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1 Introduction

Patterson and Thompson (1971) introduced the idea of estimating variance components

in random coefficient models solely from the error contrasts. This method, restricted

maximum likelihood (REML), has been widely adopted since, assisted by a simple

adjustment of the likelihood derived by Harville (1974); see also Harville (1977). For

background, theory and applications of REML, see Searle, Casella and McCulloch

(1992), Verbyla (1993), Kenward and Roger (1997), Verbyla et al. (1999), Diggle

et al. (2002) and Jiang (2007). This article compares analytically the efficiency of

the maximum likelihood (ML) and REML estimators of the cluster-level variance in

balanced linear models with one set of random effects. The estimators of the variance

ratio are also compared. Some of our results are derived by Klotz, Milton and Zacks

(1969) and Kubokawa (1995) for the variance and by Loh (1986) for the variance ratio.

Swallow and Monahan (1984) studied the ML, REML and several other estimators of

the variance by simulations for balanced and unbalanced one-way layout. Our results

are in accord with theirs for the settings that we have in common. They undermine

the often-made claim that no information is lost by restricting the analysis to the error

contrasts.

In the model and the design we consider, there are m observations (y1k , . . . , ymk) in

each cluster k = 1, . . . , K. They are conditionally independent and normally dis-

tributed with conditional expectation xikβ + δk and variance σ2
W given δk ; yik =

xikβ + δk + εik , where xik is the vector of the values of the covariates (including

the intercept) for the elementary unit (i, k) and β is the vector of regression param-

eters. The cluster-level deviations δk are a random sample from a centered normal

distribution with variance σ2
B . The Km + K random terms εik and δk are mutually

independent. The variance ratio is ω = σ2
B/σ

2
W . We consider (σ2

W , ω) as an alternative

parametrization to (σ2
W , σ2

B). We show that the estimators of ω are linear functions

of F -distributed random variables and estimators of σ2
B are linear combinations of two

independent χ2- distributed variables. These distributional identities are key to our

derivations.

In Sections 2 – 4, only models with no covariates, in which xikβ is constant, are

considered. Section 2 derives the ML and REML estimators of σ2
B as functions of the
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within- and between-cluster sums of squares. Section 3 evaluates the bias and efficiency

of the estimators of ω and shows that the ML estimators are uniformly more efficient

than their REML counterparts. A simulation study in Section 4 compares the proper

versions of these estimators, which are truncated to be nonnegative. It concludes

that ML retains its advantage over REML while the truncated REML estimators are,

of course, biased. Estimators of σ2
B and ω more efficient than ML are derived in

respective Sections 2 and 3. The efficiencies of the estimators of σ2
B and ω are compared

empirically for a particular unbalanced design in Section 5. Section 6 extends some

of the results to models with covariates subject to some constraints related to their

balance. Throughout, we regard the mean squared error (MSE) as the sole criterion

for the quality of an estimator.

2 The estimators

With no covariates, the loglikelihood for the outcomes yik is

l = −
1

2

{
n log

(
σ2
W

)
+ log(detW) +

1

σ2
W

e⊤
•
W−1e•

}
, (1)

where W = σ−2
W var(y) is the scaled variance matrix of the n = Km observations and

e• = y − µ1n is the vector of residuals (1n is the vector of unities of length n). Let

e = y − µ̂1n , where µ̂ = n−1y⊤1n . Denote by SW and SB the within- and between-

cluster sums of squares of the residuals:

SW =
K∑

k=1

m∑

i=1

(eik − ēk)
2

SB = m
K∑

k=1

ē2k , (2)

where eik = yik− µ̂ and ēk = (e1k+ · · ·+emk)/m is the average residual in cluster k. We

have the identity SW + SB = e⊤e for the overall sum of squares of the residuals. With

the balanced design, SW and SB are independent and have scaled χ2 distributions;

SW

σ2
W

∼ χ2
n−K

SB

σ2
W +mσ2

B

∼ χ2
K−1 . (3)
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In Appendix A, we derive the following expressions for the ML estimators:

ω̂ =
m− 1

m

SB

SW

−
1

m

σ̂2
B =

SB

n
−

SW

m(n−K)
. (4)

Unlike their respective targets ω and σ2
B , these estimators attain negative values with

positive probabilities, and are therefore improper. Proper ML estimators are obtained

by truncating them at zero.

An error contrast is defined as a linear combination of the observations yik that has

zero expectation. Error contrasts define a linear space. In our case, its dimension is

n − 1. In REML, a basis of this linear space is used as the set of observations. The

loglikelihood for such a basis is obtained by adjusting the loglikelihood l in (1) by

∆l =
1

2
log

(
1

σ2
W

1⊤

nW
−11n

)

(Harville, 1974), apart from an additive constant that is irrelevant for maximizing

lRE = l +∆l, which yields the REML estimators. In Appendix B, we show that these

estimators are

ω̂RE =
n−K

m(K − 1)

SB

SW

−
1

m

σ̂2
B,RE =

SB

m(K − 1)
−

SW

m(n−K)
, (5)

although they are improper and have to be truncated at zero. We retain the notation

in (4) and (5) for the improper estimators and indicate their truncation by adding 0 in

the subscripts. Approximate or exact unbiasedness applies to the improper estimators.

The estimators σ̂2
B and σ̂2

B,RE have the same form σ̃2
B(a) = aSB − SW/m/(n −K),

with a = aML = 1/n and aRE = 1/(n−m), respectively. An (improper) estimator of σ2
B

more efficient than both σ̂2
B and σ̂2

B,RE is found by identifying the constant a for which

the MSE of σ̃2
B(a) is minimized. In Appendix C, we show that the (unique) minimum

is attained for a∗ = 1/(n + m). Since MSE{σ̃2
B(a)} is a quadratic function of a, the

inequality a∗ < aML < aRE implies that σ̂2
B is uniformly more efficient than σ̂2

B,RE for

all one-way balanced designs with no covariates.

In practice, the estimators σ̂2
B and σ̂2

B,RE are truncated, and therefore the appeal

to unbiasedness prior to truncation should carry little weight. At the same time,
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truncation makes our comparison of the MSEs incomplete and imperfect. Equations

(4) and (5) imply that σ̂2
B < σ̂2

B,RE ; therefore σ̂
2
B < 0 whenever σ̂2

B,RE < 0. A simulation

study in Section 4 shows that the relative efficiency of σ̂2
B is retained by truncation.

3 Efficiency of the estimators of ω

The improper ML and REML estimators of the variance ratio ω are linear functions

of the ratio SB/SW which, for the balanced design with no covariates, has a scaled F

distribution with K − 1 and n−K degrees of freedom:

(X =)
1

1 +mω

n−K

K − 1

SB

SW

∼ FK−1,n−K . (6)

Denote uRE = 1/(1 +mω) and u = KuRE/(K − 1), so that

ω̂ =
X − u

mu

ω̂RE =
X − uRE

muRE

.

In Appendix D, we derive the biases of these estimators, −(m− 3)D1 and 2D1, respec-

tively, where D1 = (1/m+ ω)/(n−K − 2), and their MSEs,

(M =) MSE(ω̂) = D2
1

{
2(K − 1)(m− 1)2(n− 3)

n−K − 4
+ (m− 3)2

}

(R =) MSE(ω̂RE) = D2
1

{
2(n−K)2(n− 3)

(K − 1)(n−K − 4)
+ 4

}
.

Let D2 = D2
1(m− 1)/{(K − 1)(n−K − 4)}. The difference of the MSEs,

M −R = D2
1

[
2(m− 1)2(n− 3)

n−K − 4

(
K − 1−

K2

K − 1

)
+
{
(m− 3)2 − 4

}]

= D2 {(K − 1)(m− 5)(n−K − 4)− (4K − 2)(m− 1)(n− 3)} ,

is negative for all K and m because each factor of the first term in the braces in the

second line is smaller than its counterpart in the second term. Thus, ω̂ is uniformly

more efficient than ω̂RE in all one-way balanced designs. As an aside, we note that the

absolute bias of ω̂RE is smaller than for ω̂ only for m > 5.

The improper estimators ω̂ and ω̂RE have the common lower bound of −1/m. This

motivates our search for the efficient estimator of ω in the class of estimators ω̃(b) =
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bSB/SW−1/m. In Appendix D, we show that the MSE of these estimators is minimized

for b∗ = (n −K − 4)/(n +m), which is smaller than its counterparts for ω̂ and ω̂RE ,

equal to bML = (m−1)/m and bRE = bMLK/(K−1). Neither ω̂ nor ω̂RE is unbiased, but

ω̂ is uniformly more efficient than ω̂RE . The estimator ω̃∗ = ω̃(b∗) can be interpreted

as a shrinkage estimator with the focus of shrinkage at −1/m.

When σ2
W is known, ML and REML estimators of ω are obtained directly as the

roots of the corresponding score functions. They are ω̃(c) = cSB/σ
2
W − 1/m, with c =

1/n for ML and c = 1/(n−m) for REML; see Appendices A and B. The distributions

of these estimators are linear transformations of χ2
K−1, and so their biases and MSEs

are derived straightforwardly. In general,

MSE
{
ω̃(c); σ2

W

}
=
{
c2
(
K2 − 1

)
− 2c

K − 1

m
+

1

m2

}(
1

m
+ ω

)2

.

Therefore the REML estimator is unbiased with variance 2(1/m+ω)2/(K−1), the ML

estimator has bias −(1/m+ω)/K and MSE (1/m+ω)2(2K−1)/K2, and the minimum-

MSE estimator, with c = 1/(n+m), has MSE equal to 2(1/m+ ω)2(K + 1). The ML

estimator of ω is uniformly more efficient than REML. These results differ only slightly

for their counterparts with σ2
W unknown, if SW in them is replaced by its expectation

(n −K)σ2
W . The ratio of MSEs of the minimum-MSE estimators, one assuming that

σ2
W is estimated and the other that it is known, is 1+(K−1)/(n−K−2). The fraction

in excess of unity can be interpreted as the value of knowing σ2
W for estimating ω.

The truncated versions of the respective ML and REML estimators of ω are denoted

by ω̂0 and ω̂RE,0 . Their properties are summarized by the following proposition.

For j = 1 and 2, let

Hj =
K − 1

K + 2j − 1

N −K + 2j

N −K
.

The respective biases of ω̂0 and ω̂RE,0 are

1

m
FK−1 ,n−K(u) +D1 {−m+ 3− (K − 1)(m− 1)FK+1 ,n−K−2(H1u)}

1

m
FK−1,n−K(uRE) +D1 {2− (n−K)FK+1,n−K−2(H1uRE)}

and their MSEs are

MSE(ω̂0) =
(K2 − 1) (m− 1)2

(n−K − 2)(n−K − 4)

{
1− FK+3,n−K−4 (H2u)

}( 1

m
+ ω

)2
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−
2(K − 1)(m− 1)

n−K − 2

{
1− FK+1,n−K−2 (H1u)

}( 1

m
+ ω

)2

+
{
1− FK−1,n−K(u)

}( 1

m
+ ω

)2

+ ω2FK−1,n−K(u)

MSE(ω̂RE,0) =
(K + 1)(n−K)2

(
ω + 1

m

)2

(K − 1)(n−K − 2)(n−K − 4)

{
1− FK+3,n−K−4(H2uRE)

}

−
2(n−K)

n−K − 2

{
1− FK+1,n−K−2(H1uRE)

}( 1

m
+ ω

)2

+
{
1− FK−1,n−K(uRE)

}( 1

m
+ ω

)2

+ ω2FK−1,n−K(uRE) .

These identities are derived in Appendix E.

We do not have an analytical proof that MSE(ω̂0) < MSE(ω̂RE,0), but check it by

direct evaluation. Figure 1 presents the contour plots of the relative efficiency, defined

as
√
MSE(ω̂RE,0)/MSE(ω̂0), for K ∈ (3, 30) and m ∈ (3, 20) and ω set to zero, 0.05,

0.10 and 0.25. The diagram shows that ω̂0 is uniformly more efficient than ω̂RE,0 . The

relative efficiency depends more strongly on K than on m, and appears to converge to

unity with increasing K. The relative efficiency is a decreasing function of ω.

The truncated version of estimator ω̃(b∗) has MSE

K − 1

K + 1

n−K − 2

n−K − 4

(
ω +

1

m

)2 {
1− FK+3,n−K−4

(
K + 1

K + 3

n−K − 4

n−K − 2

1

1 +mω

)}

−
2(K − 1)

K + 1

(
ω +

1

m

)2 {
1− FK+1,n−K−2

(
1

1 +mω

)}

+ {1− FK−1,n−K(u
∗)}

(
ω +

1

m

)2

+ ω2FK−1,n−K(u
∗) ,

where u∗ = (K+1)(n−K)/(K−1)/(n−K−4)/(1+mω). It is more efficient than ω̂0

for K and m used in Figure 1, but not efficient in the class ω̃0(b). For any pair (K,m),

the value of b that minimizes the MSE can be found numerically, but it depends on ω.

The MSE of the truncated (ML or REML) estimator of σ2
B cannot be derived by

this approach because the estimator is a linear combination of χ2 distributed variables,

and its density does not have a closed form.
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Figure 1: Contour plots of the relative efficiency of the proper (truncated) estimators
of ω in one-way analysis of variance with random effects.
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4 Empirical evaluation

We checked by simulations that σ̂2
B,0 is more efficient than σ̂2

B,RE,0 . These simulations

are conducted without generating the elementary outcomes yik , because the estimators,

(4) and (5), depend on them only throught the scaled χ2-distributed statistics SW and

SB , which are simulated directly. The samples involved can be drawn also for fractional

values of K and m. Little additional computational effort is required to compare also

the proper estimators of ω, even though we have analytical expressions for their bias

and MSE. We checked that the expressions in the previous section agree with their

empirical counterparts.

The results are summarized by several quartets of contour plots in which we compare

the biases and root-MSEs of the proper (truncated) ML and REML estimators of σ2
B

and ω. Each quartet is for a separate value of ω and σ2
B = ω, with σ2

W set to unity

but treated as unknown. In every simulation we use 100 000 replications. The slight

coarseness of the plots confirms that such a high number of replications is necessary.

The contour plots for ω = 0.05 are displayed in Figure 2 for K ∈ (3, 30) and

m ∈ (3, 20). The relative bias of the proper estimators σ̂2
B,0 and σ̂2

B,RE,0 , denoted by

∆bias, is defined as |E(σ̂2
B,RE,0)−σ2

B|−|E(σ̂2
B,0)−σ2

B|, so that its positive values indicate

that the bias of the ML estimator is smaller in absolute value than the absolute bias

of the REML estimator. The relative root-MSE of σ̂2
B,0 and σ̂2

B,RE,0 is defined as the

ratio
√
MSE(σ̂2

B,RE,0)/MSE(σ̂2
B,0); its values in excess of unity indicate that the ML

estimator is more efficient than the REML estimator. The relative bias and relative

root-MSE are defined for ω̂0 and ω̂RE,0 similarly.

The diagram shows that the proper ML estimators of σ2
B and ω are more efficient

than their REML counterparts. For both σ2
B and ω, the relative bias decreases with K

and m. For non-trivial m, it is negative for σ2
B when K > 9 and for ω when K > 10,

in both cases by narrow margins. The relative MSE depends on m only slightly and

decreases with K, but the ML estimators are 10 – 15% more efficient (on the root-MSE

scale) even for K = 15. Note that the bottom right-hand panel is the empirical version

of the top right-hand panel of Figure 1.

Figure 3 displays the contour plots for σ2
RE = ω = 0.15 using the same layout as

Figure 2. The diagram confirms that ML estimation of σ2
B and ω is uniformly more
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Figure 2: Contour plots of the relative bias and relative efficiency of the proper esti-
mators of σ2

B and ω in one-way analysis of variance with random effects; σ2
W = 1 and

ω = 0.05.
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efficient, although the gains in efficiency are smaller than when ω = 0.05. It seems

that truncation confers additional advantage to ML estimation. For ω > 0.2, the

probability of truncation is very small, except for designs with very small K (and m),

and the analytical results for the estimators that are not truncated provide a good

approximation.

5 Example

All our (analytical) results relate to balanced designs. The efficiencies of the alternative

estimators can be compared by simulations for any particular unbalanced design and

value of ω, but it is not feasible to represent the vast variety of designs in such a study.

For an illustration, we conducted simulations for the design with within-cluster sample

sizes mj = j + 4, j = 1, . . . , K = 11 (n = 110 observations), σ2
W = 1 and ω = 0, 0.01,

. . . , 0.25. For each value of ω, we generate a dataset according to the random-effect

model and evaluate the ML and REML estimates of σ2
B and ω, and replicate these steps

500 times; σ2
W is estimated throughout. The empirical root-MSEs of the improper and

truncated versions of these estimators are drawn in Figure 4 as functions of ω.

The diagram shows that ML estimators (solid lines) are uniformly more efficient

than the corresponding REML estimators (dashes of the same colour). The ratios of

their root-MSE’s decrease with ω, from 1.26 for proper estimation of σ2
B (black curves

in the left-hand panel) when σ2
B = 0 to 1.05 when σ2

B = 0.25. The corresponding ratios

for estimating ω are slightly higher. In a balanced design, these ratios do not depend

on ω. For the studied design, truncation is rare and has next to no impact for ω > 0.18.

The algorithms for ML and REML estimation are described in Appendix F.

6 Models with covariates

We consider next the regression model

yk = Xkβ + δk + εk

form×1 vectors of observations yk , k = 1, . . . , K. We assume thatX = (X⊤

1 , . . . ,X
⊤

K)
⊤

comprises only variables that are balanced within clusters (Z) and variables defined
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Figure 4: The root-MSE’s of the estimators of σ2
B and ω for the design with a cluster

each of size 5, 6, . . . , 15 and σ2
W = 1.

for clusters (U), which in their expanded forms are constant within clusters; X =

(1n ,Z,U). The intercept is represented by the vector of unities, 1n . Denote by rZ and

rU the respective numbers of columns of Z and U. We assume that X is of full rank

equal to r = 1+rZ+rU < n. Denote by Zk and Uk the respective submatrices of Z and

U that correspond to the units in cluster k; Xk = (1m ,Zk ,Uk). No generality is lost

by assuming that every variable in Z and U has zero mean. With these assumptions,

the variables in Z and U are orthogonal: Z⊤

k Uk = 0, the matrix of zeros, with dimen-

sions implied by the context. Further, Z⊤

k 1m = 0 and Uk = 1muk , where uk is the row

vector of the values of U in cluster k. That implies that
∑

k uku
⊤

k is nonsingular. The

dimensions of the linear spaces spanned by the variables that qualify for U and Z are

K − 1 and n −K, respectively. Together with 1n they span the entire n-dimensional

linear space. Thus, the only restriction we impose is that there are no covariates that

have both within and between-cluster variation.

Let W be the scaled variance matrix, as in (1). The ML and REML estimators of

β are both generalized least squares,

β̂ =
(
X⊤Ŵ

−1
X

)−1

X⊤Ŵ
−1
y ,
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with the ML or REML estimator of ω substituted for it in W. In Appendix G, we

show that the subvectors of β̂ that correspond to Z and U are uncorrelated and they

do not depend on ω. Hence the sum-of-squares statistics SW and SB are independent,

even after the residuals eik are adjusted for X, and

SW

σ2
W

∼ χ2
n−K−rZ

SB

σ2
W +mσ2

B

∼ χ2
K−1−rU

.

The REML estimators of σ2
W and σ2

B coincide with their counterparts in (5) with K−1

and n−K replaced by K − 1− rU and n−K − rZ , respectively:

ω̂RE =
n−K − rZ

m(K − 1− rU)

SB

SW

−
1

m

σ̂2
B,RE =

SB

m(K − 1− rU)
−

SW

m(n−K − rZ)
,

whereas ω̂ and σ̂2
B are defined by these expressions with rU and rZ both set to zero.

In brief, REML counts the degrees of freedom in a natural way; every variable defined

for clusters reduces the effective number of clusters by one, and every variable defined

for elements (and balanced within clusters) reduces the effective number of elementary

units by one, from n − K to n − K − rZ . As a consequence, the results for the

model with no covariates carry over to the model with covariates of the two types

with no changes other than an adjustment of the effective numbers of clusters and

observations. However, the differences between ML and REML estimators have to be

reviewed because more degrees of freedom are lost.

The ratio SB/SW has scaled F distribution withK ′ = K−1−rU and n′ = n−K−rZ

degrees of freedom:

(X =)
1

1 +mω

n′

K ′

SB

SW

∼ FK′,n′ . (7)

The estimators ω̂ and ω̂RE have the form ω̃(b) = bSB/SW − 1/m for b = (m − 1)/m

and bRE = n′/K ′/m. In Appendix H, we prove that the coefficient b for which ω̃(b)

attains its minimum MSE is

b∗ =
n′ − 4

(K ′ + 2)m

and the minimum attained is

MSE{ω̃(b∗)} =
2(n′ +K ′ − 2)

(n′ − 2)(K ′ + 2)

(
1

m
+ ω

)2

.
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Further,

MSE(ω̂) =
1

n′ − 2

(
1

m
+ ω

)2
{
K ′(K ′ + 2)(m− 1)2

n′ − 4
+ n′ − 2K ′m+ 2K ′ − 2

}

MSE(ω̂RE) =
1

n′ − 2

(
1

m
+ ω

)2
{
(K ′ + 2)n′2

K ′ (n′ − 4)
− n′ − 2

}
.

By simple rearranging we obtain the identity

MSE(ω̂RE)−MSE(ω̂) =
K ′(K ′ + 2)

(n′ − 2)(n′ − 4)

(
1

m
+ ω

)2

{n′ +K ′(m− 1)− 2}

× {n′ −K ′(m− 1)} .

It has the same sign as the concluding factor, equal to (rU + 1)(m− 1)− rZ . Hence ω̂

is more efficient than ω̂RE , unless there are at least m − 1 variables in Z and none in

U, or at least 2m− 2 variables in Z and one in U, and so on. These settings are rarely

realistic.

Estimation of σ2
B

The properties of the estimators of σ2
B are derived directly from their expressions as

linear combinations of two independent F -distributed variates. Thus, σ̂2
RE is unbiased,

with variance (and MSE)

var
(
σ̂2
B,RE

)
= 2σ4

W

{
1

K ′

(
1

m
+ ω

)2

+
1

m2n′

}
.

The bias and MSE of the ML estimator are

E
(
σ̂2
B

)
− σ2

B = σ2
W

{
K ′

K

(
1

m
+ ω

)
−

n′

m(n−K)
− ω

}

MSE
(
σ̂2
B

)
= σ4

W

{
2K ′

K2

(
1

m
+ ω

)2

+
2n′

m2(n−K)2

}
+
{
E
(
σ̂2
B

)
− σ2

B

}2
.

The efficiency of σ̂2
B and σ̂2

B,RE is difficult to compare analytically because the terms

involving ω cannot be forced into factors of 1/m+ ω when rZ > 0. For rZ = 0, when

n′ = n−K, substantial simplification takes place and

var
(
σ̂2
B,RE

)
−MSE

(
σ̂2
B

)
= 2σ4

W

(
1

m
+ ω

)2 K −K ′

K ′K2

{
K ′2 −K ′(K − 2) + 2K

}

14



The expression in braces is a quadratic function of K ′. From its roots we conclude that

the difference is negative when

K

2
− 1−

√(
1
2
K − 3

)2
− 8 < K ′ <

K

2
− 1 +

√(
1
2
K − 3

)2
− 8

and K ≥ 12. For K < 12, σ̂2
B is more efficient. For K = 12, σ̂2

B,RE is more efficient

than σ̂2
B only for K ′ = 5, that is, rU = 6, and their MSEs are identical for K ′ = 4 and

K ′ = 6. For greater K, the range in which σ̂2
B,RE is more efficient widens, converging

to (4, K − 4), that is, rU ∈ (5, K − 3). Only the lower bound for rU is important in

practice. Note that the differences in MSEs diminish for large K. It can be checked by

direct evaluation that rZ has only a slight impact on the MSEs of σ̂2
B and σ̂2

B,RE , and

can in all realistic settings be ignored. For example, the root-MSE of σ̂2
B,RE decreases

from 0.06940 to 0.06850 for K = 20, m = 10, rU = 2, σ2
W = 1 and σ2

B = ω = 0.1 as rZ

is increased from zero to 20. In the same setting, the root-MSE of σ̂2
B decreases from

0.06642 to 0.06209.

Proper estimators of ω

The proper estimators, σ̂2
B,0 and σ̂2

B,RE,0 can be compared only by simulations, although

these can be based on draws from pairs of F distributions, as described in Section

4. In general, truncation accords some (additional) advantage to the ML estimator,

especially for small values of ω.

The derivations in Appendix E carry over directly to the regression model by chang-

ing all references of FK−1,n−K distribution to FK′,n′ distribution. For the MSE of the

estimator ω̃(b) truncated at zero, we have the expression

MSE {ω̃0(b)} =
b2m2K ′(K ′ + 2)

(n′ − 2)(n′ − 4)

(
1

m
+ ω

)2
{
1− FK′+4,n′−4

(
dH ′

2

b

)}

−
2bmK ′

n′ − 2

(
1

m
+ ω

)2
{
1− FK′+2,n′−2

(
dH ′

1

b

)}

+ω2Fk′,n′

(
d

b

)
+
(
1

m
+ ω

)2
{
1− FK′,n′

(
d

b

)}
,

where

d =
n′

K ′m

1

1 +mω

15



Table 1: The relative efficiency of the ML and REML estimators of ω; K = 12, m = 20,
ω = 0.25.

rZ

rU 0 1 2 3 4 5 6

0 1.151 1.145 1.139 1.133 1.127 1.120 1.113

1 1.232 1.231 1.230 1.228 1.226 1.224 1.222

2 1.234 1.237 1.240 1.243 1.245 1.247 1.250

3 1.185 1.190 1.195 1.200 1.204 1.209 1.214

4 1.122 1.127 1.132 1.137 1.142 1.148 1.153

5 1.073 1.077 1.082 1.087 1.092 1.097 1.101

6 1.060 1.064 1.068 1.072 1.076 1.080 1.084

H ′

j =
K ′

n′

n′ − 2j

K ′ − 2j
,

j = 1, 2. General analytical comparisons of the MSEs of ω̂0 and ω̂RE are not feasible.

Table 1 displays the relative root-MSEs,
√
MSE(ω̂RE)/MSE(ω̂), for K = 12, m = 20,

ω = 0.25 and 0 ≤ rU , rZ ≤ 6. The relative efficiency depends on rZ only slightly

because the relative reduction of the degrees of freedom associated with it, from n−K

to n−K−rZ is quite modest when compared to the reduction from K−1 to K−1−rU.

The ML estimator is more efficient in all settings in the table, although its advantage

over REML decreases with rU for rU > 2.

For smaller values of ω, the relative efficiency increases with rU . For example, with

K = 12 andm = 20, as in Table 1, but with ω = 0.05, it is equal to 1.20 for rU = rZ = 0

and 1.77 for rU = 6 and rZ = 0. The relative efficiency increases also with rZ , but

much more slowly; it is equal to 1.24 for rU = 0 and rZ = 6 and 1.80 for rU = rZ = 6;

compare these figures with 1.20 and 1.77, respectively. One might regard a comparison

of ω̂0 and ω̂RE,0 for small ω as unfair because ω̂ < ω̂RE , and therefore ω̂ is truncated

with greater probability and more radically to a value very close to the target ω.
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7 Saturated cluster-level variation

Some parallels of the results in Sections 2 and 6 can be drawn with estimating the

variance of a random sample y1, . . . , yn from the normal distribution N (µ, σ2). Let

S =
∑

i(yi − ȳ)2. The conventional estimator σ̂2
RE = S/(n − 1) is unbiased, with

variance 2σ4/(n−1), but σ̂2 = S/n is more efficient, with MSE equal to (2n−1)σ4/n2,

and σ̃2 = S/(n+1), with MSE equal to 2σ4/(n+1), is efficient among estimators that

are scalar multiples of S. See Stuart (1969) for these results and their generalizations.

In ordinary regression, y = Xβ+ε, with n× r matrix X or full rank r, the residual

variance is conventionally estimated by (y−Xβ̂)⊤(y−Xβ̂)/(n−r), what is the REML

estimator. The reference to scaled χ2 indicates that n − r + 2 is the optimal divisor,

whilst the ML estimator has the divisor n. Simple evaluations yield the following

comparison. The REML estimator of σ2 is more efficient than ML when r > 4 and

n > r(r − 2)/4. Note that the second condition is not particularly restrictive.

The multivariate normal regression is defined by the model

yj = xjB+ γj ,

where B is a (rU + 1) × m matrix of covariates and γj , j = 1, . . . , K, are a random

sample from a centered m-variate normal distribution with variance matrix Σ. It is

equivalent to the random coefficient model with m categories involved in Z and each

category observed once in every cluster, that is, with saturated cluster-level variation.

In this model, rZ = m− 1.

The variance matrix Σ is estimated by the multivariate version of the ordinary

least squares, and the results about unbiasedness and efficiency carry over from the

univariate case. Let S be the matrix version of S;

S =
K∑

j=1

(
yj − xjB̂

) (
yj − xjB̂

)⊤
.

Then n−1S is the ML estimator of Σ, (n− rU − 1)−1S the REML estimator, which is

unbiased, but (n− rU + 1)−1S is the efficient estimator among the scalar multiples of

S. Here the properties of no bias and efficiency are interpreted elementwise; they also

apply to linear combinations the elements of Σ.
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8 Conclusion

We derived expressions for the bias and MSE of the ML and REML estimators of the

cluster-level variance σ2
B and the variance ratio ω in one-way designs with normally dis-

tributed outcomes. In some settings, the ML estimators are uniformly more efficient.

Their advantage is retained by truncation, which increases the efficiency of the estima-

tors of both parameters. Of course, the truncated REML estimator of σ2
B is biased, so

the rationale for REML estimation is difficult to sustain. In some settings, the proper

ML estimator has smaller absolute bias than the proper REML estimator. The REML

estimator of ω is biased even without truncation. The results for estimating σ2
B and

ω = σ2
B/σ

2
W differ only slightly because there is (relatively) little uncertainty about σ2

W ,

except for the designs with very small K and m. The discord between unbiasedness

and efficiency for estimating the within-cluster variance σ2
W is implied by Markowitz

(1968) and Stuart (1969).

The analytical results cannot be extrapolated to designs without balance nor to

all models with covariates, but we hope that they will encourage a reevaluation of the

uncritical preference for REML. We derived shrinkage estimators of σ2
B and ω that are

more efficient than improper ML. Their superiority over ML is retained by truncation,

although the truncated (proper) estimators are unlikely to be efficient in their respective

classes of estimators. There is no straightforward extension of the shrinkage estimators

to designs without balance. Extensions of our results to more complex designs, with

several sets of random effects, are an open problem. We note that the returns on such

extensions may be diminishing, because the condition of balance becomes more onerous

with complexity of the design and model.

We conclude by pointing out the fragile nature of unbiasedness and efficiency. For

estimators derived from finite samples, these properties are not retained by nonlinear

transformations. Thus, the (improper) REML estimator of σ2
B is unbiased, but the

REML estimators of ω = σ2
B/σ

2
W or of σB are not. Of course, unbiasedness is not

retained by truncation either.
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Appendices

Appendix A. Maximum likelihood

We derive expressions for the ML estimators of σ2
B and ω. The log-likelihood is given

by equation (1). The scaled variance matrix W = σ−2
W var(y) is block-diagonal, with

K identical blocks equal to Wk = Im + ωJm , k = 1, . . . , K. Here Im is the m × m

identity matrix and Jm the m×m matrix comprising unities. We have the identities

det(Wk) = 1 +mω

W−1
k = Im −

ω

1 +mω
Jm

(Longford, 1993, Section 2.1). The quadratic form e⊤W−1e can be expressed in terms

of SW and SB , defined in (2) as

e⊤e−
m2ω

1 +mω

K∑

k=1

ē2k = SW +
1

1 +mω
SB ,
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after substituting SW + SB for e⊤e. The improper ML estimators are found as the

roots of the first-order partial derivatives. From the respective identities

∂l

∂σ2
W

= −
1

2σ4
W

(
nσ2

W − SW −
1

1 +mω
SB

)

∂l

∂ω
= −

1

2

m

1 +mω

(
K −

1

σ2
W

1

1 +mω
SB

)

we have the equations for σ̂2
W :

σ̂2
W =

1

n

1

1 +mω̂
SB +

1

n
SW

σ̂2
W =

1

K

1

1 +mω̂
SB . (8)

Matching the right-hand sides of (8) yields the expression

ω̂ =
m− 1

m

SB

SW

−
1

m
, (9)

and by its substitution to the second equation in (8) we obtain for σ̂2
B = σ̂2

W ω̂

σ̂2
B =

SB

n
−

SW

m(n−K)
.

Appendix B. Restricted maximum likelihood

The adjustment of the log-likelihood for REML is

∆l = −
1

2
log
(
σ2
W

)
+

1

2
log

(
n

1 +mω

)
.

The adjusted log-likelihood is

lRE = −
1

2

{
(n− 1) log

(
σ2
W

)
+ (K − 1) log(1 +mω) +

1

σ2
W

e⊤
•
W−1e•

}
.

Its derivatives,

∂lRE

∂σ2
W

= −
1

2σ4
W

{
(n− 1)σ2

W − SW −
1

1 +mω
SB

)

∂lRE

∂ω
= −

1

2

m

1 +mω

(
K − 1−

1

σ2
W

1

1 +mω
SB

)
,

yield the REML counterparts of equations (8),

σ̂2
W,RE =

1

n− 1

1

1 +mω̂RE

SB +
1

n− 1
SW

σ̂2
W,RE =

1

K − 1

1

1 +mω̂RE

SB ,
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from which we obtain the expressions for the REML estimators:

ω̂RE =
n−K

n−m

SB

SW

−
1

m

σ̂2
B,RE =

SB

n−m
−

SW

m(n−K)
. (10)

Appendix C. An efficient estimator

Having expressed the estimators of σ2
B in terms of SB and SW , their bias and MSE can

be derived by referring to the moments of the χ2 distribution; see equation (3).

We evaluate the MSE of the improper estimator σ̃2
B(a) = aSB − SW/m/(n − K).

The respective values of a for ML and REML are 1/n and 1/(n −m). Then we find

the coefficient a for which the MSE attains its minimum. The bias of σ̃2
B(a) is

E

{
aSB −

1

m(n−K)
SW − σ2

B

}
= a(K − 1)

(
σ2
W +mσ2

B

)
−

1

m
σ2
W − σ2

B

=
{
a(K − 1)−

1

m

}(
σ2
W +mσ2

B

)
.

Thus, σ̂2
B,RE is unbiased and the bias of σ̂2

B is −(σ2
W +mσ2

B)/n.

The MSE of σ̃2
B(a) is

[
2a2m2(K − 1) + {a(n−m)− 1}2

] (
σ2
B +

1

m
σ2
W

)2

+
2(n−K)

n2(m− 1)2
σ2
W

=
{
a2m2(K − 1)(K + 1)− 2a(n−m) + 1

}(
σ2
B +

1

m
σ2
W

)2

+ Cσ2
W ,

where the constant C = 2K/(m− 1)/n2 does not involve a, so its value is immaterial

for minimizing the MSE. The MSE is minimized when the expression in the braces, a

quadratic function of a, attains its minimum. That occurs for

a∗ =
n−m

m2(K − 1)(K + 1)
=

1

n+m
.

The minimum MSE is
2

K + 1

(
σ2
B +

1

m
σ2
W

)2

+ Cσ4
W .

The MSEs of the ML and REML estimators differ only in their leading factors, which

are (2K − 1)/K2 and 2/(K − 1) for ML and REML, respectively, both greater than

2/(K +1). See Kourouklis (2012) for a similar approach to minimum MSE estimation

in a related context.
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Appendix D. Bias and MSE of the estimators of ω

The statistic SB/SW has scaled F distribution with K ′ = K−1 and n′ = n−K degrees

of freedom. The F distributions have the densities

fK′,n′(x) =
Γ2(K

′ + n′)

Γ2(K ′)Γ2(n′)

(
K ′

n′

)K′/2
xK′/2−1

(1 +K ′x/n′)(K
′+n′)/2

; (11)

the half-gamma function Γ2(k) = Γ(k/2) is introduced for typographical reasons. The

expectation of this distribution is n′/(n′ − 2) when n′ > 2 and its variance is

2n′2(K ′ + n′ − 2)

K ′(n′ − 2)2(n′ − 4)

when n′ > 4 (Simon, 2004). We assume throughout that n > K + 4.

The estimators ω̂ and ω̂RE have the form ω̃(b) = bSB/SW − 1/m, with b = bML =

(m − 1)/m for ω̂ and bRE = bMLK/(K − 1) for ω̂RE ; see equations (9) and (10). The

bias of ω̃(b) is (
bmK ′

n′ − 2
− 1

)(
1

m
+ ω

)

and its MSE is

D2
1

[
2b2m2 K

′(n′ +K ′ − 2)

n′ − 4
+ {bmK ′ − (n′ − 2)}

2

]

= D2
1

[
2b2m2

{
2K ′(n′ +K ′ − 2)

n′ − 4
+K ′2

}
− 2bmK ′(n′ − 2) + (n′ − 2)2

]
, (12)

where D1 = (1/m+ ω)/(n′ − 2). Hence the respective biases of ω̂ and ω̂RE are

E(ω̂)− ω =

{
(m− 1)K ′

n′ − 1
− 1

}(
1

m
+ ω

)
= −

m− 3

n′ − 2

(
1

m
+ ω

)
.

E(ω̂RE)− ω =

{
(m− 1)K

n′ − 2
− 1

}(
1

m
+ ω

)
=

2

n′ − 2

(
1

m
+ ω

)
.

The MSEs of ω̂ and ω̂RE are

MSE(ω̂) = D2
1

{
2K ′(m− 1)2(n′ +K ′ − 2)

n′ − 4
+ (m− 3)2

}

MSE(ω̂RE) = D2
1

{
2n′2(n′ +K ′ − 2)

K ′(n′ − 4)
+ 4

}
.
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The MSE in (12) is a quadratic function of b. It attains its minimum for

b∗ =
1

m

(n′ − 2)(n′ − 4)

2(n′ +K ′ − 2) +K ′(n′ − 4)

=
n′ − 4

m(K ′ + 2)
= 1−

m+K + 4

m+ n

and the minimum attained is
{
1−

K ′

K ′ + 2

n′ − 4

n′ − 2

}(
1

m
+ ω

)2

=
2(n′ +K ′ − 2)

(n′ − 2)(K ′ + 2)

(
1

m
+ ω

)2

.

Appendix E. Proper estimators of ω

In this section, we derive the MSEs of the proper estimators ω̂0 and ω̂RE,0 which are

formed by truncating ω̂ and ω̂RE at zero. We use the following identities that link the

densities of F distributions:

xfK′,n′(x) =
K ′

K ′ + 2
fK′+2,n′−2(H1x)

x2fK′,n′(x) =
K ′

H1(K ′ + 4)
fK′+4,n′−4(H2x) , (13)

where

Hj =
K ′

n′

n′ − 2j

K ′ + 2j
, (14)

j = 1, 2. The first identity is obtained by matching the expression for xfK′,n′(x) with

another density of form (11). First, the factor xK′/2 implies K ′ + 2 degrees of freedom

instead of K ′; then the term 1+ yK ′/n′ in the denominator implies the argument H1x

instead of x, and its exponent (K ′+n′)/2 implies the change from n′ degrees of freedom

to n′ − 2. The constant factors remaining from the match with fK′+2,n′−2(H1x) reduce

to K ′/(K ′+2). The second identity in (13) is obtained by reusing the first, with K ′+2

and K ′ − 2 in place of K ′ and k2 , respectively.

Consider the class of estimators ω̃0(b) defined by truncating bSB/SW−1/m at zero;

b > 0 is a scalar. They include ω̂0 , for which b = 1 − 1/m, and ω̂RE,0 , for which

b = (n−K)/(n−m).

Denote

d =
n−K

n−m

1

1 +mω
.
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We have the identities

E{ω̃0(b)} =
b

dm

∫ +∞

d/b
xfK′ ,n′(x) dx−

1

m

{
1− FK′, n′

(
d

b

)}

=
b

dm

K ′

K ′ + 2

∫ +∞

d/b
xfK′+2 ,n′−2(H1x) dx−

1

m

{
1− FK′, n−K

(
d

b

)}
,

=
b

dm

n′

n′ − 2

{
1− FK′+2, n′−2

(
dH1

b

)}
−

1

m

{
1− FK′, n′

(
d

b

)}
.

The biases of ω̂0 and ω̂RE,0 are obtained by substituting d/bML = u and d/bRE = uRE

for d/b.

For the MSE we use the general identity

MSE(ω̃) = E

{(
ω̃ +

1

m

)2
}
− 2

(
ω +

1

m

)
E
(
ω̃ +

1

m

)
+
(
ω +

1

m

)2

.

The first term for ω̃0 = ω̃0(b) is

E

{(
ω̃0 +

1

m

)2
}

=
b2

d2m2

∫ +∞

d/b
x2fK′,n′(x) dx+

1

m2
FK′,n′

(
d

b

)

=
b2

d2m2

K ′ + 2

K ′ + 4

n′

n′ − 2

∫ +∞

d/b
fK′+4,n′−4 (H2x) dx

+
1

m2
FK′,n′

(
d

b

)
.

After consolidating the terms involving FK′,n′ and partly substituting for d we obtain

MSE(ω̃0) =
b2

d2m2

K ′ + 2

K ′

n′2

(n′ − 2)(n′ − 4)

{
1− FK′+4,n′−4

(
dH2

b

)}

−
2b

dm

n′

n′ − 2

(
ω +

1

m

){
1− FK′+2,n′−2

(
dH1

b

)}

+ω2FK′,n′

(
d

b

)
+
(
ω +

1

m

)2
{
1− FK′,n′

(
d

b

)}

=
b2K ′ (K ′ − 1)m2

(n′ − 2)(n′ − 4)

(
ω +

1

m

)2
{
1− FK′+4,n′−4

(
dH2

b

)}

−
2bK ′m

n′ − 2

(
ω +

1

m

)2
{
1− FK′+2,n′−2

(
dH1

b

)}

+ω2FK′,n′

(
d

b

)
+
(
ω +

1

m

)2
{
1− FK′,n′

(
d

b

)}
.
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Appendix F. ML and REML estimation with unbalanced de-

signs

The log-likelihood for the design with within-cluster sample sizes mj , j = 1, . . . , K, is

given by equation (1) in which W is block-diagonal with mj×mj matrices Wj = Imj
+

ωJmj
as its blocks. We have the identities det(Wj) = gj and W−1

j = Imj
− ω/gj Jmj

,

where gj = 1 +mjω. The ML estimator of the overall mean µ is the generalized least

squares estimator

µ̂ =
(
1⊤

nŴ
−1
1n

)−1

1⊤

nŴ
−1
y

=
K∑

j=1

y⊤

j 1mj

gj

/
K∑

j=1

mj

gj
, (15)

where n = m1 + · · · +mK is the overall sample size and ω̂, involved in Ŵ and gj , is

specified below. The ML estimator of σ2
W is the root of the score,

σ̂2
W =

1

n
e⊤Ŵ

−1
e (16)

(e is the vector of residuals, y− µ̂1n), and the quadratic form is evaluated as

e⊤Ŵ
−1
e = e⊤e − ω̂

K∑

j=1

1

gj

(
e⊤j 1mj

)2
.

The score and Hessian for ω are

(s =)
∂l

∂ω
= −

1

2

K∑

j=1

{
tr

(
W−1

j

∂Wj

∂ω

)
−

1

σ2
W

e⊤j W
−1
j

∂Wj

∂ω
W−1

j ej

}

=
1

2

K∑

j=1

{
−
mj

gj
+

1

g2j σ
2
W

(
e⊤j 1mj

)2
}

(H =) − E

(
∂2l

∂ω2

)
=

1

2

K∑

j=1

m2
j

g2j
, (17)

after substituting E{(e⊤j 1mj
)2} = var(e⊤j 1mj

) = mjgj σ
2
W .

The Fisher scoring algorithm starts with the initial (provisional) fit µ̂ = n−1y⊤1n ,

σ̂2
W = v̂ar(y), the sample variance of the elements of y, and ω̂ = 0.1. Its iterations

evaluate the expressions (15) – (17) and update ω̂ as ω̂new = ω̂old+ s/H. The iterations

are stopped when the absolute deviations of the parameter estimates and the change
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in the log-likelihood become smaller than 10−8 in total. In the example in Section 6,

this takes between 10 and 50 iterations, with the average around 20. The values of ω̂

are ‘cut back’ if in any iteration they fall below −1/max(mj) by halving the value of

s/H as many times as necessary. For ω̂ < −1/max(mj), some of the matrices Ŵj are

not positive definite.

For REML, the divisor in (16) is changed from n to n− 1 and the score function is

adjusted to
1

2

K∑

j=1

{
−
mj

gj
+

1

g2j σ
2
W

(
e⊤j 1mj

)2
}

+
1

2

K∑

j=1

m2
j

g2j

/
K∑

j=1

mj

gj

The Hessian could also be adjusted, but this is not necessary.

In a replication, the ML and REML estimates are evaluated by a single function,

using the same dataset. The sets of replications for the distinct values of ω use the

same set of random numbers — they start with the same value of the random seed.

The code, compiled in R, is available from the author on request.

Appendix G. Estimation of β̂

The inverse of W is given in Appendix A. We have the identities

U⊤

k W
−1
k = U⊤

k −
ω

1 +mω
U⊤

k 1m1
⊤

m

=
1

1 +mω
u⊤

k 1
⊤

m ,

where uk is the row vector of values of U in cluster k; Uk = 1muk . Further,

Z⊤

k W
−1
k = Z⊤

k −
ω

1 +mω
Z⊤

k 1m1
⊤

m

= Z⊤

k ,

because Z is balanced and centered within clusters. Hence Z⊤

k W
−1
k Uk = 0; β̂Z and

β̂U , the vectors of (ML or REML) estimators that correspond to Z and U, respectively,

are uncorrelated. Further,

U⊤W−1U =
K

1 +mω

K∑

k=1

u⊤

k uk

U⊤W−1y =
K

1 +mω

K∑

k=1

u⊤

k yk
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and

Z⊤W−1Z =
K∑

k=1

Z⊤

k Zk

Z⊤W−1y =
K∑

k=1

Z⊤

k yk .

Therefore neither β̂U nor β̂Z depends on ω. The log-likelihood has the same form as

for the model with no covariates, when Xkβ = µ, and therefore the ML estimators of

σ2
B and ω are the same as in (9), with SB and SW based on appropriately corrected

values of the residuals eik .

The REML adjustment of the log-likelihood is

∆l =
1

2
log

{
det

(
1

σ2
W

X⊤W−1X

)}

=
1

2

{
− (1 + rU + rZ) log

(
σ2
W

)
− (1 + rU) log(1 +mω)

}
+ C

where C is a constant that involves no parameters and is therefore immaterial for

maximizing the likelihood. Hence the derivatives of lRE given in Appendix B apply in

the current setting with n′ = n−K replaced by n−K − rZ and K ′ = K − 1 replaced

by K − 1− rU .

Appendix H. Estimation of ω

Using the identities for the moments of the F distribution yields the expressions

E{ω̃(b)} =

(
bK ′m

n′ − 2
− 1

)(
1

m
+ ω

)

var{ω̃(b)} =
2b2K ′m2 (n′ +K ′ − 2)

(n′ − 2)(n′ − 4)

(
1

m
+ ω

)2

for ω̃(b) = bSB/SW − 1/m. The MSE of ω̃(b) is a quadratic function of b. It attains its

minimum for

b∗ =
n′ − 4

(K ′ + 2)m

and the attained minimum is

E{ω̃ (b∗)} =
2 (n′ +K ′ − 2)

(K ′ + 2) (n′ − 4)

(
1

m
+ ω

)2

.
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