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Abstract

The adoption and diffusion of inputs in the production netwis at the heart of technological
progress. What determines which inputs are initially coastd and eventually adopted by inno-
vators? We examine the evolution of input linkages from avoet perspective, starting from a
stylized model of network formation. Producers direct tlsgiarch for new inputs along vertical
linkages, screening the network neighborhood of existuqgpBers to identify potentially useful
inputs. A subset of these is then adopted, following a triidextween the benefits from input
variety and the costs of customizing new inputs. Guided B/ftamework, we document a novel
stylized fact at both the sector and the firm level: produeeesmore likely to adopt inputs that are
already used — directly or indirectly — by their current digag. In particular, using disaggregated
input-output data, we show that initial network proximitiyaosector in 1967 significantly increases
the likelihood of adoption throughout the subsequent fagadles. A one-standard deviation de-
crease in network distance is associated with an increake edoption probability by one third to
one half. Similarly, U.S. firms are significantly more likdty develop new input linkages among
their suppliers’ network neighborhood. Our results imgiattthe existing production network
plays a crucial role in the diffusion of inputs and the evialmtof technology.
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1 Introduction

The adoption of new inputs is an important dimension of teébgical progress. This is true for
both product innovation — where the integration of new isgaads to new or improved output —
and for process innovation, where new inputs can raise flogegicy of production. Input-output
linkages are also important for macroeconomic outcomes. ¢an amplify idiosyncratic sectoral
distortions into large aggregate productivity differem@@iccone 2002 Jones2011, 2013, and
they can create aggregate fluctuations by propagating #eesd shocks Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Salel2012. Yet, input linkages are typically taken as given; littke i
known about the evolution of production networks.

In this paper, we analyze the formation of input linkages.aslewhat determines which inputs
are initially considered and eventually adopted in the patidn of new or improved goodsSim-
ilarly, why are some inputs so much more prominent than sthéte take a network perspective
to answer these questions. To structure our analysis, we bnia standard network formation
argument and hypothesize that producers direct their lsdaraew inputs to the network neigh-
bourhood of their existent suppliers. Guided by this sgdiznodel, we explore the empirical
determinants of new input link formation both at the sectat the firm level. We uncover a strik-
ing empirical regularity: producers are more likely to atimputs that are already used upstream
— directly or indirectly — by their current suppliers. By thk@me token, we find that inputs that are
initially closer to many potential adopters are more likieiffuse widely. Our results imply that
the existing input-output network plays a key role in therfation of new linkages.

To guide our analysis, we provide a stylized model of networknation at the variety level
and then explore its sector-level implications. Each wageoducer is embedded in a network of
production linkages — producers do not only interact diyagith their suppliers, but also indirectly
with input producers further upstream. This gives rise ®ribtion of network distance between
any potentialbuyer-supplier pair, i.e., a producer’s distance to inghét are not (yet) directly
used. In order to keep the analysis simple, we take the hofveew varieties as given and focus
on their input adoption decisions. In each period, a newetsaemerges exogenously. It then

1The exceptions arétalay, Hortagsu, Roberts, and Syvers@®911) and Oberfield (2013; both examine the
evolution of linkages at the firm level. For a recent overvigvthe literature on production networks séarvalho
(2014.

2Firms often experiment with several potentially suitaliiplits before making their final choice. For example,
Steve Jobs famously had the first iPhone’s screen changadiestic to hardened glass only four weeks before mass
production began in 2007.

3The number of sectors that source inputs from a given supioliews a power law Carvalhg 2010. Atalay
et al.(2011) andKelly, Lustig, and Van Nieuwerburgt2013 report evidence on the distribution of supply linkages at
the firm level. The power law in the outdegree distributioarigcial for linkages to augment idiosyncratic shocks into
aggregate fluctuation&\¢emoglu et al.2012).



forms input linkages following three steps, where the fingi build on the central mechanism of
a class of dynamic network formation models. We illustratse steps in the graph below. First,
a new variety producerjf draws a set of ‘essential’ input suppliers (nodeand h). Second,

in order to customize its new variety,searches for further potentially useful inputs among the
suppliers ofg andh (i.e., among nodes-¢). In other words, the search is directed vertically in
the production network, towards the technological neighbod of essential inputs. Third, the
new variety producej decides which inputs to adopt among those identified in therskstep.
This decision is driven by a trade-off between the benefithfa larger set of input varieties (a la
Romer 1990 and variety-specific customization costs for each adojoieat. As a result, a finite
optimal number of inputs is adopted (indicated by the dasinemvs).
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This process implies that individual producers are morelyiko adopt inputs that are closer
in their network neighborhood. This is similar to the evauatof social networks, where new
friendships are more likely to form with friends of frienden with random people. In the context
of production, a firm is more likely to adopt an input that iipplier is already using, than a random
input from the product universe. The formation of new linkaglelivers a law of motion, where
the current production network and its evolution are clpgaierrelated: on the one hand, present
network distances determine input adoption; input adoptm the other hand, changes network
distances. This gives rise to a dynamic evolution of the trqauput network. The stylized model
also delivers a power law in the number of varieties supplieline with the empirical regularities
observed byCarvalho, Nirei, Saito, and Tahbaz-Salé014).

We then explore the sector-level implications of the vgrietel mechanism. To define sectors
in the model, we build on the rules by which new commoditiesassigned to sectors in actual
input-output tables. This classification is based on a tgsi@ssential inputs. For example, a
new variety that draws tires, an engine, and a body will begaes to the motor vehicles sector.
We show that, based on this definition, the model predictew) imput linkages across sectors are
more likely to emerge within the proximity of existent inpgupply relations and ii) the power
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law distribution of forward linkages aggregates up to the@elevel. Thus, even if the underlying
network formation is happening at tkarietylevel, we can make use séctoralinput-output data
to examine the model’s predictions.

Following the theoretical framework, our empirical anaysxamines the determinants of in-
put adoption at the sector and firm level. We first use U.S.thoptput tables at the 4-digit level
between 1967 and 2002. Based on the observed interseatdayés in manufacturing, we com-
pute a standard measure of network distance between aryr pedt. We find that sectors are
substantially more likely to adopt inputs that are inigradloser in their input-output network. This
is illustrated in Figurel. On the x-axis we plot the simplest possible measure of mitdistance
in 1967 — the smallest number of directed input links sepagat (potential) input supplierfrom
a (potential) input adoptei. This provides a simple metric for the vertical distanceneetn an
upstream supplier and a downstream potential user of thé.irfffor example, in 1967, the sec-
tor "Primary Batteries, Dry and Wet" (SIC 3692) had distaB@de the (potential adopter) sector
"X-Ray Apparatus” (SIC 3844), while it had distance 4 to "&igftes” (SIC 2111). The y-axis
gives the frequency of input adoption eventsaflopting:) observed after 1967.For example,
in our data we observe that "X-Ray Apparatus” producers tedofPrimary Batteries, Dry and
Wet" as an input in 1977, while "Cigarettes" never did so. Pphaéern in Figurel is striking.
Input adoption is much more frequent for sector-pairs thettewalready relatively close (but not
yet directly trading inputs) in the 1967 input-output netklvoFor 22% of sector-pairs that were
two input-links apart in 1967 (distance Z)adopted over the subsequent 35 year perfothis is
more than double the frequency of adoption observed foanlt&-3-sectors (9%), and more than
5 times the frequency observed for sectors that were 5 lipaga

Our main finding holds both in a panel setting where the imquiput network evolves over
time, and also in a cross-sectional analysis showing tlusteclnetwork proximity in 1967 re-
duces the subsequent time to adoption. Our results aretrwbaléernative definitions of network
distance and adoption. They are also unaffected by a hoshtifats such as size, proxies for tech-
nological progress, as well as fixed effects for adoptingiapdt-producing sectors. Throughout,
we document economically significant magnitudes; for eangone-standard deviation decrease
in network distance raises the adoption probability in angigy5-year period by one third to one
half.

“We say that a sectgradopts inpui if there was no input flow fronito j in 1967, and such a flow is recorded at
any point thereafter in our sample, which extends until 2002

SNot all of these ‘adoptions’ are long-lived; many reflect gimee input flows between sectors. All our findings
are robust to alternative definition of adoption. In patcuour most conservative definition requires input flowatof
least $1million over at least 15 years. In this case, theueeqgy of adoption for distance 2 is 4.9%, and — consistently
with the differential pattern in Figurg— it is significantly lower for larger distances.
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Next, we examine the formation of supplier linkages atfiira level. We use data from Com-
pustat, which includes information on major customers s¢hihat are responsible for more than
10% of a given seller’s revenues. Because of this reportirgshold, the analysis is naturally lim-
ited to relatively important links. Based on this data, wastouct a network of suppliers and their
customers. We confirm that firms are significantly more likelpdopt inputs that have previously
been used by their suppliers (close network proximity) timputs from outside their network
neighborhood. Additionally, we show that our findings arbust to the inclusion of firm-level
controls, such as fixed effects, firm size, labor produgtivit the geographical distance between
firm pairs.

Our analysis shares a common limitation with other studi@saduction networks: exogenous
variation for input-output linkages is not available. Thisses the concern of omitted variable
bias. For example, a general trend towards computerizatiay be accompanied by a gradual
spread of electronic components as inputs in productiomceSthese are in turn connected to
semiconductors, this process would bring sectors clostretdatter in the input-output network,
with some of them eventually directly adopting semicondtgt While this would confound our
panel results, it is less likely to affect our results tha hased exclusively on initial network
distance in 1967. In fact, technological trends would orifgc these results if they were related
to initial network distance. But this, in turn, is the coreonfr argument — initial network distance
matters for the future evolution of linkages. In additiore show that our results also hold when
we include sector-pair fixed effects, so that we exploit aifigngesn network distance, i.e., the
variation that is due to new links forming or existing linksabpearing over time. Consequently,
unobserved correlates @fitial network distance are also unlikely to explain the patterthim
data. These findings impose restriction on interpretatofrmar results: candidates to explain the
empirical regularities have to be correlated with netwaskaihce (both in levels and changes), and
be related to direct adoption of inputs. We discuss threspnétations that fit this pattern.

First, network distance may reflect technological distantiee sense that production processes
are more or less similar, rendering ‘closer’ inputs more patible. For example, the production
of valves is technologically closer to vehicles than foodgaissing, making the former a more
feasible input in car production. Second, network distacméld proxy for spatial distance to
the extent that industries and firms that trade inputs imtetystend to coagglomeraté=(lison,
Glaeser, and Key2010. Third, network proximity may reflect more frequent socrdkractions
through which information about potentially useful inpiggransmitted. A second limitation of
our analysis is that, ultimately, we cannot distinguishnmetn these mechanisms. Nevertheless,
we can narrow down possible interpretations. The fact teaggaphical distance between firms
does not change our results makes coagglomeration unhbisedymain driver. At the sector level,
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we show that excluding linkages formed within the same 2td&rtor does not affect our findings;
we also show that the forward-distance between sectorslifiles via buyers, instead of suppliers)
does not predict input adoption. This implies that horiabstmilarity of sectors is not a likely
candidate to explain the pattern in the data. Rather, ouitsesuggest thatertical distance along
supply chains is a useful starting point to understand pettef input adoption and diffusion.

We build on a rich research agenda that has studied the idiffas technology, starting from
the seminal work byGriliches(1957. A macro strand of this literature has focused on how par-
ticular technologies — such as electricity or semi-conoltsct- are progressively adopted by an
expanding range of sectors. This gives rise to General Barfechnologies (GPT) that mark
historical eras and are seen as engines of grogipman and Trajtenber@998 Jovanovic and
Rousseal005. As in this literature, we are interested in understandiog a particular technol-
ogy can emerge as an input supplier to many other technalb@er results imply that occupying
a relatively central position in the production network + é&xample, when a new input is used
by already central technologies — makes wide diffusion nigedy. Our paper is also related to
a micro strand of the literature that focuses on the role oiadmetworks in the adoption of par-
ticular technologies (c.fYoung 2003 Conley and Udry201Q Banerjee, Chandrasekhar, Duflo,
and Jacksaon2013. We share the view that the adoption of technologies is atedithrough
a network. However, rather than focusing on the role of I@walial interactions, we study the
importance of distance in the technological network mooatly!

We also naturally relate to a literature that models thewgiant of technology as a recombi-
natoric process of existing ideas into new onégitzman 1999.2 The large number of possible
combinations ledNVeitzmanto the conclusion that "the ultimate limits to growth may fiet so
much in our abilities to generate new ideas, as in our adslito process to fruition an ever in-
creasing abundance of potentially fruitful ideas” [p.35B}is begs the question of how innovators
organize their ‘search process’ among the myriad of possibimbinations. Our approach makes

SInterestingly, whileHelpman and Trajtenber@. 999 rationalize the staggered diffusion of a GPT in terms of
asymmetric adoption costs, they also conjecture that tleraf adoption could be the result of "linkages between
adopting sectors" and thus, that "technological proxitnitgy be an important factor in explaining diffusion pattern
of GPTs. Our key mechanism formalizes this notion of "tedbgical proximity" by placing technologies in a network
and emphasizing network proximity as a key driver of adaptio

"As discussed above, proximity in the input-output netwoekyralso reflect more frequent social interaction. For
example, a tire producer is more likely to interact with pledpom the automotive industry than with pharmaceutical
staff. Our argument exploits the variation acrssstor pairswhereas the micro literature on social networks examines
the role of local social interactions for the adoption ajimentechnology. Se&afchamps, Goyal, and van der Leij
(2010 for a study of the determinants of co-authorship pattemreconomics, which uses an empirical strategy akin
to ours.

8Ghiglino (2012 emphasizes that the quality of ‘parental’ ideas plays gwoirtant role in this setting. On a related
point, Acemoglu, Akcigit, and Ker(2014 show that downstream technologies that cite upstreanmtdogies with
rapid patent growth in the past, are themselves more likegxhibit subsequently faster innovation.
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the object of this search tangible: we view technology asdpction recipes’ that prescribe a
combination of different inputs to produce output. Coragingly, the search for "ideas" reflects
the combination of existing inputs into new products. Agtdially, we provide evidence that this
process of recombination of inputs does not occur at randRather, it is directed towards inputs
that are relatively close in the production network.

Our focus on input-output networks is also related to aditge that emphasizes the role of in-
tersectoral linkages in determining macro-economic autxy such as productivity and aggregate
fluctuations Jones2013 Carvalhg 2010 Acemoglu et al.2012 Bigio and La’Q 2013.° Further
afield, input-output linkages also have important implmas for the organization of production
and the optimal allocation of ownership rights along glahgiply chainsAntras and Chqr2013
Costinot, Vogel, and Wan@013. These literatures invariably take the input-output retnas an
exogenously given restriction on production technologidsle we examine its evolution.

Our work also builds on a literature of dynamic network fotima models Yazquez 2003
Jackson and Roger2007 Chaney 2014). As in these papers, our network evolution process
stresses the fact that existing links can be used to find naw:ligoods producers probe their
existing set of input suppliers to find other potentially fusearieties for their own production
process. Finally, our paper is closely relatedAtalay et al.(2011) and Oberfield(2013, who
model input link formation in buyer-supplier network#talay et al.(2011) estimate a model
where new links form in part randomly, and in part due to peféal attachment (to prominent,
but not necessarily nearby supplier®berfield(2013 provides a mechanism whereby producers
randomly search for the lowest cost input supplier. In thesehanisms, firms do not exploit
existing supply linkages to search for new inputs; in catireve emphasize the role of linkages
in directingthe search for potential inputs. Relative to the existitgyditure, we are the first to
document the novel stylized fact that input adoption isrggty associated with proximity in the
production network — and that, consequently, the existhoglpction network plays an important
role in its subsequent evolution.

The paper is organized as follows. Sectinses the diffusion of semiconductors as a case
study of input adoption in a network. SectiBrescribes our model of input adoption, starting at
the product variety level and then aggregating these irdtose Sectiod introduces our measure
of network distance and describes our sector-level dat&ettionss and6 we present empirical
results at the sector- and the firm-level, respectivelyti®e@ concludes.

9This work in turn builds on an older literature that emphasithe role of input-output linkages for co-movement
across sectors (c.Eong and Plosser1983 Horvath 1998 Conley and Dupqr2003. See alsd-oerster, Sarte, and
Watson(2017) anddi Giovanni, Levchenko, and Meje42014) for empirical evidence supporting these mechanisms.
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2 Input Diffusion in a Network: The Case of Semiconductors

The diffusion of semiconductors, a key general purposetjnpuvides a telling illustration of
input adoption in a network. FiguZzshows a network representation of the US input-output table
in 1967. Each 4-digit SIC sector is represented by a nodegdgds between these nodes depict
input flows across sectors. The solid black node on the leftl Is&de of the graph corresponds to
the sector "Semiconductors and related devices". The rédsymark sectors that directly sourced
semiconductors as an input in 1967 — only a handful of teayies did so. Finally, the red arrows
point to indirect users of semiconductors with distancee2, sectors that sourced inputs which in
turn used semiconductors.

Given this starting point, Figure3-5 show the path of diffusion of semiconductors across
sectors over the subsequent 15 ye@Blue dots in Figure represent sectors that adopted semi-
conductors in 1972, as per the detailed input output talfldsadyear. Note that the new adopters
also add new indirect paths to semi-conductors, as inadidagehe blue lines in Figur8. Cyan
and green dots in Figurésand5 correspond to sectors that adopted semiconductors by 17 a
1982, respectively. As before, lines in the respectivercapresent newly formed indirect links.
We ask whether these indirect linkages to semi-conducterséormative about the likelihood of
subsequent direct adoption of semiconductors as an input.

The pattern emerging from these Figures is striking. Evergle one of the seven adopters
in 1972 previously had an indirect connection to semicotmgwia one other intermediate input.
In the terminology of networks, all second-round adoptdrsemiconductors were two edges
away (i.e., distance 2) from semiconductors. Similarlyrfout of the five sectors that adopted
semiconductors by 1977 sourced inputs from either the 197Re01967 adopters. By 1982, the
number of sectors using semiconductors as an input had tmamdrebled relative to 1967, setting
the stage for the generalized adoption that would ensueeil #90s and 2000s. Summarizing,
early adoption of semiconductors was strongly associatdédimitial network proximity.

It is instructive to focus on one of these paths of adoptidlustrate the role of linkages across
sectors in the diffusion of semiconductors. In 1967, the@aters and Office Equipment” sec-
tor did not yet directly source semiconductors as an inpatwéver, computers used "Electronic
Components”, which in turn used "Semiconductors and R&R&vices." That is, computers were
distance 2 from semiconductors. In the early 1970s, new otenpvarieties increasingly used
the newly developed integrated circuits (a good classifietEiectronic Components”, which in
turn used semiconducting materials intensively). Thedasig reliance on integrated circuits

ONote that throughout we hold the 1967 network fixed. Thatlis;@ored edges refer to input linkages observed
in 1967.



was accompanied by a direct use of semiconducting maténi@smputer productioit Corre-
spondingly, the "Computers and Office Equipment” sectopsatbsemiconductors in 1972 in our
datal?

3 A Model of Input Diffusion in a Network of Technologies

In this section we present a stylized model of dynamic ingusion across a network of intercon-
nected product varieties. New varieties emerge exogeypeusry time period. Interconnections
across varieties reflect input needs, i.e., each varietpyzed by incorporating other, already ex-
istent, varieties as intermediate inputs. These inputilyas across varieties give rise to a network
that evolves over time, as new varieties are introduced andinks are formed.

Building on the dynamic network formation modelsJaickson and Roge(28007) andChaney
(2014, we begin by describing the set of feasible inputs avadlébleach new variety. Following
this literature, our network evolution process stressesatt that existing links can be used to find
new links. In our context, this means that a new variety firatvé a set of ‘essential’ inputs and
can then probe the network neighborhood of this set to findrotarieties that can be of potential
use as inputs.

Given this set of potential inputs available to each newergriwe proceed to endogenize the
input adoption decision. We assume that input adoptionstlycaSpecifically, in order for a new
variety to adopt an input, it must be customized at a costishegecific to each variety-input pair.
In the model, new variety producers face a trade-off betvilisrcustomization cost and a love of
variety effect accruing to adopting additional inputs. Bodution to this tradeoff determines the
total number of inputs that each new variety adopts.

Finally, in order to derive testable predictions that catexen to sectoral input-output data, we
explore the sector level implications of the variety levaeldal. We classify varieties into sectors
based on a principle of similarity of inputs that is also ugethe construction of input-output
tables. As a result, sectors are composed of varieties hlaa¢ similar production processes, i.e.,
varieties that process similar input bundles. Based ondéimition we can show that the key
variety level mechanism — a new variety is more likely to adoputs in its network neighborhood
— is still present after aggregation to the sectoral level.

1The world’s first personal computer — the ‘Kenbak-1’ prodiite1970 — was the first computer device to source
integrated circuits as an input (from the "Electronic Comgmis” sector) and, alongside it, semiconductors.

12This argument can be extended further — to a sector that lstahdee 3 from semiconductors in 1967: the "Scales
and Balances" sector sourced early computer varietie@iigemiconductors) in the late 1960s to store and perform
calculations on weighting measurements. Throughout tif®4 ¢he introduction of newer, smaller computer equip-
ment varieties — itself made possible by the adoption ofgirsteed circuits — opened the way for the production of
industrial and retail digital scales. These eventuallpiporated semiconductors directly by 1977.
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3.1 Variety Level Model

Given a finite number of product varietiels,we define a variety-level input-output matrix as a
weighted directed network, represented by a ¢ matrix where each entry;; > 0 denotes the
flow of input variety: into variety j’s production process. We say thatises input if v;; > 0.
Correspondingly, we define thmweighteddirected network as the binaty ¢ matrix where each
entry b;; € {0,1} indicates whether product variegyuses input variety. To characterize the
evolution of the variety-level network, we focus by, i.e., the formation of linkg?3

This production network evolves over time as new varietitege@sequentially in the economy.
In particular, at each timea new variety is added to the econoffiyEach new product variety
initially draws a finite set/; of necessary or ‘essential’ inputs; let, denote the number of
input varieties in this set (for simplicity ignoring the siptt). These draws occur uniformly at
random across all existing varieties. Essential inputsbeathought of as defining features of the
new variety. For example, ifis a car its sef(; will include a body, an engine, wheels, etc. There
can be different varieties (or versions) of each essemalt, but not all are necessarily used. For
example, a car producer may consider several differenheraptions.

In a second step, the new variety can adopt further inputss rEfflects a stage of refinement
of variety t by adding features beyond the essential ones. To identiignpially useful inputs,
the producer directs its search to inputs that are alreagly bg its essential suppliers. In the car
example, the producer may look for options to make the baglytéir (e.g., by using ultra-light
carbon fiber) or add luxury features to the car. This seconddasearch delivers a spectrum of
potential inputs, and only a subset of these will eventuadlyadopted. To formalize the process
of networked input search in the supplier network, Ngtdenote the set of input varieties that pro-
ducert identifies as useful from its network search. This seardiovid the links oft’s essential
input suppliers in the sek;. The number of varieties in the sat is denoted byn . One inter-
pretation of this setup is that the network neighborhoodsskatial inputs defines which further
varieties argechnologicallyclose tot and can therefore be of potential use in its production pro-
cess. Alternatively, the setup can be interpreted as a $@@alth process by which the developers
of the new variety receivformationabout other useful technologies via the personal interacti
with their essential input suppliers.

We use this setup to study the probability with which a newergrt adopts a given input
In the theory of network formation, this is related to thelation of the outdegree of variety'®

13Below, we show that under price symmetry; > 0 is proportional td; ;.

14We use the index to denote the new variety in each respective period. Thesnthext refers to both the latest
new variety that has been introduced, and the time periochwiie happened. Since varieties can be both inputs and
output in our model, we use the notation ‘input varieties "esitput/product varieties’ depending on the context.

15The outdegree of gives the number of varieties to whiétsupplies, i.e., the number of other varieties that use

9



The outdegree of each varietif'(t), is heterogeneous acrosand over time. For an existing
variety with outdegred?“(t) at timet, the expected growth rate of its outdegree is given by:
8df“t(t) mg mKdZOUt(t) my

= PK + PN
ot t t my(pxmi + pymy)

1)

This expression can be decomposed into two parts. The firstite(1) gives the contribution
of random adoptions of varietyas an essential input. Recall that each newly introducadtyar
selectsm essential inputs uniformly at random from the set of all exgst varieties. Hence
mp /t gives the probability that varietyis selected as a possible essential input. Whether or not
the new product ends up sourcing varietyis determined by an adoption decision that we model
below in SectiorB.2 For now, we take the adoption probability as given and symmetric across
all my essential inputs.

The second term inlj relates to the networked adoption of inputs. It gives thabpbility
that varietyi is adopted by the new varietyindirectly, i.e., via the linkages afs essential inputs.
To interpret this term, notice that = myd?“(t)/t is the expected number of randomly drawn
essential inputs that in turn use varieétgs an input; in other wordsA is the expected number
of indirect links that lead from product varietyvia its essential inputg to input variety:.'®
Next, B = my/[mg(pxkmik + pymy)] is the probability of any given variety ifis network
neighborhood to actually be ‘drawn’ byi.e., to be examined more closely as a potential input. To
see this, note that the new vari¢tyitially drawsm g essential inputs. In turn, in expectation each
of these sources inputs fropym v +prmg varietiest” Thus,my (prm +pymy) gives the total
number of input links ot’s essential input suppliers. In other words, it is the sizthe network
neighborhood thatsearches for potential input varieties. Sincawsm y (potential) inputs from
this network,B is the probability that a given inpuis drawn. Note that the same inputan show
up several times if's network neighborhood — via different essential inputsolir car example,
both body and wheels (essential inputs) may use aluminutwénie input). This is reflected in
the multiplicationA - B — the (expected) number of links tis network neighborhood leading tp
times the probability of any such link to be considered lag a potential input. Finally,y is the
probability that an input that has been selected ay a potential input will actually be adopt&d.

varietyi as an input. In contrast, the indegree @f the number of inputs thattself uses.

18To see this, note that the probability that a randomly drasaeetial variety: itself sources inputs from variety
is d?“t(t)/t, i.e., the number of varieties thasupplies to, divided by the overall number of varieties ie ¢tonomy
in periodt. In addition,m g is the number of such random draws of essential inputs.

"This expression also corresponds to the expected indegnésh is the same across varieties in our setup. As for
px, We takep as given for now and model the adoption decision in Se@®i@n

18A simple numerical example can provide further illustratisuppose that producedrawsmy = 5 essential
inputs, and that the average indegree is 10. Then the siZe nétwork neighborhood is 50, i.e., there are 50 links
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Altogether, the second term in equatid) thus captures the odds obeing adopted by the new
varietyt through the latter’s network search. Importantly,@lready features as an input of a large
number of varieties (highi?“*(t)), then it is more likely that the new variety also adopts hisTis
the core of the mechanism.

Given our setup above, we can characterize the distributiavutdegrees at any timeby
means of a mean-field approximation dj,(as inJackson and Roge(2007. The mean field
approximation is derived by taking a continuous time vergibthe law of motion in equatioriLj
where all actions happen deterministically at a rate pribgual to the expected change. To do this,
letr = % be the ratio of essential inputs to the number of network tspkn addition, denote
by m = pymy + pxmi the expected number of inputs adopted by varteiyhen, the following
proposition is immediate from Theorem 1Jackson and Roge(2007):

Proposition 1. In the mean-field approximation of equati(i), the variety outdegree distribution
has a cumulative distribution function given by(d**) = 1 — (22 )H’” at any timet.

dovt+rm

The proof follows immediately frondackson and Rogef@007 and is omitted her& For
larged®* relative torm, this approximates a scale free distribution with a taibpaeter given by
L+r = . That is, as the number of network inputs grows large redativthe number of

essential inputs, the outdegree distribution of variedgsroaches a power law.

3.2 Input Adoption Decision

In the following, we describe the input adoption decisiordetail. A new variety producet
decides which inputs to adopt from the set of essential )p(t and from the sed, of potentially
useful inputs that were identified during the network seatalge. The adoption decision is driven
by a trade-off between two forces. On the one hand, a prodwaefits from a larger set of input
varieties, as in standard endogenous growth models in fhie &pRomer(1990. On the other
hand, there is a variety-specific customization cost fohesdopted input. To model the input
adoption decision, we introduce a production function tneds other varieties as intermediates

leading to further input varieties vigs essential input suppliers. Assume thdecides to closely examine 10 of these
input varieties. Then the chance of any input variety fromrletwork neighborhood to be drawnfis= 0.2. Next,
suppose that inputis extremely prominent, being used by 10% of all varietigsed¢“!(¢) /t = 0.1, andA = 5-0.1
is the expected number of indirect links frano ¢, given thatt draws 5 essential inputs. Consequently, the chance of
i to be drawn byt for closer examination igl - B = 0.1. Finally, if ¢ actually adopts half of these potential network
inputs, then has a 5% chance of being adopted:tas a result of the latter’s network search.

1%The quality of this mean field approximation can be checkexdresg simulations of the original law of motion. As
Jackson and Rogef2007) show, the mean field result above accords well with simdldistributions of the actual
process. In fact, followindgporogovtsev, Mendes, and Samuki2®0Q equ. 9) it is possible to derive a closed-form
solution for F'(d°“t) without appealing to a mean field approximation. Based oselepression§orogovtsev et al.
(200Q equ. 11) show that in the limit of larg&“?, the distribution implied by the mean-field approximaticoae is
indeed correct. We thank Enghin Atalay for bringing thisrmidd our attention.
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together with labor. Thus, the underlying production snoe is a network of linkages across
varieties. We focus on a partial equilibrium analysis atastrate the tradeoff that governs the
adoption decision in the symmetric case.

Variety Production

We begin by clarifying notation. We ugeto denote elements of the set of essential inguts
andn for network inputs in/V;. Note that both these sets represgotentiallyused inputs. Let
IAQ C K, andﬁt C N, be the subsets of essential and network inputs, respeagtiliat are actually
adopted. In the following, we model the decision of a newatgrproducer who decides which
inputs to adopt.

Each product variety uses other varieties as intermediate inputs. Their quesire denoted
by z;. andx,, for essential and network inputs, respectively. For ilatbn, we keep the sets of
essential and network inputs separate in the productioctifum by assuming that they enter two
different composites. Inputs of each category enter pribolu@s substitutes with elasticity> 1,
so that the corresponding composites are given by:

€ €
e—1 e—1

XE= S a7 | and XV =[S a0 2)

kek; nEN:

In order to adopt an input, it must be customized at a costishgpecific to each product-input
pair. For example, customizing a light sensor for a car iedéht from customizing a light sensor
for an outdoor lamp, and both in turn are different from costng a rear view camera for a car.
We denote this product-input specific customization cost,pyandc; ,, for essential and network
inputs, respectively. To simplify the analysis, we assuna¢ the customization cost is negligible
for essential inputs, so that, = 0, Yk € K,. This reflects our interpretation that a variety’'s
essential inputs are fundamental parts whose integrasi@tandardized, such as wheels or an
engine for a caf® Because the input composites R) {eature returns to the number of varieties,
the optimal decision for the produceriif to adopall essential inputs € K, so thatk, = K,.2!
On the other hand, adopting network inputs is subject to tiséotnization cost; ,, > 0, Vn €
N,. These are calculated as, = b - r¢,,, Wwhereb > 0 andr, is uniformly distributed over the

20\We build on this notion below when aggregating varieties Bgctors.
~_1 ~
21To see this, note that in the symmetric caXél = K, ' - (K@Kt), whereZ g, is the quantity used of each

essential input. Thus, the more essential inputs are adt()pimerf(t), the larger isX X, for any given total amount
of essential inputs used{,z k).

12



unit interval. The total cost of adopting a subsétof these inputs is given by

Ct = Z Ctﬂ (3)

nE]\Aft

We assume that the customization cost is paid in unitssobutput,y;, in every period of pro-
duction?? This ensures that our results are not driven by scale efféectle can now specify
the variety production function. The two input composi¥s and X2 enter in a Cobb-Douglas
fashion, in combination with labot,.?* For a given (annualized) input customization cOstthe
output of varietyt is given by:

14+

« B l—a—
v (X{)" (X)L (4)
where A; is the productivity draw of producér Note thatC; < 1 must hold, and that’; can be
interpreted akin to a tax on output, used to cover the irdiimiption cost?

Optimization and Input Adoption

A variety producetr solves the cost minimization problem associated wijhlfy choosing the set
of network inputsﬁt, as well as the quantity of each input. We begin by analyzZmegatter. For
given setgy; andN,, the optimal choice of input quantity;, andz;,, in the two aggregates ir2)
yields the corresponding price indexés

1 1—e

D) = (Z @1‘6) Cand @) - [ Y (5)

keKy neN:

22Thus,C; can be thought of as annualized customization cost, paidits af output.

23|n contrast, ifC' was a fixed cost, higher demand for a given variety would aad It to adopt more inputs. This
would render the basic structure of our model untractableddition to ensuring tractability, this setup is also ireli
with our technological interpretation that once a variedg lchosen its inputs, these are stable over time — that is, a
variety is defined by its input use.

24Thus, the two input composites are gross complements. Fhimaption does not affect our qualitative results —
we could alternatively assume that the two composites dgtisutes, or we could include all inputs in one aggregator.
The advantage of our formulation is that we can separatenégseputs and network inputs in a straightforward
fashion.

25The optimization problem described below ensures thattmslition holds as long as at least one network input
n has an associated customization egst < 1.

26\\/e use the notatiok’; rather thanf(t to underline that all essential inputs are adopted.
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whereg, andg,, are the prices of essential and network inputs, respegtikabori, is also chosen
optimally, taking the wage as given. The marginal cost of producing varietg then

1+C, (OF\ (2N’ w7
v () (%) (=) ©

This expression holds for givenset of adopted network inpuf@*. Next, we obtain the optimal
set of network inputs, by collecting the terms 8) that depend on this choicé}; and®, and
substituting from 8) and 6):

Nt* = arg min 1+ Z Cim Z PL (7)

NS nel, nen,

If the setN; has many elements, this is a complex combinatorial probleah must be solved
numerically. Note that for each potential input varietin ¢'s network neighborhood, a lower price
¢, makes adoption more likely. Thus, technological prograsgriety production can raise the
rate of adoption, by lowering the input price. We will tesstprediction in our empirical analysis.
In the following, we illustrate the adoption decision bydsig on the simplified symmetric case.

Symmetry and lllustration of the Adoption Decision

To examine the symmetric case, we assume that each varethéraame technology drady =

A, and that final demand is such that the price of each varietganstant markup over its marginal
cost?’ In addition, recall that in expectation each variety usesstime number of essential inputs,
mpg, and it draws the same number of potentially useful netwapkiis, . What remains to be
shown for the symmetric equilibrium is that each varietypadopts— in expectation — the same
number of network inputs.

Adoption costs are also symmetric in expectations, but tiealizations vary across the input
varieties in/V;. However, we can rank the y network inputs inV; by their adoption costs, such
thatc,; < ¢;2 < ... < cmy - BeCause customization costs are uniformly distributeel ardered
drawsn = 1,...,my will lie (in expectation) on the line;, = b - mLN Let my < my denote
the number of adopted inputs (i.e., the size of theNgt Then the total cost of customization is
given by Y ¢, = L X@xED which is increasing and convex ifiy. In expectation, this
customization cost function is the same for each new vatieGonsequently, each new variety is
expected to adopt the same number of inputs from its netwarkanment. In other words, the

21This follows if we assume that all varieties are aggregatéma final good with elasticity of substitutien Then
both final and intermediate demand for all varieties impky phofit-maximizing markup/ (e — 1).
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expected indegree is the same for all varieties. Thus, in&pion our model features a symmetric
equilibrium with all new varieties facing the same margicas$t in ©) and therefore charging the
same price. Note, however, that variety producers userdiftsetsof inputs. Thus, the outdegree
may be asymmetric — some varieties are more popular supfiien others. Nevertheless, the total
demand for an input affects neither its pricing nor its owagttbn of inputs. Consequently, in our
setup, symmetry in prices and indegree is compatible wigmasetry in the number of forward
linkages (i.e., the outdegree).

Under symmetry of prices), = ¢, Vn), and given the above ranking of customization costs,
(7) simplifies to:

5
1\ <1t b mpy(m 1
My = arg min { (A—) + 5 My (Fty :_ ) } ¢’ (8)

my<my mn my (M) T

The first expression in8j is decreasing inmy, while the second expression is increasing if
B < 2(e — 1).2 This delivers a U-shape with a unique minimum (see Figukin the ap-
pendix). To illustrate the intuition for this functionalrfo, the ranking of network inputs by their
(randomly drawn) customization costs is crucial. When fapuits are adopted (low:), cus-
tomization costs of these low-ranked inputs are small, aedefore the input variety effect a la
Romer(1990 dominates. For higher.,, customization costs for each additional adopted input
are larger, outweighing the input variety effect. Thus dorction costs eventually become increas-
ing in my. The optimal number of adopted network inputs,,, corresponds to the minimum of
the U-shaped curve given b8)(

Note that our analysis in the symmetric case endogenizesritability py of adopting net-
work inputs, which we took as given i1}, Each new variety draws:y network inputs, and
according to §), it will adopt m}, of these. The likelihood of adoption is thus a-priori the sam
for any network input in the seV,, and it is given bypy = m%,/my. Finally, because of price
symmetry, a variety produceruses the same amount of each input varietgonditional on this
input being usedt; = 1). Thus, the corresponding value of the input purchage,s propor-
tional to the binary variablé;;. This becomes important below when we aggregate our model
to the sector level: our variety level predictions are dattior theunweighteddirected network
(based on binary;;), while input-output data deliver weighted(value-based) network. Due to
the proportionality, we can show that variety-level préidias hold at the sector level.

28For example, suppose that the overall expenditure shaiatEmmediate inputs is 0.5, and that half of these are
network inputs. This implieg = 0.25. Thene > 1.125 will ensure that the second expression8hié decreasing in
my. As a comparison, the average elasticity of substitutipored byBroda and Weinstei(2006 is 4.
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3.3 Sector Level Implications

Our model of networked input adoption is defined at the vailmtel. However, the most promi-
nent source for production network data is available at dutos level in the form of input-output
tables. In order to render these data useable for our puspasenow explore the sectoral impli-
cations of our model.

Aggregation of Varieties into Sectors

We start by defining how varieties are assigned to sectofseicantext of our model, employing
a principle of similarity of inputs. As a result, sectors aoenposed of varieties that share similar
input bundles. This input-based approach is also a guidingiple of actual sectoral classification
systems like NAICS? To capture this notion, we define a binary baseline veefothat defines a
sectors; based on its inputs. This can be thought of as a blueprinhitytpical inputs used by
varieties in sectos;. For example, the car sector may be represented by a bageditw/.,, with
unit entries in ‘body’, ‘engine’, and ‘wheels’. In the cortef our model, the vectqi,, represents
the classification scheme for new varieties. Each varigtyes classified into the sector whqse
has the maximum overlap with the variety’s list@gsentiainputs¥® In other words, a variety’s
essential inputs are compared to the typical inputs usedl bgaors in the economy, and it is then
classified into the most similar one. The following definiti@rmalizes this principle:

Definition 1. (Definition of a Sector)At timet, a sectoral classification system is a partition of
the set of existent varieties intb sectors. Each sector;, with j = 1,..., J, is defined by &-
dimensional binary vectoy, , with a total ofz ones and — = zeros, with unit entries in the vector
being elected at random. Each existent variety is assigm@dsector by finding the sectey that
maximizes the overlap between that variety’s binary vest@ssential inputs and the vectoy .
Any new variety introduced at tintet- 1 is classified into a sector in the same way.

Note that this definition allows for overlap among sectansthiat different sectors can share
some elements across their baseline vectors. For examgiegls’ may be represented in both
the bicycle and car baseline vectors. This definition induzeectoral input-output network of
dimension/ x J, where nodes are now sectors and directed edges, represent intersectoral
input flows from sectos; to sectors;. According to our definition, these directed edges reflect

2%For example, the Bureau of Labor Statistics provides a leetaixplanation of this production-based principle:
"Industries are classified on the basis of their producticsupply function — establishments using similar raw materi
inputs, capital equipment, and labor are classified in theesadustry” Murphy, 1998 p.44).

30This notion of overlap can be made formal by use of the Hamrdisgnce between two binary vectors of the
same length. This distance gives the number of elements Ishwihe two binary vectors differ. Thus, we classify
a given variety into the secter; whose baseline vectqr,; has the minimum Hamming distance to this variety’s
essential inputs.
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varieties that have been classified into sestoand source inputs from varieties classified into
sectors;.3!

Sector-Level Predictions

We now turn to the evolution of the sector-level input-odtpetwork over time. At the variety
level, the key mechanism of network formation relied on aarbdf network proximity: a new
variety is more likely to adopt inputs in its network neigitood, as defined by the set of varieties
that supply inputs to the new variety’s essential inputs.ndig show that such a mechanism is still
present under aggregation at the sectoral level. To seenhifirst define a sector-level measure
of network proximity for any ordered pair of sectors for whithere is no input supply relation at
time¢. This definition exploits variety-level input flows from decs, to sectors;

Definition 2. (Sector-level Network Proximity)Take any ordered pair of sectofs;,s;) such that
as,s; = 0 attimet. The network proximity ofs;, s;) is defined asu, s;) = 1 vs, wherev,, is a
t x 1 vector, with each entry,, (v) giving the number of varieties from sectgrthat are sourced
as inputs by variety, forv = 1, .., ¢. Then sectog; is closer tos; than tos;: if n, ;) > nes;,s,)-

This definition states that secteyis closer tos; if varieties froms; are used more frequently
as inputs by varieties that define sector For example, ifs; is the "vehicles" sector then its
defining varieties will include body parts. If body partstimn, source many steel varieties (from
sectors;="steel") then this will imply a relatively high proximityfdsteel" to "vehicles". Formally,
n(s,.s;) gives the number of varieties in sectpthat are sourced as inputs by varieties which appear
in the baseline vector of sectey.3? Next, we use this definition to aggregate varieties to theosec
level. A new varietyt will be classified into the sectat; whose baseline vector is most similar
to t's essential inputs. The sector-level network proximity, .., then tells us how closely we
should expect to be connected to inputs from each sector Intuitively, if ¢ is classified into
sectors;, it must have a relatively large number of essential inphiég are also present ify's
baseline vector,;. Thus,t must also have many input links in common with the varieties,i .
This is the proximity dimension thai,, ) = ,u;jl/si exploits. Given this definition, the following
proposition shows that the network proximity mechanismeutyihg the variety level model is still
present when we aggregate varieties into sectors.

31For a fixed number of sectorg ast becomes large, eventually all sector pairs will exhibit 1zeno flowsas,s; .
We study sector-level adoption, meaning that,, goes from zero to positive. We thus implicitly assume that th
time ¢ input-output network is sparse, i.e., that many;,'s are zero. In addition, note that economies with zeyQ,
can be maintained even for largé the sectoral classification system is expanded by raidinige., by refining the
sectoral detail.

32Note that this proximity definition need not be symmetrie,,igenericallyn,, 5.y # n(s,,s;), as is standard for
network distance metrics in the context of directed graphs.
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Proposition 2. Take any two sectors; and s; that previously did not source inputs from sector
S;, .e.,a,s. = as. = 0att — 1. If attimet — 1 sectors; is closer tos;: (i.e.,n(s, s.) > N(s, 5.))s

iS5 iS5 J (si,55) (s, j )
thens; will be more likely to adopt an input from) at¢.

We provide a formal proof in the appendix. Here, we brieflyatlié® the intuition. First note
that any new input linkages at periochust be due to the new varietyall pre-existing varieties do
not change their linkage structure. Whethdinks s; ands; depends on (i) whetheris classified
as an element of sectsy, and (ii) whether it then sources input(s) from seetofThe proof links
both steps by following the classification scheme for secti@scribed above: The new varigty
randomly draws a set of essential inputs. It is then clasksifito the sectog; that has the closest
overlap with these essential inputs. Thus, the fact thatsorted into sectos; tells us that it
shares more essential inputs with varieties,ithan with varieties in any other sectoy. This is
criterion (i). Criterion (ii) then incorporates new linkrfoation via the network neighborhood of
t's essential inputs. If many of these link to sectgrt is more likely to source from;.>® Finally,
combining (i) and (ii), if¢ is classified into a sectat; that has many indirect input linkages 4o
t is expected to itself have such indirect linkages;tcand these in turn raise the probability that
t directly adopts inputs from;. Summing up, since a-prioryis equally likely to ‘fall’ into any
sector, the sector; closest tos; (among those that are not yet directly linkedstpis most likely
to establish a new link te;.

Having established that the key network proximity mechani®lds at the sectoral level, we
now characterize the size distribution of links. In pargcuwe are interested in understanding
whether our variety level model, when aggregated to theosgdevel, can generate the fat tailed
behavior of sectoral outdegrees emphasizektiemoglu et al(2012. Note that the induced sector
level network consists of weighted links across sectofieatng the number of existing varieties
at timet that are both: (i) classified in the same sectpand (ii) source as inputs varieties from
a given sectos;. Thus, sector-level input flows, ,, are given byu,,,, = ZiESZ_ Zjesj v;;, Where
v;; denotes the sales of input varietyo product variety;. This, in turn, implies that sectos’s
total sales, i.e., its (weighted) outdegree, éfé = ijl as,s;- Having established this notation
we can move on to the following proposition:

Proposition 3. In the symmetric equilibrium, if the variety-level outdegdistribution at time is
power law, so is the distribution of sectoral weighted ogtdes.

33More generally, the new varietycan form links to inputs in sectay; directly — by drawing variety € s; as an
essential input — or indirectly, via its network of essdritiputs. Regarding the former, this initial draw is symnieetr
across all existing inputs. Thus, it does not differenialffect link formation across sectors. The proof therefore
focuses on the adoption via the network of essential inputs.
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In the following, we provide a sketch of the proof; for a folnpaoof see the appendix. The
proof of Propositior relies on the fact that the sum of a finite number of power lastrithuted
random variables is itself a power law random variable. llbfes two steps. First, we build on
the fact that at any timg the number of varieties in each sector follows a Binomiatrddution.
Second, we note that under the assumption of price symntk&gectoral (weighted) outdegree
is proportional to the total number of varieties to which atsesupplies inputs at time where
the constant of proportionality is given by the prige Thus, under the assumption that at time
t the variety level outdegree distribution is power law distted, a sector’'s weighted outdegree
is given by the (finite) random sum of power law distributedadales. Based on known results
on the behavior of random sums of power law variables {&ssen and Mikos¢c2006 Lemma
3.1) we can then show that any sector’s weighted outdegreseispower law distributed with the
same tail exponent as the variety-level outdegree digioibu

4 Empirical Framework and Sector-Level Data

While the core mechanism of the model works at the varietglleour aggregation results in
Proposition3 allow us to employ sector level data. Because the most teliddita are available
at the sectoral level, these are the basis for our main erapanalysis. We use US input-output
benchmark tables between 1967 and 2002 (at the 4 digit lamdljrack input adoption over time.
We then ask whether initial network proximity — measured kigteng input linkages — predicts
subsequent input adoption. We proceed as follows: we fitebdnce our measure of network
proximity. Second, we describe our data and discuss theitil@firof adoption in the context of
input-output tables. Finally, we present empirical resaltalyzing both the time to adoption after
1967 and the likelihood of adoption in any given benchmarkry&Ve also provide falsification
tests such as network distance followirigrward- (as opposed to backward) linkages. To save
on notation, we usg (instead ofs;) to denote the input-using sector, anfinstead ofs;) for the
input-producing sector.

4.1 Network Proximity

When aggregated to the sectoral level, our model prediatsstittor; is the more likely to adopt
inputi the more closely is already related tovia indirect network connections. In the following,
we use a standard measure of network distance that cagtis@stion. It builds on the hypothesis
that sectors trading inputs more intensively are ‘closethie technology landscagé Crucially,

34Note that our model makes two simplifying assumptions.tAivsal search occurs only at the level of two degrees
of separation (i.e., across direct neighbors of ‘paren&rond, the model emphasizesnienberof (indirect) routes,
abstracting from the intensity of linkages. In the data, &@esv, adoptions can occur between sectors that are ipitiall
more than two nodes apart. Also, the intensity of linkagegu(t shares) is not symmetric in the data. Our empirical
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the distance measure can also be calculated if there is act giath linking two sectors — in this
case we compute the shortest path via intermediate steps.

Formally, we define a direct-requirements input-outputrmdt where each elemet; rep-
resents the cost share of inputs from sectorthe total intermediate input expenditures of sector
j. If I';; is non-zero, we define the distance fréro j asd;; = F—lj Thus, the more important
inputi is in the production ofj, the closer isl;; to 1 (the minimum possible distance between two
sectors). The cadg; > 0 holds if a direct connection betweeand; exists, i.e., ifj has already
adopted. However, since we study adoption itself, the relevantisigpoint isI';; = 0.

Provided thay indirectly sources inputs from— via its network of suppliers — we define the
distancel;; as the sum of the distances along the shortest path thatatsniaad;. For example,
if j uses inputc, which in turn sources inputs from thend;; = d;; + dx;.* Formally, for two
sectors andj that are not directly connected, the shortest path is giyen b

1
dij = min {F + dk]} (9)

k#i ik
As this equation shows, if there exist more than one suchspiatking j ands, thend;; is the min-
imum distance path, i.e., the directed path between the bdesisuch that the sum of the weights
of its constituent edges is minimized. This shortest paglorehm yields distances between any
two sectors in the economy.

4.2 Data and Main Variables

In the following, we describe our dataset and the derivatiozur main variables. We ugg(years)
to denote the time dimension, in order to avoid confusiomwie variety index above.

Input-Output Data

We calculate the measure of network distaiigeusing the Bureau of Economic Analysis (BEA)
Benchmark Input-Output Use Tables. The BEA provides U Qutiroutput (I-O) data at the 4-digit
SIC level in 5-year periods (benchmark years) between 1862002. FollowingCarvalho(2010
andAcemoglu et al(2012, we view the input-output matrix as a network of input-flowdhere
each sector is a node, and each input-supply relationshipagighted) directed edge linking two
nodes.

measure of distance captures both these features.

35See, for exampledhuja, Magnanti, and Orlig1993 or Jacksor(2008 for a review of distance and shortest path
measures in networks. Note that, in principle, the distaneasure can also be calculated in the opposite direction
— looking for the shortest path by following forward linkagieom sector; to sectori, d;;. Our use ofd;; reflects
the notion of distance implied by our model, which focuseshetwork proximity via linkages to input providers
(upstream), as opposed to customers (downstream).
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For some sectors, the level of aggregation or coverage elsamger time. We account for this
by aggregating sectors, and match the resulting 1-O parteeténnual Survey of Manufacturing
(ASM) 1987 SIC classificatioff. In 1997, the BEA changed the I-O classification from SIC to
NAICS. While the Census Bureau provides a correspondeheentatch is imperfect for many
sectors at the 4-digit level. To make sectors comparablerimethe last SIC-based I-O table in
1992, we employ the following procedure: (i) if several NAGectors match a single SIC sector,
the former are aggregated; (ii) if several SIC sectors wergged into one NAICS sector in 1997,
industry-commodity specific shares from the 1992 I-O tabteused to disaggregate NAICS into
the corresponding SIC componentsThe switch to NAICS also reclassified products into new
sectors, and the correspondence assigns these in parstm@@®IC sectors. This creates events
that look like adoption in 1997 To avoid that this affects our results, we exclude new limsag
formed in 1997 in our baseline analysis. Nevertheless,andbustness analysis we show that our
results hold even if we add the noisy 1997 data.

Overall, our approach to making sectors comparable yielcsh@rent set of 358 sectors for
all I-O benchmark years between 1967 and 2002. For eachrseptd pair, we calculate our
central explanatory variable: network distance in 19@’7, To identify the minimum distance
path betweelj pairs, we use a standard Dijkstra’s shortest path algor(tie® for exampléhuja
et al, 1993.

Input Adoption and Time to Adopt

We define input adoption as an event in a given ygavhere a sectof begins to use an input
We say thatj has adoptedin y if it has not used the input prior to yegy and begins to purchase
a positive amount of the input in Formally, the indicator variable for adoption in yeais thus
defined as:

1, if Ty(y) >0and I';;(y) =0, VY <y

Aily) = ’ ’ (10)

0, otherwise
Note that this definition yields!;;(y) = 0 in the cases of pre-existing links and when an input
connection betweehand; existed in the past but disappeargji(broken links).

We compute two definitions of adoption, a broaétj’;() and a narrow oneAj""), using 5-year

36For a detailed description of this methodology Me@tlander(2014. One example are paper mills (SIC 2621)
and paperboard mills (SIC 2631). Both are reported seggiiat¢he 1-O data before 1987, but aggregated to one
sector thereafter. We treat these as one sector, ‘paperagaabmpard mills’ over the full sample period.

37The original NAICS-SIC correspondence is availablaté://www.census.gov/epcd/www/naicstab.hifhe ex-
tended correspondence that includes industry-commagityiic weights is available upon request from the authors.

38The 2002 I-O data, on the other hand, are directly compaueitietheir 1997 counterpart, so that we can clearly
identify adoption events in this year.
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intervals corresponding to 10 benchmark yearé’;‘ requires that has not been used in— 5,
and is used iny. Therefore, the broad definition potentially also captwa&ses where inputs are
adopted and then dropped ag&irvany of these short-term adoption events are probably noise
but some may also reflect actual attempts to integrate nemtsnf he narrow definition excludes
such events, requiring thabe used for at least 10 years after adoption, i.ey, 15 andy + 10.
This comes at the cost of ‘losing’ adoptions during the last benchmark years in our sample.
We use the broad definition as our main measure and docuneerglibistness of our results using
the narrow measure.

Next, we define the time that it takes a given sector to adopifut:

ﬂj = YAdopt — 1967 ) (11)

wherey 44, is the year in which sectgradopted input; formally, A;;(yaqp:) = 1. Note that this
measure is only defined if i) there was no input link betweand; in 1967 (;;(1967) = 0), and

i) adoption occurred before the end of our sample in 2002ogdther, there are 128,164 pairs

in our dataset. Out of these, 16,684 hayg> 0in 1967, which leaves 111,480 possible adoption
events. During the subsequent four decades until 2002, sered 19,885 adoptions in our broad
measure and 8,765 in the narrow dfie.

Sectoral Characteristics

We use sector-level data from the NBER-CES Manufacturimgistry Database, which provides
total factor productivity (TFP), output price deflators,ges, value of shipments, and capital stock
at the 4-digit SIC level over the period 1958-2005. Thesa da¢ collected from various years
of the Annual Survey of Manufactures (AS¥H)We use these data to derive control variables
for input producing and adopting sectors. We also calcudhssges in TFP for input producing
sectors AT F' P, to test the prediction that sectors with rapid productigtgwth are more likely

to be adopted. Since this variable may be endogenous toiadppie also compute the changes
in TFEP before 1967, starting from the earliest year for wiiata is available, 1958. This variable,
ATF P~ strongly predicts\T F P; after 1967.

3%However, multiple adoption events are excluded becauseefimition yieldsA; ; (y) = 0 if a connection between
1 andj had existed before.

40As discussed above, this excludes 1997 to avoid that adoptients reflect the change from SIC to NAICS in
that year.

41seeBartelsman and Grefl 996 for a documentation.
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5 Sector-Level Evidence

In this section, we test our model’s main prediction thaselmnetwork proximity raises the likeli-
hood of subsequent input adoption. We approach this quesstiovo ways. First, we use a panel
approach to show that the probability of secfaxdopting inputi by in yeary depends on tech-
nological distance,;; aty — 5 (i.e., in the previous I-O benchmark year). Second, we sinaw t
conditionalon adoption occurring, it tends to happen earlier for smatigial network distance
d?j. This analysis includes only sector pairs for which adaptocurred over our sample period.
It thus addresses the potential concern that our resultsbmalyiven by theabsenceof adoption
events for technologically very distant sectors (such &scles and processed food). Instead, our
time-to-adopt results — by exploiting only variation amangual adoptions — suggests that the
network distance téeasiblepotential inputs plays an important role. We also show timaline
with our model, more rapid technological progress in an igpaducing sector goes hand-in-hand
with higher odds of adoption.

5.1 Panel Estimation: Probability of Adoption

Does closer network proximity raise the likelihood of inwloption? In the following, we exam-
ine this question in the context of a panel in 5-year interbatween 1967 and 2002. For each I-O
benchmark yeay, we compute our distance measu#igsy) as described in Sectich2 For all

1-j pairs that were not directly connected in any year priay,teve ask whether the probability of
adopting in yeay depends on our lagged network distance meagufe — 5):

Prob(Ai;(y) = 1) = g (Ind;(y — 5), Xi(y), X;(v)) . (12)

whereX; (X;) are additional controls for the input-producing (adogj}isector, such as changes in
total factor productivity or fixed effects. We use log distaro avoid that outliers affect our results
disproportionately. The dependent variable in each regress the indicator4;;(y) as defined

in (10).*2 We estimate different functional formg-). Given the binary nature of the dependent
variable, our main specification is the probit model. We a&stimate a linear probability model
and hazard models, finding very similar results.

Main Results

We begin by reporting results for our baseline specificatidhe Probit model — in columns 1
and 2 of Tablel. The coefficient on network distance is highly significantl aregative. Thus,
lower initial network distance makes adoption more likéhyorder to interpret the magnitude our

42Note that this definition excludes all (directed) pairs with input flows prior ta;. This also implies that after
input adoption iny, the correspondingj pair is excluded from the sample in all yegfs> y.
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results, we also report standardized coefficients in sqoiaekets for our two main explanatory
variables: network distance and TFP in input producingassctThey show how a one standard
deviation increase in the respective explanatory variatiets the probability of adoption. With a
standardized coefficient of -2.31 percentage points, tteetsdf network distance is economically
significant*® The coefficient remains unchanged in column 2, which cosifai TFP growth over
the previous five years in both the input-producimgand adopting sectorj). The coefficient
on ATFP; is positive and highly significant, but the magnitude is nealtigf smaller — with a
standardized effect of 0.04 percentage points for an aeéragair. The differences in magnitude
suggests that network proximity is the quantitatively mionportant driver of pair-specific input
adoption (at least over the short 5-year horizon that weyardieref* Finally, there is no clear
relationship between TFP growth of adopting sectdx$'¢' P;) and input adoption.

In columns 3 and 4 in Tablé we show that our results also hold in a simple linear proltgbil
model (OLS). According to the estimate in column 3, a onedsdash deviation (std) increase in
d;;(y — 5) is associated with an increase in the probability of adopiip 1.41 percentage points
throughout the following five years. The coefficient remainshanged in column 4, which con-
trols for TFP growth over the previous five years. TFP chamgésput producing and adopting
sectors have the same sign and significance as in the Protiélpamd both remain quantitatively
small.

In columns 5 and 6 we estimate a proportional hazard moded hHzard ratio for distance
implies that asd;;(y — 5) increases by one unit, the rate of adoption in any given pewnl
be 0.594 as high as before, i.e., it will decrease by 40.6%erAdtively, a one std increase in
di;(y — 5) reduces the adoption rate by 56.3%The corresponding standardizedative hazard
coefficient is -4.12 percentage points, implying that overéntire sample period, a one standard
deviation increase in network distance is associated witi 2 pp. lower probability of adoption.
TFP growth in both input producing and adopting sectors teazard ratios above 1, indicating
that TFP growth is associated with faster adoption. The ntadm of both TFP effects remains
small, with standardized coefficients in the range of 0.18suUm, the hazard model confirms the
economically and statistically significant (negative pteinship between initial network distance
and the odds of input adoption, as well as the quantitatis«lgll positive effect of TFP growth in

43The marginal effectimplied by the Probit coefficient in amlu 1 is -0.0145, and the standard deviation of network
distance is 1.59.

4Another possible explanation for the small effect is tha@inproducers may charge strategically low prices in
order to attract customers (which may be particularly truierd) the 5 years leading up to adoption). Because our data
measure changes ravenu€eT FP, they would understate actual (physical) efficiencywginan the presence of falling
prices Foster, Haltiwvanger, and Syvers@®08 Garcia-Marin and Voigtlande2013.

45The coefficient is In(0.594)=-0.521, and thus exp(-0.5249)=0.437 is the hazard ratio for a one std (1.59)
increase in network distance.
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input producing sectors.

Additional controls, robustness, and forward linkage alinste

In Table2 we present alternative specifications for our probit regjoes including (benchmark)
year fixed effects and additional controls. Columns 1-4 ugeébooad measure of input adoption;
columns 5-8 use the narrow one, which requires ngWinks to persist for 15 years in order to be
counted as adoption. In addition to the broad/narrow categiahe measures of network distance
also vary in two additional dimensions: first, columns 2 arekx@ude input links that are formed
between 4-digit sectors within the same 2-digit industrhisTreduces the number of adoption
events by 996° Thus, most input adoptions occacross2-digit sectors. Second, columns 3 and 7
use network distance measured at the beginning of the squepte, in 19677 All regressions

in Table2 now control for thdevelof TFP and employment in adopting) @nd input-producing
(7) sectors. Controlling for sector size (employment) caggan important potential confounding
factor — that larger sectors may be mechanically more caademd more likely to adopt.

We find that neither the additional controls nor the variagion the network distance measure
change our results. Throughout all specifications, netwlstance is strongly negatively associ-
ated with adoption probabilities. For lagged distances, ¢fffiect is very similar in magnitude to the
results in Table — a one std decline ith;;(y — 5) raises the odds of adoptiongrby 1.8 percentage
points. Note that the coefficients ap;(y — 5) are almost unchanged when we exclude linkages
within 2-digit industries (columns 2 and 6). This makes itikely that horizontal similarity of
sectors is driving our results. When using distance in 1@6lu(mns 3 and 7), a one std reduction
in d?j (0.65) raises the probability of adoption by approximateB/percentage points. This some-
what smaller estimate is probably due to the fact tﬂﬁﬁbecomes an increasingly more imprecise
measure towards the end of our sample period. Importah#yfgct that our results remain strong
when we usei?j7 suggests that unobserved trends are unlikely to be a majdowading factors.
When including the time-varying distandg (y — 5) together with the initial distana’ (columns
4 and 8), we find that both are significantly positively asatad with the probability of adoption.

In line with our model, inputs that are produced more effitieghigher? ' P;) are more likely
to be adopted. In our baseline specification (col 1), a on@stdase iril’'F' P, raises the adoption
probability by 0.25 percentage poirffs.On the other hand, the coefficients on efficiency of the

48For the broad (narrow) measure, we count 19,885 (8,765} ipaption events in our sample (excluding 1997),
and this number declines to 18,111 (8,054) when excludiogtah events within 2-digit industries.

4"We thus confirm our previous finding that network proximitytie quantitatively dominant effect. The difference
in magnitudes is even more striking for the narrow definitddradoption: the results in col 4 imply that a one std
decrease inl;;(y — 5) (increase irll'F'P;) raises the odds of adoption by 1.74 (0.08) percentage gpoBttort-run
changesn TFP (AsT F P;) do not have a clear additional impact on adoption — the sparding coefficient signs
are ambiguous. And even for the narrow definition of adoptidrere the coefficients are positive and significant, the
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adopting sector have ambiguous signs and are mostly ifisigmi. Finally, sector size (measured
by employment) is associated with both higher probabilftgaopting and being adopted.

Is the observed relationship between network distance @put iadoption merely driven by
unobserved sectoral characteristics? For example, mgnandic’ sectors may be more central in
the input-output network and also adopt new inputs moreuatly. In Table3 we address this
issue by including fixed effects for input-producing andutpsing sector® Both significance
and magnitude of the coefficient on network distance areamgéd. Remarkably, the standardized
coefficient of initial network distancé?j7 is now larger than the one for the time-varying measure
d;;j(y — 5) (columns 4 and 8). This implies that, once sectoral idiosties are filtered out,
distance in 1967 is strongly associated with input adopgi@n as the network itself evolves over
time® In other words, in line with our argument, titial network structure of the production
network provides strong predictive power for its long-runletion. The evidence on TFP in input
producing sectorsi(F P;) is now mixed, with mostly positive but quantitatively sinadefficients.
Among the controls that are not separately reported in Talg’ P; (for adopting sectors) shows
no clear relationship with the likelihood of input adopticand the relationship between input
adoption and employment is now ambiguous for input prodysectors4), and less robust than
above for adopting sectorg)( Panel B of Tabl& documents very similar results when we restrict
adoption events to purchases above $1 million. This ensaésinor transactions in input-output
tables do not drive our results. Note that in our most restacspecification (using the narrow
definition of adoption) in column 8, only network distamﬁ? is strongly negatively associated
with input adoption, whilei;;(y — 5) is insignificant and positive. This provides further sugpor
for our focus on initial network distance.

In Table4 we include more restrictivpairwise fixed effects for each-j combination. Our
baseline analysis does not include these because we emphbasrole ofnitial network distance
in explaining the subsequent evolution of linkages, afidixed effects effectively filter out the
distance in 1967. However, includirigy effects also offers an advantage: it allows us to restrict
the identifying variation ta@hangesn network distance. We can thus examine whether shortened
network distances due to previous input diffusion raisezldhbsequent likelihood of adoption.
For example, semiconductors were 2 nodes away from "scakkdaances” in 1967, with the

magnitude is small (with a one std increaseNpT' F' P; leading to a rise in the adoption probability by 0.3 p.p.).
“8The incidental parameter problem that is typically presemanel regressions with fixed effects does not affect
our results. As shown bgger, Larch, Staub, and Winkelma(2011), in a setting with all possiblpairs of N
sectors, the probit model with fixed effects can be estimataistently. Intuitively, this holds because adding one
sector to a dataset witN sectors gives X additional observations, but only 2 additional fixed effect
4%To see this, note that in 1972 (the first year in our pamkf(y — 5) = d?j. For each benchmark year thereatfter,
d;;(y — 5) reflects the updated input-output network, due to newly fatiimput connections.
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shortest path being semiconductesselectronic components: computing equipment> scales
and balances. Thus, when computing equipment adopted seduictors in 1972, it also reduced
the distance between semiconductors and "scales and batamhich eventually adopted semi-
conductors directly (see also our discussion in SecjorOur results in Tablé provide strong
evidence that this pattern holds broadly in our data. We fistlang and significant negative rela-
tionship between lagged network distance and input adoptiall specifications, and for both the
broad and the narrow measure of adopfibimportantly, our results are unchanged when we ex-
clude links within the same 2-digit industry (cols 2 and 5hisTmakes it unlikely that unobserved
trends at the more aggregate industry level are resporfsibteir results. The coefficient on TFP
of input-producing sectors becomes ambiguous and mosiignificant when we include fixed
effects. Thus, network distance turns out to be the morestadomong the two main correlates of
input adoption in our analysis.

Finally, in Table5 we use the network distance betweesnd ; following forward linkages.
We define the forward distandg; — analogous to the distance based on backward linkages e as th
shortest path that connegtand: via outputflows (beginning frony). For example, ifj supplies
to k, which in turn supplies ta, thend;; = d ;. +dy;, whered,, is the shortest-distance forward link
between; andk. We find that the coefficient is statistically insignificamdaquantitatively small
in almost all specifications — this holds irrespective of thiee we include only forward distances
(cols 1 and 4), or forward distance and backward distancelt@ameously. The only time when
the coefficient on forward distance is significant (col 33, stgn is positive. Thus, if anything,
shorter forward distance is associated with a (marginalhgaller probability of adoption. For
example, the forward distance from rubber to automobileshat, with tires as the connecting
link. But rubber producers do not adopt cars as an input. dfiedings make it unlikely that our
main measure for network proximity merely captures tecbgicklly similar clusters — if this was
the case, we should find results irrespective of the direafanput (or output) flows within such
clusters. Importantly, our main results are unchanged wieecontrol for forward distance — both
for the broad definition (cols 2 and 3) and for the narrow deéini(cols 5 and 6) of adoption.

5.2 Cross-Sectional Estimation: Time to Adoption

In the following, we analyze how initial network distancelif67 affects the time that it takes until
a sectorj adopts an input, 7;;. This is conditional on adoption being observed by the enolof

50The magnitude of the standardized effect is now somewhallemban above, at about 0.6% for the broad
adoption measure. One reason for this difference may bemiaiow have to use OLS regressions, which generally
yield somewhat lower coefficients than the probit model. e OLS because, in contrast to our earlier analysis,
using probit in a setup withj effects would suffer from the incidental parameter prob{see also footnot48).
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sample period in 2002. We run the following regression:
Tz‘j:5‘d2‘6j7+7'ATFPi+5i+5j+5ij7 (13)

Whered?j7 is network distance in 1967, andT F'P; denotes the (average annual) change in total
factor productivity in the input producing sector betwe@®67 and the year of adoptidh Finally,
9; andd; are input-producing and adopting sector fixed effects aetsgely.

Table 6 reports the results, using OLS regressions. We use fixedtgffer input adopting
sectors ¢;) throughout, capturing the large degree of heterogenertsa sectors. Using also input
producing sector fixed effects reflects a tradeoff: on theharal, some sectors are more central
in the network than others, which we expect to raise thedliltood of being adopted. Using fixed
effectsd; will absorb this variation, which may attenuate our resus the other hand, there are
many other potential sector-specific features that mayatord our results; including; controls
for those that are time-invariant. In practice, our resahs robust to either specification: cols
1-3 do not includej;, while all other specifications in Tab&do so. The coefficient on network
distance is actually stronger when includigwhich is probably due to the substantially improved
fit of the regression (the Rincreases from 0.19 in col 1 to 0.73 in col 4, with all otheriables
being the same). In the following, we discuss the individeallts in detail.

Column 1 shows a strong positive association between limgawork distance and time to
adopt. We also find a strong negative relationship betwedhdrbwth ini and average adoption
time for:. The main difference with our panel results is that TFP ghavaw shows a quantitatively
important relationship with adoption. A one std increasé\ifi /' P, is associated with a 1.8 year
increase in time to adopt. To put this estimate in contex,average time to adopt (conditional
on adoption occurring prior to 2002) in our sample is 16.7rye®ne explanation for the larger
results on TFP growth is that — in contrast to our panel resuolts-year intervals — the cross-
sectional results on time to adopt exploit long-term changeproductivity. Our findings thus
suggests that input adoption reacts more to secular treadgo short-time hikes in the efficiency
of input production.

In col 2 we use TFP growth of input-producing sectors betwieeh958 and 1967, which
is highly correlated with the post-1967 TFP growth. Focgsan historical efficiency growth in
the input-producing sectaraddresses the possibility of reverse causality, i.e.,fiitras in i may
anticipate the adoption afand thus innovate, rather the other way around. The coeficie
AT F P;(1958 — 67) is highly significant but much smaller than in col 1, with arstardized effect

51By using average annual changes, we avoid that later adoigtinechanically associated with higher efficiency
gains, because technology advances more over longer herizo
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of -0.28 years. To obtain a coefficient estimate that can be meadily compared with our baseline
results, and at the same time addresses the possibilitwefse causality, we employ a 2-stage
least square approach. We use pre-1967 TFP growth to prEERtgrowth between 1967 and
the year of adoptiof? The first stage has very strong predictive power, with anafistic above
800. The second stage results are shown in col 3: output femtors that see faster TFP growth
is adopted significantly faster by other sectors, with addadized coefficient of -3.88.

For the remaining columns (4-8), we introduce fixed effetss #or the input-producing sector.
This raises the magnitude of coefficients for both netwosiatice and TFP growth. Our baseline
specification in col 4 implies that a one std decreaséjlmeduces the time to adopt by 2.14 years,
while a one std increase iNT'F P,(1967 — y.40t) reduces time to adopt by 6.7 years. Columns
5 and 6 show that our results are also robust to excluding eddptions that occurred in 1972,
as well as to including 1997 (when the IO tables shifted frd@ ® NAICS). Finally, excluding
adoptions that occurred within 2-digit industries (col iylaising the narrow definition of adoption
(col 8) also yields similar estimates.

6 Firm-Level Evidence

In this section we analyze the relationship between netwistance and input adoption at the
firm level. This is motivated by the fact that network linkaggtimately reflect the flow of inputs

across individual producers. To make progress in this imecwe use some (limited) information

on firm-to-firm linkages.

6.1 Description of firm-level data

We use data from Compustat, which includes information gpkulinkages. In accordance with
Financial Accounting Standards Rule No0.131, publiclyelstirms are required to disclose the
identity of their major customers. A major customer is defias any firm responsible for more
than 10% of the seller's revenues, although firms occadioneport the identity of customers
below that threshold. This firm-level network data can bkdohto the balance sheet information
in Compustat, allowing us to associate information on firmsstomers and suppliers with other
firm-level observable$?

The raw data is reported annually and covers the period fi@#7 10 2008 for a total of 43,506

52Note that this approach is only feasible if we do not use ingotucer fixed effects;. Also, it is important
to emphasize that we do not interpret this as an ‘instrunheatéable’ regression because it cannot address omitted
variable concerns.

53Cohen and FrazzinR008 were the first to explore firm linkages from this data soumexamine return pre-
dictability across linked firmsKelly et al. (2013 also use these data to show that firm level volatility degeordthe
structure of buyer-supplier linkages. Finalpalay et al.(201]) use the same data source to develop a model of the
buyer-supplier networks in the U.S. economy. We are gratetfine latter set of authors for sharing their data with us.
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firm-to-firm links. To reduce noise, we aggregate the infdramaon customer-supplier linkages
over non-overlapping 5-year intervals.We define a directed customer-supplier network at the
firm level as follows: a directed edge from nod® nodej is present if — at any point during the
5-year interval — firmj is reported as a major customer of fistNote that this customer-supplier
network is binary; weights cannot be computed becausenrdgtion on the value of product flows
from i to j is not systematically reported.

Based on this definition of firm-level customer-suppliewwks, we define our measures of
network distance and input adoption in an analogous way dcs#éttor-level input-output data.
First, for each 5-year interval, we define the network distabetween any two firms present in
the dataset as the length of the shortest directed path éetavey two nodes. Since the network is
binary, distance reflects the minimummberof directed edges that lead froito ;. If ¢ supplies
directly toj, distancel;; = 1; if ¢ supplies tat, andk to j, thend,; = 2, etc. Second, we say that
firm 5 has adopted an input being supplied by firify in a 5-year interval, firm reports firm;j as
a major customer, and it did not do so at any previous time irdataset. Our final panel dataset
includes approximately 14.5 million firm pairs with distant; > 1, i.e., firms that are not directly
linked. About 1,200 firm pairs have distanég = 2; 200 haved;; = 3, and a few have distances
4 or 5. For the vast majority of firm pairs, no path exists basedhe binary network (so that
d;; = 00). The lack of network connections is in part due to the rete nature of the data with
the 10% reporting threshold. We thus interpret our resslegloratory rather than conclusive.

As mentioned above, we supplement these data with otherldival-observables available
from Compustat. These include firm employees and sales. Asxy for firm-level productivity
growth, we first compute labor productivity as sales per wodnd derive its growth rate over each
5-year window. In order to control for geographical proxyrbetween two firms, we compute the
distance between their headquarters. To proxy for teclgibsimilarity, we use the 4-digit SIC
code classifying the main sector of activity of each firm.

6.2 Firm-level results

For all i-j pairs that were not directly connected in any 5-year perigor o y, we run panel
regressions of the form:

Prob (Ai(y) = 1) = g (Ij(y — 5), Xi(y), X;(v)) . (14)

whereA;;(y) is an indicator that equals one if firfnadopted input in the 5-year period. Our
main explanatory variable is an indicator for whether firnaédj were indirectly connected, via

54The 5-year intervals are 1977-81, 1982-86,...,2002-06.
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one other node, in the previous period: the dumipyy — 5) equals one if the binary directed
distance betweenand; equalled 2. The coefficient on this variable reflects by hoveimihne
probability of adoption in any given interval increasesljf = 2, as compared td;; > 2.>°
X, (X;) are additional controls for the input-producing (adogjifirm, such as the number of
employees, output per worker, and the (lagged) growth tiei#e also include fixed effects for
each time period, and for adopting and producing firms. Dukddarge number of firm pairs, the
probit and the hazard model are computationally unfeagiblee presence of firm fixed effects.
We thus use the linear probability model for the functiomaii of ¢(-) in those specifications.

Table 7 presents our firm-level results. In column 1 we use a simpl& @dgression with
time-period dummies, including onli; (y — 5) and the geographic distance between firms. Both
are highly significant and have the expected sign — previndgect connections (i.e., network
proximity) increase the probability of new link formatiomhile geographic distance reduces this
probability. To interpret and compare the magnitude of @imgates, we provide standardized
coefficients in square brackets. For our main explanatoriabi, these reflect the change in
adoption probability when an indirect link existefl;(y — 5) = 1), as compared to when it did
not exist (;;(y — 5) = 0). For all continuous variables, the standardized coefftsieepresent
the change in adoption probability due to a one standardatiexiincrease in the explanatory
variable. The standardized coefficient for network proxyis economically sizeable, with 2.85%.
In contrast, geographical distance has a minuscule effedticing log distance by one standard
deviation increases the probability pfadopting: by merely 0.007%. Both the magnitude and
significance of these effects are confirmed by the probit miadmlumn 2.

In column 3 we introduce fixed effects for input-producinglgpotential) adopting firms,
and j. Our results remain unchanged. The same is true when we adwisofor firm size,
productivity, and productivity growth (column 4). The cheient for productivity growth in input-
producing firms is positive and significant. This confirms #eetor-level result that efficiency
gains in input production are associated with a higherilikeld of adoption (however, the effect
is quantitatively small). In column 5 we exclude al j firm pairs that belong to the same 2-
digit SIC industry. The coefficient ofy;(y — 5) falls only slightly and remains highly significant.
This implies that technological proximity alone is probahbbt the main driver of our results —
initial network proximity raises the likelihood of adopti@lso for inputs from different industries.
Finally, we restrict the sample to input-producing firinlBom manufacturing (col 6), and from
the service sector (col 7). We find very similar results inrhbgamples, suggesting that the role of
network proximity is not limited to physical inputs.

55As explained above, the vast majority of the remaining firingoaave an infinite binary distance. All results are
practically identical when we exclude the few cases wjth= 3,4, or 5.
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7 Conclusion and Broader Implications

Input-output linkages have important implications for mzonomic outcomes. While typically
observed at the sectoral level, these linkages reflect thedigroducts between individual pro-
ducers, and thus ultimately the underlying technology atgtoduct level. The evolution of the
input-output structure is therefore at the heart of tecbgiohl progress. We studied the mecha-
nism of input link formation both theoretically and empaily. Guided by a stylized model of
directed search in a network, we uncovered a strong and eawgirical regularity: sectors (and
firms) that are closer in the input-output network are sigaiitly more likely to form new input
linkages. In other words, the existing production netwddyp an important role for the diffusion
of inputs and thus for the evolution of the input-output natkitself.

Our theoretical and empirical results have several impbmaplications. First, from a network
perspective, General Purpose Technologies (GPTs) comdsjp central nodes, i.e., extremely
prominent inputs. Our findings shed new light on the rise afegal purpose inputs: inputs that
are initially closer to many potential adopters are morel{iko become widely adopted. The left
panel of Figureb illustrates this finding. It plots the (log) number of sestthat adopted input
1 after 1967 against the initial average network distance(eée note to figure for details). The
latter is low whenever is indirectly linked to many, relatively large, manufacturing sectarthus
reflects the "network growth potential” of inpitin the regression underlying the figure, network
growth potential accounts for more than 25% of cross-seatigariation in input diffusion (based
on the R?).%® In sum, the figure shows that network proximity is a cruciaedminant of input
diffusion, and is thus a potentially important factor in tise of GPTs.

Second, our findings can help to explain sector-level grguétierns. Intuitively, if initial
network proximity is associated with extensive margin gtog.e., input diffusion), variation in
the former should also predict differential growth acrasstars. The right panel of Figueshows
that this is indeed the case. It plots 1967-2002 employnrentty for each input-producing sector
against our measure of initial "network growth potentidlhis relationship is naturally more noisy
than the result on input diffusion, because growth is affédty many drivers other than adoption
by other sectors. Nevertheless, the result is quantitgtiveportant: a one-standard deviation
increase in initial network distance is associated withighlly significant) decline in sector-level
growth by 0.2 standard deviations. This suggests that owvank view of input diffusion may
have implications for structural change and unbalancedtiprdseeHerrendorf, Rogerson, and
Valentinyi, 2014 and references therein).

56\We note in passing that this dwarfs the explanatory powendfput producer’s TFP growth, which accounts for
merely 1% (despite the fact that it is statistically highlyrsficant).
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Third, our results give rise to a possible new channel by Wwiniésallocation may affect ag-
gregate productivity. Input-output linkages can amplificro-level distortions to givensectori,
leading tostaticlosses in aggregate efficiencyohes2013. In our setting, distortions can also
give rise todynamicaggregate productivity losses: distorting sectors thatiuss an input can
affect:'s subsequent diffusion. To see this, consider our earkample of semiconductors. A
crucial gateway that connected these to other sectors iaciveomy was the "Electronic Compo-
nents" sector. Consequently, (hypothetical) distorttortbe latter could have stunted the diffusion
of semiconductors. Thus, our findings suggest the podgyiliilat distortions to "network bottle-
necks" can have an impact on aggregate productivity growth.

These broader implications underline the need to shed tighthe mechanisms behind our
findings. We have discussed technological proximity, ct@ggration, and information diffusion
along input linkages as possible explanations for the gtrefationship between network prox-
imity and input diffusion. Our findings suggest thadrtical distance along supply chains is a
promising starting point to understand patterns of inpuipgidn and diffusion. In this paper, we
have taken the necessary first step of documenting this matedrn in the data; we leave the
systematic assessment of the underlying mechanisms foefrtgsearch.
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Figure 1: Input adoption and initial network distance

Notes The figure shows that sector pairs that are closer in the ibpBt-output network in 1967 are more likely to
see direct adoption by 2002. The x-axis shows the binarguigt between inputand a potential adopting sectpr
in 1967. Sectors that are already directly connected in 188Tance 1) are excluded from the analysis. The y-axis

shows the share of all sector pairs for whjcas adopted by 2002. The whiskers correspond to the 95% confidence
intervals.
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Figure 2: Input-output network and semi-conductor linksaigel967

Notes The figure shows the U.S. input-output network in 1967. Tlaglbdot represents the semiconductors sector.

Red dots are sectors using semiconductors in 1967. Blaclanre flows of semiconductors to using sectors, and red
arrows reflect input flows from sectors using semiconduétoi®67 to other sectors.
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Figure 4: Adoption of semi-conductors in 1977
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Figure 6: Initial network distance, input diffusion, and @eyment growth

Notes The left panel shows the relationship between an inpubssdt) initial average network distance
in 1967 and its subsequent adoption by other seci)rsver the period 1967 and 2002. The right panel
shows the relationship between initial average distandesahsequent employment growth of input sector
i. The x-axes of both panels display the average networkristaf an inpug to all other sectors;jj in
1967. This measure is computed as follows: first, we calewat baseline network distance measure
(weighted and directed) for ea¢h- j pair that is not yet directly connected in 1967. For eachtiripu
we then compute the weighted average over all segtonghere weights are given by the total value of
sectorj’s output, relative to aggregate manufacturing output i6719The y-axis of the left panel gives
the (log of) total number of sectofswhich adopted as an input in subsequent years. We use our most
conservative notion of adoption, by requiring thaupplies toj no less than a $1million for at least 15
years after the initial adoption date. The y-axis in the rjggmel gives the 1967-2002 employment growth
for each sector. Regressions in both panels control fo)) {fotial employment in sectotr and for its TFP
growth between 1967 and 2002.
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TABLES

Table 1: Panel on input adoption: Baseline results

Dep. Var.: Dummy for adoption of inputby sector; in yeary

(1) ) 3) (4) (5) (6)

Estimation Probit Probit OoLS OoLS Hazard Hazard

Distanced;;(y —5) -0.1906** -0.1904* -0.0089** -0.0089* 0.5940* 0.5946"*
(0.0039)  (0.0039) (0.0002) (0.0002) (0.0055) (0.0055)

[-2.31%] [-2.31%] [-1.41%)] [-1.41%]  [4.12%]  [-4.18%)]

AsTFP, 0.0623 0.0119** 1.405**
(0.0372) (0.0024) (0.1038)
[0.04%] [0.09%] [0.13%]

AsTFP -0.0376 -0.0020 1.3463
(0.1420) (0.0107) (0.4095)

Observations 563,173 563,173 563,173 563,173 577,498 4837,

Notes The dependent variable is a dummy that takes on value ltbisgadopted input in a given year between
1972 and 2002. Adoption is defined in Sect2, we use the broad definition throughout in this table. Théetab
excludes adoptions occurring in 1997 because of the tiranditom SIC to NAICS classification in that year. The
main explanatory variable is network distance of inpfibm sector; in the previous I-O benchmark year (i.e., with a
5-year lag), as described in Sectibri. AT F'P denotes the change in total factor productivity over theipres five
years ini andj. Standard errors in parentheses, clustered at the adagatatgr () level. * p<0.1, ** p<0.05, ***
p<0.01. Values irfsquare bracketshre standardized coefficients, reflecting the change intamioprobability (over

a 5-year interval) due to a one standard deviation increatfeiexplanatory variable.
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Table 2: Additional panel results on input adoption

Dep. Var.: Dummy for adoption of inputby sectorj in yeary

1) 2 3 4) ) (6) ) (8)
Links excluded 2-digit 2-digit
Broad definition of adoption Narrow definition of adoption
Distanced;;(y —5)  -0.162** -0.158** -0.104** | -0.280** -0.278** -0.134**
(0.005)  (0.005) (0.005)| (0.008)  (0.009) (0.009)
[-1.83%]  [-1.73%] [-1.07%] | [-1.74%] [-1.68%)] [-0.75%]
Distance in 196747 -0.219** -0.100** -0.397** -0.253*
(0.010) (0.011) (0.012) (0.015)
[-0.94%]  [-0.44%] [0.93%]  [-0.31%]
TFP, -0.192* -0.152** -0.09%* -0.113* | 1.072* 1.196* 1.287* 1.301**
(0.040)  (0.043) (0.043) (0.044) (0.068) (0.065) (0.066)  (0.072)
[0.27%] [0.27%)] [0.28%]  [-0.10%] | [0.08%)] [0.06%)] [0.02%]  [-0.13%)]
TFP; -0.019 -0.036 0.037 0.036| 0.061 0.075 0.080 0.081
(0.115) (0.116) (0.130) (0.129) (0.097) (0.102) (0.108)  (0.109)
NsTFP, 0.25* 0.26r* 0.280* 0.276* | 0.142* 0.122**  0.046 0.034
(0.015) (0.015) (0.015) (0.015) (0.024) (0.024) (0.024) (0.025)
ANsTFP; -0.031 -0.021 -0.009 -0.010f 0.013 0.018 0.032 0.033
(0.048)  (0.051) (0.052) (0.052) (0.041) (0.044) (0.042) (0.042)
In(emp); 0.126* 0.237* 0.10** 0.102* | 0.176* 0.192* 0.134** 0.135*
(0.003)  (0.003) (0.004) (0.004) (0.005) (0.005) (0.004) (0.004)
In(emp); 0.089* 0.094** 0.096** 0.096* | 0.159** 0.164* 0.174* 0.174*
(0.007)  (0.007) (0.008) (0.008) (0.010) (0.010) (0.011) (0.011)
Year FE v v v v v v v v
Observations 519,041 611,669 430,836 307,27830,573 380,573 309,499 291,397

Notes All regressions are estimated by Probit. The dependeidhlaris a dummy that takes on value 1 if sector
adopts input in a given year between 1972 and 2002. Bottandj are observed at the 4-digit SIC level, and the
panel extends over the period 1967-2002 in 5-year interalsption is defined in Sectiof.2, columns 1-3 use the
broad measure, and columns 4-6 use the narrow measure.tiEnedguires new-; links to remain intact for at least
15 years in order to qualify as adoption. The table excludieptions occurring in 1997 because of the transition
from SIC to NAICS classification in that year. The main exjlemmy variable is network distance of inpufrom
sectorj in the previous I-O benchmark year (i.e., with a 5-year lag)described in Sectichl Columns 3 and 6
use the distance measured in 196Y;7T F P denotes the change in total factor productivity in the 5 gqaior to
each benchmark year), andT F P is the level in yeay. The number of employees in the sector is denotedrhy.
Standard errors in parentheses, clustered at the adoptitay §) level. * p<0.1, ** p<0.05, *** p<0.01. Values in
[square bracketshre standardized coefficients, reflecting the change intadoprobability (over a 5-year interval)
due to a one standard deviation increase in the explanatoigble.

t Columns 2 and 5 exclude alj pairs that belong to the same 2-digit industry.
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Table 3: Robustness checks — panel estimation

Dep. Var.: Dummy for adoption of inputby sectorj; Probit estimation

1 @) ®) (4) () (6) Q) )
Years excluded 1997 none 1997 1997 1997 none 1997 1997
Links excluded 2-digit 2-digit
Broad definition of adoption Narrow definition of adoption

PANEL A: All input relationships

Distanced;;(y —5)  -0.208" -0.145* -0.199* -0.062** -0.362** -0.362** -0.346** -0.163**
(0.012) (0.008) (0.012) (0.014) (0.024) (0.024) (0.026) .0PQ)

[1.52%]  [-1.51%]  [-1.52%] [-0.36%] [-1.19%] [-1.19%] [-125%] [-0.47%]
Distance in 19674¢7 -0.600** -0.669*
(0.035) (0.039)
[-1.64%] [-1.07%)]
TFP, 0.165* 0.195* 0.190*  -0.075 0.085 0.085 0.037 0.126
(0.034) (0.029) (0.037) (0.060) (0.065) (0.065) (0.070) .07Q®)
[0.14%] [0.21%] [0.16%]  [-0.04%]  [0.04%] [0.04%] [0.02%)] [0.05%]
Control Variables v v v v v v v v
Using Sector FE v v v v v v v v
Producing Sector FE v v v v v v v v
Year FE v v v v v v v v
Observations 519,041 611,669 430,836 307,278 380,573 5380, 309,499 291,397

PANEL B: Exclude links that reflect less than $1million input purchase

Distanced;;(y —5)  -0.173* -0.138** -0.161** -0.063** -0.231** -0.231** -0.210"  0.022
(0.014) (0.012) (0.014) (0.014) (0.027) (0.027) (0.029) .02Q)

[(0.92%] [-0.88%] [-0.86%] [-0.30%] [-0.62%] [-0.62%] [-0.57%]  [0.05%)]
Distance in 196747/ -0.629* -0.829**
(0.031) (0.038)
[-1.67%] [-1.36%)]
TFP, 0.084* 0.199**  0.088 0.062 0.089 0.089 0.047 0.055
(0.041) (0.038) (0.046) (0.058) (0.062) (0.062) (0.068) .060)
[0.05%] [0.14%)] [0.05%)] [0.03%] [0.03%] [0.03%] [0.02%] [0.02%)]
Controls as in PanelA vV v v v v v v v
Observations 577,122 671,697 482,850 375,841 398,169 1898, 323,867 324,315

Notes The dependent variable is a dummy that takes on value 1 tibis¢@dopts input in a given yean (in 5-
year intervals between 1967 and 2002). Adoption is defin€ikition4.2; columns 1-4 use the broad measure, and
columns 5-8 use the narrow measure. The latter requiresifjepairs to be present for at least 15 years in order
to qualify as adoption. Columns 2 and 6 include all benchnyades, including 1997, when the 1-O classification
switched from SIC to NAICS. For description explanatoryigates and additional detail see the note to Table
Standard errors in parentheses, clustered at the adoptitay §) level. * p<0.1, ** p<0.05, *** p<0.01. Values in
[square bracketshre standardized coefficients, reflecting the change intaoprobability (over a 5-year interval)
due to a one standard deviation increase in the explanatoigble.

 Columns 4 and 8 exclude alj pairs that belong to the same 2-digit industry.

§ Control Variables include TFP in the input-adopting indusand (log) employment in both adopting and input-
producing industries.
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Table 4: Panel regressions with pairwise fixed effects

Dep. Var.: Dummy for adoption of inputby sector; in yeary

1) ) 3) (4) (5) (6)
Remarks 2-digit 1million* 2-digit 1million*
Broad definition of adoption Narrow definition of adoption

Distanced;;(y —5) -0.0040** -0.0037** -0.0041** -0.0018"* -0.0017** -0.0016"*
(0.0002)  (0.0002) (0.0002)  (0.0001)  (0.0001)  (0.0001)
[-0.64%)] [-0.59%] [-0.57%)] [-0.28%] [-0.28%)] [-0.22%)]

TFP, 0.0034 0.0029 -0.0107* 0.0002 -0.0003 -0.0040
(0.0019)  (0.0019) (0.0015) (0.0008)  (0.0007)  (0.0006)
[0.05%)] [0.04%)] [-0.16%] [0.00%)] [-0.00%] [-0.06%]

Control$ v v v v v v

Year FE v v v v v v

Pairwisei-j FE v v v v v v

Observations 556,936 523,627 568,771 555,529 522,718 6666,

Notes All regressions are estimated by OLS. The dependent variata dummy that takes on value 1 if secjor
adopts input in a given yean between 1972 and 2002. Botland; are observed at the 4-digit SIC level, and the
panel extends over the period 1967-2002 in 5-year interdalsption is defined in Sectiof.2; columns 1-3 use the
broad measure, and columns 4-6 use the narrow measure.tiEnedguires new-; links to remain intact for at least
15 years in order to qualify as adoption. The table excludeptions occurring in 1997 because of the transition from
SIC to NAICS classification in that year. The main explanat@riable is network distance of inpifrom sectorj in

the previous I-O benchmark year (i.e., with a 5-year lagjlescribed in SectioA.1. T F'P; is the level of TFP in the
input-producing industry in year. Standard errors in parentheses, clustered at the adagtitor () level. * p<0.1,

** p <0.05, *** p<0.01. Values iffsquare bracketshre standardized coefficients, reflecting the change intaatop
probability (over a 5-year interval) due to a one standakdadi®n increase in the explanatory variable.

T Columns 2 and 5 exclude al;j pairs that belong to the same 2-digit industry.

 Columns 3 and 6 exclude links that reflect less than $1millpat purchase.

§ Controls include TFP in the input-adopting industry, andgyment in both adopting and input-producing indus-
tries.
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Table 5: Panel results: Forward linkage distance

Dep. Var.: Dummy for adoption of inputby sectorj in yeary

1) (2) 3) 4) ®) (6)
Links excluded 2-digit 2-digit
Broad definition of adoption Narrow definition of adoption
Forward Distancé,;;(y —5) 0.010 0.010 0.027 -0.014 -0.015 0.015
(0.012) (0.012) (0.012) (0.013) (0.013) (0.012)
[0.09%]  [0.08%] [0.25%] [-0.08%] [-0.07%] [0.08]

Distanced;;(y — 5) -0.213** -0.206** -0.361** -0.350**
(0.012) (0.013) (0.024) (0.026)
[(1.56%]  [-1.56%)] [-1.22%]  [-1.29%]

Controls v v v v v v

Observations 488,947 488,947 406,865 358,171 358,171 0292,

Notes The dependent variable is a dummy that takes on value ltbdisg@adopts input in a given year, between
1972 and 2002. All regressions are estimated by Probit. rGlsnare all those used in TabBe Panel A (including

all fixed effects). "Forward distaneg;(y — 5)" is network distance (with a 5-year lag), using forward fgles from
sectoryj to sectori, i.e., via other sectors thgtsupplies to. For description of the remaining explanat@mgables
and additional detail see the note to TaBle&Standard errors in parentheses, clustered at the adattgr ) level.
*p<0.1, ** p<0.05, ** p<0.01. Values irfsquare bracketshre standardized coefficients, reflecting the change in
adoption probability (over a 5-year interval) due to a ormmdard deviation increase in the explanatory variable.
 Columns 3 and 6 exclude alj pairs that belong to the same 2-digit industry.

46



Table 6: Time to adoption

Dep. Var.: Time to adoption of inputby sectorj after 1967
@ &) 3 4 (5 (6) Q) ®

Years excluded 1997 1997 1997 1997 1972,97 none 1997 1997

Other remarks 2SLS 2-digit! narrow

Distanced;; in 1967 0.937 0.968** 0.976** 3.112* 1.778* 3.104* 3.307* 1.228*
(0.196) (0.212) (0.182) (0.341) (0.360) (0.311) (0.354) .290)

[0.64] [0.66] [0.67] [2.14] [1.15] [2.04] [2.28] [0.72]
ATFP;(1967 — Ygaopt) -96.925™* -211.401 -364.787* -331.477* -281.502** -376.759* -146.929**
(3.919) (24.137) (13.186) (26.434) (11.861) (14.029) L 942)]
[-1.78] [-3.88] [-6.70] [-3.95] [-4.37] [-6.97] [-3.06]
ATFP;(1958 — 67) -18.341*
(6.189)
[-0.28]
Using Sector FE v v v v v v v v
Producing Sector FE v v v v v
R? 0.19 0.17 0.16 0.73 0.72 0.67 0.73 0.66
Observations 14,849 15,072 14,849 14,849 8,604 24,312 583,8 6,421

Notes The dependent variable is the log of years to adoption dfitinfoy sector; after 1967, conditional on this
adoption having happened between 1972 and 2002; see ey(Et)o For a description of network distandg; see
Sectiond.L ATFP;(1967 — yqq0pt) IS the average annual change in TFP in the input producirigrseetween 1967
and the year of adoption by Standard errors in parentheses, clustered at the adaggtator ) level. * p<0.1, **
p<0.05, ** p<0.01. Values ifjsquare bracketshre standardized coefficients, reflecting the change ingpemtdent
variable due to a one standard deviation increase in theeafiry variable.

§ Two stage least square regression uses historical TFP lyiovinput-producing sectors\T' F P; 1958-67) as in
instrument for TFP growth after 196 A" F' P; since '67). The first stage has an F-statistic of 807.

T Column 5 excludes aikj pairs that belong to the same 2-digit industry.

t The narrow definition of adoption requires nevy pairs to be present for at least 15 years in order to qualify as
adoption.
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Table 7: Firm level panel results

Dep. Var.: Dummy for firmj adopting inputs from firm in a 5-year time intervay

(1) (2) (3) (4) (5) (6) (7)
oLs Probit oLS oLs oLs oLSs oLs
Sample 2-digit! Manufacturing Services
Lij(y = 5) 0.02854* 1.61359** 0.02161** 0.02140* 0.01834* 0.01966* 0.02367
(0.00745)  (0.11780) (0.00779)  (0.00888)  (0.00806) (00209 (0.01348)
[2.85%)] [2.69%] [2.16%] [2.14%)] [1.83%] [1.97%] [2.37%)]
In(geodistance) -0.00006 -0.05809** -0.00007** -0.00007** -0.00006** -0.00006** -0.00007**
(0.00001) (0.00604) (0.00001) (0.00001) (0.00001) (00290 (0.00001)
[-0.007%] [-0.005%] [-0.007%] [-0.007%] [-0.006%] [-0.06%)] [-0.007%]
AsIn(Y/L); 0.00003*  0.00003*  0.00003* 0.00003
(0.00001) (0.00001) (0.00001) (0.00002)
Controls v v v v
Using Firm FE v v v v v
Producing Firm FE v v v v v
Year FE v v v v v v v
Observations 14,634,939 14,634,939 14,634,939 8,895,4&1461,685 4,906,536 3,381,959

Notes The dependent variable is a dummy that takes on value 1 if fiedopts input in a given 5-year intervaj
between 1977 and 2008;,;(y — 5) is an indicator that equals one if firmsind; were indirectly linked (had a binary
distance of 2) in the previous five-year interval. The vdaaeodistance is the geographical distance betweed;.

A5 1n(Y/L); denotes the change in output per worker in the input-pradufaim (i) over the previous (lagged) 5-year
interval. Controls include the change in output per workethie input-using firm over the previous 5 year interval
(A5 1In(Y/L);), as well as output per worker and In(employment)dothinput-producing and input-using firms. For
a description of the firm-level dataset see Sec@idn Standard errors in parentheses, clustered at the addijsting
(y) level. * p<0.1, ** p<0.05, ** p<0.01. Values irjsquare bracketshre standardized coefficients. For the dummy
I;;(y —5) (all other explanatory variables), these reflect the chamgdoption probability due to an increase from 0
to 1 (a one standard deviation increase in the explanatoighlea).

T Column 5 excludes afkj pairs that belong to the same 2-digit SIC industry.
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A Proofs and Additional Detail on the Model

Proof of Proposition 2

Proof. We first derive the probability that the next variety to beseléied into any sectay; sources
as an input — indirectly, through its essential inputs — a&giindividual variety from sectos;.
Recall from Definitionl that ., is the baseline vector that defines sectpr For example, for
a car these may be wheels, an engine, and a body. We will @fen tideal variety for sector
s;" as a variety that uses exactly the essential inpujs jn Next, leti, (< x) be the number of
positive entries in vectog,, which in turn use variety as an input. Additionally, letk,, be the
expected overlap between the next variety to be classiftecséctors; and the vector,,, i.e., the
expected number of varieties thatas in common with the "ideal variety" for sectgr Then the
probability that the new variety in sectey sources fromi via its parents is:

y out
PN <k5j;% + (mK - ksj') i t(t)> mﬂ:;fn (A1)
wherem = pxmy + pymy is the expected indegree for each variety (i.e., the exgeuienber
of inputs). Since drawsm essential inputs, there are ovenallm inputs in its network neigh-
borhood. Given that drawsm  varieties from this network, the ter% gives the probability
that it sources any given input via its network of essentiplits. Next, the term in parentheses in
(A.1) gives the probability that a given essential input soufoes varietyi. This breaks down
into two parts. The first term in the parentheses accountth&opossibility that may be in the
network neighborhood of those essential inputs that dlagsnto sectors; (i.e., inputs in the set
ts,;). The term gives the probability thatvill source from:, conditional ort being classified into
sectors; and sharing, in expectatioh,, essential inputs with the ideal variety defining sector

In other wordsj, (< x) is the number of links that lead from the essential varietifining sectoy to variety:.
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The term;% gives the probability of drawing as a network input via these ideal varieties. In
expectation, the new variety will havg, such draws. The second term accounts for the fact that
may also adopt inputvia essential inputs that are not in the ggt, i.e., are not used to classify
as belonging ta,. This term gives the probability of drawinigas an input via the network, given
thatmg — k,, essential inputs are expected to be drawn uniformly at naniiom the population.
Finally, py is the probability that input is actually adopted by the new variety given that it has
been discovered via its essential parents.

Now, according to our definition, each sector is a partititithe set of existent varieties. Hence,
the probability that sectoy; starts sourcing from sectey at¢, conditional on not having done so
till £ — 1 is the probability that the new varietyselects as a network input any given variety in
sectors;. This is obtained by summing the above expression over ait@s classified in sector

S;-

i, domt(t
S (b2 4 (= ) L)
rm t

mgm
i'€s; K

i, Ao (t)\ my
= PN <k5j £ .I'?’:l + (mK - ij) Z f ) MM

i'Es;

Finally, note that;,, = & for all sectorsj, i.e., the expected overlap of the new varietyith any
sector’s ‘ideal’ list is the same across all sectors. Thimisediate from the joint assumption that
both ideal varieties defining a sector and the set of essgatiants drawn by the new variety are
selected uniformly at random from the settef 1 existing varieties. Hence, the expression above
simplifies to:

k Z i;j + ( /{2) Z d;‘)’Ut(w mn
—_ m JR—
- i'Es; rm " i'es; t M

For any two sectorsj and j', this expression will only differ in the termy_,, ;—;1 Hence if
Dves, U, > Dpes, Us,» thenj is more likely to adopt a variety in sectothan;’. Now >, i, =
M;jysi = Ns,,s;)- THUS, ifs; is closer tas; than tos;, at timet — 1, thens; is more likely to adopt

from s; at timet, as claimed in the proposition. 0J

Proof of Proposition 3

Proof. First, from the proof of PropositioRrecall that, ex-ante, the probability of any new variety
t being classified into a given sector is the same across seatut it is given byt /.J. This follows
immediately from the joint assumption that both the idealetges defining sectors and the set of
essential inputs are drawn uniformly at random from the $elisting varieties. Therefore, the
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number of varieties classified into sectgrat timet, K (¢), is given by a Binomial distribution,
B(t,%).

Second, under the assumption of price symmetry, the sé¢ieeihted) outdegree,?*(t) at
time ¢, is proportional to the total number of varieties to which etses; supplies inputs at time
t, where the constant of proportionality is given by the priceThus

K, (t)
w(t) =Y ¢d(t)
k=1

whereK (t) is the (random) number of varieties classified into segtat timet.
Third, we are given that the variety-level outdegré®!(¢), is power law distributed. Notice
further that, sincédy, () is distributed as a Binomial distribution, we have that:

Prol( K, (t) > ) = o(Prob@?"!(t) > z)
that is,lim,_, % = 0. This is immediate from the fact that power law distributi@ne
heavy-tailed while binomials are thin tailed.

Given the above observations, we can apply known resultgdety the tail behavior of ran-
dom sums of power-law distributed variables. From Lemm&B) T Jessen and Mikosq2006
p.8) we conclude that, as— oo

Pro(w?" (t) > x) ~ ¢E,(K,,(t))Prob@* (t) > z) = %Prob@lfut(t) > 1)

That is, we have shown that?"'(¢), the sectoral weighted outdegree of sectgrinherits
the outdegree tail behavior of the varieties classified int&ince all sectors are simply random
collections of varieties with the same outdegree distidpytthis result holds true for every sector.

Therefore, we have shown that if the variety-level outdegtistribution at time is power law, so
is the distribution of sectoral weighted outdegrees. O

°The weighted outdegree refers to values of input flows, wiilevariety-level predictions are based on binary
(unweighted) input links. Because of price symmetry, padariety; spends the same amount for each input variety
i that it uses (see the discussion at the end of Se@ti®n Thus, the overalWalueof input varieties sold (outdegree)
or used (indegree) by a sector is proportional to the unthgrlyumberof input varieties.
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Figure A.1: Optimal choice of network input adoption

Notes The figure illustrates the optimal choice of input adoptidhe x-axis shows the number of adopted network
inputs,m . These are ranked by their customization cost as explam8ddtion3.2 The y-axis shows the term from
equation 8) that is proportional to marginal production cost, and #rainput adopter seeks to minimize. For small
mpy, the input variety effect a IRomer(1990 dominates, so that production costs are decreasing if mptes are
adopted. For highefiy, customization costs for each additional adopted inputs® high, outweighing the input
variety effect. Thus, production cost become increasin@ jn. The optimal number of adopted network inputs is
denoted byn .
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