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Abstract

Panel data can be arranged into a matrix in two ways, called ‘long’ and ‘wide’ formats (LF

and WF). The two formats suggest two alternative model approaches for analyzing panel

data: (i) univariate regression with varying intercept; and (ii) multivariate regression with

latent variables (a particular case of structural equation model, SEM). The present paper

compares the two approaches showing in which circumstances they yield equivalent—in

some cases, even numerically equal—results. We show that the univariate approach gives

results equivalent to the multivariate approach when restrictions of time invariance (in

the paper, the TI assumption) are imposed on the parameters of the multivariate model.

It is shown that the restrictions implicit in the univariate approach can be assessed by

chi-square difference testing of two nested multivariate models. In addition, common

tests encountered in the econometric analysis of panel data, such as the Hausman test, are

shown to have an equivalent representation as chi-square difference tests. Commonalities

and differences between the univariate and multivariate approaches are illustrated using

an empirical panel data set of firms’ profitability as well as a simulated panel data.
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1 Introduction

Panel data are widely used in social and behavioral sciences, economics and other dis-

ciplines. Such data arises when a set of variables are observed on a sample of units

(people, firms, households, geographical areas, etc.) at several time points. In an exam-

ple from organizational research discussed in Section 3, a sample of firms is observed

and their profitability and other accounting measures (expenditure on research and de-

velopment (R&D), investment on advertising, etc.) are recorded for ten consecutive years.

Researchers use this type of data to investigate the relationship of a dependent variable Y

(e.g. profitability) on a set of covariates (firm’s size, expenditure on R&D, etc.). We dis-

tinguish two types of covariates, those that are defined for each year within the firm and

thus are time-varying (e.g., investment in R&D), and those that are defined for the firm

and are time-invariant (e.g., the year the firm was founded). We denote these covariates

as X and Z respectively.

A panel data set is a three-dimensional array with units (e.g., firms), variables (char-

acteristics of the firm) and time (e.g., ten years) as its dimensions. It can be represented

as periodic two-dimensional arrays (of firms × variables) which can be stacked vertically

(long format, LF) or horizontally (wide format, WF) to form an enlarged two-dimensional

array collecting the data for each period (year, quarter, month, etc.). In LF the same in-

dividual is repeated in several rows (rows can be reordered to arrange the data for an

individual in consecutive records), while in WF rows correspond to distinct individuals

and variables are repeated horizontally. These two ways of arranging the data are il-

lustrated in Tables 1 and 2 and discussed later in this paper. Note that in LF, the unit

of analysis is the observation of an individual at a point in time, while in the WF the

sequence of observations of an individual at the various time points is regarded as an

indivisible unit of analysis.

The LF and WF are associated with two apparently distinct modeling approaches. The

LF calls for the univariate regression of Y on covariates X and Z with an intercept that

varies with the individuals. The WF calls for multivariate regression models with latent

variables (factor analysis or general forms of SEM) that allow structuring the temporal

interdependence of the variables. The variable Y that is observed at several time points

defines a vector y = (Y1, . . . , YT) which is the dependent vector-variable of the multivariate

regression. In the paper, the terminology LF and WF will be used a synonym of univariate

and multivariate modeling respectively.

LF is quite common in econometrics. A univariate regression model with a unit spe-

cific intercept was proposed in Balestra and Nerlove (1966) and Wallace and Hussain
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(1969). The varying intercept is either regarded as a set of fixed parameters (the so-

called ’fixed-effect’ model, ’FE’), or as a random sample from a distribution (the so-called

’random-effect’ model, ’RE’). The ’FE’ and ’RE’ formulations lead to different estimators

of the regression parameters for the time-varying covariates included in X; the regression

parameters for the time-invariant covariates Z are not estimated in the ’FE’. For details of

the LF econometric approach, see the chapters on panel data in classic econometric manu-

als (e.g., Green, 2003; Wooldridge, 2002) or the recent books devoted wholly to panel data,

by Arellano (2003), Hsiao (2003) and Baltagi (2008).

The WF approach has also been discussed in econometrics. Chamberlain (1982) pro-

poses the method of moments for panel data; Anderson and Hsiao (1982) fit a general

dynamic model for panel data by maximum likelihood; Anderson (1987, 1989) give gen-

eral results for asymptotic robustness in latent variable models that include the panel models

as a special case. Satorra (2002) and Papadopoulos and Amemiya (2005) further extend

results on asymptotic robustness to multiple group and correlated samples for panel data

models. See also the recent work of Bai (2013), where factor analysis for dynamic panel

data is proposed.

The WF perspective has a long tradition in the behavioral sciences. To our knowledge,

the first reference to a proposal for WF analysis of panel data is Jöreskog (1978), where

a SEM model for panel data is specified and an application to the estimation of a labor

supply function is discussed. Jöreskog fits the model by maximum likelihood (ML) using

one of the first versions of the computer program LISREL (Jöreskog and Sörbom, 1978).

The model fitted was a dynamic panel data model with a random unit intercept. See

Bollen and Curran (2006) and Montfort, Oud and Satorra (2007) for examples of panel

data analysis using the WF approach in the behavioral sciences.

Comparison of the LF and WF approaches to panel data has also been investigated.

Ejrnaes and Holm (2008) show that the univariate ’FE’ and ’RE’ specifications can be

analyzed using SEM. Bollen and Brand (2010) apply the LF and WF perspectives to a

National Longitudinal Survey of Youth, showing that the ’FE’ and ’RE’ regression analyses

can be reproduced using SEM.

The present paper aims to enhance the above mentioned comparison of LF and WF

approaches. Our aim is to give a perspective by which users of the two approaches can

understand their commonalities and differences. For the comparison we define an as-

sumption of time invariance (TI) of parameters (the TI assumption in Section 3.2) that

ensures correspondence between the univariate and multivariate approaches. In contrast

to the previous comparison, we will not require ’FE’ and ’RE’ formulations to be distin-

guished; to do this, we will need to exploit the above mentioned results on asymptotic
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robustness. In addition, to better illustrate the commonalities and differences of the two

approaches, and the conditions for their equivalence, we not only analyze an empirical

data set, but we also use simulated data. The analysis with simulated data shows the

critical role of the TI assumption for the validity of the univariate approach, and illus-

trates the potential of the multivariate approach to deal with deviations from TI (such as

heteroscedasticity, autocorrelation, etc.).

The illustrations use Stata software for the univariate approach and Mplus software

for the multivariate approach; both are widely used by researchers of the univariate and

multivariate approaches, respectively.1 To help practitioners, the code of all the analyses

are provided in an Appendix.2

The structure of the paper is as follows. Section 2 describes the two data formats.

Section 3 describes the models. Section 4 presents the analysis with empirical data. Sec-

tions 5 compares the approaches using simulated panel data. Section 6 concludes with a

discussion. The computer codes used in the illustrations are provided in the appendixes.

2 LF and WF

Consider a panel data set comprising n units, T time points and a set of variables. The

variables can be of two types: time varying (which are characteristics of the units that vary

with time), and time invariant (unit characteristics that are constant across time); suppose

we have p1 time-varying variables and p2 time-invariant ones.

The data set in LF is arranged into an nT × (p1 + p2) matrix, in which a row corre-

sponds to the values of a unit recorded at a time point. In WF, we have an n× (Tp1 + p2)

matrix, in which each unit is represented by a single row and time repeated variables pro-

duce different columns. See Table 1 for an illustration of LF with three variables X, Y and

Z. The first and second columns of the table are the unit and time indexes, the additional

three columns contain the values of variables X, Y and Z. Each row is a combination of

unit of analysis (i) and time point (t), so that xit, yit and zi are the values of variables X,

Y and Z for unit i at time t. Note that variables X and Y are allowed to take different

values for each combination i and t, while variable Z is constant within each individual i.

In the illustration used in Section 4, investments in R&D (r&d) and advertising expenses

(adv) are examples of time-varying variables, since they vary with unit (firm) and time

(year), while age of the firm (age) (years in existence, taking 2002 as the reference year) is

1Other software packages such as xtr in R for LF, and LISREL, EQS, sem of R, sem of Stata for WF could
equally have been used.

2To help in teaching, the simulated data set is also available in a web site.
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an example of a time-invariant variable.

An essential feature of LF panel data is the likely association (or statistical dependence)

among rows that belong to the same unit (e.g., the same firm). So, the LF panel data is

likely to produce what is called positive intra-unit correlation, also known as intra-class

correlation (ICC) among rows.

—————— Tables 1 and 2 around here ——————

In the case of WF all the observations for a single individual produce just a single row

of data and repeated measures of the same variable give rise to new columns of the data

matrix. Table 2 illustrates the WF for the same variables X, Y and Z of Table 1. The time-

varying variable X, measured at four time points, produce the columns X1, X2, X3, X4;

idem for variable Y, which produces Y1, Y2, Y3, Y4. The time-invariant variable Z, however,

has just one column of the data matrix associated to it. In WF, rows correspond to dif-

ferent units (individuals) of analysis so typically they can be assumed to be statistically

independent.

Note that for a fixed number of units n, when the number of time points T increases,

LF increases the number of rows by a factor T (the number of rows is nT), although the

number of columns remain constant. This contrast with WF, where the number of rows

remain constant (n) while the number of columns increases by a factor of T; the number

of columns is Tp1 + p2. It should be made clear, however, that LF and WF are just two

equivalent forms of presenting the same data. Sofware routines are available to convert

WF data to LF data, and vice-versa.3

The two alternative modeling approaches, the univariate and the multivariate, are de-

scribed in the next section.

3 Models

3.1 Univariate (regression) approach

The basic framework of the univariate approach is the regression equation

yit = αi + βxit + γzi + εit, (1)

3For example, the so-called reshape commands available in both proprietary and free software, e.g. Stata

and R, respectively.
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where i = 1, . . . , N indexes individuals (units) and t = 1, . . . , T indexes time points. The

scalar yit and the vectors xit (1× k) and zi (1× q) are, respectively, the values of the de-

pendent variable Y and (time-dependent and time-independent, respectively) covariates

x = (X1, . . . , Xk) and z = (Z1, . . . , Zq) for unit i at time t. Even though this is a multiple

regression model, it is univariate in nature since it relates to a single dependent variable

Y. The vectors β (k× 1) and γ (q× 1) are vectors of regression coefficients for time-varying

and time-invariant covariates respectively, and αi is an intercept parameter that is allowed

to vary across units (this variation will be further discussed below). The error term εit is

assumed to be centered and i.i.d. with respect to i and t, variance σ2
ε , and independent of

the Xs, Zs and the varying intercept parameter αi.4

When αi ≡ α, i.e., in the case of a non-varying intercept, standard OLS regression

produces consistent estimates for β and γ. When the intercept αi varies across units,

OLS regression does not ensure consistency. In the econometric literature the variation

of αi is known as unobserved heterogeneity and two basic formulations have been given. In

the so-called ’FE’ formulation the αi’s are viewed as unobserved unit-characteristics that

are non-stochastic and fixed over hypothetical replications of the data set. In that case,

consistent estimation of γ is not possible, but OLS on transformed data may produce a

consistent estimator of β; this is the so-called within estimator (WE) of β (described below).

Alternatively, in the ’RE’ formulation, the αi’s are viewed as i.i.d. realizations of a random

variable, say α, of mean α and variance σ2
α ; in this case, consistent estimates of β and γ

are obtained using mixed-effect regression under the assumption that α is independent

of the covariates. This leads to the mixed-effect estimator (MEE) of β and γ (described

below). Even though the terms ‘FE’ and ‘RE’ abounds in the econometric literature on

panel data – and in the software for the analysis of these models – they are surrounded

by certain ambiguity. In classic manuals on econometric theory such as Green (2003) and

Wooldridge (2002) we read, respectively,

”It should be noted that the term ‘fixed’ as used here indicates that the term

does not vary over time, not that it is nonstochastic, which need not be the

case” (Green, 2003, p. 285)

”In the traditional approach to panel data models, ci [our αi] is called a ‘ran-

dom effect’ when it is treated as a random variable and a ‘fixed effect’ when it is

treated as a parameter to be estimated for each cross section observation i. Our

view is that discussions about whether the ci should be treated as random vari-

ables or as parameters to be estimate are wrongheaded for micro-econometric
4In the multivariate formulation of this model (Section 3.2) we will be able to view the εits as a variable which

is distinct with t, thus with variance that may vary with t.
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panel data applications.” (Wooldridge, 2002, p. 251-252)

In this paper all variables (observable or latent) will be regarded on the same footing

in terms of their ’randomnes’ : either they vary across units, or across time, or across units

and time. We use the term ‘fixed’ synonymously with inferences conditional to the values

of those variables. On this issue, Mundlak (1978) makes some clarifying observations:

“[Mundlak] proposes to remedy the situation by first indicating that the

whole approach which calls for a decision on the nature of the effect, whether

it is random or fixed, is both, arbitrary and unnecessary. Without a loss in gen-

erality, it can be assumed from the outset that the effects are random and view

the FE inference as a conditional inference, that is, conditional on the effects

that are in the sample. It is up to the user of the statistics to decide whether

he wants inference with respect to the population of all effects or only with re-

spect to the effects that are in the sample. This view unifies the two approaches

in a well defined form and eliminates any arbitrariness in deciding about ’na-

ture’, in a way which is influenced by the subsequent choice of a ’desirable’

estimator [. . . ] when the model is properly specified, the GLSE [our MEE] is

identical to the ’within’ estimator. Thus there is only one estimator. The whole

literature which has been based on an imaginary difference between the two

estimators, starting with Balestra and Nerlove is based on an incorrect speci-

fication which ignores the correlation between the effects and the explanatory

variables.” (Mundlak, 1978, p. 70)

The next two subsections describes the standard econometric approaches for the uni-

variate model (1) with varying intercept αis.

3.1.1 The within estimator (WE)

A simple way to estimate (1) in the presence of varying intercept αi is to use OLS for the

regression model implied in the within-unit data. Considering the individual averages of

each variable, the dependent variable and all the explanatory variables, and (1), we obtain

the ‘between-unit’ regression

yi = xiβ + εi (2)

for i = 1, . . . , N, where yi =
1
T ∑t yit, xi =

1
T ∑t xit, and εi =

1
T ∑t εit. Subtracting (2) from

(1) gives

y∗it = x∗itβ + ε∗it (3)
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where t = 1, . . . , T, i = 1, . . . , N, y∗it = (yit − yi), x∗it = (xit − xi) and ε∗it = (εit − εi). This

is a regression equation with the same regression coefficient β as in (1) but free of the

problem of a varying intercept. The OLS estimator of β in (3) is a consistent estimator and

it is known as the within estimator (WE).

Instead of differentiation with respect to the mean of the unit, we could have taken

first-difference of all the variables. The first difference estimator (FDE) of β is the OLS

estimator in model (3) when y∗it = (yit − yi(t−1)), x∗it = (xit − xi(t−1)), ε∗it = (εit − εi(t−1))

and t = 2, . . . , T. In the econometric literature on panel data, WE and the FDE are two

alternatives for what is called the ’FE’ estimator. One important property is that the WE

(idem, the FDE) is a consistent estimator regardless of possible dependence between the

varying intercept and covariates. The WE (idem, FDE), however, does not inform on γ,

a parameter that has been eliminated from the model by the transformation of the data.

This can be a drawback when the impact of time-invariant variables Zs on the dependent

variable Y is also of interest. In addition, sufficient variation of the time-varying covariates

Xs is required to avoid collinearity problems (too large standard errors) in the estimation

of β. Compared to WE, the FDE has the disadvantage of inducing serial correlation on the

error terms; in practice, however, both WE and FDE tend to produce very similar results

and for this reason, for simplicity in the illustration, we only report the WE. 5 6

3.1.2 Mixed-effect estimator (MEE)

We now consider the case where the αis of (1) are assumed to be i.i.d. realizations of a

random variable, say α, of mean α and variance σ2
α . Estimation is performed using classic

techniques for mixed-effects regression where a regression model is considered with some

of the regression coefficients assumed to be fixed (constant across units) and others are

assumed to be random (varying across units). In panel data analysis, a simple case of

mixed-effect regression is used, namely the case where β and γ are the fixed parameters

and the intercept αi is a random parameter. An essential assumption in mixed-effects

regression is that the random parameters are independent of the covariates. Mixed-effects

regression models have a long tradition in the biometric literature. Estimation methods

have been established based on ML or re-weighted least squares (RWLS) (Laird and Ware,

1982). In the econometric literature, the estimators of β and γ arising from the mixed-

effect regression approach are called ’RE’ estimators; here, we denote them mixed-effects

estimators (MEE).
5The software Stata uses the function xtreg with the option fe.
6A related approach when there are no time invariant variables is to use a dummy for each individual, known

as the Least Squares Dummy Variable (LSDV) model (Greene, 2003).
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The distinction between the WE (or FDE) and the MEE estimators of β is that the for-

mer ensures consistency regardless of the correlation between αi and the time-varying

variables X, while the later produces a consistent estimator only under uncorrelation. The

econometric literature on panel data points to this uncorrelation as the deciding criterium

for ’FE’ (WE or FDE) versus ’RE’ (MEE) estimators of β. The Hausman test (Hausman,

1978) was devised for the choice between the two alternative estimators. The test is con-

structed from the difference between the ’FE’ and ’RE’ estimators of β: the first being

consistent but inefficient under the null; the second being efficient under the null, but

inconsistent under the alternative.7 Rejection by the Hausman test suggests that αi is cor-

related with the covariates and thus estimation of β should be based on the ’FE’ estimator.

The Hausman test is available in the standard software for univariate analysis of panel

data. 8 In the multivariate approach described in the next section, the Hausman test will

be matched to a chi-square difference test.

3.2 Multivariate approach to panel data

We now describe the basic multivariate model for the WF data. The alternative to the

univariate regression (1) is the following multivariate regression model

yi1 = µ1 + ηi + β1xi1 + γ21zi + εi1

...
...

yit = µt + ηi + βtxit + γ2tzi + εit (4)
...

...

yiT = µT + ηi + βTxiT + γ2Tzi + εiT

for the T-dimensional vector variable yi = (yi1, yi2, . . . , yiT). Here yit, xit, zi and εit are the

same quantities as in (1), and µt + ηi, βt and γt, are the time-varying versions of αi, β and

γ of (1), respectively.

Figure 1 is a path model representation of this set of equations. The unobserved indi-

vidual effect is represented by the latent variable ηi in the circle. The triangle represents

the variable constant to one; arrows emanating from the variable constant correspond to

the time varying overall means, µts. The variables in the squares correspond to the ob-

served variables, and are Ys, Xs and Zs. Arrows in the figure connecting variables in

7The null is the ’RE’, the alternative is the ’FE’.
8e.g., in xtreg of Stata or plm of R.
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the squares or in the circle correspond to regression coefficients (the dependent variable

is the one indicated by the arrow); double-headed arrows (both solid and dashed) corre-

spond to correlations among variables; errors terms in the equations are represented by

the εits single-headed arrows pointing to the dependent variables. The figure shows that

the regression coefficients of the ηi to the Ys are set fixed to 1.

—————— Figure 1 around here ——————

The univariate and multivariate representations (1) and (4) coincide when the following

time invariance assumption holds: 9

Time-Invariance (TI): µt = µ, βt = β, γt = γ , αi = µ + ηi, and εit i.i.d. (across i and t)

When TI is not imposed, the multivariate representation (4) is more general than (1).

For example, in (4), the εit’s are different variables across t, with their variances possi-

bly varying with t (encompassing thus heteroscedasticity in panel data) and/or possibly

correlated across time (encompassing autocorrelation in panel data). Note that when X

and Z are absent from the model, then (4) is a classical simple model: a ’confirmatory’

single-factor model (Jöreskog, 1969).

We now discuss the fixed versus random ’nature’ (Munlaik’s 1978 terminology) of the

ηi’s in (4). Assume first the case where TI holds. We have the two options:

Fixed: The ηis are fixed unit characteristics; in which case, (4) is equivalent to (1) with

αi’s of a fixed ’nature’. No additional assumption (specification) needs to be made

regarding possible dependency between αi’s and covariates.

Random: The ηi’s are i.i.d. random realizations of a latent variable, say η. In this case, we

need to be specific about the possible correlation between η and covariates. We have

the two options:

A: η is uncorrelated with X and Z;

B: η is possibly correlated with X and Z

In both cases, η is assumed to be uncorrelated with the error terms ε’s of (4).

Specification (Random & (A)) corresponds to (1) with αi random. In this case, SEM

estimates of β and γ of (4) coincide with the MEE estimator that was discussed in the

context of the univariate formulation (1).
9When in (1) we have a dummy variable for time, then the TI assumption would drop the restriction µt = µ

and αi = µ + ηi would be changed to αi = ηi
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In the specification (Random & (B)), the multivariate model (4) is not identified without

fixing the parameters of correlation between η and the vector Z (In Figure 1 this restriction

is represented by φ(Z, η) = 0 in the dashed double-headed arrow). If that restriction is

added (the simple restriction is to insert zero correlation) the SEM estimator of β to be

discussed below is equivalent to the WE (or FDE) developed for the univariate model of

(1). We will see that this zero-correlation restriction does not change the inferences on

SEM estimates of β. Not only do the SEM estimates of β (and the s.e. of estimates) not

change with the value where we fit that correlation, but the estimates of β do not change

even when we suppress Z from the model altogether.

We see that the multivariate model (4) reproduces both the MEE and the WE estimators

depending on whether we use specification (A) or (B) respectively. Since specification (A)

is nested within (B), a classic chi-square difference test in SEM can be developed as an

equivalent to the Hausman test discussed for the univariate approach.

The SEM approach to the estimation and inference of the multivariate model (4) is as

follows. Let S denote the covariance matrix of the observables variables, Σ the population

probability limit of S, θ a vector that collects the independent parameters of the model,

and Σ = Σ(θ) the covariance structure function implied by the model (4). An estimate

θ̂ can be obtained by minimizing the discrepancy between S and Σ̂ = Σ(θ̂). Two widely

used discrepancy functions (that correspond to weighted least squares (WLS) and ML

estimation respectively) are

FWLS(θ) = (s− σ)′W(s− σ)

and

FML(S, Σ(θ)) = ln | Σ(θ)S−1 | +tr {SΣ(θ)−1} − p

where p is the number of observed variables, s and σ are the vectors of non-redundant

elements of the matrices S and Σ, and W is the (possibly sample dependent) weight matrix.

In least squares estimation, W is the identity matrix. This approach produces parameter

estimates that can be shown to be consistent and asymptotically normal, and inferences

that are (asymptotically) free of distributional assumptions are available. Normal theory

and distribution free (robust) s.e. as well as robust chi-square goodness-of-fit tests are

available (for technical details, see Satorra and Bentler, 1990, 1994; and Satorra, 2002).

Asymptotic robustness (AR) theory for estimates and test statistics developed under

the assumptions of normality of latent and independent variables of the model is avail-

able in Satorra (2002). This AR theory shows that, under certain conditions, inferences
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regarding parameter estimates like the regression coefficients remain valid when latent

variables deviate from the normality assumption, even when they are assumed to be fixed

(i.e., when inferences are conditional to the values of those latent variables). Applied to

our model, this AR theory concludes that the distribution of the SEM estimates for the

vectors β and γ are robust not only to non-normality of η but even to the ’nature’ (fixed

or random) of the ηi’s. The validity of statistical inferences for the regression coefficients

of X and Z, regardless of whether the ηi’s are viewed as fixed or random, has special rele-

vance for our discussion. It sheds light on the traditional econometric debate on the choice

between ’fixed’ or ’random’ effects models. We understand that the relevant distinction is

not between ’fixed’ or ’random’, but between the specifications (A) or (B) pointed above

(i.e., of whether or not we restrict the correlation among ηi’s and the X). That is, with-

out loss of generality, we specify (4) with ηi assumed to be a random variable with the

specification of either (A) or (B).

3.2.1 Multivariate representation of the WE and MEE

The multivariate model (4) with additional restrictions produces estimates that can be

seen to be equivalent to the WE and MEE (the ‘FE’ and ‘RE’ specifications, respectively, in

econometric parlance). For both estimators we require the restriction TI of time invariance

of parameters discussed above.

The multivariate results that are equivalent to the univariate MEE are obtained using

the specification that ηi is uncorrelated with the X’s and the Z’s. This is represented in the

path diagram shown in Figure 1. In this specification a dashed double-headed arrow (i.e.,

a covariance) between the time-varying and time-invariant variables and ηi is represented

by a set of parameters φ. The specifications (4) and (1) are equivalent when the parameters

φ are fixed to zero.

To reproduce the WE using the multivariate approach we now need to introduce pos-

sible correlation between the ηi and the time-varying covariates Xs. This is represented

in the path diagram of Figure 1 but adding the possible correlation of η and Xs as pa-

rameters of the model. The correlation of η and Zs continues to be set to zero because of

the need for identification of the model. The WE arises when η is freely correlated with

the covariates and the residuals are uncorrelated over time. To replicate the WE (or FDE)

of the regression coefficients of Xs, the time-invariant variables (the Z) can be kept in the

model with the specification of being uncorrelated with η, or can simply be suppressed

from the model. Whatever the approach, the estimates for the regression coefficients of

the Xs (and their s.e.) remain unchanged. The same specification, but with zero correla-
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tion between Xits and ηi and allowing time invariant variables Zs in the model, match the

MEE results.

The restrictions required for the multivariate model to produce results equivalent either

to WE or MEE are over-identifying restrictions on (4). These restrictions are required

for attaining comparable estimators with the univariate approach. General multivariate

models that do not impose these restrictions are presented in the next section.

3.2.2 Multivariate dynamic panel data models

The multivariate specification (4) could be expanded to include an autoregressive structure

to Yt. The following equations express a dynamic (autorregressive) model specification

for panel data. Possible correlation among the unobserved heterogeneity ηi and the time-

varying variables X is also allowed.

yi1 = µ1 + xi1γ11 + ziγ21 + ηi + εi1

...
...

yit = µt + βyit−1 + xitγ1t + ziγ2t + ηi + εit (5)
...

...

yiT = µT + βyiT−1 + xiTγ1T + ziγ2T + ηi + εiT

The path diagram representation of this model is shown in Figure 2. The model can be

easily estimated using the SEM approach (see Bou and Satorra (2009a) for an application

of this model to profitability data).

—————— Figure 2 around here ——————

The multivariate SEM specification can be shown to encompass the dynamic panel data

model specifications of Anderson and Hsiao (1982) (also called ‘serial correlation’ and ‘state

dependence’ models). We could also add an equation where the time-invariant variables

have an effect not on the observable Ys but on the latent factor ηi. This is a model that

assumes full mediation of ηi (the unobserved individual effect) in the relationship among

Z and the dependent variable Y, (this type of model is investigated using SEM in Stoel,

van den Wittenboer & Hox, 2004). In the context of firm profitability data, Bou and Satorra

(2007, 2009b, 2010) use SEM to fit these general dynamic panel data models, in cases of

single or multiple group data, and also hierarchical multi-level data. The path diagram of

this model is represented in Figure 3.
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—————— Figure 3 around here ——————

We feel, however, that further extending the discussion on general dynamic models

would take us away from the main purpose of the present paper, which is simply to com-

pare the univariate and multivariate approaches to panel data in the context of a simple

model. The next section discusses the two panel data alternatives using an empirical data

set.

4 Illustration with firms’ profitability data

The previous theoretical discussion will now be illustrated with an analysis involving

empirical data. The application aims to study the relationship of a measure of a firms’

profitability (variable Y, roa) with characteristics of the firm. We use a panel data set of

firms with ten years of data. A brief description of the panel data used is presented below.

4.1 Data and variables

The data comes from the Encuesta Sobre Estrategias Empresariales (ESEE) (Survey on Busi-

ness Strategies), a survey carried out annually by the Spanish Ministry of Industry to

collect information on Spanish manufacturing firms. The data analyzed correspond to a

period of 10 consecutive years, from 1993 to 2002. For the sake of this illustration, we only

retained the firms with complete data for the whole period of observation. The panel data

analyzed is composed of n = 560 firms and T = 10 periods with information on variables

now described.

The dependent variable Y is Return on Assets (roa) (the ratio of annual net income to to-

tal assets), a measure of firm profitability that is widely used in organization research (see,

for example, Schmalensee, 1985; Rumelt, 1991; McGahan and Porter, 1997, for exhaustive

details on this variable). This is a time-varying variable in the panel. The following time-

varying covariates (Xs) are used: Capacity Utilization (cu) (ratio of the utilized productive

capacity to the total installed capacity of the firm); R&D Intensity (r&d) (the firms’ annual

R&D expenditures divided by annual sales); Advertising Intensity (adv) (ratio of the firm’s

total advertising expenses to sales); Size of the firm (size) (log of number of employees).

Just one time-invariant covariate (Z) is included in the data analyzed: Age of the firm (age)

(the number of years since the company was created, taking 2002 as the reference year).

Previous studies (e.g., Capon, Farley and Hoenig, 1990) documented the above covari-
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ates (the Xs and Z) to have a significant impact on firms’ profitability. Specifically, cu has

been reported to positively influence roa via the reduction of direct costs (see, e.g., Aaker

and Jacobson, 1987); adv enhances the relationship between customers and the firm, and

it is known to be positively associated with roa (e.g., Farris and Reibstein, 1979; Andras

and Srinivasan, 2003; Phillips, Chang and Buzzell, 1983); r&d is expected to be positively

related to firm profitability (Kirner, Kinkel and Jaeger, 2009; Thornhill, 2006), since in-

vestments in R&D lead to the development of new products with more customer appeal

(Brown and Eisenhardt, 1995) and lower manufacturing costs (Sinclair, Keppler and Co-

hen, 2000). Finally, the literature has reported a positive association between size and

profitability due to economies of scale and exploitation of market power by large firms

(Buzzell, Gale and Sultan, 1975).

4.2 The two data layouts: LF and WF

Tables 3 and 4 show the two data layouts for a selection of three variables: namely roa,

cu and age; the variables Y, X and Z, respectively. The dimension of the table for the

complete LF data set would be 5600× 5, where the first two columns indicate unit and

time and the other three columns are the variables Y, X and Z; the number of rows (5600)

is the result of 560 (the number of firms) multiplied by 10 (the number of time points).

The dimension of the WF table for Y, X and Z data would be 560 × 22; one row for

each unit (firm), and columns corresponding to: the first column is the index of the firm;

columns 2-11 are the roa for 10 different years; columns 12 -21 are the cu for 10 different

years; the last column of the table corresponds to the values of the time-invariant covariate

age. The complete WF profitability data considered would have 52 columns, we would

need to add 30 additional columns corresponding to the 10 measures of the time-variant

variables r&d, adv, size. We see that Tables 3 and 4 show exactly the same data, i.e., the

data corresponding to firms 1, 2,3, and 560 for years 1993, 1994 and 2002. As mentioned

before, the LF and WF data are two equivalent representations of the same information.

—————— Tables 3 and 4 around here ——————

4.3 Results for the univariate approach

This section presents the results of the analysis of firms’ profitability using the standard

univariate panel data approach. The analysis is undertaken using regular options of

Stata, a widely used software package for this type of analysis. We report the typical
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’fixed’ and ’random’ effects specifications, i.e., respectively, the WE and MEE analyses

discussed previously (FDE analysis produced results very similar to WE and are not pre-

sented here for the sake of brevity). These univariate results are shown in the first half of

Table 5. The Stata code to produce these results is available in Appendix 1.

4.3.1 WE results

Table 5 shows WE, standard errors, and z-values for the regression coefficients of the

variables included in the model. The estimates for regression coefficients of cu , adv and

size are statistically significant. As expected the coefficients are positive in the case of cu;

however, we found negative values for both adv and size. In addition, the estimate for r&d

is negative, though non-significant. The table also shows estimates for the variance of the

αis and the variance of the disturbance term of the equation, that is σ2
αi

= 34.34 and σ2
εit

=

70.06, respectively. 10 We also see the estimate of the intra-unit correlation coefficient (the

rho = 0.33, which is the “intraclass correlation coefficient (ICC)” of roa within firms). 11

From Stata we also obtain (thought not shown in the table) the correlation between the

intercept parameter and the linear combination of the covariates, which is –.0.42, a value

that would tend to support the WE approach (which does not restrict that correlation to

be zero).

—————— Table 5 around here ——————

4.3.2 MEE results

Table 5 shows the MEE results for two models, one that includes the time-invariant vari-

able Z (that is, age) and another without Z. In both models, the random intercept is

assumed to be uncorrelated with the covariates.

We observe substantial differences between the results of WE and MEE (with and

without Z). There is a large difference between the estimates of the regression coefficient

for size, –2.042 (WE) versus -0.894 (MEE), as well a noticeable difference in their s.e., MEE

being the most accurate one. The variable adv (advertising intensity) that was significant

with WE is not significant with MEE. The estimates of the regression coefficient of cu

are, however, very similar. Estimates of the variance of the varying intercept and the

10The output of Stata reports the square root of those values (i.e. the standard deviations), but we trans-
formed them to estimates of variances for the sake of comparison with the results we will obtain later using the
multivariate model approach.

11Since that analysis is based on the assumption of a fixed random intercept, for the estimates of variances,
intraclass correlation, and correlation between intercept and covariates, Stata does not produce s.e.
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disturbance term are also shown in the table. When comparing MEE results with and

without Z, we observe the same estimate of the mean of the random intercept, and only

a slight difference in the estimates of the variance (variance associated to a model with Z

is slightly smaller than without Z). The variance of α for MEE however is much smaller

than the sampling variance of the intercept in the WE approach. The variance of the

disturbance terms is similar in value among the three univariate models. We see that

adding the time-invariant variable Z in the model does not change the MEE estimates of

the other regression coefficients. In contrast to WE, with MEE we can obtain estimates for

the regression coefficient of the time-invariant variables.

Several specification tests are available in the univariate approach. One specification

test which is widely used in the classic univariate econometrics of panel data is the Haus-

man test. With our data, the Hausman test value is 34.70 for d f = 4, to be compared with

the χ2
4 distribution.12 The null hypothesis is rejected (p-value < 0.05) suggesting thus the

need for the WE (see for example, chapter 13 in Green, 2003, for more details on using the

Hausman test in panel data analysis). Since we observe significant differences between

WE and MEE, the results of the Hausman test suggest support for the results of WE.

4.4 Results for the multivariate approach

The multivariate modeling approach discussed in Section 3 will now be illustrated with

the firms’ profitability data. We first analyze a multivariate model that reproduces the

WE and MEE results shown in the first half of Table 5. The multivariate results are

shown in the second half of the table. After that we will expand the analysis to a general

multivariate SEM model. The results reported in this section were obtained using the

Mplus software (Muthén and Muthén, 1998-2012), though other SEM software packages,

e.g., EQS (Bentler, 2006) or LISREL (Jöreskog and Sörbom, 2006), could have been used.

The code for the analysis using Mplus is reproduced in Appendix 2.

4.4.1 Multivariate equivalent to WE and MEE

The multivariate models to be analyzed are represented as a path diagram in Figure 1

of Section 3. The dependent variable roa (now a different variable for each time point)

corresponds to the boxes Yts (t = 1, 2, . . . , 10). Each of the time-varying covariates, cu, r&d,

adv and size, corresponds to ten different variables; these are the boxes Xts. The (possible

vector) of time-invariant variable Z (in our application, age) is also represented in the path

12Appendix 1.C. shows the computation of this statistic on our data using Stata.
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diagram. Double arrows connecting the Xs to η, a vector of covariances φ(X, η), represent

parameters of correlation. The path diagram shows shows also the possible non-zero

correlations among Z and η (parameters φ(Z, η)) and among Z and X.

As explained in Section 3, to attain the equivalence between the multivariate and the

univariate approach we require imposing the time invariance hypothesis TI, Z to be un-

correlated with η, and the specifications (A) or (B) regarding the correlation between

the random intercept and covariates. The specification (B) where φ(X, η) is a vector of

free parameters of the model, yields results equivalent to the univariate analysis WE; the

specification φ(X, η) = 0, yields results equivalent to MEE. The SEM results for the ML

estimation method are shown in the second half of Table 5. 13

Comparison of results shown in the first and second halves of Table 5 shows a clear

match between univariate and multivariate results. Remember that numbers in the first

half of the table were obtained using the classic methods of the univariate approach to

panel data; the second half were obtained by completely different algorithms, the standard

methods for SEM analysis. The coincidence is in both parameter estimates as well as s.e.

(henceforth z-values). The multivariate SEM analysis adds a chi-square goodness-of-fit

test of the model to the results of the univariate approach. For each of the four models

in the second half of the table, the chi-square goodness-of-fit tests show a resounding

rejection of the model. This is an important issue for the comparison of the univariate and

multivariate perspectives. Note that no information on the goodness-of-fit of the model is

given in regular econometric WE and MEE; the F-test that is usually shown is simply a test

of the overall significance of the regression coefficients; this F-test gives no information on

the validity of the model assumptions implicit in the univariate formulation (e.g., the TI

and other assumptions).

In the multivariate model, chi-square goodness-of-fit comparison of nested models

produces a variety of misspecification tests. One of these chi-square difference tests will

be the equivalent to the Hausman test. Let H0 be the multivariate model with the co-

variances φ(X, η) set to zero, and H1 the multivariate model with those covariances set

free. The difference of the chi-square goodness-of-fit test of the models H0 and H1 is the

multivariate model equivalent of the Hausman test.

With our data the chi-square values of H0 and H1 are respectively 1303.88 (df =467)

and 1267.72 (df = 463). The difference of these two values is4χ2 = 36.17, with a difference

of degrees of freedom 4d f = 4 (4 is the number of time varying covariates in the model).

This has an associated p-value of < 0.05 that rejects the null hypothesis of no correlation

among unobserved heterogeneity and covariates. The value of this new test statistic is

13The Mplus code for the multivariate specifications of WE and MEE is displayed in Appendix 2.
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close to the value of the Hausman test obtained in the univariate analysis, recall it was

34.70 with d f = 4. 14 Other chi-square statistics that could match the plethora of spec-

ification tests in the univariate approach could easily be reproduced in the multivariate

approach by using the simple principle of chi-square difference testing of nested models.

For example, we could a chi-square different test for autocorrelation, or heteroscedasticity,

or both, etc.

4.4.2 Multivariate dynamic panel data models

The multivariate approach encompasses a wider class of models than the simple regres-

sion with varying intercept. We illustrate this by fitting to the firms’ profitability data the

dynamic panel data models discussed in Section 3.2.2 and represented in Figures 2 and

3. In addition to the autoregressive structure on the Yt, the models to be fitted include

time-invariant covariates and correlation of the unobserved heterogeneity with the time-

varying variables, permitting heteroscedastic error variances and regression coefficients

varying over time. The results for two models are shown in Table 615: the model where

the Zs have a direct effect on the Yt (in the table, ’Dynamic (Z direct)’), and the one where

Z impacts on Yt only indirectly throughout ηi (in the table, ’Dynamic (Z indirect)’).

Table 6 shows a significant autoregressive coefficient β for the Yt, a dynamic effect that

was ignored in the previous analysis. The estimate of β is 0.183 (z-value is 11.90), so we

should conclude that there is a highly significant dynamic component in the model. With

regard to the other parameters of the model, the average (across time) of the regression

coefficients shown in Table 6 are similar in values to the regression estimates of the static

model shown in Table 5 for the corresponding parameters, 16 except for the regression esti-

mate of size, which was highly significant for the static model and now is not significant.

Thus, substantive interpretation of results may change across model specifications. The

chi-square goodness-of-fit test statistics are χ2 = 518.07 (df = 355) for ’Dynamic (Z direct)’

and χ2 = 529.76 (df = 364) for ’Dynamic (Z indirect)’. In both cases the goodness-of-fit

would reject the model, despite the fit being much better than the one reported in Table

5) for the corresponding static model (χ2 = 1192.49, df = 427 for SEM (with Z)). These

are chi-square goodness of fit test based on normal theory. The values of the (robust)

scaled chi-square goodness-of-fit test of Satorra and Bentler (1994) are χ2 = 383.93, df =

14In the computation of this equivalence to the Hausman test, the covariances φ(X, η) in the H1 model are
restricted to be equal over time. The test can be computed with Z either included or not in the model. Another
version of the test could be based on the chi-square difference test of the model with φ(X, η) completely free in
H1.

15The Mplus code for the analysis is displayed in Appendix 2.C.
16The table reproduces only averages across time for estimates of effects of covariates for the purpose of

comparing the two tables
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355 (p-value = 0.14) for the ’Dynamic (Z direct)’, and χ2 = 395.44, df = 364 (p-value = 0.12)

for the ’Dynamic (Z indirect)’, an acceptable fit for both models. We simply note that the

multivariate approach has an advantage over the univariate approach for assessing model

modification, since it makes the restrictions on the model visible; Lagrange-Multiplier

Tests (LMT) for overparameterizing restrictions are easily developed (these LMT are stan-

dard in SEM analysis).

In the analysis reported in Table 6 the regression parameters γ1t and γ2t (and the

intercept) vary across years. The table shows the average of those values, that is the

’over-time averaged’ effects, which were computed using the ’supplementary parameter

approach’ (SPA) of Bou & Satorra (2010). Standard SEM software such as Mplus or EQS

have provision for estimating these nonlinear functions of the model parameters, so we

are able to compute standard errors of the averaged effects using the above mentioned

SPA. Table 6 also shows that the unobserved heterogeneity has slightly smaller variance

than in the previous static FE and RE models. This result indicates that the estimated

permanent differences across firms partially disappear when the autoregressive structure

roat−1 is introduced into the model.

—————— Table 6 around here ——————

5 Illustration using simulated data

To further illustrate the conceptual issues of this paper, we now apply the univariate and

multivariate panel data analyses to simulated data. We consider data generated according

to the path diagram of Figure 1 with particular values on the parameters that deviate

slightly from the TI assumption mentioned in Section 3.2. The deviations considered are

realistic in application and will serve to assess the impact of model misspecification in

the analysis. The advantage of the simulated data (when compared to empirical data) is

that we know precisely the true values of the parameters, so we can assess the validity

of the different approaches. The true value of the parameters used in the data generating

process are shown in the column ’Pop. Value’ in Table 8, alongside estimation results for

the multivariate model. For the sake of simplicity we only consider variables Y, X and Z,

and four time points. We use a relatively large sample, n = 3000, to avoid clouding of the

results by small sample size artifacts. 17

Table 7 parallels with simulated data the results of Table 5 obtained with empirical

data. Now there are just two covariates, one time-variant (X) and the other time-invariant
17The data analyzed is accessible at the following web site of one of the authors xxxx.
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(Z). The model for the simulated data introduces a time effect on the level of Y with

year 1 as the year of reference (the dummies Dyear2, Dyear3, Dyear4 for years 2, 3

and 4, in the table). As in Table 5, Table 7 clearly shows that estimates obtained by the

univariate approaches WE (no Z), ME (no Z) and MEE (with Z) are replicated by the

multivariate approaches SEM (no Z), SEM (no Z) and SEM (with Z), respectively. Note

that the estimate of the intercept µ1 in the SEM approach equates to the estimate α in the

univariate models, and that the differences of µt − µ1, t = 2, 3, 4 in SEM coincide precisely

with the estimates of the dummies. The estimates of the variances of the varying intercepts

are also comparable across univariate and multivariate approaches, with the multivariate

approach also producing an s.e. for this estimate of variance, as well as for the estimate of

the ICC. 18 An important point to note is that the information on the chi-square goodness-

of-fit test is available in the multivariate approach, but is unavailable in the univariate

models (first half of the table). The chi-square values are very large and lead to clear

rejection of the models. Note that rejection of the SEM models of the second half of the

table implies rejection of the results obtained for the univariate models (i.e., the same

results obtained in the first half of the table). We know the true value of the parameters,

which do not satisfy the TI assumption, so we are not surprised to see rejection since that

hypothesis is tested by the chi-square goodness-of-fit of the SEM approach. Note that for

simplicity of this illustration, we only used one sample replicate. Given the high values of

the chi-square goodness-of-fit test, it would be surprising to find a sample replicate where

the models fit.

The large values of the chi-square goodness-of-fit statistics suggest the time invariance

assumption TI implicitly assumed in the models of Table 7 should be relaxed. Table 8

shows estimation results without imposing the TI assumption, that is, we use the model

of Figure 1 with parameters specific to each year. The analysis was carried out using Mplus

(the code for this analysis is shown in Appendix 2C). Comparing estimates with the true

value of the parameters used to generate the data set (the column ’Pop. Values’ of the

table), shows that that all the true values are within the corresponding 95% confidence

intervals (i.e., estimate ± 2× s.e., regardless of whether one uses the normal theory or the

asymptotic robust s.e.). We note that the normal-theory and robust s.e. (in parenthesis)

are all very similar in value except for the estimate of σ2
ηi

despite the fact that the data is

non-normal since ηi was simulated from a highly skewed non-normal distribution (a χ2
1).

This, however, coincides with the theory of asymptotic robustness (AR) which guarantees

correctness of inferences for all the parameters except for the estimates of the variance

of the non-normal constituents of the model, and regardless of the assumption that ηi is

fixed or random. The same theory of AR guarantees the asymptotic chi-squaredness of

18The latter is estimated using Bou and Satorra’s (2010) SPA.
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the goodness-of-fit test statistic; that is, the normal-theory based chi-square goodness-of-

fit test is a valid test statistic to judge the adequacy of the model. We observe a chi-square

value equal to 18.704 that has an associated p-value of 0.13 implying, thus, that the model

is not rejected (at the usual 5% level, not even at the 10% level). The conclusion of the test

coincides with what we know to be true about model since we have simulated data. Note

the contrast in chi-square values when we compare the model with the TI assumption (the

univariate regression models) and the model with TI relaxed.

—————— Table 7 and 8 around here ——————

6 Conclusion

Two perspectives for analyzing panel data have been discussed and compared. One per-

spective uses univariate regression and arranges the data in LF; the other perspective uses

multivariate regression and arranges the data in WF. The univariate approach is very pop-

ular in econometric analysis of panel data; the second approach uses structural equation

models (SEM) and is also common in the behavioral sciences. In an attempt to disentangle

the commonalities and differences of the two perspectives, two data sets were analyzed

with both methods and the results compared. One illustration used empirical data on

firms’ profitability, the second used simulated data.

In contrast to previous attempts to compare the econometric univariate regression with

SEM (Ejrnaes and Hold, 2006; and Bollen and Brand, 2010), we have been able to pinpoint

a fundamental assumption, what we called the TI assumption, under which the univariate

and multivariate approaches produce the same estimates. We have argued that the TI

assumption is likely to be violated in applications and that information on the validity of

TI is lacking in the univariate perspective. The multivariate approach, however, produces

information –in the form of a chi-square goodness-of-fit test of the model– on the validity

of TI. We have shown that the multivariate perspective allows us to relax the TI assumption

and assess fundamental hypotheses such as the un-correlation of the varying intercept and

covariates. A chi-square difference test of two multivariate models has been shown to be

equivalent to the Hausman test for panel data.

The multivariate approach has been shown to encompass panel data models that al-

low for dynamics, error in variables, heteroscedasticity of disturbance terms, and other

deviations from the TI assumption.

With regard to the classic panel data choice between ’fixed’ and ’random’ specification
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(i.e., WE versus MEE), we have shown that the key choice is whether parameters of corre-

lations among the covariates and the varying intercept are fixed to zero or just estimated

in a multivariate model approach. The illustration with empirical data showed that where

the Hausman test gave a chi-square value of 34.87 (df = 4), the parallel chi-square differ-

ence test of two nested multivariate models gave a chi-square value of 36.17 (df = 4), very

similar values despite the different formulae for the two statistics. The representation as

chi-square difference testing of nested multivariate models of a variety of specification

tests in the univariate approach, such as the test for homoscedasticity, autocorrelation,

and others, may add conceptual simplicity for practitioners (in the multivariate perspec-

tive, whether the ’return’ of ηi on Yt is constant is also open to testing). We have shown

that the varying intercept is just one example of a latent factor in multivariate analysis, and

that its assumption of being ’fixed’ or ’random’ has no consequences for the inferences

A specific practical consequence of our paper is the diminishing role of the ‘FE’ ap-

proach (that is, the WE). The classic econometric argument for using the ‘FE’ approach

is that it guarantees consistent estimates despite possible correlation of the unobserved

individual effect (ηi) and covariates. We have seen that there is an alternative in the mul-

tivariate approach where the random intercept ηi is a factor (in the classic factor-analysis

tradition) with possible non-zero correlation with covariates (see, specifically, the models

SEM (no Z) and SEM (with Z) of Tables 5 and 7). The consistency claimed by the ‘FE’

approach is guaranteed in the multivariate approach when covariances among ηi and co-

variates are set as free parameters to be estimated. Recall that in the SEM approach the

assumption of fixed versus random of the ‘factor’ ηi has no consequences on inferences of

parameters of interest (as was concluded by the theory of asymptotic robustness).

A clear advantage of the multivariate perspective with ηi assumed random is that Zs do

not need to be excluded from the model (as in the classic ‘FE’ approach) and that general

methods of inference are readily available in standard SEM software (robust s.e. and test

statistics, correction for clustering, weighted data, etc.; see, Muthén and Satorra, 1995).

The multivariate approach facilitates also the generalization of the model to accommodate

for measurement error and dynamics among variables, as exemplified in Subsection 4.4.2.

With regard to the empirical illustration, the multivariate perspective indicated a poor

fit of both the WE and MEE regression models, and suggested introducing a dynamic

component in the specification, as undertaken in Subsection 4.4.2. A classic limitation of

the FE econometric approach is that the time constant covariates are excluded from the

analysis, a limitation that is overcome with the multivariate approach that can encompass

time-invariant covariates provided it is assumed these covariates are uncorrelated with

the varying intercept. This can be seen in Tables 5 and 7 where cells are not available for
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the WE (with Z).

We considered a data sample with complete data for all the firms in all the years of

observation. If every unit is observed completely in every year, the panel is said to be bal-

anced; otherwise, the panel is said to be unbalanced. For the unbalanced case, completeness

of the WF can be maintained by introducing missing values into the rows (or individual

cells) on unobserved items. Software for SEMs has now options for missing data which

could be used for unbalanced panel data. The discussion of missing data, however, goes

beyond the purpose of the present paper.

To conclude, this comparison of the univariate and multivariate perspectives for panel

data should raise awareness among researchers of the commonalities of two widely used

approaches that nowadays may be perceived as different. The multivariate perspective

should bring conceptual simplicity to a variety of panel data models. The illustrations

discussed should facilitate implementation of the methods for practitioners.
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Table 1: Long format, LF

Individual Time X Y Z
1 1 x11 y11 z1
1 2 x12 y12 z1
1 3 x13 y13 z1
1 4 x14 y14 z1
...
i 1 xi1 yi1 zi
i 2 xi2 yi2 zi
i 3 xi3 yi3 zi
i 4 xi4 yi4 zi
...

N 1 xN1 yN1 zN
N 2 xN2 yN2 zN
N 3 xN3 yN3 zN
N 4 xN4 yN4 zN
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Table 2: Wide format, WF

Time varying Time Invariant

Time 1 Time 2 Time 3 Time 4

Individual X1 Y1 X2 Y2 X3 Y3 X4 Y4 Z
1 x11 y11 x12 y12 x13 y13 x14 y14 z1
...
i xi1 yi1 xi2 yi2 xi3 yi3 xi4 yi4 zi
...

N xN1 yN1 xN2 yN2 xN3 yN3 xN4 yN4 zN
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Table 3: LF of variables roa, cu and age

firm time roa cu age
1 1993 6.23 60 29
2 1993 10.39 72 38
3 1993 -3.90 50 45
...

...
...

...
...

560 1993 1.52 70 10
1 1994 9.81 95 29
2 1994 9.17 76 38
3 1994 2.67 80 45
...

...
...

...
...

560 1994 4.67 75 10
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 2002 8.82 91 29
2 2002 -2.78 67 38
3 2002 4.37 85 45
...

...
...

...
...

560 2002 0.89 70 10

Table 4: WF for variables roa, cu and age

firm roa1993 roa1994 . . . roa2002 cu1993 cu1994 . . . cu2002 age
1 6.23 9.81 . . . 8.82 60 95 . . . 91 29
2 10.39 9.17 . . . -2.78 72 76 . . . 67 38
3 -3.90 2.67 . . . 4.37 50 80 . . . 85 45
...

...
... . . .

...
...

... . . .
...

...
560 1.52 4.67 . . . 0.89 70 75 . . . 70 10
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Table 6: Results for the dynamic panel data models: empirical data

Dynamic (Z direct) Dynamic (Z indirect)
Coef.∗ s.e.∗ z Coef. s.e.∗∗ z

roa on:
roat−1 0.183 0.015 11.90 0.184 0.015 11.92
cu 0.070 0.013 5.51 0.070 0.013 5.50
r&d -0.117 0.096 -1.23 -0.115 0.096 -1.20
adv -0.386 0.108 -3.57 -0.366 0.108 -3.40
size -0.616 0.496 -1.24 -0.763 0.491 -1.55
age 0.003 0.015 -0.179 – – –
µ 5.180 2.047 2.53 5.629 2.038 2.76

η on:
age – – – -0.013 0.009 -1.43

σ2(ηi) 13.894 1.724 8.06 13.741 1.752 7.84
σ2(Uit) 68.072 1.462 46.55 68.255 1.467 46.53

χ̄2† 383.93 395.44
df 355 364
p-value 0.14 0.13
∗

Averaged effects of estimates across the years, except for σ2(ηi )

∗∗
s.e. computed using Bou and Satorra’s (2010) supplementary parameter approach

†
This is the robust Satorra and Bentler’s (1994) scaled chi-square goodness of fit test
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XiT

ε1

ηi

γ12γ11 γ14 γ1T

1 1 11 1
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…
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γ24
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γ23

φ (x,η)
φ (z,η) = 0

γ13

Figure 1: Multivariate model representation of univariate panel data models. Depending
on whether φ(X, η) = 0 or are free parameters we reproduce the MEE and WE analyses
respectively.
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Table 8: Multivariate approach: general SEM model for simulated data.

Pop. Value Estimate s.e. z
t = 1 :
x 2.000 2.002 0.024 (0.024)∗ 83.43
z 3.000 2.978 0.045 (0.043) 65.48
µ 2.600 2.552 0.045 (0.045) 56.75
σ2(Uit) 1.000 1.056 0.036 (0.037) 29.50
t = 2 :
x 0.000 -0.060 0.038 (0.038) -1.61
z 3.000 3.043 0.053 (0.052) 56.93
µ 3.600 3.561 0.045 (0.045) 79.41
σ2(Uit) 1.000 1.024 0.035 (0.034) 29.18
t = 3 :
x 2.000 1.998 0.022 (0.023) 90.43
z 3.000 2.931 0.045 (0.042) 65.86
µ 4.600 4.539 0.045 (0.045) 101.37
σ2(Uit) 1.000 1.005 0.035 (0.035) 29.02
t = 4 :
x 4.000 4.024 0.022 (0.021) 183.69
z 3.000 2.964 0.044 (0.042) 66.92
µ 5.600 5.539 0.045 (0.044) 123.80
σ2(Uit) 1.000 0.996 0.034 (0.034) 28.89

σ2(ηi) 5.120 5.006 0.136 (0.383) 36.84
χ2 18.704
d.f. 13
p-value 0.13
∗ In brackets are the robust s.e.
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Figure 2: General Multivariate Model for Panel-Data: Dynamic (Z direct)
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Figure 3: General Multivariate Model for Panel-Data: Dynamic (Z indirect)
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Appendix

Appendix 1: Stata code for the univariate approach

1.A. WE approach

xtset firm

xtreg roa cu r&d adv size, fe

1.B. MEE model

xtset firm

xtreg roa age cu r&d adv size, re

1.C. Hausman Test

quietly xtreg roa cu r&d adv size, fe

estimates store fixed

quietly xtreg roa age cu r&d adv size, re

estimates store random

hausman fixed random

Appendix 2: Mplus code for the multivariate approach

2.A. Multivariate WE

TITLE: Multivariate fixed effect (FE) model

DATA:

FILE IS ’mydata.txt’;

VARIABLE:

NAMES ARE firm roa1993-roa2002 age cu1993-cu2002

r&d1993-r&d2002 adv1993-adv2002 size1993-size2002 ;

USEVARIABLES ARE

roa1993-roa2002 cu1993-cu2002 r&d1993-r&d2002

adv1993-adv2002 size1993-size2002 ;
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ANALYSIS:

ESTIMATOR = ML;

MODEL:

F BY roa1993-roa2002@1 ;

roa1993-roa2002 PON cu1993-cu2002 (u)

r&d1993-r&d2002 (i)

adv1993-adv2002 (g)

size1993-size2002 (s);

roa1993-roa2002 (resid);

F (eta);

[roa1993-roa2002] (mu);

F WITH cu1993-cu2002 r&d1993-r&d2002 adv1993-adv2002

size1993-size2002;

roa1993-roa2002 WITH roa1993-roa2002@0;

MODEL CONSTRAINT:

NEW (ICC);

ICC = eta/(eta + resid);

OUTPUT: SAMPSTAT MODINDICES TECH1;

2.B. Multivariate MEE

TITLE: Multivariate random effect (RE) model

DATA:

FILE IS ’mydata.txt’;

VARIABLE:

NAMES ARE firm roa1993-roa2002 age cu1993-cu2002

r&d1993-r&d2002 adv1993-adv2002 size1993-size2002 ;

USEVARIABLES ARE

roa1993-roa2002 age cu1993-cu2002 r&d1993-r&d2002

adv1993-adv2002 size1993-size2002 ;

ANALYSIS:

ESTIMATOR = ML;
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MODEL:

F BY roa1993-roa2002@1 ;

roa1993-roa2002 PON cu1993-cu2002 (u)

r&d1993-r&d2002 (i)

adv1993-adv2002 (g)

size1993-size2002 (s);

roa1993-roa2002 ON age (a) ;

roa1993-roa2002 (resid);

F (eta);

[roa1993-roa2002] (mu);

F WITH cu1993-cu2002@0 r&d1993-r&d2002@0 adv1993-adv2002@0

size1993-size2002@0 age@0;

roa1993-roa2002 WITH roa1993-roa2002@0;

MODEL CONSTRAINT:

NEW (ICC);

ICC = eta/(eta + resid);

OUTPUT: SAMPSTAT MODINDICES TECH1;

2.C. Multivariate dynamic panel data model (Z Direct)

TITLE: Multivariate dynamic panel data model

DATA:

FILE IS ’mydata.txt’;

VARIABLE:

NAMES ARE firm roa1993-roa2002 age cu1993-cu2002

r&d1993-r&d2002 adv1993-adv2002 size1993-size2002 ;

USEVARIABLES ARE

roa1993-roa2002 age cu1993-cu2002 r&d1993-r&d2002

adv1993-adv2002 size1993-size2002 ;

ANALYSIS:

ESTIMATOR = ML;

MODEL:
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F BY roa1993-roa2002@1 ;

roa1993-roa2002 PON cu1993-cu2002 (u1-u10)

r&d1993-r&d2002 (i1-i10)

adv1993-adv2002 (g1-g10)

size1993-size2002 (s1-s10);

roa1993-roa2002 ON age (a1-a10) ;

roa1994-roa2002 PON roa1993-roa2001 (r1-r9) ;

roa1993-roa2002 (v1-v10);

F (eta);

[roa1993-roa2002] (mu1-mu10);

F WITH cu1993-cu2002 r&d1993-r&d2002 adv1993-adv2002

size1993-size2002 ;

F WITH age@0;

roa1993-roa2002 WITH roa1993-roa2002@0;

MODEL CONSTRAINT:

NEW (Mean_cu Mean_r&d Mean_adv Mean_size Mean_age Mean_roa Mean_int);

Mean_uc = (u1 + u2 + u3 + u4 + u5 + u6 + u7 + u8 + u9 + u10)/10;

Mean_idv = (i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10)/10;

Mean_gpv = (g1 + g2 + g3 + g4 + g5 + g6 + g7 + g8 + g9 + g10)/10;

Mean_size = (s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10)/10;

Mean_age = (a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10)/10;

Mean_Roa = (r1 + r2 + r3 + r4 + r5 + r6 + r7 + r8 + r9)/9;

Mean_int = (mu1 + mu2 + mu3 + mu4 + mu5 + mu6 + mu7 + mu8

+ mu9 + mu10)/10;

OUTPUT: SAMPSTAT TECH1;

2.C. Multivariate dynamic panel data model (Z Indirect)

TITLE: Multivariate dynamic panel data model

DATA:

FILE IS ’mydata.txt’;
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VARIABLE:

NAMES ARE firm roa1993-roa2002 age cu1993-cu2002

r&d1993-r&d2002 adv1993-adv2002 size1993-size2002 ;

USEVARIABLES ARE

roa1993-roa2002 age cu1993-cu2002 r&d1993-r&d2002

adv1993-adv2002 size1993-size2002 ;

ANALYSIS:

ESTIMATOR = ML;

MODEL:

F BY roa1993-roa2002@1 ;

roa1993-roa2002 PON cu1993-cu2002 (u1-u10)

r&d1993-r&d2002 (i1-i10)

adv1993-adv2002 (g1-g10)

size1993-size2002 (s1-s10);

roa1993-roa2002 ON age (a1-a10) ;

roa1994-roa2002 PON roa1993-roa2001 (r1-r9) ;

roa1993-roa2002 (v1-v10);

F (eta);

[roa1993-roa2002] (mu1-mu10);

F WITH cu1993-cu2002 r&d1993-r&d2002 adv1993-adv2002

size1993-size2002 ;

F ON age;

roa1993-roa2002 WITH roa1993-roa2002@0;

MODEL CONSTRAINT:

NEW (Mean_cu Mean_r&d Mean_adv Mean_size Mean_age Mean_roa Mean_int);

Mean_uc = (u1 + u2 + u3 + u4 + u5 + u6 + u7 + u8 + u9 + u10)/10;

Mean_idv = (i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10)/10;

Mean_gpv = (g1 + g2 + g3 + g4 + g5 + g6 + g7 + g8 + g9 + g10)/10;

Mean_size = (s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10)/10;

Mean_age = (a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10)/10;

Mean_Roa = (r1 + r2 + r3 + r4 + r5 + r6 + r7 + r8 + r9)/9;
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Mean_int = (mu1 + mu2 + mu3 + mu4 + mu5 + mu6 + mu7 + mu8

+ mu9 + mu10)/10;

OUTPUT: SAMPSTAT TECH1;
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