementing it in a district with labour

force Nm and estimated unemployment rate θ̂m would require Gm = HNm (θ̂m − T )+

units of funding, where H is a known constant and (x)+ = x if x > 0 and (x)+ = 0

otherwise. That is, H is the cost pro-rated for a member of the labour force above

the threshold level of unemployment, T , which should trigger action A. The units

(currency) considered for B and H are different from the units associated with the

losses, which quantify the consequences of inappropriate action (e.g., of ignoring the

problems of very high unemployment). No generality is lost by assuming that H = 1.

Denote by G the funds required to implement the policy based on a set of estimates

θ̂m , m = 1, . . . ,M ; G = G1 + · · · + GM . If the funds are sufficient, G ≤ B, then the

programme is implemented as intended. Otherwise provisions have to be made to

reduce the expenditure in some or all the districts that were adjudged to be in need of

action A. We may consider any of the following options:

1. share the shortfall G−B equally among all the districts for which action A was

selected;

2. cut the expenditure by the same percentage in each district for which action A

was selected;

3. raise the threshold from T to the smallest value T ′ for which the budget would

be sufficient;

4. withdraw action A from a minimum of districts necessary for the budget to be

sufficient for the rest.
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Assuming known population rates θm , provision 1 is obtained by minimising the

weighted total of the squared shortfalls,
∑

m Nm s2m , subject to the condition of limited

budget,
∑

m Nm sm = (G−B)+ .

If we contemplate provisions 1 – 4, we have to specify the loss associated with

partial implementation of action A. The award of p% of the intended amount Nm(θm−
T )+ can be associated with the (quadratic kernel) loss Rp2(θm − T )2, but this choice

should by no means be automatic, because even a small shortfall may result in a loss

that is out of proportion. Also, the losses may differ from district to district, not

necessarily related to the district’s labour force size.

We set these issues aside and assume that the losses are proportional to the short-

fall. That is, for a correctly identified positive (θ̂m > T and θm > T ), there is no

loss if the amount allocated to district m, denoted by Gm(θ̂m), exceeds Nm (θm − T );

otherwise the loss with action A implemented partially is

LB

(

θ̂m ; θm
)







1−
Gm

(

θ̂m
)

Nm (θm − T )







2

.

If some funds are allocated inappropriately (to a false positive), the losses are reduced

in the case of a shortfall, although, of course, the allocated funds would have been

better spent in some deserving districts.

In the ideal implementation, action A would require a total of G = 64.55 units.

Suppose only B = 55.0 units are available, so the shortfall is 9.55. In simulations,

we apply the four provisions and apply estimator P2 with quadratic kernel loss and

R = 10. Most replicate shortfalls Ĝ − B are greater than G − B = 9.55, because of

the liberal nature of the estimator, preferring to err on the side of false positives. This

inflation can be interpreted as the cost of incomplete information; E(Ĝ) > G. In 2000

replications, only 30 values (1.5%) of replicate amounts Ĝ required for action A were

smaller than G and only one of them was smaller than B.

The results of the simulation are presented in Figure 8. The digits 1 – 4 in the

diagram represent the four provisions for implementing the budget constraint. We
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Figure 8: The empirical expected losses with estimator P2 with the quadratic kernel
loss and penalty ratio R = 10, subject to budget limited to B = 55.0 units; 2000
replications.

need to be concerned only with the deserving districts, which account for most of the

overall loss. Black discs are drawn at zero height for districts that would have small

expected losses if the budget were unlimited. The provisions 1 – 4 are associated with

respective weighted total expected losses 510.3, 429.3, 527.2 and 772.5, compared to

123.9 if the budget were not limited. Provision 2, arguably the most equitable, entails

the lowest and provision 4, the least equitable, the highest expected loss for all but two

deserving districts that have the highest unemployment rates, 26.3% and 24.5%, and,

after the capital, the largest labour force sizes, around 1.8 million.

If more resources were available for implementing action A, the weighted total

expected losses would be reduced. For example, with budget B = 70.0, they would be

350.6, 286.4, 353.1 and 526.4, each smaller by about 32% than with B = 55.0. If the

sample sizes in the current survey were doubled in every district, without altering the

sample sizes in the past survey, the weighted totals of the expected losses would be

52.0 with no limit on the budget and 347.0, 293.2, 348.2 and 569.3 with the respective
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provisions 1 – 4. These values, established by simulation, are similar to their counter-

parts with the original sample sizes and higher budget, except for provision 4, which

is relatively even poorer. Thus, greater expenditure on the survey can be converted to

more effective policy implementation.

With the larger survey (n = 35 000), the expenditure E(Ĝ) on full implementation

of action A has a smaller expectation and dispersion, 86.9 and 9.0, respectively, com-

pared to 92.1 and 13.8 with n = 17 500. A compromise could be found between the

costs of conducting the survey and losses due to imperfect implemention of action A.

This is often difficult because both activities require long-term planning and dealing

with the uncertainty about the future costs and policies.

The direct and composite estimators are uncompetitive in all the settings dis-

cussed.

7 Discussion

Simulations of the policy-related estimator developed in Sections 3 and 5 indicate

that there is no single small-area estimator that is preferable to all others, because

different estimators are optimal for different loss functions (policies or criteria). Shen

and Louis (1998) highlight a related problem, that efficiency of small-area estimators

is not retained by nonlinear transformations or summaries. Evaluation of small-area

estimators has so far almost exclusively focused on MSE and aMSE. Alternatives to

these criteria that reflect the objectives to be served by the analysis should be carefully

considered. Elicitation of the loss function imposes an additional burden on the analyst

and the client, but its outcome enables them to tailor the analysis to the needs, priorities

and the perspective of the client. Instead of a single penalty ratio a plausible range

can be defined, informed by the client’s perspective and assessment of the damage,

harm, additional expense or erosion of the intended effect caused by the inappropriate

decision. As an alternative, the sets of decisions can be presented to the client for a
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wide range for penalty ratios, with the instruction to specify a much narrower range,

so that an impasse, when both courses of action A and B are preferred for some of the

plausible loss functions, would arise only for a few (or no) districts. The methods have

a simple extension to more than K > 2 available courses of action; simply K expected

losses have to be compared.

The simulations confirm that composite (and EB) estimation is not conducive

to good policy implementation when the loss function used differs radically from the

(symmetric) quadratic loss. The policy-related estimator introduced in Section 3 is

not the minimum expected loss estimator, because in its derivation we imposed the

equilibrium condition, which has the flavour of unbiasedness, and then we minimised

the (symmetric) averaged MSE instead of the expectation of the specified loss func-

tion. The class of estimators defined by (1) was selected by pragmatic considerations,

without any reference to optimality. However, the gains made over the established

estimators are substantial in a range of settings studied by simulations, several of them

not reported here.

The simulations, conducted in R (R Development Core Team, 2009), can be adapted

to other settings. The main difficulty is to specify a setting, the computer version of

the country with its districts, that faithfully reflects the studied problem. One set

of 10 000 (univariate) replications in Section 4 takes about 40 seconds, and one set

of 2000 (bivariate) replications in Section 5.1 or 6 about 120 seconds of CPU time,

so a wide range of alternative scenarios and loss structures can be explored in real

time. The results are robust with respect to the details of how the loss functions

are defined, although these details are very distant from the mean squared loss used

conventionally. The direct and composite (and EB) estimators have a higher expected

weighted total loss (as well as unweighted total loss) than the policy-related estimator

in all the simulated scenarios, many of them not described here.

We have treated the districts as isolated units and assumed that there is no in-

24



terference among them. In practice, the labour force as well as employers react to

government’s applied or anticipated interventions, especially when crossing borders (of

districts, regions, or even countries) entails little expense or inconvenience. Incorpo-

rating such a dynamic is beyond the scope of our analysis.
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Appendix

A1. Uniqueness of the root of the equilibrium equation (3)

We prove this by showing that the function is increasing; its limits as z̃ → ±∞ are

±∞, respectively. Its first- and second-order derivatives are

2(R + 1){z̃Φ(z̃) + φ(z̃)} − 2Rz̃

2(R + 1)Φ(z̃)− 2R ,

respectively. The latter is increasing in z̃. At its root, z̃◦ = Φ−1{R/(R + 1)}, the
first derivative attains its minimum, equal to 2(R + 1)φ (z̃◦) > 0. Therefore, the first

derivative is positive throughout.

A2. Expected loss of the exponential kernel loss

The exponential kernel is given by the functions

LA

(

θ̃m , θm
)

= exp
(

θ̃m − θm
)

− 1

LB

(

θ̃m , θm
)

= R exp
(

θm − θ̃m
)

−R ,

for θ̃m < T < θm and θ̃m > T > θm , respectively. The expectations of these losses are

EA = exp

(

γm − θm +
ν2
m

2

)

Φ (z̃ + νm)− Φ(z̃)

EB = R exp

(

θm − γm +
ν2
m

2

)

{1− Φ (z̃ − γm)} −R +RΦ(z̃) ;

the equilibrium solution is not a function solely of z̃.

A3. Multivariate policy-related estimator

We search for suitable vectors bm and Fm , the multivariate versions of the shrinkage

coefficient bm and focus Fm , respectively, that satisfy the conditions of equilibrium for

θm = T and have minimum aMSE. For the former, we have to specify an entire vector
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T = (T, ξ⊤T)
⊤. We set the auxiliary part of T, ξT , to its conditional expectation given

the first component,

ξT = E (ξ |T ) =
T − θ

σ2
B,1

ΣB,−1,1

where σ2
B,1 is the (1,1)-element of ΣB, σ

2
B,1 = u⊤ΣBu, and ΣB,−1,1 is the first column

of ΣB , with its first element removed.

The condition of equilibrium at T is

b⊤
m (Fm −T) = sz∗ , (10)

where s =
√

(u− bm)⊤Vm(u− bm). The MSE of a multivariate composite estimator

θ̃m is s2 + {b⊤
m(Fm −T)}2 and its aMSE, obtained by averaging over the districts, is

s2(bm) + b⊤
m

{

ΣB + (Fm − θ) (Fm − θ)⊤
}

bm .

The argument bm is added to s to indicate the dependence. By substituting the

condition in (10) we obtain the expression

aMSE(θ̃m ; θm |T) = b⊤
mΛbm − 2

(

1 + z∗2
)

b⊤
mVmu+ u⊤Vmu

+2s (bm) z
∗b⊤

m (T− θ) , (11)

where Λ = (1+ z∗2)Vm +ΣB + (T− θ)(T− θ)⊤. The minimum of this function, with

estimates substituted for Vm , ΣB and the relevant components of θ and T, is found

by the Newton-Raphson method. With the last term in (11) removed, the aMSE is a

quadratic function of bm , which attains its minimum for

b(0)
m =

(

1 + z∗2
)

Λ−1Vmu ;

it can be used as the initial solution for the Newton-Raphson iterations.

The first and second-order partial differentials of aMSE in (11) are

∂aMSE

∂bm

= 2
{

Λbm −
(

1 + z∗2
)

Vmu+ sz∗(T− θ)− z∗

s
b⊤
m(T− θ)Vm(u− bm)

}

28



∂2aMSE

∂bm∂b
⊤
m

= 2
{

Λ− z∗

s3
b⊤
m(T− θ)Vm(u− bm)(u− bm)

⊤Vm

}

− 2
z∗

s

{

b⊤
m(T− θ)Vm − (T− θ)(u− bm)

⊤Vm −Vm(u− bm)(T− θ)⊤
}

.

(12)

The Newton-Raphson algorithm converges fast, rarely requiring more than six and

never more than twelve iterations in the simulations described in Sections 5.1 and 6.
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